Synapse Documentation
Release 2.141.0

The Vertex Project

Jul 12, 2023

CONTENTS:

Introduction 3
1.1 Key Features L e e e e e e e 3
1.2 What's Next? o e e e e e e e 5
Getting Started 7
2.1 Synapse Quickstart e 7
2.2 0pen-Source Synapseo i it e e e e e e e e e e e 8
2.3 Synapse Demo Instance e e e e e e 8
Synapse User Guide 11
3.1 Backgroundo L e e e e 11
32 DataModel e 19
3.3 Analytical Model L e e e e e e 34
340 Design ... e e e e e e e e 43
3.5 To0ls . . e e e e e e e e 53
3.6 StormReference e 77
3.7 Storm Advanced e e e 288
Synapse Admin Guide 319
4.1 Enable Synapse Power-Ups 319
4.2 Create and Manage Usersand Roles 320
4.3 Assign and Manage Permissions Lo e e e e 324
4.4 Add Extended Model Elements e e e e e 344
4.5 Manage Model Deprecations L Lo e e e e e e e 346
4.6 Configure a Mirrored Layer e e e 347
Synapse Deployment Guide 349
5.1 Introduction e e e e e e e e e e 349
5.2 Prepareyour Hosts L e 349
53 DecideonaName e e e 350
54 Deploy AHA Service o o 0 i i e e e e e e e e e e 350
5.5 Deploy AXOn Service o v i e e e e e e e e e e e e e 351
5.6 Deploy JSONStor Service o o i i e e e e e e e e e 353
5.7 Deploy Cortex Service e 353
5.8 Deploy Cortex Mirror (optional) e 354
59 Enroll CLIUSErs v v v i it e e e e e e e e e e e e e 355
5.10 What's next? e e e e e e e e e e e 356
Synapse Devops Guide 357
6.1 OVEIVIEW o o ot e e e e e e e e 357
6.2 Common Devops Tasks o o o e e e e e 358

10

11

12

6.3 Synapse SEIVICES v v v i e e e e e e e e e e e e e e e e 373

6.4 Devops Details oL e e e e e e 376
Synapse Developer Guide 417
7.1 Rapid Power-Up Development i e e e e e e 417
7.2 Synapse ArchitecCture 0 v i e e e e e e e e e e e e e e e 426
7.3 Cortex Development Quickstart L 428
7.4 Synapse Docker Builds L 431
7.5 Storm Service Development L. e e 432
7.6 Storm APIGuide e e e e e e e e 439
Synapse Glossary 451
Bl A e e e e 451
8.2 B L e e e e 452
8.3 e e e 452
84 D L e e e e 454
8.5 B o e e e 456
8.6 F e e e 458
8.7 G L e e e 459
8.8 H . e e e e 460
78 461
810 K . o e e 461
7 1 I 462
B2 M . e e e e e e 463
B 3 N L e e e 463
.14 O . o e e e e 465
B 1S P e e e 465
B 10 Q . i e e e 467
B 17 R e e e e e e e e e 468
B 18 S e e e e 469
B 19 T L e e e e e e e 471
820 U . o e e e e e e 475
B 2l Ve e e 475
8.2 W L e e e e 476
Synapse Contributors Guide 477
9.1 Contributing to Synapse oL e e e e e e e e e e e e e e 477
9.2 Synapse Doc Mastering e e e e e e e e e 485
9.3 Synapse Release Process o e e e e e e e 489
Synapse Python API 493
10.1 synapse package L e e e e e e e 493
Synapse HTTP/REST API 847
11.1 HTTP/REST API Conventions 0 v i ittt e e e e e e e e e e e e e 847
11.2 Authentication o i e e e e e e e e e e e e e e 847
T1.3 COrteX . . v v o e 852
11.4 Aha . . o e e e e e 859
T1S AXON . . o o e e e e e e e 860
Synapse Data Model 863
12.1 Synapse Data Model - Types« o v i i e e e e e e e e e 863
12.2 Synapse Data Model - Forms e e 973
12.3 Datamodel Deprecation Policy L 1284

13

14

15

16

17

Storm Library Documentation 1287

13.1 Storm Libraries e e e e e e e e e e e 1287
13.2 Storm TYPES . . . o o o e e e e e e e e e e e 1374
Synapse Power-Ups 1437

14.1 Rapid Power-Ups o o o e e e e e e e e 1437
142 Advanced Power-Ups L 1438
Synapse User Interface 1439

Synapse Support 1441

16.1 Slack o e e e e e 1441
16.2 Service Desk e e e e e e e e e 1441
Synapse Changelog 1443

17.1 v2.141.0-2023-07-07 o o o e e e e e e e e e e 1443
17.2 v2.140.1 -2023-06-30 o e e e e e e e e e 1444
17.3 v2.140.0-2023-06-30 o e e e e e e e e 1444
17.4 v2.139.0-2023-06-16 e e e e e e e e e e 1445
17.5 v2.138.0-2023-06-13 o o e e e e 1446
17.6 v2.137.0-2023-06-09 e e e e e 1446
17.7 v2.136.0-2023-06-02 e e e e e e e e e e 1449
17.8 v2.135.0-2023-05-24 o e e e e 1450
17.9 v2.134.0 - 2023-05-17 o o o e e e e e e 1450
17.10 v2.133.1 - 2023-05-09 e e e e e e e e e e e 1451
17.11 v2.133.0 - 2023-05-08 o o e e e e e e 1451
17.12 v2.132.0 - 2023-05-02 o o e e e e e e e 1453
17.13 v2.131.0- 2023-05-02 o o e e e e e e e 1454
17.14 v2.130.2 - 2023-04-26 o i e e e e e e e 1455
17.15 v2.130.1 - 2023-04-25 o e e e e e e e e e 1456
17.16 v2.130.0 - 2023-04-25 o o e e e e e e 1456
17.17 v2.129.0 - 2023-04-17 . . . o o o e e e e e e e e e 1456
17.18 v2.128.0 - 2023-04-11 o o e e e e e e e e e e e e 1457
17.19 v2.127.0 - 2023-04-05 o o e e e e e e e 1459
17.20 v2.126.0 - 2023-03-30 e e e e e e e e e e 1459
17.21 v2.125.0 - 2023-03-14 o o e e e e e 1461
17.22 v2.124.0 - 2023-03-09 oo e e e e e 1461
17.23 v2.123.0 - 2023-02-22 o e e e e e e e e e e e e 1462
17.24 v2.122.0 - 2023-01-27 o o e e e e e e e e e 1465
17.25 v2.121.1 - 2022-01-23 o e e e e e e e 1467
17.26 v2.121.0 - 2022-01-20 o o e e e e e e e e e e e e e 1467
17.27 v2.120.0 - 2023-01-11 o o e e e e e 1468
17.28 v2.119.0-2023-01-09 0 e e e e e e e 1468
17.29 v2.118.0-2023-01-06 o it e e e e e e e e 1470
17.30 v2.117.0 - 2023-01-04 o e e e e e e 1471
17.31 v2.116.0 - 2022-12-14 o e e e e e e 1472
17.32 v2.115.1 -2022-12-02 o o o e e e e e 1473
17.33 v2.115.0 - 2022-12-01 o o e e e e 1473
17.34 v2.114.0 - 2022-11-15 o e e e e e e e e e 1474
17.35 v2.113.0- 2022-11-04 o e e e e e e 1475
17.36 v2.112.0 - 2022-10-18 o e e e e e e e e e e e 1478
1737 v2.111.0 - 2022-10-12 o e 1478
17.38 v2.110.0 - 2022-10-07 o ot e e e e e e e e 1479
17.39 v2.109.0 - 2022-09-27 o e e e e e e e e e e e e 1480
17.40 v2.108.0 - 2022-09-12 o 0 e e e e e e e e 1481

17.41 v2.107.0 - 2022-09-01 o e 1481

17.42 v2.106.0 - 2022-08-23 e 1483
17.43 v2.105.0 - 2022-08-19 oL 1483
17.44 v2.104.0 - 2022-08-09 L L e 1484
17.45 v2.103.0 - 2022-08-05 L e 1485
17.46 v2.102.0 - 2022-07-25 o o e e e e e 1487
17.47 v2.101.1 - 2022-07-14 o o o 1489
17.48 v2.101.0 - 2022-07-12 o oo 1489
17.49 v2.100.0 - 2022-06-30 1491
17.50 v2.99.0 - 2022-006-23 L e 1491
17.51 v2.98.0 - 2022-006-17 e 1492
17.52 v2.97.0 - 2022-06-00 e e 1492
17.53 v2.96.0 - 2022-05-31 oo 1493
17.54 v2.95.1-2022-05-24 oo 1493
17.55 v2.95.0 - 2022-05-24 L e 1494
17.56 v2.94.0 - 2022-05-18 e 1494
17.57 v2.93.0 - 2022-05-04 L 1496
17.58 v2.92.0 - 2022-04-28 1497
17.59 v2.91.1-2022-04-24 oo 1497
17.60 v2.91.0 - 2022-04-21 L e e e e 1498
17.61 v2.90.0 - 2022-04-04 L e 1499
17.62 v2.89.0 - 2022-03-31 L e e 1499
17.63 v2.88.0 - 2022-03-23 L L 1500
17.64 v2.87.0 - 2022-03-18 o e 1501
17.65 v2.86.0 - 2022-03-09 L 1502
17.66 v2.85.1-2022-03-03 L e 1503
17.67 v2.85.0 - 2022-03-03 L e 1503
17.68 v2.84.0 - 2022-02-22 L. 1504
17.69 v2.83.0 - 2022-02-17 o o o 1505
17.70 v2.82.1 -2022-02-11 o o oo e 1505
17.71 v2.82.0-2022-02-10 L L e 1505
17.72 v2.81.0 - 2022-01-31 o e 1506
17.73 v2.80.1 -2022-01-26 L 1506
17.74 v2.80.0 - 2022-01-25 L o o 1506
17.75 v2.79.0 - 2022-01-18 o o o o 1507
17.76 v2.78.0 - 2022-01-14 1507
1777 v2.77.0 - 2022-01-07 o o o e 1508
17.78 v2.76.0 - 2022-01-04 L 1508
1779 v2.75.0 - 2021-12-16 . . . o o o oo e 1509
17.80 v2.74.0 - 2021-12-08 o o e 1510
17.81 v2.73.0 - 2021-12-02 L e 1511
17.82 v2.72.0 - 2021-11-23 o L o e 1511
17.83 v2.71.1 -2021-11-22 o oo e 1512
17.84 v2.71.0 - 2021-11-19 . . L o L oo e e 1512
17.85 v2.70.1 - 2021-11-08 o o e 1513
17.86 v2.70.0 - 2021-11-03 o oo e 1513
17.87 v2.69.0 - 2021-11-02 L L e 1514
17.88 v2.68.0 - 2021-10-29 L L e e 1514
17.89 v2.67.0 - 2021-10-27 L e 1514
17.90 v2.66.0 - 2021-10-26 o oo e 1515
1791 v2.65.0-2021-10-16 o oo o e 1515
17.92 v2.64.1 -2021-10-08 L o 1516
17.93 v2.64.0-2021-10-06 e 1516

17.94 v2.63.0-2021-09-29 L. 1517

17.95 v2.62.1 - 2021-09-22 L e e 1517

17.96 v2.62.0 - 2021-09-21 Lo 1518
17.97 v2.61.0-2021-00-17 o oo 1518
17.98 v2.60.0 - 2021-09-07 L L e 1519
17.99 v2.59.0-2021-09-02 L e 1519
17.100v2.58.0 - 2021-08-26 L L e e e 1520
17.101v2.57.0 - 2021-08-24 o e 1520
17.102v2.56.0 - 2021-08-19 o o e 1521
17.103v2.55.0 - 2021-08-18 o o 1521
17.104v2.54.0 - 2021-08-05 L e 1521
17.105v2.53.0 - 2021-08-05 L e 1522
17.106v2.52.1 - 2021-07-30 o oo e e 1524
17.1072.52.0 - 2021-07-29 o o oo 1524
17.1082.51.0 - 2021-07-26 o oo e e e 1524
17.10W2.50.0 - 2021-07-22 o o o e e e 1525
17.110v2.49.0 - 2021-07-19 o o L e 1525
17.111v2.48.0 - 2021-07-13 . .« . o o o e 1526
17.012v2.47.0 - 2021-07-07 o o oo e 1526
17.113v2.46.0 - 2021-07-02 o oo e 1526
17.114v2.45.0 - 2021-00-25 o o L e e e e 1527
17.115v2.44.0 - 2021-006-23 L L e e 1527
17.116v2.43.0 - 2021-06-21 L e 1528
170132422 -2021-06-11 . . . o o o oo e 1529
17.118v2.42.1 - 2021-06-00 oo e 1529
17.11%2.42.0 - 2021-06-03 L 1529
17.120v2.41.1 - 2021-05-27 o o o e e 1530
17.121v2.41.0 - 2021-05-27 o o o e e e e e e 1530
17.122v2.40.0 - 2021-05-26 o oo 1530
17.123v2.39.1 - 2021-05-21 o o oo 1531
17.124v2.39.0 - 2021-05-20 o oo e 1531
17.125v2.38.0 - 2021-05-14 o o o e 1532
17.126v2.37.0 - 2021-05-12 o o oL 1532
1712772.36.0 - 2021-05-06 L L 1533
17.1282.35.0 - 2021-04-27 o o o 1533
17.12%2.34.0 - 2021-04-20 o o oo 1534
17.130v2.33.1 - 2021-04-13 o o 1534
17.131v2.33.0 - 2021-04-12 o oL e 1534
17.132v2.32.1 - 2021-04-01 oo o e 1535
17.133v2.32.0 - 2021-03-30 oo e e 1535
17.134v2.31.1 - 2021-03-25 . . L o o o o 1536
17.135v2.31.0 - 2021-03-24 L L 1536
17.136v2.30.0 - 2021-03-17 o o e 1536
17.13W32.29.0 - 2021-03-11 oo o e 1537
17.138v2.28.1 - 2021-03-08 o e 1537
17.13W2.28.0 - 2021-02-26 o oo 1538
17.140v2.27.0 - 2021-02-16 o oo e 1538
17.141v2.26.0 - 2021-02-05 L e 1539
17.142v2.25.0 - 2021-02-01 oL L 1539
17.143v2.24.0 - 2021-01-29 L 1540
17.144v2.23.0 - 2021-01-21 . . L L L o oo e 1540
17.145v2.22.0 - 2021-01-19 L o oo e 1541
17.146v2.21.1 - 2021-01-04 L 1541
1714N2.21.0 - 2020-12-31 . . . L o oo e 1541
17.148v2.20.0 - 2020-12-29 L L e 1542

17.14%2.19.0 - 2020-12-27 o oo e e 1542

17.150v2.18.1 - 2020-12-24 o e e e e e e e e 1542
17.151v2.18.0 - 2020-12-23 o o e e e e e e e e e 1543
17.152v2.17.1 - 2020-12-22 o o e e e e 1543
17.153v2.17.0 - 2020-12-22 o e e e e e 1543
17.154v2.16.1 - 2020-12-17 o o e e e e e e e 1544
17.155v2.16.0 - 2020-12-15 o o e e e e e e 1544
17.156v2.15.0 - 2020-12-11 o o o e e e e e e e e 1545
17.05W2.14.2 - 2020-12-10 o o o e e e e e e e e e e e e e 1545
17.158v2.14.1 - 2020-12-09 o e e e 1545
17.15W2.14.0 - 2020-12-09 o o e e e 1546
17.160v2.13.0 - 2020-12-04 o e e e e e 1546
17.161v2.12.3 - 2020-12-03 o e e e e e e 1546
17.162v2.12.2 - 2020-12-01 o e e e e e e e e 1546
17.163v2.12.1 - 2020-12-01 e 1547
17.164v2.12.0 - 2020-11-30 o o e e e 1547
17.165v2.11.0 - 2020-11-25 e e e e e e 1547
17.166v2.10.2 - 2020-11-20 o o e e e e e e e 1548
17.167W2.10.1 - 2020-11-17 o o e e e e e e e e e e e e e 1548
17.168v2.10.0 - 2020-11-17 e e 1548
17.1602.9.2 - 2020-10-27 o e e e e 1549
17.17082.9.1 - 2020-10-22 e e e e e e e 1550
17.171v2.9.0 - 2020-10-19 o e e e e 1550
17.172v2.8.0 - 2020-09-22 o L e e e e e e e e 1552
17.173v2.7.3-2020-09-16 o e e e e e e e e e e e e 1552
17.174v2.7.2 - 2020-09-04 L e e 1553
17.175v2.7.1 -2020-08-26 o e e e e e e 1553
17.176v2.7.0 - 2020-08-21 o e e e e 1554
17.1772.6.0 - 2020-08-13 o e e e e 1555
17.178v2.5.1 - 2020-08-05 e e e e e e e e e 1555
17.17W2.5.0 - 2020-07-30 o o e e 1556
17.1802.4.0 - 2020-07-15 e 1557
17.181v2.3.1 - 2020-07-13 e e e e e e 1557
17.182v2.3.0 - 2020-07-09 e e e e e 1557
17.183v2.2.2 - 2020-07-03 o o e e e e e e e 1558
17.184v2.2.1 - 2020-06-30 L e e e 1558
17.185v2.2.0 - 2020-00-26 e e e e e 1559
17.186v2.1.2 - 2020-06-18 e e e e 1559
17 08W2.1.1 -2020-06-16 e e e e e e e e e 1559
17.188v2.1.0 - 2020-06-16 o i e e e e e e e e e 1560
17.18W2.0.0 - 2020-06-08 o e e e e e e e e e e e 1560
18 Indices and tables 1561
Python Module Index 1563
Index 1567

vi

Synapse Documentation, Release 2.141.0

Star us on GitHub | Watch Synapse 101

CONTENTS: 1

https://github.com/vertexproject/synapse/
https://v.vtx.lk/new-syn101

Synapse Documentation, Release 2.141.0

2 CONTENTS:

CHAPTER
ONE

INTRODUCTION

Synapse is a versatile central intelligence and analysis system created to support analyst teams in every stage of the
intelligence life cycle.

The Vertex Project designed and developed Synapse to help analysts and algorithms answer complex questions which
require the fusion of large data sets from disparate sources that span multiple disciplines.

Synapse’s data store (known as a Cortex) is organized as a hypergraph. Combined with its structured and extensible
Data Model and the powerful and intuitive Storm query language, Synapse gives analysts unparalleled power and
flexibility to ask and answer any question, even over large and complex data sets.

1.1 Key Features

Extensible Data Model

Synapse includes an extensive (and extensible) Data Model capable of representing real-world objects, relationships,
and events in an intuitive and realistic manner.

Strong Typing

Synapse uses Type Normalization and Type Enforcement to apply meaningful constraints to data to ensure it is well-
formed, preventing “bad data” from cluttering the knowledge store. Type Awareness simplifies use of the Storm query
language and helps analysts discover novel relationships in the data.

Powerful and Intuitive Query Language

Synapse’s Storm query language is a powerful, intuitive “data language” used to interact with data in a Synapse Cortex.
Storm frees analysts from the limitations of “canned” queries or hard-coded data navigation and allows them to ask -
and answer - any analytical question.

Unified Analysis Platform

Synapse’s unified data store provides analysts with a shared view into the same set of data and analytical annotations,
allowing them to better coordinate, collaborate, and peer-review their work.

Designed and Tested in Partnership with Analysts

Synapse is the product of a unique close collaboration between Vertex developers and analysts that leverages innovative
software design and engineering to directly support analyst needs and workflows.

Modular Architecture

Synapse is extensible through Power-Ups (see Power-Up) that add functionality, integrate with third-party data sources,
or connect to external databases.

Record Analytical Assessments

https://vertex.link/
https://en.wikipedia.org/wiki/Hypergraph

Synapse Documentation, Release 2.141.0

Synapse allows analysts to annotate data with assessments and observations through a flexible and extensible set of
tags (see Tag). By recording assessments and data in a structured manner, analysts and algorithms can leverage both
in their queries and workflows.

“Git for Analysis”

Synapse supports the use of layers (see Layer) to comprise a View into Synapse’s data store. Analysts can create a Fork
of a given view and use it for testing or research without modifying the underlying production data. Once work in the
fork is complete, changes can be merged into the production view or discarded.

Fine-Grained Access Controls

Synapse provides access controls and detailed permissions that can be applied to users or roles. Permissions can be
specified broadly or to a level of detail that restricts a user to setting a single property on a single form.

Flexible Automation

Synapse allows you to create custom automation for both analytical and administrative tasks, ensuring consistency and
eliminating tedious or time-consuming workflows. Automation (see Storm Reference - Automation) is provided using
event-based triggers (7rigger), scheduled cron jobs, or stored macros.

API Access

Synapse includes multiple well-documented APIs for interacting with the data store and other Synapse components.
(See Synapse HTTP/REST API and Synapse Python API.)

Lightning Fast Performance

Synapse uses LMDB for high-performance key-value indexing and storage, combined with asynchronous, streaming
processing. This means queries start returning results as soon as they are available - so your “time to first node” is
typically milliseconds, regardless of the size of your result set.

Horizontally and Vertically Scalable

A single Synapse Cortex can easily scale vertically to hold tens of billions of nodes. In addition, Synapse supports
high-availability topologies such as mirroring.

4 Chapter 1. Introduction

Synapse Documentation, Release 2.141.0

1.2 What’s Next?

Get Started!

Users

DevOps

Developers

Admins

Synapse UI (commercial)

Learn More

Connect With Us!

There are several options for you to deploy and
start using Synapse! See our Gefting Started guide
to see which one is right for you.

Watch Synapse 101

Synapse User Guide
Storm Reference
Changelog

Ask a question in Slack

Synapse Devops Guide
Synapse Deployment Guide
Synapse sizing guide

Synapse Developer Guide
Synapse HTTP/REST API
Synapse Python API

Synapse Data Model

Storm Library Documentation

Synapse Admin Guide

Synapse UI (“Optic”) documentation (includes
guides for users, devops, and developers)

Upcoming Webinars
Video Library
Visit The Vertex Project Website

Slack

Twitter

LinkedIn

“Star” us on Github

1.2. What’s Next?

https://v.vtx.lk/new-syn101
https://synapse.docs.vertex.link/en/latest/synapse/changelog.html
https://v.vtx.lk/join-slack
https://docsend.com/view/kmbkkq9pjhtjsbmk
https://synapse.docs.vertex.link/projects/optic/en/latest/index.html
https://v.vtx.lk/luma
https://v.vtx.lk/youtube
https://vertex.link/
https://v.vtx.lk/join-slack
https://v.vtx.lk/twitter
https://v.vtx.lk/linkedin
https://github.com/vertexproject/synapse

Synapse Documentation, Release 2.141.0

6 Chapter 1. Introduction

CHAPTER
TWO

GETTING STARTED

So you’ve looked over our Introduction to Synapse and want to try it out! What do you do next?

Open-source Synapse and demo versions of commercial Synapse (Synapse Enterprise) are both available for you to
deploy and test. Both versions include the same key features, including Synapse’s core architecture and functionality,
our extensive data model, and the full capabilities of the Storm query language and libraries.

Open-source versions of Synapse provide a command-line interface (the Storm CLI) to interact with Synapse and its
data. You can download Open-Source Synapse from our Github repository or use Synapse Quickstart to easily load a
basic instance of Synapse.

Demo instances of Synapse Enterprise include Synapse’s web-based UI, also known as Optic.

* If you want to get started with Synapse as quickly as possible, then a Synapse Demo Instance or Synapse Quick-
start are right for you.

* If you're interested in deploying your own test or production environment, then take a look at Open-Source
Synapse.

We’ll explain each option in more detail below.

2.1 Synapse Quickstart

Synapse Quickstart is a Docker container that includes everything you need to start using Synapse and the Storm CLI
right away. Because Synapse Quickstart is self-contained, you can easily install and launch this basic Synapse instance
on Linux, Windows, or MacOS.

You can find the instructions to download and install Synapse Quickstart here.
Synapse Quickstart is best for:

* Individual users.

* Users who want to test Synapse without the need for a formal deployment.

* Users who are most interested in learning about Synapse’s data and analytical models and the Storm query
langauge (vs. deployment or development tasks).

» Users who want to test or use Synapse with proprietary or sensitive data that must be hosted locally.

Synapse Quickstart is not pre-loaded with any data.

https://synapse.docs.vertex.link/en/latest/synapse/userguides/syn_tools_storm.html
https://www.docker.com/resources/what-container/
https://github.com/vertexproject/synapse-quickstart

Synapse Documentation, Release 2.141.0

2.2 Open-Source Synapse

The full open-source version of Synapse is available from our Github repository. Instructions for deploying a test or
production environment are available in the Synapse Deployment Guide.

Open-source Synapse is best for:
» Users who want to work with or try out a full version of Synapse.

 Supporting multiple users and / or networked users, including the (optional) ability to configure roles and per-
missions.

* Developers who want to build on or integrate with Synapse.
» Users who want to test or use Synapse with proprietary or sensitive data that must be hosted locally.

Open-source Synapse is not pre-loaded with any data. However, some of Synapse’s Power-Ups are available as open
source and can help you automate adding data to Synapse:

* Synapse-MISP
* Synapse-MITRE-ATTACK
* Synapse-TOR

2.3 Synapse Demo Instance

Commercial Synapse (Synapse Enterprise) and our commercial demo instances include the web-based Synapse Ul
(Optic). Demo instances are cloud-hosted, so there is nothing for you configure or deploy to get started - all you need
is a web browser (we recommend Chrome).

You can request a demo instance from our web site.

Note: Synapse Enterprise can be deployed either on premises or in the cloud. Only the demo instances are cloud-only.

Demo instances provide access to all of Synapse’s Rapid Power-Ups, both open-source and commercial. Any Rapid
Power-Up can be installed in your demo instance (although some Power-Ups may reqiure API keys and / or paid sub-
scriptions from the associated third-party).

Demo instances are updated automatically each week with any new releases of Synapse and Optic. New or updated
Rapid Power-Ups are available upon release and can be updated manually from the Power-Ups Tool.

In addition, demo instances are pre-loaded with sample data and tags (just under 300,000 objects). You can explore
the data on your own, or use our APT1 Scavenger Hunt as a guided way to learn about the Synapse Ul and Storm query
language.

A demo instance is best for:

» Users who want to test all of Synapse’s features and capabilities, including those only available with Synapse
Enterprise.

* Supporting multiple users and / or networked users, including the (optional) ability to configure roles and per-
missions.

» Simple deployment - no hardware/software needed (other than a web browser).
* Developers who want insight into developing Power-Ups or Workflows.

* Users and developers who want access to the “latest and greatest” releases and features during testing.

8 Chapter 2. Getting Started

https://github.com/vertexproject/synapse
https://synapse.docs.vertex.link/en/latest/synapse/power_ups.html
https://synapse.docs.vertex.link/projects/rapid-powerups/en/latest/storm-packages/synapse-misp/index.html
https://synapse.docs.vertex.link/projects/rapid-powerups/en/latest/storm-packages/synapse-mitre-attack/index.html
https://synapse.docs.vertex.link/projects/rapid-powerups/en/latest/storm-packages/synapse-tor/index.html
https://vertex.link/request-a-demo
https://synapse.docs.vertex.link/en/latest/synapse/power_ups.html#rapid-power-ups
https://v.vtx.lk/scavenger-hunt

Synapse Documentation, Release 2.141.0

 Users who want to take advantage of all of Synapse’s features (including built-in Help for Synapse’s data model,
Storm auto-complete, etc.) while learning - even if you ultimately deploy an open-source version.

Note: Because demo instances are cloud-based, they are not suitable for hosting any sensitive or proprietary data.

2.3. Synapse Demo Instance 9

Synapse Documentation, Release 2.141.0

10 Chapter 2. Getting Started

CHAPTER
THREE

SYNAPSE USER GUIDE

This User Guide is written by and for Synapse users and is intended to provide a general overview of Synapse concepts
and operations. Technical documentation appropriate for Synapse deployment and development can be found elsewhere
in the Document Index.

The User Guide is a living document and will continue to be updated and expanded as appropriate. The current sections
are:

3.1 Background

The following sections provide background on Synapse and a brief introduction into graphs and hypergraphs.

3.1.1 Background - Why Synapse?

Synapse is a versatile central intelligence and analysis system created to support analyst teams in every stage
of the intelligence life cycle. We designed and developed Synapse to help analysts and algorithms answer complex
questions which require the fusion of large data sets from disparate sources that span multiple disciplines. Analysis is
based on the ability to represent data in a structured model that allows analysts to represent, annotate, and query across
the collected data.

Tip: See Synapse’s Key Features for an overview of Synapse’s advantages!

Perhaps most importantly, Synapse is based on a proven methodology informed by real-world experience.

The Vertex Project did not develop Synapse as a mathematical abstraction or software engineering experiment. Instead,
Synapse grew out of a real-world need to track a complex, diverse, and very large data set: namely, cyber threat data.

Synapse is the successor to the proprietary, directed graph-based analysis platform (Nucleus) used within Mandiant to
produce the APT1 Report.

The developers and analysts behind Synapse (and the earlier Nucleus system) came from a variety of government and
commercial backgrounds but shared a common goal: the desire to record, annotate, and track cyber threat activity
(specifically, nation-state level activity) both reliably and at scale. At the time when government and industry were just
beginning to grasp the scope and scale of the problem, “tracking” this complex activity was largely done using long-
form reports, spreadsheets, or domain knowledge residing in an analyst’s mind. There was no way to effectively store
large amounts of disparate data and associated analytical findings in such a way that relationships among those data
and analytical conclusions were readily apparent or easily discoverable. More importantly, critical analytical decisions
such as attribution were either impossible, or being made based on loose correlation, analysts’ recollection, or generally
accepted “truths” - and not based on concrete, verifiable data whose source and analysis could be traced and either
verified or questioned.

11

../index.html
https://www.mandiant.com/
https://www.mandiant.com/media/9941/download

Synapse Documentation, Release 2.141.0

In contrast, Synapse and its predecessors were designed from the beginning to support the following critical elements:

* The use of a shared analytical workspace to give all analysts access to the same data and assessments in real
time.

e The idea that the analysis captured within the system should “speak for itself”: that is, to the extent possible,
data and analytical findings must be represented in such a way that relationships among data and conclusions
about data should be self-evident.

These features give Synapse the following advantages:

* Synapse allows (and requires) analysts to “show their work” in a reasonably concise manner. Analysts should
not have to refer to long-form reporting (or rely on the unquestioned word of a subject matter expert) to trace a
line of analytical reasoning.

» Synapse allows analysts to better review and validate their findings. Conflicting analysis is highlighted through
the structure of the data itself. Analysis can readily be questioned, reviewed, deconflicted, and ultimately im-
proved.

Synapse’s predecessor was designed to store a broad range of threat data, including:
* Network infrastructure
* Malware and malware behavior
* Host- and network-based incident response data
* Detection signatures and signature hits
* Decoded network packet captures
 Targeting of organizations, individuals, and data
* Threat groups and threat actors
* People and personas
» Newsfeeds and reference materials

Synapse is the evolution of this technology, built on approximately six years of technical and analytical lessons learned
combined with four years (and counting!) of development and real-world use of Synapse itself:

* Synapse’s hypergraph design addresses many of the shortcomings identified with earlier directed graph and
prototype hypergraph systems.

* Because our experience taught us the power of a flexible analysis platform over any large and disparate data set,
Synapse has been designed to be flexible, modular, and adaptable to any knowledge domain - not just threat data.

Many of the real-world examples in this User Guide reference data from the fields of information technology or threat
tracking, given Synapse’s history. But Synapse’s structures, processes, and queries can be applied to other knowledge
domains and data sets as well. The intent of Synapse is that any data that could be represented in a spreadsheet,
database, or graph database can be represented in a Synapse hypergraph using an appropriate data model.

12 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

3.1.2 Background - Graphs and Hypergraphs

To understand the power of Synapse, it helps to have some additional background. Without delving into mathematical
definitions, this section introduces key concepts related to a hypergraph, and contrasts them with those of a graph or
a directed graph. Most people should be familiar with the concept of a graph — even if not in the strict mathematical
sense — or with data that can be visually represented in graph form.

* Graphs

* Directed Graphs

* Analysis with Graphs

* Hypergraphs

* Analysis with a Synapse Hypergraph

e Conclusions

Graphs

A graph is a mathematical structure used to model pairwise relations between objects. Graphs consist of:
* vertices (or nodes) that represent objects, and

* edges that connect two vertices in some type of relationship.

Edges are specifically pairwise or two-dimensional: an edge connects exactly two nodes. Both nodes and edges may
have properties that describe their relevant features. In this sense both nodes and edges can be thought of as representa-
tional objects within the graph: nodes typically represent things (“nouns”) and edges typically represent relationships
(“verbs™).

Examples

Cities and Roads. A simple example of data that can be represented by a graph are cities connected by roads. If
abstracted into graph format, each city would be a vertex or node and a road connecting two cities would be an edge.
Since you can travel from City A to City B or from City B to City A on the same road, the graph is directionless or
undirected.

Social Networks. Another example is social networks based on “connections”, such as Facebook or LinkedIn. In this
case, each person would be a node and the connection between two people would be an edge. Because basic connections
in these networks are mutual (you can’t “friend” someone on Facebook without them agreeing to “friend” you in return),
it can be considered a directionless graph. (This is a simplification, but serves our purpose as an example.)

3.1. Background 13

Synapse Documentation, Release 2.141.0

Directed Graphs

A directed graph is a graph where the edges have a direction associated with them. In other words, the relationship
represented by the edge is one-way. Where an edge in an undirected graph is often represented by a straight line, an
edge in a directed graph is represented by an arrow.

Examples

Cities and Roads. In our cities-and-roads example, the graph would be a directed graph if the roads were all one-way
streets: in this case you can use a particular road to go from City A to City B, but not from City B to City A.

Social Networks. Social networks that support a “follows” relationship (such as Twitter) can be represented as directed
graphs. Each person is still a node, but the “follows” relationship is one way — I can “follow” you, but you don’t have
to follow me. If you choose to follow me, that would be a second, independent one-way edge in the opposite direction.
(Again, this is a simplification but works for a basic illustration.)

Other Examples. Many other types of data can be represented with nodes and directed edges. For example, in infor-
mation security you can represent data and relationships such as:

<malware_file> -- <performed DNS lookup for> --> <domain>
or
<domain> -- <has DNS A record for> --> <ip_address>

In these examples, files, domains and IP addresses are nodes and “performed DNS lookup” or “has DNS A record” (i.e.,
“resolved to”) are edges (relationships). The edges are directed because a malware binary can contain programming to
resolve a domain name, but a domain can’t “perform a lookup” for a malware binary; the relationship (edge) is one-way.

In addition to nodes and edges, some directed graph implementations may allow labeling or tagging of nodes and edges
with additional information. These tags can act as metadata for various purposes, such as to create analytically relevant
groupings.

Many tools exist to visually represent various types of data in a directed graph format; Maltego (which bills itself as a
“...tool that renders directed graphs for link analysis”) is a well-known example.

14 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Analysis with Graphs

Directed graphs have become increasingly popular for representing and conducting analysis across large data sets.
Analysis using a directed graph can be highly generalized into three methods for interacting with the data:

* Lifting or retrieving data. Lifting simply asks about and returns specific nodes or edges from the graph. For

example, you can ask about the node representing your Twitter account or the node representing IP address
1.2.3.4. You can also ask about sets of nodes that share some common feature — for example, all of the Twitter
users who signed up for the service in January 2014, or all the PE executables whose compile date is 6/19/1992.

Filtering the results. Once you lift an initial data set (a node or set of nodes), filtering allows you to refine
your results by including or excluding data based on some criteria. For example, once you have the set of Twitter
users who signed up in January 2014, you may decide to exclude users who list their location as the United States.
Similarly, once you have the set of files compiled on 6/19/1992, you can filter those results to only include files
whose size is greater than 26576 bytes.

Traversing the graph structure. Once you’ve lifted an initial data set, you can ask about relationships between
your data set and other nodes by pathing (traversing) along the edges (relationships) that connect those nodes. For
example, if you retrieve the node for your Twitter account, you can identify all of the accounts you are following
on Twitter by traversing all of the “follows” edges from your node to the nodes of accounts that you follow.
Similarly, if you retrieve the node for IP address 1.2.3.4, you can retrieve all of the domains that resolve to that
IP by pathing backwards (remember, edges are directional) along the all of the “has DNS A record for” edges
that point from various domains to that IP.

Some graph implementations may include a limited form of pivoting across nodes with like properties. Once you’ve
lifted an initial data set, pivoting allows you to retrieve additional nodes or edges that share some property in common
with your original data. For example, you can retrieve the node representing a PE executable and then “pivot” to any
other PE executables that share the same PE import hash or the same PE compile time. (Note that this description of a
“pivot” is effectively just lifting a set of nodes that share a specific property value, such as an import hash.)

Analysis Limitations

Despite their utility and increased use, directed graphs have certain limitations, most notably the “two-dimensionality”
inherent in the concept of an edge. The fact that an edge can only connect exactly two nodes leads to a variety of
consequences, including:

e Performance. Even though a directed graph edge can only join two nodes, in theory there is no limit to the

total number of edges to or from a given node. These “edge dense” or “heavy” nodes represent a potential
performance limitation when attempting to conduct analysis across a large or complex directed graph. The
computational resources required to traverse large numbers of edges, hold the resulting set of nodes in memory,
and then perform additional operations on the results (filtering, pivoting, additional traversals, etc.) can become
prohibitive.

Example: “edge dense” nodes may include those representing extremely common objects such as IP address
127.0.0.1 or the MD5 hash representing the “empty” (zero-byte) file. Tens of thousands of domains may have
been configured to resolve to 127.0.0.1 at various times. Similarly, hundreds of thousands of individual malware
samples may attempt to write a zero-byte file to disk to test write permissions before infecting a host. Attempting
a query that traverses the edges pointing to or from one of those nodes can return significant amounts of irrelevant
data at best, or be performance-prohibitive at worst.

Data Representation. Some relationships involve more than two objects, which may require some creativity
to force them into a two-dimensional directed graph model. One side effect may be a multiplication of edges
(because you need to show the relationship of several foos to a single bar), or the arbitrary “clustering” of data
to combine what would normally be two or more nodes into a single node simply so the cluster can be associated
with another node via a single edge.

3.1.

Background 15

Synapse Documentation, Release 2.141.0

Example: “genetic parentage” is a multi-dimensional relationship. In modeling genealogy research, you need to
represent two parents and a child. In a directed graph, you can do this by representing “parentage” as a directed
relationship between a single parent (n1) and the child (n2). If each individual parent is a single node, you require
three nodes and two edges to represent the complete relationship among two parents and the child.

Alternately, you could conflate the two parent nodes into as single node (nl) that consisted of the combination
of the two individuals, with an edge between this “pair” (n1) and the child (n2). Here you use only two nodes
and a single edge, but have created a semi-artificial “cluster”” node to do so; and you will need to create a unique
“cluster” node for every set of two parents that have a child. In addition, there may be cases where you want
to treat one of the parents as an individual person (node) for other purposes (for example, to note the person’s
date of birth and date of death as properties on that person’s node). Now the same person may be represented in
multiple places in the directed graph, both as an individual node and as one part of multiple “parent clusters”.

The issue may seem only moderately challenging for genealogy but consider a broader field like plant biology.
In an attempt to create a more drought-tolerant or disease-resistant rose bush, botanists may combine genetic
material from multiple “parents” to produce a hybrid offspring.

Hypergraphs

A hypergraph is a generalization of a graph in which an edge can join any number of nodes. Because an edge is no
longer limited to joining exactly two nodes, edges in a hypergraph are often called hyperedges. If a directed graph
where edges join exactly two nodes is two-dimensional, then a hypergraph where a hyperedge can join any number
(n-number) of nodes is n-dimensional.

"F;r

Looked at another way, they key features of a hypergraph are:

* Everything is a node. Objects (“nouns”) are still nodes in a hypergraph, similar to a directed graph. However,
relationships (“verbs”, commonly represented as edges in a directed graph) are now also represented as nodes.
Where an edge in a directed graph consists of three objects (two nodes and the edge connecting them), in a
hypergraph the same data is represented as a single multi-dimensional node.

* Hyperedges connect arbitrary sets of nodes. An edge in a directed graph connects exactly two nodes (repre-
sented as an arrow connecting two points). A hyperedge can connect an arbitrary number of nodes; this makes
hypergraphs more challenging to visualize in a “flat” form. As in the image above, hyperedges are commonly
represented as a set of disconnected nodes encircled by a boundary; the boundary represents the hyperedge
“joining” the nodes into a related group. Just as there is no limit to the number of edges to or from a node in a
directed graph, a node in a hypergraph can be joined by any number of hyperedges (i.e., be part of any number
of “groups”).

In Synapse, hyperedges are represented by tags, which can be thought of as labels applied to nodes.

16 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Analysis with a Synapse Hypergraph

Synapse is a specific implementation of a hypergraph model. Within Synapse, an individual hypergraph is called a
Cortex. A Cortex is a scalable hypergraph implementation which also includes key/value-based node properties and a
data model which facilitates normalization.

Analysis of data using a Cortex leverages some of the same methods as a directed graph: lifting nodes and filtering
results are still part of the process. However, in the absence of pairwise edges there is no traversal. Instead, all navigation
is based on a pivet. (Technically, selecting a set of nodes from a Cortex based on a tag could be considered “navigating”
along a hyperedge. But mostly everything is a pivot.)

Synapse optimizes this ability to pivot across properties through two key design features: type safety and property
normalization.

 Type safety ensures that all node properties have an explicitly declared 7ype and these types are enforced across
the data model. For example, where a property value is an IP address, that IP address is declared and stored as an
integer for consistency - as opposed to being stored as an integer in some instances and a dotted-decimal string
in others. (Technically an IPv4 address is stored as an IPV4 (inet:ipv4) type, which can be thought of as an
integer with additional constraints on things like allowable values.)

* Property normalization ensures that properties are represented in a consistent manner for both storage and
display purposes, regardless of the format in which they are received. Synapse takes a “do what I mean” approach
to input where possible, attempting to recognize common formats and normalize them on the user’s behalf. This
allows users to work with data in a way that should feel natural.

For example, a user can enter an IP address as an integer, a hex value, or a dotted decimal string; Synapse will
automatically store the IP as an integer and represent it back to the user as a dotted-decimal string. Similarly, a
user can enter a directory path using either Windows format (C:\foo\bar\baz.exe) or Linux format (/home/
user/foo/bar) and using any combination of upper and lowercase letters; Synapse will automatically enforce
normalization such as the use of forward slashes for directory separators and the use of all lower-case letters for
drive, path, and file names.

These features make pivoting highly effective because they ensure that data of the same type and / or with the same
value is represented consistently throughout the Cortex.

In contrast, lack of consistency can cause analysts to miss relevant correlations - either because the same data is repre-
sented in multiple forms, or because the burden is placed on the analyst to properly normalize their input when entering
data or querying the system. It is significantly harder to identify correlations when the same data is represented or
referenced in multiple ways throughout a system.

Synapse’s optimized use of pivots, combined with the ability to represent relationships (including complex “multi-
dimensional” relationships) as nodes, provides some significant advantages over a directed graph.

Performance

“Asking questions” of a hypergraph may be less computationally intensive than in a directed graph. As a simple
example, let’s say you want to know all of the IP addresses that a domain has resolved to.

Directed Graph

In a directed graph, “resolves to” (“has a DNS A record for”) is a relationship (edge). To answer the question of which
IP addresses a domain has resolved to, you need to:

e lift the node for the domain; and

* traverse an arbitrary number of “resolves to” edges to reach the set of nodes represented by the endpoints of all
those edges (i.e., the IP addresses).

3.1. Background 17

Synapse Documentation, Release 2.141.0

For a handful of edges (a small number of IPs) this traversal is not very difficult; but if the domain has resolved to
hundreds or thousands of IP addresses, traversing all of those edges becomes more computationally intensive.

Looked at another way (and depending on the specific implementation of the directed graph), an edge traversal in a
directed graph may be the computational equivalent of two pivots:

Assume a generic representation of an edge as a tuple comprised of two nodes and the specific edge relationship ({n1,
edge,n2}). In our example, a “resolves to” edge would be represented by a domain (n1), the relationship “resolves
to” (the edge tuple), and the IP address (n2). In this case, traversing the “resolves to” edges is really two pivots:

e lift the node (n1) for the domain;
* pivot from that node to all of the “resolves to” edges where the domain is the n1 of the “resolves to” tuple;
e pivot from the n2 (IP address) of each “resolves to” tuple to the node representing that n2.

Synapse Hypergraph (Cortex)

In a Cortex, a single node represents the “resolves to” (“has DNS A record for”) relationship, with the domain and IP
address involved in the relationship both stored as properties on that node. To determine the IP addresses a domain has
resolved to, you simply need to:

* lift the “DNS A record” nodes where the domain is a property;
* pivot from the IP address property of those nodes to the nodes representing the IP addresses themselves.

Alternately, you could simply view the IP addresses as properties on the lifted “DNS A record” nodes themselves
without performing the pivot at all.

No Loss of Granularity

The pairwise nature of edges in a directed graph may result in a loss of granularity for complex relationships that
realistically involve three or more elements. In order to “fit” those relationships into a directed graph model, one option
is to arbitrarily combine some of those elements into a single node in order to force the relationship to be pairwise.
This results in some loss of detail as elements that should rightly be treated as independent components are artificially
conflated. Synapse’s ability to represent multidimensional relationships as a single node removes this limitation.

Discovery

“Asking questions of” or exploring a directed graph has some inherent limitations. First, since relationships are repre-
sented by edges, an analyst is limited to asking about (traversing) known relationships (that is, edges that are already
defined in the model). This may limit the discovery of new or unexpected patterns or correlations.

Similarly, while directed graphs may support some navigation via pivots, analysts are often limited to pivoting via the
same property and value on the same node type. For example, I can ask about all PE file nodes that have the same
PE import hash value as a given PE file node because I am asking about the same value for the same property across
the same node type. In a directed graph it is harder to ask about a value that may be present in different properties on
different node types. Synapse’s use of type enforcement and property normalization removes this restriction.

For example, let’s say you have a malicious domain and you determine the set of IP addresses that the domain has
resolved to. You want to know if any of those IP addresses have also been used to send spear phishing email messages.
Speaking generically, there is no readily apparent relationship between an IP address as the resolution of a domain, and
an IP address as the source of an email message, other than the fact that they are both IP addresses. This lack of an
apparent relationship (edge) implies that you can’t get your answer using a few simple traversals.

How you answer this question will vary depending on the specific implementation of the directed graph. However, if
you assume an implementation with the following defined edges:

<domain> -- <has DNS A record> --> <IP address>

18 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

and

<IP address> -- <was source IP for> --> <RFC822 file>

Then you may be able to obtain an answer through a multi-part query similar to the following:
1. Start from (lift) the domain.

2. Traverse the set of “has DNS A record” edges from the domain to obtain the set of IP addresses the domain has
resolved to.

3. From those IP addresses, traverse any “was source IP for” edges to the set of RFC822 messages (if any) associated
with the IPs.

4. From the RFC822 messages, traverse back along the “was source IP for” edges to get the subset of IP addresses
that were used to send email messages.

If the above sounds messy and a bit redundant, to an extent it is. There may be slightly more “elegant” solutions given
alternate directed graph implementations (for example, if the source IP of an email message was stored as a property
on the email message node as opposed to being associated with the message via an edge). But it still requires some
creative navigation amongst nodes, edges, and properties to find the answer.

In a Synapse hypergraph, the IP addresses can appear as properties on both the set of “domain has DNS A record” nodes
(as the “resolved to” property, for example) and the set of “spear phishing email nodes” (as the “source IP” property,
for example). You can simply pivot between the two node types based on the value of those properties to find your
answer. Not only is the navigation itself significantly easier, but you are able to readily ask questions across disparate
or arbitrary data types (DNS records and email messages), as long as they share a particular typed value in common —
even if that value represents a different property in each case.

Conclusions

Though hypergraphs may be less familiar than traditional graphs, they offer distinct performance and analytical ad-
vantages over directed graph models, addressing historical shortcomings in representation, navigation, and analytical
capability. Synapse, as a specific implementation of a hypergraph model, incorporates additional design features (type
safety, property normalization, and a robust query language, in addition to storage and indexing optimization for per-
formance) that further enhance its power and flexibility as an analysis tool.

3.2 Data Model

Synapse includes a number of built in types and forms which are available for use out of the box. Some of these built
in concepts are discussed in the following sections.

See the Synapse Data Model technical reference for descriptions of individual types and forms, as well as the data
model deprecation policy.

3.2.1 Data Model - Terminology

Note: This section describes the Synapse data model from a conceptual user perspective. See the Synapse Data Model
technical documentation for information that may be more useful for developers.

Synapse is a distributed key-value hypergraph analysis framework. That is, Synapse is a particular implementation
of a Hypergraph model; an instance of a Synapse hypergraph is called a Cortex. In our brief discussion of graphs and
hypergraphs, we pointed out some fundamental concepts related to Synapse’s implementation:

3.2. Data Model 19

Synapse Documentation, Release 2.141.0

* (Almost) everything is a node. Most of Synapse’s data model consists of nodes; there are a limited number
of pairwise (“two-dimensional”) edges in Synapse. We use “lightweight” (light) edges to support specific use
cases, but mostly everything is a node.

» Tags act as hyperedges. In a directed graph, an edge connects exactly two nodes. In Synapse, tags are labels that
can be applied to an arbitrary number of nodes. These tags effectively act as an n-dimensional edge (a hyperedge)
that connects or groups any number of nodes.

* (Almost) every key navigation of the graph is a pivot. Because Synapse’s data model primarily consists of
nodes, you generally don’t explore Synapse’s data by traversing edges. Instead, you pivot from the properties of
one set of nodes to the properties of another set of nodes (though you also traverse the occasional light edge).

To build on those concepts, you need to understand the basic elements of the Synapse data model. The fundamental
terms and objects you should be familiar with are:

* Type

* Form

* Node

* Property

e Tag

» Lightweight (Light) Edge

Tip: Synapse uses a query language called Storm (see Storm Reference - Introduction) to interact with data and tags.
Storm allows a user to lift, filter, pivot, traverse, and modify data based on node properties, values, tags, and light edges.
Understanding these model elements will improve your ability to use Storm and interact with Synapse data.

Type

A type is the definition of a data element within the Synapse data model. A type describes what the element is and
enforces how it should look, including how it should be normalized, if necessary, for both storage (including indexing)
and representation (display).

The Synapse data model includes standard types such as integers and strings, as well as types defined within Synapse
such as globally unique identifiers (guid), date/time values (time), time intervals (ival), and tags (syn:tag).

Knowledge domain-specific objects may also be specialized types. For example, an IPv4 address (inet:ipv4) is its
own type. An IPv4 address is stored as an integer, but the type has additional constraints (i.e., to ensure that [Pv4s
created in Synapse only use integer values that fall within the allowable IPv4 address space). These constraints may be
defined by a constructor (ctor) that specifies how a property of that type can be created (constructed).

For the most part, users do not interact with types directly. Types are primarily used “behind the scenes” to define and
support the Synapse data model. From a user perspective:

» Strong typing means every element in Synapse has a type. Forms define the objects that can be represented in
Synapse. Forms have properties (primary and secondary) and every property is defined as a particular type.

¢ Type enforcement helps prevent “bad data” from getting into Synapse. Synapse has “rules” for how properties
of a given type can be created. This prevents simple errors like entering an email address value where you need
an FQDN, but also ensures (to the extent possible) that values “make sense” for their type (e.g., that a URL looks
reasonably like a URL).

» Type awareness makes it easier to navigate data within Synapse. Synapse and Storm are “model aware” and
know which types are used for each property in the model. This simplifies exploring or pivoting across data
because Synapse and Storm automatically recognize relationships where different forms share properties with

20 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

the same type and same value. This makes navigation easier in general, but also allows Synapse to show you
relationships you may not know exist.

Type-Specific Behavior

Synapse includes various type-specific optimizations to improve performance and functionality. Some of these are
“back end” optimizations (i.e., for indexing and storage) while some are more “front end” in terms of how users can
interact with data of certain types via Storm. See Storm Reference - Type-Specific Storm Behavior for additional detail.

Viewing or Working with Types

Types are defined within the Synapse source code. An auto-generated dictionary of Types (Base Types and Types) can
be found in the online documentation.

Types can also be viewed within Synapse. A full list of current types can be displayed with the following Storm
command:

storm> syn:type

You can view detail about a specific type as follows:

storm> syn:type=inet:fqdn
syn:type=inet: fqdn
:ctor = synapse.models.inet.Fqgdn
:doc = A Fully Qualified Domain Name (FQDN).

See Storm Reference - Model Introspection for additional detail on working with model elements within Storm.

Form

A form is the definition of an object in the Synapse data model. A form acts as a “template” that tells you how to
create a particular object (Node). While the concepts of form and node are closely related, it is useful to maintain
the distinction between the template for creating an object (a form) and an instance of a particular object (a node).
inet:fqdnis a form; inet: fqdn = woot.com is a node.

A form consists of the following:

* A primary property. The primary property must be unique across all possible instances of that form. In addition,
the primary property must have a specific type. In many cases, a form will be its own type - for example, the
inet: fqdn form has a type of inet: fqdn. While all forms are types (that is, must be defined as a type), not all
types have associated forms.

* Optional secondary properties. Secondary properties must also have a type. Properties may have additional
constraints, such as:

— Whether the property is read-only once set.

— Any normalization (outside of type-specific normalization) that should occur for the property (such as
converting a string to all lowercase, stripping any whitespace, etc.).

Secondary properties are form-specific and are explicitly defined for each form. Synapse also supports a set of universal
secondary properties (universal properties) that are valid for all forms.

Property discusses these concepts in greater detail.

Forms comprise the essential “structure” of the data that analysts work with. Understanding the forms Synapse uses to
represent various objects or concepts is key to working with Synapse data.

3.2. Data Model 21

https://github.com/vertexproject/synapse

Synapse Documentation, Release 2.141.0

Form Namespace

The Synapse data model uses a structured namespace for forms. Each form name consists of at least two namespace
elements separated by a colon (:). For example:

e file:bytes
e inet:email
e inet:fqdn
* ou:org

The first element in the namespace represents a rough “category” for the form (i.e., inet for Internet-related objects).
The Synapse data model is meant to be extensible. The ability to group portions of the data model into related categories
makes a large model easier to manage, and also allows Synapse users to focus on those portions of the model most
relevant to them.

The second and / or subsequent elements in the form name define the specific “subcategory” or “thing” within the
form’s primary category (e.g., inet: fqdn represents a fully qualified domain name (FQDN) within the “Internet”
(inet) category, and inet:dns:query represents a query using the DNS protocol within the “Internet” category).

Properties have a namespace that extends the form namespace (form names are also primary properties). See Property
and Property Namespace below for additional detail.

Viewing or Working with Forms

Like types, forms are defined within the Synapse source code. An auto-generated dictionary of Forms can be found in
the online documentation.

Forms can also be viewed within Synapse. A full list of current forms can be displayed with the following Storm
command:

storm> syn:form

You can view detail about a specific form as follows (form only):

storm> syn:form=inet: fqdn

syn: form=inet: fqdn
:doc = A Fully Qualified Domain Name (FQDN).
:runt = false
:type = inet:fqdn

Or a form with its secondary properties:

storm> syn:prop:form=inet: fqdn
syn:prop=inet: fqdn
:doc = A Fully Qualified Domain Name (FQDN).
:extmodel = false
:form = inet:fqdn
:type = inet:fqdn
:univ = false
syn:prop=inet: fgdn.seen
:base = .seen
:doc = The time interval for first/last observation of the node.
:extmodel = false
:form = inet:fqdn

(continues on next page)

22 Chapter 3. Synapse User Guide

https://github.com/vertexproject/synapse

Synapse Documentation, Release 2.141.0

:relname = .seen
:ro = false
:type = ival
:univ = false

syn:prop=inet: fqdn.created

:base = .created

:doc = The time the node was created in the cortex.

:extmodel = false
:form = inet:fqdn
:relname = .created
:ro = true

:type = time

:univ = false

syn:prop=inet: fgdn:domain

:base = domain

:doc = The parent domain for the FQDN.
:extmodel = false

:form = inet:fqdn

:relname = domain

:ro = true

:type = inet:fqdn

:univ = false

syn:prop=inet: fgdn:host

:base = host

:doc = The host part of the FQDN.
:extmodel = false

:form = inet:fqdn

:relname = host

:ro = true

:type = str

:univ = false

syn:prop=inet:fgdn:issuffix

:base = issuffix

:doc = True if the FQDN is considered a suffix.

:extmodel = false
:form = inet:fqdn
:relname = issuffix
:ro = false

:type = bool

:univ = false

syn:prop=inet:fgdn:iszone

:base = iszone

:doc = True if the FQDN is considered a zone.
:extmodel = false

:form = inet:fqdn

:relname = iszone

:ro = false

:type = bool

:univ = false

syn:prop=inet: fgdn:zone

:base = zone
:doc = The zone level parent for this FQDN.

(continued from previous page)

(continues on next page)

3.2. Data Model

23

Synapse Documentation, Release 2.141.0

(continued from previous page)

:extmodel = false
:form = inet:fqdn
:relname = zone
:ro = false

:type inet: fqdn
:univ false

See Storm Reference - Model Introspection for additional detail on working with model elements within Storm.

Node

A node is a unique object within Synapse. Nodes represent standard objects (“nouns”) such as IP addresses, files,
people, conferences, or airplanes. They can also represent more abstract objects such as industries, risks, attacks, or
goals. However, in Synapse nodes can also represent relationships (“verbs”) because many things that would be edges
in a directed graph are nodes in a Synapse hypergraph. You can think of a node generically as a “thing” - most “things”
you want to model within Synapse are nodes.

Every node consists of the following:

e A primary property, represented by the Form of the node plus its value (<form> = <valu>). All primary
properties must be unique for a given form. For example, the primary property of the node for the FQDN
woot.com is inet:fqdn = woot.com. The uniqueness of the <form> = <valu> pair ensures there can be
only one node in Synapse that represents the domain woot.com. Because this unique pair “defines” the node,
the comma-separated form / value combination (<form>, <valu>) is also known as the node’s Ndef (short for
“node definition”).

* One or more universal properties. As the name implies, universal properties are applicable to all nodes.

» Optional secondary properties. Similar to primary properties, secondary properties consist of a property name
(of a specific type) and the property’s associated value for the node (<prop> = <pval>). Secondary properties
are specific to a given kind of node and provide additional detail about that particular node.

* Optional tags. A Tag acts as a label with a particular meaning that can be applied to a node to provide context.
Tags are discussed in greater detail below.

Viewing or Working with Nodes

To view or work with nodes, your instance of Synapse must contain nodes (data). Users interact with data in Synapse
using the Storm query language (Storm Reference - Introduction).

Node Example

The Storm query below lifts and displays the node for the domain www.google. com:

storm> inet:fgdn=www.google.com
inet: fqdn=www.google.com
:domain = google.com
:host = www
:issuffix = false
:iszone = false
:zone = google.com
(continues on next page)

24 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

.created = 2023/07/12 15:15:57.140
#rep.moz.500

In the output above:
e inet:fqdn = www.google.comis the primary property (<form> = <valu>).
e .created is a universal property showing when the node was added to the Cortex.

e :domain, :host, etc. are form-specific secondary properties with their associated values (<prop> =
<pval>). For readability, secondary properties are displayed as relative properties within the namespace of
the form’s primary property (e.g., : iszone as opposed to inet: fqdn:iszone).

» #rep.moz.500 is a tag indicating that www.google. com has been reported by web analytics company Moz as
one of their top 500 most popular websites.

Property

Properties are the individual elements that define a Form or (with their specific values) that comprise a Node.

Primary Property

Every Form consists of (at minimum) a primary property that is defined as a specific 7ype. Every Node consists of
(at minimum) a primary property (its form) plus the node-specific value of the primary property (<form> = <valu>).
When defining a form to represent a particular “thing”, the primary property must be defined so that its value is unique
across all possible instances of that “thing”.

The concept of a unique primary property is straightforward for forms that represent simple objects. For example, the
“thing” that makes an IP address unique is the IP address itself: inet:ipv4 = 1.2.3.4. Defining a primary property
for more complex nodes (such as those representing a Relationship or an Event) can be more challenging; these forms
are often GUID forms.

Because a primary property uniquely defines a node, it cannot be modified once the node is created. To “change” a
node’s primary property you must delete and re-create the node.

Secondary Property

A Form can include optional secondary properties that provide additional detail about the form. Each secondary
property must be defined as an explicit Type. A Node may include secondary properties with their associated values
(<prop> = <pval>).

Secondary properties may further describe a given form and its associated nodes. For example, the Autonomous System
(AS) that an IP address belongs to (inet:ipv4:asn) does not “define” the IP (and in fact an IP’s associated AS can
change), but it provides further detail about the IP address.

Many secondary properties are derived from a node’s primary property (derived properties) and are automatically set
when the node is created. For example, creating the node file:path="c:\windows\system32\cmd.exe' will auto-
matically set the properties :base = cmd.exe, :base:ext = exe,and :dir = c:/windows/system32. Because
a node’s primary property cannot be changed once set, any secondary properties derived from the primary property
also cannot be changed (i.e., are read-only). Non-derived secondary properties can be set, modified, or deleted.

3.2. Data Model 25

https://moz.com/top500

Synapse Documentation, Release 2.141.0

Universal Property

Most secondary properties are form-specific and provide additional detail about particular objects within the data model.
However, Synapse defines a subset of secondary properties as universal properties that are applicable to all forms.
Universal properties include:

e .created, which is set for all nodes and whose value is the date / time that the node was created within that
instance of Synapse.

* .seen, which is optional for all nodes and whose value is a time interval (minimum or “first seen” and maximum
or “last seen”) during which the node was observed, existed, or was valid.

Property Namespace

Properties extend the Form Namespace. Forms (form names) are primary properties, and consist of at least two
elements separated by a colon (:). Secondary properties exist within the namespace of their primary property (form).
Secondary properties are preceded by a colon (:) and use the colon to separate additional namespace elements,
if needed. (Universal properties are preceded by a period (.) to distinguish them from form-specific secondary
properties.) For example, the secondary (both universal and form-specific) properties of inet: fqdn include:

e inet:fqdn.created (universal property)
e inet:fqdn:zone (secondary property)

Secondary properties also make up a relative namespace (set of relative properties) with respect to their primary
property (form). The Storm query language allows (or in some cases, requires) you to reference a secondary property
using its relative property name (i.e., : zone vs. inet:fqdn:zone).

Relative properties are also used for display purposes within Synapse for visual clarity (see the Node Example above).

Secondary properties may have their own “namespace”. Both primary and secondary properties use colons to separate
elements of the property name. However, not all separators represent property “boundaries”; some act more as “sub-
namespace” separators. For example file:bytes is a primary property / form. A file:bytes form may include
secondary properties such as :mime:pe:imphash and :mime:pe:complied. In this case :mime and :mime:pe are
not secondary properties, but sub-namespaces for individual MIME data types and the “PE executable” data type
specifically.

Viewing or Working with Properties

Properties are used to describe forms and are defined within the Synapse source code with their respective Forms.
Universal properties are not defined “per-form” but have their own section (Universal Properties) in the online technical
documentation.

Properties can also be viewed within Synapse. A full list of current properties can be displayed with the following
Storm command:

storm> syn:prop
You can view individual primary or secondary properties as follows:

Primary property:

storm> syn:prop=inet:fqdn
syn:prop=inet: fgdn
:doc = A Fully Qualified Domain Name (FQDN).
:extmodel = false
:form = inet:fqdn
(continues on next page)

26 Chapter 3. Synapse User Guide

https://github.com/vertexproject/synapse

Synapse Documentation, Release 2.141.0

(continued from previous page)

:type = inet:fqdn
:univ = false

Secondary property:

storm> syn:prop=inet:fqdn:domain
syn:prop=inet: fgdn:domain

:base = domain

:doc = The parent domain for the FQDN.

:extmodel = false

:form = inet:fqdn

:relname = domain

:ro = true

:type = inet:fqdn

:univ = false

See Storm Reference - Model Introspection for additional detail on working with model elements within Storm.

Tag

Tags are annotations applied to nodes. They can be thought of as labels that provide context to the data represented by
the node.

Broadly speaking, within Synapse:

* Nodes represent things: objects, relationships, or events. In other words, nodes typically represent observables
that are verifiable and largely unchanging.

» Tags typically represent assessments: observations that could change if the data or the analysis of the data
changes.

For example:

* An Internet domain is an “observable thing” - a domain exists, was registered through a domain registrar, and
can be created as a node such as inet:fqdn = woot.com.

e Whether a domain has been sinkholed is an assessment. A researcher may need to evaluate data related to that
domain (such as domain registration records or current and past IP resolutions) to decide whether the domain
appears to be sinkholed. This assessment can be represented by applying a tag such as #cno.infra.dns.sink.
holed to the inet:fqdn = woot.com node.

Tags are unique within the Synapse model because tags are both nodes and labels applied to nodes. The tag #cno.
infra.dns.sink.holed can be applied to another node; but the tag itself also exists as the node syn:tag = cno.
infra.dns.sink.holed. This difference is illustrated in the example below.

Tip: Synapse does not have any pre-defined tags. Users are free to create tags that are meaningful for their analysis.
See Analytical Model - Tag Concepts for more detail.

3.2. Data Model 27

Synapse Documentation, Release 2.141.0

Viewing or Working with Tags

As tags are nodes (data) within the Synapse, they can be viewed and operated upon just like other nodes. Users typically
interact with data using the Storm query language (Storm Reference - Introduction).

Tag Example

The Storm query below displays the node for the tag cno.infra.dns.sink.holed:

storm> syn:tag=cno.infra.dns.sink.holed
syn:tag=cno.infra.dns.sink.holed

:base = holed

:depth = 4

:doc = A domain (zone) that has been sinkholed.

:title = Sinkholed domain

:up = cno.infra.dns.sink

.created = 2023/07/12 15:15:57.327

The Storm query below displays the tag #cno.infra.dns.sink.holed applied to the node inet:fqdn =
hugesoft.org:

storm> inet:fqgdn=hugesoft.org
inet: fqdn=hugesoft.org
:domain = org
:host = hugesoft
:issuffix = false
:iszone = true
:zone = hugesoft.org
.created = 2023/07/12 15:15:57.350
#cno.infra.dns.sink.holed

Note that a tag applied to a node uses the “hashtag” symbol (#). This is a visual cue to distinguish tags on a node
from the node’s secondary properties. The symbol is also used within the Storm syntax to reference a tag as opposed
to a syn:tag node.

Lightweight (Light) Edge

Lightweight (light) edges are used in Synapse to provide greater flexibility and improved performance when represent-
ing certain types of relationships. A light edge is similar to an edge in a traditional directed graph; each light edge links
exactly two nodes (nl and n2), and consists of:

* A direction. Light edge relationships only “make sense” in one direction, given the forms that they link. For
example, an article can reference an indicator such as an MD35 hash, but an MDS5 hash does not “reference” an
article.

* A ‘“verb” that represents the relationship (e.g., refs for “references” in the example above).
Light edges do not have properties, and you cannot apply tags to light edges - hence the “light” in light edge.
Light edges are used for performance and flexibility in certain use cases, such as:

* The only information you need to record about a relationship is that it exists (that is, no properties are required
to further “describe” the relationship). An example is meta:ruleset -(contains)> meta:rule.

28 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

* The objects (nodes) involved in the relationship may vary. That is, either the nl1 or n2 node (or both) may be
any kind of node, depending on the context of the relationship. Examples include meta: source -(seen)> *
(where a data source may “see”, observe, or provide data on any n2 object) and * -(refs)> * (where a variety
of n1 nodes may “reference” or contain a reference to any n2 node).

Synapse’s data model does not include any pre-defined light edges. In addition, Synapse does not enforce or restrict
the objects (nodes) that can be linked with light edges. Users are free to create / define their own light edges and use
them as they see fit.

Tip: Light edges should not be used as a convenience to short-circuit proper data modeling using forms. Using forms
and nodes (combined with Synapse’s strong typing, type enforcement, and type awareness) are key to the powerful
analysis and performance capabilities of a Synapse hypergraph.

Viewing or Working with Light Edges

Light edges are not “objects” in Synapse in the same way as forms, types, or properties. (In fact, light edges do not
exist until you create them.) The Storm model commands (specifically the model . edge.* commands) include options
for working with light edges that exist in a given Cortex.

Internal to The Vertex Project, we have defined a number of light edges for our own use. Light edges may also be
created by Vertex-provided components such as Power-Ups (see Power-Up). Any light edges used by Power-Ups are
described in the associated Power-Up documentation.

Light edge conventions used by The Vertex Project are documented within the Synapse source code. Light edges that
can be used with a given form are also documented with the Forms in the Synapse Data Model technical reference.
These conventions are not currently enforced and meant as recommendations.

3.2.2 Data Model - Object Categories

Recall that within the Synapse data model:
* Nodes commonly represent “things”: observables that can be verified and are unlikely to change over time.

» Tags commonly represent “assessments’: judgements or evaluations that may change given new data or revised
analysis.

Within Synapse, forms are the building blocks of our analysis system. Forms are used to create nodes, which are the
objects used to represent (model) knowledge and answer analytical questions about the captured information. This
means that the proper design of forms is essential.

In Synapse’s hypergraph-based model (where almost everything is a node) forms take on additional significance.
Specifically, forms must be used to represent more than just “nouns” and must be used to capture several general
categories of objects. These categories can be broadly defined as entities, relationships, and events.

o Entity

* Relationship

e Event

* Instance Knowledge vs. Fused Knowledge

This section discusses the informal “categories” of objects that can be modeled in Synapse. See Data Model - Form
Categories for a discussion of some of the common “categories” of forms used to represent these objects.

3.2. Data Model 29

https://github.com/vertexproject/synapse

Synapse Documentation, Release 2.141.0

Entity

Forms can represent atomic entities, whether real or abstract. For cyber threat data, entities include domains, IP
addresses (IPv4 or IPv6), hosts (computers / devices), usernames, passwords, accounts, files, social media posts, and
so on. Other entities include people, organizations, and countries. Any entity can be defined by a form and represented
by a node. Entities are often (though not always) represented as a Simple Form. The term “simple” means that these
forms can be represented as a primary property with a single value that uniquely defines the entity.

Example

An email address (inet:email) is a basic example of an entity-type node / simple form:

storm> inet:email=kilkys@yandex.ru
inet:email=kilkys@yandex.ru

:fqdn = yandex.ru

:user = kilkys

.created = 2023/07/12 15:14:43.044

Relationship

Forms can represent specific relationships among entities. In a directed graph a relationship is represented as a directed
edge joining exactly two nodes; but in a hypergraph the entire relationship is represented by a single node (form), and
the relationship may consist of any number of elements — not just two.

For cyber threat data, relationships include a domain resolving to an IP address or a malware dropper containing or
extracting another file. Other types of relationships include a company being a subsidiary of another business, an
employee working for a company, or a person being a member of a group.

Relationship-type forms are often represented as a Composite (Comp) Form. Comp forms have a primary property
consisting of a comma-separated list of two or more values that uniquely define the relationship.

Example

A DNS A record (inet:dns:a) is a basic example of a relationship-type form / comp form:

storm> inet:dns:a=(google.com,172.217.9.142)
inet:dns:a=('google.com', '172.217.9.142")
:fgdn = google.com
:ipv4 = 172.217.9.142
.created = 2023/07/12 15:14:43.118

Event

Forms can represent individual time-based occurrences. The term event implies that an entity existed or a relationship
occurred at a specific point in time. Events represent the combination of a form and a timestamp for when the form
was observed.

Examples of event forms include an individual login to an account, a specific DNS query, or a domain registration
(whois) record captured on a specific date.

The structure of an event form may vary depending on the specific event being modeled. For “simple” events that can
be uniquely represented by the combination of a timestamp and an entity, the form may be a Composite (Comp) Form
that happens to include a timestamp as one element of the form’s value. For exaple, an inet:whois:rec form consists
of a whois record and the time that record was observed or retrieved.

For more “multi-dimensional” events involving several components, the form may be a Guid Form with the timestamp
as one of several secondary properties on the form (i.e., as in an inet:dns:request form).

30 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Example

A specific, individual DNS query (inet:dns:request) is an example of an event-type form:

storm> inet:dns:request=00000al7dbe261d10ce6ed514872bd37
inet:dns:request=00000a17dbe261d10ce6ed514872bd37

:query = ('tcp://199.68.196.162', 'download.applemusic.itemdb.com', '1')

:query:name = download.applemusic.itemdb.com

:query:name: fqdn = download.applemusic.itemdb.com

rquery:type = 1

:reply:code 0

:server = tcp://178.62.239.55

:time = 2018/09/30 16:01:27.506

.created = 2023/07/12 15:14:43.182

Instance Knowledge vs. Fused Knowledge

For certain types of data, event forms and relationship forms can encode similar information but represent the difference
between instance knowledge and fused knowledge.

» Event forms represent the specific point-in-time existence of an entity or occurrence of a relationship - an instance
of that knowledge.

» Relationship forms can leverage the universal . seen property to set “first observed” and “last observed” times
during which an entity existed or a relationship was true. This date range can be viewed as fused knowledge -
knowledge that summarizes or “fuses” the data from many individual observations (instances) of the node over
time.

Instance knowledge and fused knowledge represent differences in data granularity. Whether to create an event form or
a relationship form (or both) depends on how much detail is required for your analysis. This consideration often applies
to relationships that change over time, particularly those that may change frequently.

Example

DNS A records are a good example of these differences. The IP address that a domain resolves to may change in-
frequently (e.g., for a website hosted on a stable server) or may change quite often (e.g., where the IP is dynamically
assigned or where load balancing is used).

One option to represent and track DNS A records is to create individual timestamped forms (events) every time you
check the domain’s current resolution (e.g., inet:dns:request and inet:dns:answer forms). This represents a
very high degree of granularity as the nodes will record the exact time a domain resolved to a given IP, potentially
down to the millisecond. The nodes can also capture additional detail such as the querying client, the responding
server, the response code, and so on. However, the number of such nodes could readily reach into the hundreds of
millions, if not billions, if you create nodes for every resolution of every domain you want to track.

On the other hand, it may be sufficient to know that a domain resolved to an IP address during a given period of
time — a “first observed” and “last observed” (.seen) range. A single inet:dns:a node can be created to show that
domain woot.com resolved to IP address 1.2.3.4, where the earliest observed resolution was 2014/08/06 at 13:56
and the most recently observed resolution was 2018/05/29 at 7:32. These timestamps can be extended (earlier or later)
if additional data changes our observation boundaries.

This second approach loses some granularity:
* The domain is not guaranteed to have resolved to that IP continuously throughout the entire time period.

* Given only this node, we don’t know exactly when the domain resolved to the IP address during that time period,
except for the earliest and most recent observations.

3.2. Data Model 31

Synapse Documentation, Release 2.141.0

However, this fused knowledge may be sufficient for our needs and may be preferable to creating thousands of nodes
for individual DNS resolutions.

Of course, a hybrid approach is also possible, where most DNS A record data is recorded in fused inet:dns:a nodes
but it is also possible to record high-resolution, point-in-time inet:dns:request and inet:dns:answer nodes when
needed.

3.2.3 Data Model - Form Categories

Synapse forms can be broadly grouped into conceptual categories based on the object a form is meant to represent -
an Entity, a Relationship, or an Event.

Synapse forms can also be broadly grouped based on how their primary properties (<form> = <valu>) are formed.

Recall that <form> = <valu> must be unique for all forms of a given type. In other words, the <valu> must be

9. ¢

defined so that it uniquely identifies any given node of that form; it represents that form’s “essence” or “thinghood” in
a way that allows the unambiguous deconfliction of all possible nodes of that form.

Conceptually speaking, the general categories of forms in Synapse are:
* Simple Form
* Composite (Comp) Form
* Guid Form
* Generic Form
* Digraph (Edge) Form

This list represents a conceptual framework for understanding the Synapse data model.

Simple Form

A simple form refers to a form whose primary property is a single typed <valu>. They are commonly used to represent
an Entity, and so tend to be the most readily understood from a modeling perspective.

Examples

o IP addresses. An IP address (IPv4 or IPv6) must be unique within its address space and can be defined by
the address itself: inet:ipv4 = 1.2.3.4. Secondary properties include the associated Autonomous System
number and whether the IP belongs to a specialized or reserved group (e.g., private, multicast, etc.).

* Email addresses. An email address must be unique in order to route email to the correct account / individual and
can be defined by the address itself: inet:email = joe.smith@company.com. Secondary properties include
the domain where the account receives mail and the username for the account.

Composite (Comp) Form

A composite (comp) form is one where the primary property is a comma-separated list of two or more typed <valu>
elements. While no single element makes the form unique, a combination of elements can uniquely define a given node
of that form. Comp forms are often (though not universally) used to represent a Relationship.

Examples

¢ Fused DNS A records. A DNS A record can be uniquely defined by the combination of the domain (inet: fqdn)
and the IP address (inet:ipv4) in the A record. Synapse’s inet:dns:a form represents the knowledge that a
given domain resolved to a specific IP at some time, or within a time window (fused knowledge): inet:dns:a
= (woot.com, 1.2.3.4). The time window is captured by the universal . seen property.

32 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

* Web-based accounts. An account at an online service (such as Github or Twitter) can be uniquely defined by
the combination of the domain where the service is hosted (inet: fqdn) and the unique user ID (inet:user)
used to identify the account: inet:web:acct = (twitter.com, vtxproject).

* Social networks. Many online services allow users to establish relationships with other users of that service.
These relationships may be one-way (you can follow someone on Twitter) or two-way (you can mutually connect
with someone on LinkedIn). A given one-way social network relationship (“Alice follows Bob”) can be uniquely
defined by the two users (inet:web:acct) involved in the relationship: inet:web:follows = ((twitter.
com,alice), (twitter.com,bob)). (A two-way relationship can be defined by two one-way relationships.)

Note that each of the elements in the inet:web: follows comp form is itself a comp form (inet:web:acct).

Guid Form

A guid (Globally Unique Identifier) form is uniquely defined by a machine-generated 128-bit number. Guids account
for cases where it is impossible to uniquely define a thing based on a property or set of properties. Guids are also useful
for cases where the amount of data available to create a particular object (node) may vary greatly (i.e., not all properties
/ details are available from all data sources).

A guid form can be considered a special case of a Simple Form where the typed <valu> is of type <guid>.

Note: Guid forms can be arbitrary (generated ad-hoc by Synapse) or predictable / deconflictable (generated based on
a specific set of inputs). See the guid section of Storm Reference - Type-Specific Storm Behavior for a more detailed
discussion of this concept.

Examples

* People. Synapse uses a guid as the primary property for a person (ps : person) node. There is no single property
or set of properties that uniquely and unambiguously define a person. A person’s full name, date of birth, or place
of birth (or the combination of all three) are not guaranteed to be fully unique across an entire population. Iden-
tification numbers (such as Social Security or National ID numbers) are country-specific, and not all countries
require each citizen to have an ID number.

* Host execution / sandbox data. The ability to model detailed behavior of a process executing on a host (or in
a sandbox) is important for disciplines such as incident response and malware analysis. Modeling this data is
challenging because of the number of effects that execution may have on a system (files read, written, or deleted;
network activity initiated). Even if we focus on a specific effect (“a process wrote a new file to disk”), there are
still a number of details that may define a “unique instance” of “process writes file”: the specific host where the
process ran, the program that wrote the file to disk, the process that launched the program, the time the execution
occurred, the file that was written, the file’s path, and so on. While all of these elements could be used to create
a comp form, in the “real world” not all of this data may be available in all cases, making a guid a better option
for forms such as it:exec:file:write.

Generic Form

The Synapse data model includes a number of “generic” forms that can be used to represent metadata and / or arbitrary
data.

In an ideal world, all data represented in Synapse would be accurately modeled using an appropriate form. However,
designing a new form for the data model may require extended discussion, subject matter expertise, and testing against
“real world” data - not to mention time to implement model changes. In addition, sometimes data needs to be added
to a Cortex for reference or analysis purposes where the data simply does not have sufficient detail to be represented
accurately, even if an appropriate form existed.

3.2. Data Model 33

Synapse Documentation, Release 2.141.0

The use of generic forms is not ideal - the representation of “generic” data may be lossy, which may impact effective
analysis. But generic forms may be necessary for adding arbitrary to Synapse, either because an appropriate model
element does not yet exist but the data is needed now; or because there is no other effective way to represent the data.

These generic forms exist in two primary parts of the data model: meta:* forms and graph:* forms. Examples
include:

* meta:seen nodes, used to represent a data source used to ingest data into Synapse. Data sources may include
sensors or third-party connectors such as Synapse Power-Ups. A meta:source is linked to the data it provides
via a - (seen)> light edge.

* meta:rule nodes, used to represent a generic detection rule for cases where a more specific form (such as
it:av:sigor it:app:yara:rule) is not available.

Some generic forms are “edge forms” (see Digraph (Edge) Form, below) used to represent relationships between arbi-
trary forms.

Digraph (Edge) Form

Note: The use of light edges (see Lightweight (Light) Edge) is preferred over edge forms (which predate light edges)
where possible.

A digraph form (“‘edge” form) is a specialized Composite (Comp) Form whose primary property value consists of two
<form>,<valu> pairs (“node definitions”, or ndefs). An edge form is a specialized relationship form that can be used
to link two arbitrary forms in a generic relationship.

Edge forms have not been officially deprecated. However, edge forms (used to create nodes) incur some additional
performance overhead vs. light edges (particularly for large numbers of edge nodes). In addition, there are some
nuances to working with edge nodes using Storm (see Pivot to Digraph (Edge) Nodes, for example) that can make
navigating Synapse data more complex. For these reasons, light edges are now preferred.

3.3 Analytical Model

The analytical model that is used in Synapse is driven primarily by the use of tags to make assessments. This is
discussed in the following sections:

3.3.1 Analytical Model - Tag Concepts
Recall from Data Model - Terminology that two of the key components within Synapse are nodes and tags. Broadly
speaking:

* Nodes represent “things”: observables that can be verified and are unlikely to change over time.

» Tags represent assessments: conclusions that may change in light of new data.

The types, forms, and properties that define nodes make up the Synapse data model. The tags applied to nodes can be
thought of as the analytical model used to record assessments about Synapse data. This section provides additional
background on tags before a more in-depth discussion on their use:

» Tags as Nodes

» Tags as Labels

34 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Tags as Nodes

Tags are used to record analytical observations, but tags are also nodes within Synapse. Every tag is a syn: tag node.

A tag node’s primary property (<form> = <valu>) is the name of the tag; so the tag foo.bar has the primary property
syn:tag = foo.bar. The dotted notation can be used to construct tag hierarchies / tag trees to organize tags and
represent varying levels of specificity (see below).

This example shows the node for the tag syn:tag = rep.feye.aptl:

storm> syn:tag=rep.feye.aptl
syn:tag=rep.feye.aptl
:base = aptl
:depth = 2
:doc = Indicator or activity FireEye calls (or associates with) APT1.
:title = APT1 (FireEye)
:up = rep.feye
.created = 2023/07/12 15:14:57.343

The syn:tag node has the following properties:
e .created, which is a universal property showing when the node was added to a Cortex.

e :titleand :doc, which store concise and more detailed definitions for the tag. Having definitions on tag nodes
helps ensure tags are applied (and interpreted) correctly by Synapse analysts and other users.

The :depth, :up, and :base secondary properties help to lift and pivot across tag nodes:

 :depth is the “location” of the tag in a given tag tree, with the count starting from zero. A single-element tag
(syn:tag = rep) has :depth = 0, while a three-element tag (syn:tag = rep.feye.aptl) has :depth =
2.

* :base is the final (rightmost) element in the tag tree.
* :up is the tag one “level” up in the tag tree.

Additional information on viewing and pivoting across tags can be found in Storm Reference - Model Introspection.
For details on the Storm query language, see Storm Reference - Introduction.

Tags (syn:tag forms) have a number of type-specific behaviors within Synapse with respect to how they are indexed,
created, and manipulated via Storm. Most important for practical purposes is that syn: tag nodes are created “on the
fly” when a tag is applied to another node. You do not need to create the syn:tag node before the tag can be used;
applying the tag will cause the creation of the appropriate syn: tag node (or nodes).

See the syn:tag section within Storm Reference - Type-Specific Storm Behavior for additional detail on tags and tag
behavior in Synapse and Storm.

Tags as Labels

Synapse does not include any pre-populated tags. A good set of tags (that is, a good analytical model) should be
structured to best answer relevant questions for the analysis being performed. Organizations using Synapse have the
flexibility to create a tag structure that is most useful to them.

A tag’s value (syn:tag = <valu>) is simply a string and can be set to any user-defined alphanumeric value. The
strings are designed to use a dotted naming convention, with the period (.) used as a separator to delimit individual
elements of a tag if necessary. This dotted notation means it is possible to create tag hierarchies or tag trees. These trees
can be used to “categorize” different types of tags (with each top-level or root tag representing a particular category).
The structure can also support increasingly detailed or specific observations. For example, the top level tag foo can

3.3. Analytical Model 35

Synapse Documentation, Release 2.141.0

represent a broad set of observations, while foo.bar and foo.baz could represent subsets of foo or more specific
observations related to foo.

Within a tag tree, specific terms are used for the tags and their components:
* Leaf tag: The full tag.
* Root tag: The top / leftmost element in a given tag.
» Base tag: The bottom / rightmost element in a given tag.
For the tag foo.bar.baz:
» foo.bar.baz is the leaf tag (leaf).
» foo is the root tag (root).
* baz is the base tag (base).

When you apply a tag to a node, all of the tags above that tag in the tag tree are automatically applied as well (and the
appropriate syn:tag nodes are created if they do not exist). That is, when you apply the tag foo.bar.baz to a node,
Synapse automatically applies the tags foo.bar and foo as well.

When you delete (remove) a tag from a node, the tag and all tags below it in the tag tree are deleted. If you delete the
tag foo.bar.baz from a node, the tags foo.bar and foo will remain. However, if you delete the tag foo from a node
with the tag foo.bar.baz, then all three tags (foo, foo.bar, and foo.bar.baz) are deleted.

Deleting a tag from a node does not delete the syn: tag node for the tag itself.

See the syn:tag section within Storm Reference - Type-Specific Storm Behavior for additional detail on tags and tag
behavior within Synapse and Storm.

See Analytical Model - Tags as Analysis and Design Concepts - Analytical Model for additional considerations for tag
use and creating tag trees.

Tag Timestamps

Applying a tag to a node has a particular meaning; it is an assessment about that node with respect to the current data
in Synapse. Many assessments are binary in the sense that they are either always true or always false; in these cases,
the presence or absence of a tag can accurately reflect the current assessment, based on available data.

There are other cases where an assessment may be true only for a period of time or within a specified time frame.
Internet infrastructure is one example; you can annotate whether an IP address is part of an anonymization service
such as TOR using tags such as cno.infra.anon. tor. But this information can change over time if the TOR service
is removed or the IP address is reallocated to a different customer. The relevant tag can be applied while the IP is a
TOR node and removed when that is no longer true; but completely removing the tag causes us to lose the historical
knowledge that the IP was a TOR node at one time.

Synapse supports the optional use of timestamps (technically, time intervals) with any tag applied to a node. The
timestamps can represent “when” (first known / last known times) the assessment represented by the tag was relevant
for the node to which the tag is applied. (These timestamps are analogous to the .seen universal property used to
represent the first and last known times the data represented by a node was true / real / in existence.)

Applying a timestamp to a tag affects that specific tag only. The timestamps are not automatically propagated to tags
higher up (or lower down) in the tag tree. This is because the specific tag to which the timestamps are applied is the
most relevant with respect to those timestamps; tags elsewhere in the tree may have different shades of meaning and
the timestamps may not apply to those tags in the same way (or at all).

Like .seen properties, tag timestamps represent a time range and not necessarily specific instances (other than the
“first known” and “last known” observations). This means that the assessment represented by the tag is not guaranteed
to have been true throughout the entire date range (though depending on the meaning of the tag, that may in fact be the

36 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

case). That said, the use of timestamps allows much greater granularity in recording observations in cases where the
timing of an assessment (“when” something was true or applicable) is relevant.

Example - Tor Exit Nodes

Many web sites provide lists of TOR nodes or allow users to query IP addresses to determine whether they are TOR
nodes. These sites may provide “first seen” and “last seen” dates for when the IP was identified as part of the TOR
network. These dates can be used as timestamps for “when” the tag #cno.infra.anon. tor was applicable to that IP
address.

If we have a data source that verifies that IP address 197.231.221.211 was a TOR node between December 19, 2017
and February 15, 2019, we can apply the tag #cno.infra.anon. tor with the appropriate time range as follows:

storm> inet:ipv4 = 197.231.221.211 [+#cno.infra.anon.tor = (2017/12/19, 2019/02/15)]
inet:ipv4=197.231.221.211

:asn = 37560

:dns:rev = exitl.ipredator.se

:latlong = 8.4219,-9.7478

:loc = 1Ir.lo.voinjama

:type = unicast

.created = 2023/07/12 15:14:57.431

#cno.infra.anon.tor = (2017/12/19 00:00:00.000, 2019/02/15 00:00:00.000)

Tag Display

When a tag is used as a label applied to a node, the data is displayed differently than it is for a syn:tag node. This
example shows a node with multiple tags applied:

storm> inet:fgdn = aunewsonline.com

inet: fgdn=aunewsonline.com
:domain = com
:host = aunewsonline
:issuffix = false
:iszone = true
:zone = aunewsonline.com
.created = 2023/07/12 15:14:57.487
#cno.threat.t1l5.own = (2009/09/08 00:00:00.000, 2013/09/08 00:00:00.000)
#rep.feye.aptl
#rep.symantec.commentcrew

Tags on a node are listed alphabetically following the node’s properties. Tags are prefixed with the pound / hashtag (#
) symbol to indicate they are tags.

By default, Storm displays only the leaf tags applied to a node (e.g., #rep.feye.aptl but not #rep. feye or #rep)
and any tags with Tag Timestamps or Tag Properties (even if they are not leaf tags).

Any timestamp values are displayed following an equals sign after the tag. In the example above, the tag #cno . threat.
t15.own indicates the domain is associated with (“owned” by) internally-tracked Threat Cluster 15 (T15). The dates
reflect our assessment that T15 “owned” / controlled the FQDN between September 8, 2009 and September 8, 2013.

3.3. Analytical Model 37

Synapse Documentation, Release 2.141.0

Tag Properties

Synapse supports the creation and use of custom tag properties that can provide additional context to a given tag or
set of tags. Tag properties must be created programmatically before they can be used. Once a tag property is created,
it can be applied (appended) to any tag.

Note: Synapse still supports the use of tag properties, but their use is now discouraged in most cases in favor of
extended model properties. A discussion of extended model elements (forms, properties, etc.) is beyond the scope of
this document. Storm libraries for working with extended model elements can be found here: $lib.model.ext.

3.3.2 Analytical Model - Tags as Analysis

Analysis consists of collecting and evaluating data and drawing conclusions based on the data available to you. As-
suming data is collected and modeled accurately within Synapse, the data itself - nodes and their properties - should
not change. But as you collect more data or re-evaluate existing data, your assessment of that data - often encoded in
tags - may change over time. Nodes and properties are largely stable; tags are meant to be flexible and readily modified
if needed.

Every knowledge domain has its own focus and set of analytical questions it attempts to answer. The “answers” to some
of these questions can be recorded in Synapse as tags applied to relevant nodes. These tags provide context to the data
in Synapse.

The Synapse data model for tags is simple - it consists of the single syn:tag form. The appropriate use of tags to
annotate data is more nuanced. You can think of tags - their structure and application - as an analytical model that
complements and extends the power of the data model.

This analytical model:

¢ Is largely independent from the data model. You do not need to write code to implement new tags or design
a tag structure; you simply need to create the appropriate syn: tag nodes.

« Is specific to an analytical discipline. Tags used for cyber threat analysis may be very different from tags used
to track financial fraud.

* Is tightly coupled with the specific questions you want to answer. The tags you create and apply should be
driven by your particular analysis goals.

— The tags should annotate assessments and conclusions that are important to your analysis.
— The tags should allow you to ask meaningful questions of your data.
The effective use of Synapse to conduct analysis depends on:
* The data model: how you represent the data you care about using Synapse’s forms, properties, and types.

¢ The analytical model: how you design and use a set of tags to annotate data, provide context, and answer the
questions that matter to you.

38 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Tag Examples

The sections below provide a few examples of the kinds of context - observations and assessments - that you can
represent with tags. Recording these assessments in Synapse alongside the relevant data provides immediate context
to that data, and allows you to query both data (nodes) and assessments (tags).

These examples are simply meant to illustrate a few possible “real-world” applications for tags. There is no “right” or
“wrong” set of tags (although there are “better” and “worse” design decisions that may impact your ability to answer
questions efficiently).

See Design Concepts - Analytical Model for considerations in designing tags and tag trees.

See Design Concepts - General for considerations on whether to model something as a form, a property, a tag, or a tag
associated with a node.

See Tags Associated with Forms for Synapse’s ability to link tags to nodes to more easily cross-reference tags with data
model elements that those tags represent.

Domain-Specific Assessments

The purpose of analysis is to draw relevant conclusions from the data at hand. The conclusions will vary based on the
knowledge domain, but could include big-picture assessments such as “The increase in widget manufacturing due to
lower production costs has had a negative effect on the demand for gizmos” or “The threat group Vicious Wombat is
working on behalf of the Derpistan government”.

Those large assessments can be made based on numerous smaller assessments (tags) which are themselves based on
the observables (nodes) in Synapse. To build up to those larger assessments, you must start by recording those smaller
assessments as tags on nodes.

The folowing examples from cyber threat intelligence illustrate some of the assessments that can be recorded using
tags.

Tip: The specific tags referenced below are based on The Vertex Project’s tag trees and use our conventions. Use
what works for you!

Threat Clusters

A common practice in threat intelligence involves deciding not only whether an indicator (such as a file, domain, or
IP address) is malicious, but whether it should be associated with a threat cluster. That is, can an indicator be linked
to other indicators (e.g., from the same indcident or intrusion) to create a known set of related indicators and activity.
“Threat clusters” may be built up and expanded over time to represent a broader set of activity presumed to be carried
out by some (generally unknown) set of malicious actors (a “threat group”).

You can tag nodes to indicate that the node is associated with a particular threat cluster. For example:
cno.threat.<cluster>

Where cno is a top-level tag for assessments related to Computer Network Operations (CNO), threat is a sub-tag
used for threat clusters / threat groups, and <cluster> is the “name” of the particular threat cluster based on your
organization’s conventions (names, numbers, etc.)

3.3. Analytical Model 39

Synapse Documentation, Release 2.141.0

Tactics, Techniques, and Procedures (TTPs)

The methodologies (sometimes known as tactics, techniques, and procedures or TTPs) that a threat group uses to
conduct activity provide insight into the group and its operations. Knowledge of past TTPs may help predict future
actions or operations. Sets of TTPs observed together may provide a “fingerprint” of a group’s activity. General
knowledge of TTPs in current use can help organizations more effectively protect and defend their assets.

“TTP” can cover a broad range of observed activity, from whether a group uses zero-day exploits to the specific packer
used to obfuscate a piece of malware. When a node represents an instance of the use of a TTP, it may be useful to tag
the node with the TTP in question.

For example, you have an email message (RFC822 file) that you assess is a phishing attack. You can tag the relevant
node or nodes (such as the file:bytes of the message and / or the inet:email:message node representing the
message metadata) with that TTP:

cno.ttp.phish.message

Where cno is our top-level tag, ttp represents the TTP sub-tree, phish represents assessments related to phishing, and
message indicates the node(s) represent the phishing email (e.g., as opposed to an attachment or URL representing the
phishing payload, or the sending email address or IP representing the source).

Third-Party Assertions

Some third-party data sources provide both data and tags or labels associated with that data. For example, Shodan may
provide data on an IPv4 address (such as which ports were open as of the last Shodan scan) as well as tags such as
self-signed or vpn. Similarly, VirusTotal may provide metadata and multiscanner data for files along with tags such
as peexe or invalid-signature.

In addition, many commercial organizations conduct their own threat tracking and analysis and publish their research.
This type of research commonly includes “indicators of compromise” or IOCs - hashes, domains, IP addresses, and
so on indicative of the reported activity. These reports do not necessarily include tags provided by the reporting or-
ganization. But the report may make it clear that the reporter associates the IOCs with particular malware families,
“campaigns”, or threat groups.

Shodan’s label indicating that an IPv4 address hosted a VPN and ESET’s reporting that a SHA1 hash is associated with
the X-Agent malware family are both assertions. These assertions are valuable data and can be useful to your analysis.

That said, you may not have the means to verify these assertions yourself. To accept the assertion at face value means
you need to trust the third-party in question. “Trust” may include things like understanding the source of the data;
knowing their general reputation (i.e., within your analysis community); or building trust over time as you determine
the reliabilty and accuracy of their reporting.

Your own assertions are presumably “more trustworthy” based on direct access to your internal data and processes.
Assertions made by others may be open to question or validation, so it can be useful to record these third-party as-
sessments separately. This allows you to retain the context of what “other people” say while keeping those (potentially
lower-confidence) assertions separate from your own.

You can use tags to annotate “other people’s analysis” by tagging relevant nodes with what “other people” say about
them:

e rep.eset.sednit: ESET says this SHA1 hash is associated with Sednit
e rep.shodan. vpn: Shodan says this IPv4 hosts a VPN
* rep.vt.peexe: VirusTotal says this file is a PE executable

Where rep is a top-level tag for third-party reporting, the second tag element (e.g., eset) is the name of the reporting
organization, and the third tag element is the information the third party is reporting.

40 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Domain-Relevant Observations

Within a particular knowledge domain, it may be useful to record observations that support your analysis process in
some way. In other words, the observations are relevant to your analysis, but do not represent the specific output or
objective of your analysis.

In cyber threat intelligence, a primary goal is to track malicious activity and maintain awareness of the current threat
landscape, often in terms of malware, threat groups, and techniques / TTPs. Part of this tracking includes noting
infrastructure (such as IP addresses, netblocks, or domains) used in malicious activity.

Identifying network infrastructure as TOR nodes, anonymous VPN endpoints, or sinkhole IPs is not a primary goal of
threat intelligence, but knowing this information can be useful and help prevent analysts from mis-identifying threat
actor infrastructure.

You can use tags to annotate identified infrastructure (such as inet:ipv4 nodes) of interest:
e cno.infra.anon. tor: The IPv4 is a TOR exit node
e cno.infra.anon.vpn: The IPv4 is an anonymous VPN exit point
e cno.infra.dns.sink.hole: The IPv4 is used to resolve sinkholed FQDNs

Once again cno is our top-level tag for Computer Network Operations, infra indicates the “infrastructure” sub-tree,
the third element indicates the kind of infrastructure (anon for anonymous, dns for DNS, etc.), and so on.

Tags as Hypotheses

Another way to look at tags is as hypotheses. If a tag represents the outcome of an assessment, then every tag can be
seen as having an underlying question - a hypothesis - it is attempting to answer. Deciding to apply the tag is equivalent
to deciding that the underlying hypothesis is true.

Making these assessments typically involves the judgment of a human analyst; so evaluating and tagging data within
Synapse is one of an analyst’s primary tasks.

Hypotheses may be simple or complex; tags typically represent relatively simple concepts that are used collectively to
support (or refute) more complex theories. Because the concept of encoding analytical conclusions within a system
like Synapse may be unfamiliar, a few examples may be helpful.

Example 1

The question “can this newly identified FQDN be associated with any known threat cluster?” can be thought of as n
number of individual hypotheses based on the number of known threat clusters:

* Hypothesis 1: This domain is associated with Threat Cluster 1.
* Hypothesis 2: This domain is associated with Threat Cluster 2.
* Hypothesis n: This domain is associated with Threat Cluster n.

If an analyst determines that the domain is associated with Threat Cluster 46, placing a Threat Cluster 46 tag (e.g., cno.
threat.t46) on that FQDN effectively means that the hypothesis “This domain is associated with Threat Cluster 46”
has been assessed to be true (and by implication, that all competing hypotheses are false).

Example 2

Deciding whether a domain is meant to imitate (masquerade as) a legitimate domain for malicious purposes can also
be thought of as a set of hypotheses.

“Masquerading” is a threat actor technique (TTP) designed to influence a targeted user to trust something enough to
perform an action. A domain that “looks like” a valid FQDN or an email address that “looks like” a trusted sender may

3.3. Analytical Model 41

Synapse Documentation, Release 2.141.0

encourage the victim to click a link or open an attachment. In threat intelligence, the focus is on threat actor TTPs, so
the TTPs we’re interested in are (by definition) malicious.

Let’s say an analyst comes across the suspicious domain akcdndata.com. To decide whether this is an example of a
masquerade, the analyst needs to decide:

¢ Is the FQDN akcdndata. com associated with known malicious activity?
* Does the FQDN akcdndata.com imitate a legitimate company, site, or service?
A number of possibilities (hypotheses) exist, such as:
* Hypothesis 1: The domain is NOT malicious.
* Hypothesis 2: The domain IS malicious, but is not meant to imitate anything.
» Hypothesis 3: The domain IS malicious, and is meant to imitate a legitimate resource.

The tag (or tags) the analyst decides to apply depend on which hypotheses they can prove or disprove (assert are true,
or not).

Deciding on Hypothesis 1 vs. Hypothesis 2 may involve things like reviewing domain registration data, associated
DNS infrastructure, or seeing if the FQDN shows up in public reporting of malicious activity.

If Hypothesis 1 is true, we would not tag the FQDN. If Hypothesis 2 is true, we can simply assert that the FQDN is
malicious (with a tag such as cno.mal).

If Hypothesis 2 is true, deciding on Hypothesis 3 may be trickier. Does the FQDN “look like” anything familiar? It
may “look like” Akamai CDN (content delivery network) but that’s a bit of a stretch. .. maybe it is just a coincidence?
Do we have any context around how the FQDN was used maliciously that might indicate that the threat actors wanted
to mislead victims into thinking the FQDN was associated with Akamai?

If we have enough evidence to support Hypothesis 3, we can apply a TTP tag such as cno. ttp.se.masq (cno as our
top-level tag, ttp for our TTP sub-tree, se for social engineering TTPs, and masq for masquerade).

Individual Hypotheses to Broader Reasoning

The hypotheses represented by the tags in the examples above are fairly narrow in scope - an indicator is associated
with a threat cluster (cno. threat.t42), a domain was designed to mislead users by imitating a legitimate web site or
service (cno.ttp.se.masq). With Synapse, you can leverage these more focused hypotheses to answer broader, more
complex questions.

A newly identified zero-day exploit has been circulating in the wild and is in use by multiple threat groups. The
associated vulnerability has been assigned CVE-2021-9999 (a number we made up). The exploit is delivered via a
malicious XLSX file sent as an email (phishing) attachment.

You believe that “Threat Group 12 was the first group to use the zero day associated with CVE-2021-9999”. To prove
or disprove this hypothesis, you could query Synapse for all files (file:bytes nodes) that:

* exploit CVE-2021-9999 (i.e., have a tag such as rep.vt.cve_2021_9999), and
e are associated with a known threat cluster or threat group (i.e., are tagged cno.threat.<cluster>)

If you have data for any associated phishing messages, you can pivot from the malicious XLSX files to their associated
emails (inet:email :message:attachment -> inet:email:message) and look for the phishing message with
the oldest date. By identifying the threat group associated with the earliest known email, you can determine whether
the zero-day was first used by Threat Group 12 or some other group.

You are able to take tags associated with simple assessments (“this file exploits CVE-2021-9999” or “this file is asso-
ciated with Threat Cluster 12”) and combine nodes (files / file:bytes), properties (inet:email :message:date),
and tags to answer a more complex question. That’s the power of Synapse!

42 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Note: This example is simplified; you would of course perform additional research besides what is described above
(such as searching for additional samples that exploit the vulnerability and any associated phishing attempts, attributing
identified samples that are not yet associated with a Threat Cluster, etc.)

Assuming you have completed your research and the data is in Synapse and tagged appropriately, you can easily answer
the above question using the Storm query language using a query such as the following:

file:bytes#rep.vt.cve_2021_9999 +#cno.threat -> inet:email:message:attachment
-> inet:email:message | min :date | -> # +syn:tag*=cno.threat

3.4 Design

There is a balance between using data in the graph, and using tags for analysis. The following sections discuss that in
additional detail.

3.4.1 Design Concepts - Data Model

Synapse’s ability to support powerful and effective analysis is due in large part to Synapse’s data model. The forms,
properties, and types used in Synapse are the result of our direct experience using Synapse for a broad range of analysis
(along with lively and occasionally heated internal discussion and design sessions with our developers and analysts!).

A full discussion of the considerations (and complexities) of a well-designed data model are beyond the scope of this
documentation. However, there are several principles that we rely on that help shed light on our approach:

¢ The model is an abstraction. A data model (and associated tags / analytical model) provides structure for data
and assertions that allow us to quickly view data, relationships, and context, and to ask questions of the data in
powerful ways. That said, analysis often involves subtle distinctions and qualifications - which is why analysis
is often provided in long-form reports where natural language can convey uncertainties or caveats related to
conclusions.

Capturing data and analysis in a structured model abstracts away some of these subtleties - in some cases, trading
them for consistent representation and programmatic access. A data model can never fully capture the richness
and detail of a long-form report. But a good data model can sufficiently capture critical relationships and analyti-
cal findings so that an analyst only rarely needs to refer to external reporting or original sourcing for clarification.

¢ The model should be self-evident. While the model is an abstraction, it should not be abstracted to the point
where the data and analysis in the model cannot stand on their own. While at times supplemental external reports
or notes may be helpful, they should not be required to understand the information represented in Synapse. The
model should convey the maximum amount of information possible: objects, relationships, and annotations
should be unambiguous, well-defined, and clearly understood. An analyst with subject matter knowledge but no
prior exposure to a given set of findings should be able to look at that information in Synapse and understand the
associated analysis.

Take the broadest perspective possible. Many data models suffer from being “overly-fitted”. They are designed
for a specific analytical discipline and the objects and relationships they contain reflect a narrow use case. We
believe that Synapse’s data model should represent objects and relationships as they are in the real world - not
just “as they are used” in a particular limited context. For example, an “organization” (ou:org) in Synapse can
represent any set of people with a common goal - from a company, to a government, to a threat group, to a
department, to your kid’s soccer team. This makes the model both more flexible and more broadly applicable so
we can easily incorporate new data sets / sources and additional types of analysis.

* The model should be driven by real-world need and relevance. Any model should be designed around the
analytical questions that it needs to be answer. Some models are designed as academic abstractions (“how would

3.4. Design 43

Synapse Documentation, Release 2.141.0

we classify all possible exploitable vulnerabilities in software?”’) without consideration for the practical questions
that the data is intended to address. Are some exploits theoretically possible, but never yet observed in the real
world? Are some distinctions too fine-grained (or not fine-grained enough) for your analysis needs? Subject
matter experts should have significant input into the type of data modeled, what analysis needs to be performed
on the data, and how the data should be represented.

The best models evolve in a cycle of forethought combined with real-world stress-testing. Creating a model
with little or no forethought can lead to a narrowly-focused and fragmented data model — in the face of some
immediate need, analysts or developers may focus on the trees while missing the big picture of the forest. That
said, even the best model planned in advance will fall short when faced with the inconsistencies of real-world
data. Experience has shown us that there are always edge cases that cannot be anticipated. The most effective
models are typically planned up front, then tested against real-world data and refined before being placed fully
into production.

* Test the basics and build from there. No data model is set in stone —in fact, a good model will expand and evolve
with analytical need. That said, changes to the model may require revising or updating existing model elements
and associated analysis, and some changes are easier to make than others. When introducing a new element to
the model, consider carefully what the “essence” of that element is - what makes it unique and therefore how
it should “look” within the model - and design a form to capture that. It is perfectly fine (and even preferable!)
to start with a limited or “stub” form while you test it against real data. It is relatively easy to make additive
changes to the data model (introduce new forms or new secondary properties). It is more challenging to modify
the model once you have encoded data into nodes, because those modifications may require migrating existing
data to account for your changes.

3.4.2 Design Concepts - Analytical Model

The tag hierarchies (tag trees) that you use to annotate data represent your analytical model. Your ability to conduct
meaningful analysis depends in part on whether your analytical model is well-designed to meet your needs. The tags
and tag trees that work best for you may be different from those that work well for another organization.

A full discussion of tag tree design is beyond the scope of this document. However, the following points should be
taken into consideration in designing your tags and associated analytical model:

* Tag Trees

* Tag Definitions
* Tag Management
* Level of Detail

o Flexibility

* Precision

» Consistency of Use

Tag Trees

The structure of a tag tree is an important consideration because the order of tag elements can affect the types of analysis
questions you can most easily answer. Because tag trees generally move from “less specific” to “more specific”, the
structure you choose affects how (or whether) you can narrow your focus effectively. The structure you create should
allow you to increase specificity in a way that is meaningful to the questions you’re trying to answer.

For example, let’s say you are storing copies of articles from various news feeds within Synapse (i.e., as media:news
nodes). You want to use tags to annotate the subject matter of the articles. Two possible options would be:

Tag Tree #1

44 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

<country>.<topic>.<subtopic>.<subtopic>:
us.economics.trade.gdp
us.economics.trade.deficit
us.economics.banking.lending
us.economics.banking.regulatory
us.politics.elections.national
france.politics.elections.national
france.politics.elections.local
china.economics.banking.lending

Tag Tree #2

<topic>.<subtopic>.<subtopic>.<country>:
economics.trade.gdp.us
economics.trade.deficit.us
economics.banking.lending.us
economics.banking.regulatory.us
politics.elections.national.us
politics.elections.national. france
politics.elections.local. france
economics.banking.lending.china

Using Synapse’s Storm (Storm Reference - Introduction) query language, it is easy to ask about nodes that have a
specific tag (#my . tag). With Storm you can also ask about tag nodes (syn:tag = my.tag) in various ways based on
their properties, and then pivot from the syn:tag nodes to nodes that have those tags applied. These latter queries are
not difficult but may be less intuitive in practice.

The example questions below illustrate how your choice of tag structure makes it easier (or harder) to ask certain
questions.

Example 1: “Show me all the articles related to France”:
* Tag Tree #1:
storm> #france
* Tag Tree #2:
storm> syn:tag:base=france -> *
Example 2: “Show me all the articles on banking within the US™:
e Tag Tree #1:
storm> #us.economics.banking
* Tag Tree #2:
storm> syn:tag*=economics.banking +syn:tag:base=us -> *
Example #3: “Show me all the articles about global trade”:
* Tag Tree #1:
storm> syn:tag:base=trade -> *
* Tag Tree #2:
storm> #economics.trade

Example #4: “Show me all the articles about national elections”:

3.4. Design 45

Synapse Documentation, Release 2.141.0

e Tag Tree #1:
storm> syn:tag:base=national -> *
e Tag Tree #2:
storm> #politics.elections.national

Tag Tree #1 makes it easier to ask the first two questions; Tag Tree #2 makes it easier to ask the last two questions. As
you can see, choosing one tag tree over the other doesn’t prevent you from asking certain questions. If you choose the
first tree, you can still ask about global trade issues. But asking that question (creating an appropriate Storm query)
is a bit move involved. Creating a query based on a poorly-structured set of tags can get more difficult as both the tag
depth (nubmer of tag elements) and the total number of tags increases.

These differences in query structure may seem relatively minor. But structuring your tags to make it “easier” to ask the
questions that are most important to you has two important effects:

* More efficient for Synapse to return the requested data: In general, lifting data (selecting nodes) by the tag
present on a node is more efficient than lifting syn: tag nodes and then pivoting to nodes that have those tags.
This efficiency may be further affected if you are performing additional operations (filtering, additional pivots)
on the results. These performance impacts may be relatively minor but can compound over larger data sets.

* Simpler for analysts to remember: Analysts want to spend their time analyzing data, not figuring out how to
ask the right question (craft the right query) to retrieve the data in the first place. This has a much bigger impact
on an analyst’s workflow - simpler is better!

Neither tag tree is right or wrong; which is more suitable depends on the types of questions you want to answer. If
your analysis focuses primarily on news content within a particular region, the first option (which places “country” at
the root of the tree) is probably more suitable. If your analysis focuses more on global geopolitical topics, the second
option is probably better. As a general rule, the analytical focus that you “care about most” should generally go at the
top of the hierarchy in order to make it easier to ask those questions.

Tag Definitions

Tag (syn:tag) nodes allow you to store both short-form and long-form definitions directly on the node itself (as
:title and :doc properties, respectively). We recommend that you consistently use these properties to clearly define
the meaning of the tags you create within Synapse.

Synapse’s forms (the data model) and your set of tags (analytical model) should convey key relationships and assess-
ments in a concise way. Your ability to view nodes and tags and understand their meaning should be simpler (and
faster) than reading a report about why an analyst interprets X to mean Y.

That said, tags are a “shorthand” used to represent specific observations and annotations. The meaning of a tag such
as cno.infra.anon. tor may not be readily apparent. There is a risk that different analysts may interpret and use
the same tag in different ways. This risk increases as both the number of tags and the number of different analysts
increases.

Storing a tag’s definition directly within Synapse on the associated syn: tag node makes Synapse “self-documenting’”:
an analyst can view the tag’s definition at any time directly within Synapse. You do not need to refer to an external
application or dictionary to look up a tag’s precise meaning and appropriate use.

46 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Tag Management

Because tags are simply nodes, any user with the appropriate permissions can create a new tag. This ability to create
tags on the fly makes tags extremely powerful, flexible, and convenient for analysts — they can create annotations to
reflect their observations right when they are conducting analysis, without the need to wait for code changes or approval
cycles.

There is also some risk to this approach, particularly with large numbers of analysts, as analysts may create tags in an
uncoordinated and haphazard fashion. Creating arbitrary (and potentially duplicative or contradictory) tags can work
against effective analysis.

Your approach to tag creation and approval will depend on your needs and your environment. Where possible, we
recommend a middle ground between “tag free-for-all” and “tightly-enforced change management”. It is useful for
an analyst to have the ability to create a tag on demand to record an observation in the moment; if the analyst must
wait for review and approval, the observation is likely to be lost as the analyst moves on to other tasks. That said, it is
also helpful to have some type of regular review process to ensure the tags are being used in a consistent manner, fit
appropriately into your analytical model, and have been given clear definitions.

Level of Detail

Tag trees can be arbitrarily deep (that is, can support an arbitrary number of tag elements). If one function of tag trees
is to represent an increasing level of detail, then deep tag trees can potentially represent very fine-grained observations.

While more detail is sometimes helpful, tag trees should reflect the level of detail that is relevant for your analysis, and
no more. That is, the analysis being performed should drive the set of tags being used.

Contrast this with taking an arbitrary model or taxonomy and using it to create associated tags without considering
whether that taxonomy is relevant or applicable to your analysis. In the best case, using a set of tags that is not well-
suited is simply be unnecessary - it may provide more detail than you really need. In the worst case, it can actually
create more work for analysts and be detrimental to the analysis process.

Tags often represent an analytical assertion - this generally means that a human analyst needs to evaluate the data,
make an assessment, and decide what tag (or tags) to apply to the data. If you use too many tags, or overly detailed
(deep) tags, this translates directly in to “more work” (keystrokes or mouse clicks) that an analyst has to perform to
annotate the data. There is also overhead associated with tag creation itself, particularly if someone needs to review or
approve newly created tags.

More importantly, while the act of applying a tag to a node may be relatively easy, the analytical decision to apply
the tag may require careful review and evaluation of the evidence. If tags are overly detailed and represent shades of
meaning that are irrelevant, analysts may get bogged down in “analysis paralysis” - worrying about whether tag A or
tag B is correct when that distinction doesn’t matter to the analysis at hand.

In that situation, the (inappropriate or overly detailed) tags are driving the analysis instead of the analysis driving the
tags needed to support the analytical work. When tags drive the analysis, the act of annotating the data - figuring out
which tags to apply - takes over from performing real analysis.

Tip: When designing a tag tree, we recommend that tags have no more than five elements. For example:
syn:tag = foo.bar.baz.faz.fuzz

As always, your specific use case may vary but this works well as general guidance.

3.4. Design 47

Synapse Documentation, Release 2.141.0

Flexibility

Just as a good data model evolves to meet changing needs, your analytical model (tag trees) will expand and change
over time. No matter how carefully you plan your tag structure, you will identify exceptions, edge cases, and new
observations that you want to capture. As far as possible, your tag structure should be flexible enough to account for
future changes.

Within Synapse, it is relatively easy to “migrate” tags (i.e., to decide that a tag should have a different name or reside
in a different part of the tag tree, and to re-tag existing nodes with the new tag) as long as the change is one-to-one.
Migration works best where the tag name changes but the meaning of the tag does not. (See the Storm movetag
command for details.)

For example, if you decide that foo.bar.baz.hurr and foo.bar.baz.derp are overly specific and should both be
represented by foo.bar.baz, it is easy to merge those tags. Similarly, if you create the tag foo.bar and later decide
that tag should live under the top-level tag wut, you can migrate foo.bar to wut. foo.bar.

This flexibility provides a safety net when designing your tag trees. It gives you the freedom to “not get it right” the first
time (or the second, or the third!). Especially when you roll out a new set of tags, it is helpful to test them in practice
before you finalize the tags or tag structure. The ability to say “if we don’t get it quite right we can rename it later”
frees up analysts or developers to experiment.

It is harder to modify tags by “splitting” them. For example, if you create the tag foo.bar and later decide that you
really want to track two variations of bar (such as foo.bar.um and foo.bar.wut), it can be painstaking to review
your existing foo.bar nodes to separate them into the appropriate categories.

Precision

Each tag should have a single, specific meaning. This means that each assessment represented by a tag can be evaluated
(and the associated tags applied) independently. If you combine multiple assessments into a single tag, then you run
into problems if one portion of that assessment turns out to be true and another portion turns out to be false.

As a simple example, let’s say you want to tag indicators with both the threat group and malware family the indicator
is associated with. It might be tempting to create a tag such as:

* syn:tag = cno.viciouswombat.redtree

...to show that an indicator with that tag (such as an FQDN) is associated with both the Vicious Wombat threat group
and the Redtree malware family.

That’s all well and good, until:
* You find out that the FQDN is used by both Redtree and Blueflower malware.

* You change your mind and decide the FQDN is associated with the Paisley Unicorn threat group, not Vicious
Wombat.

By limiting a tag’s meaning to a single assessment or assertion, you can easily change or remove the individual tag if
that particular assessment changes:

* syn:tag = cno.threat.viciouswombat
e syn:tag = cno.threat.paisleyunicorn

* syn:tag = cno.mal.redtree

cno.mal.blueflower

e syn:tag

48 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Consistency of Use

Creating a set of well-designed tag trees is ineffective if those tags aren’t used consistently — that is, by a majority of
analysts across a majority of relevant data. It’s true that 100% visibility into a given data set and 100% analyst review
and annotation of that data is an unrealistic goal. However, for data and annotations that represent your most pressing
analytical questions, you should strive for as much completeness as possible.

Looked at another way, inconsistent use of tags can result in gaps that can skew your assessment of the data. At best,
this can lead to the inability to draw meaningful conclusions; at worst, to faulty analysis.

This inconsistency often occurs as both the number of analysts and the number of tags increase. The larger the team
of analysts, the more difficult it is for that team to work closely and consistently together. Similarly, the more tags
available to represent different assessments, the fewer tags an analyst can reasonably work with. In both cases, analysts
may tend to drift towards analytical tasks that are most immediately relevant to their work or most interesting to them
— thus losing sight of the collective analytical goals of the entire team.

Consider an example of tracking Internet domains that masquerade as legitimate companies for malicious purposes.
If some analysts are annotating this data but others are not, your ability to answer questions about this data is skewed.
Let’s say Threat Cluster 12 is associated with 200 domains, and 173 of them imitate real companies, but only 42 have
been annotated with “masquerade” tags (cno.ttp.se.masq).

If you try to use the data to answer the question “does Threat Cluster 12 consistently register domains that imitate valid
companies?”, your assessment is likely to be “no” (only 42 out of 200 domains have the associated tag) based on the
incompletely annotated data. There are gaps in your analysis because the information to answer this question has only
been partially recorded.

As the scope of analysis within Synapse increases, it is essential to recognize these gaps as a potential shortcoming that
may need to be addressed. Options include:

* Establish policy around which assessments and observations (and associated tags) are essential or “required”,
and which are secondary (‘““as time allows”).

» Designate individual analysts or teams to be responsible for particular tasks and associated tags - often matching
their expertise, such as “malware analysis”.

* Leverage Synapse’s tools such as triggers, cron jobs, or macros to apply tags in cases where this can be automated.
Automation also helps to ensure tags are applied consistently. (See Storm Reference - Automation for a more
detailed discussion of Synapse’s automation tools.)

3.4.3 Design Concepts - General
In designing both data and analytical models, one of the first choices that must be made is whether something should
be represented as:

e aform

* aproperty

* alight edge

* atag

* atag associated with a form

Every modeling decision is unique, and a full discussion of the modeling process is beyond the scope of these docu-
ments. We include some basic guidance below as background.

3.4. Design 49

Synapse Documentation, Release 2.141.0

Forms

In the majority of cases, if there is something you want to represent in Synapse, it should be a form. Synapse’s data
model can represent everything from objects, to relationships, to events as forms. (See Data Model - Object Categories
for a more detailed discussion.)

As part of Synapse’s data model, forms are more structured and less likely to change. This structure allows you to more
easily identify relationships between objects in Synapse and to navigate the data. Forms should be used to represent
things that are observable or verifiable at some level - this is true even for more abstract forms like “vulnerabilities”
(risk:vuln) or “goals” (ou:goal). If something represents an assessment or conclusion, it is likely a better candidate
for a tag.

In designing a form, we recommend not “over-fitting” the form to a specific use case. As a simple example, an email
address is an email address - there is no difference between a email address used as an email sender and an email address
used to register a domain. Creating two separate objects for email :sender and email :registrant confuses the
object (an email address) with how the object is used. The “how” is apparent in other parts of the data model (e.g.,
when used as an email sender, the email address will be present in the : from property of an inet:email :message).

We also recommend designing forms broadly - this may require some out-of-the-box thinking to consider how the form
may apply to other fields, disciplines, or even locales (“how something works” in the United States may be different
from how it works in Argentina or Malaysia).

Properties

Properties are details that further define a form. When creating a form, there are probably a number of “things you
want to record” about the form that immediately come to mind. These are obvious candidates for properties.

A few considerations when designing properties:

* Properties should be highly “intrinsic” to their forms. The more closely related something is to an object, the
more likely it should be a property of that object. Things that are not highly intrinsic are better candidates for
their own forms, for “relationship” forms, or for tags.

* Consider whether a property has enough “thinghood” to also be its own form (and possibly type).

* The data model supports multi-value array properties, but arrays are not meant to store an excessive number of
values (largely for performance and visualization purposes). In this situation, a “relationship” form might be
preferable. Another option would be to “reverse” the property relationship.

For example, a compromise (risk:compromise) may consist of a number of different attacks (risk:attack
nodes) representing steps in the overall compromise. Instead of risk:compromise having an :attacks array
with a large number of values, a risk:attack has a :compromise property so that multiple attacks can be
linked back to a single compromise.

Light Edges

In Synapse, it is preferable to represent most relationships as forms in the data model, as forms support the use of
additional descriptive properties as well as tags for context. However, light edges can replace “relationship” forms
where:

* Additional properties or tags are unnecessary. That is, the only thing you need to record is that the relationship
exists. In this case, a light edge can provide some performance gains over a relationship form.

* The relationship you are representing could exist between a broad range of objects (vs. two specific kinds
of objects). This is best illustrated with some examples.

A DNS A record represents a specific relationship between an FQDN (inet:fqdn) and the IP address
(inet:ipv4) that the A record points to. This specific relationship will never exist between any other objects - an

50 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

FQDN’s A record will never point to a MAC address, and a file will never resolve to an IP. A form (inet:dns:a)
is appropriate here because the objects in the relationship are consistent - there is a one-to-one “A record” rela-
tionship between FQDNs and IPv4 addresses.

Other relationships may be “one-to-many” or “many-to-many” in that the object on one or both sides of the
relationship may vary.

A data source (meta: source node) can observe or provide data on various objects (such as a hash or an FQDN).
Creating a relationship form to represent each possible combination of meta: source node and object compli-
cates the data model. This “one-to-many” relationship can be represented more efficiently with a seen light
edge.

Similarly, a variety of objects such as articles (media:news), presentations (ou:presentation), or files
(file:bytes) may contain references to a range of objects of interest, from indicators to people to events.
This “many-to-many” relationship can be represented more efficiently with a refs (references) light edge.

See Lightweight (Light) Edge for additional discussion.

Note: Digraph nodes (also known as ‘edge nodes’) were previously used to account for these types of arbitrary (one-
to-many or many-to-many) relationships but the use of light edges is now preferred. See Digraph (Edge) Form for
additional discussion.

Tags

Tags should be used for:

» Observations or assessments that may change. The flexibility to add, remove, and migrate or change tags makes
them useful to represent information that may be re-evaluated over time.

* Any time you need to arbitrarily group nodes to identify a subset of data or otherwise aid your analysis. For
example:

— media:news nodes can represent a wide range of publications, from public whitepapers to internal incident
reports. Tags could be used to identify different types of media:news nodes to make certain nodes easier
to select (lift).

— Data tracked using tags (such as indicators or other objects associated with threat clusters - i.e., #cno.
threat.<threat>) can easily grow to tens or hundreds of thousands of nodes. A report on the threat
group will not include every tagged node. A tag can be used to indicate the “key” nodes / data points / items
of interest that form the basis of a report. (The Vertex Project uses “story” tags and subtags to represent key
elements of a report / “story” - for example vtx.story.<storyname>, vtx.story.<storyname>.core,
etc.)

» Cases where having a tag on a node provides valuable context for an analyst looking at the node (i.e., knowing that
an IP address is a TOR exit node). While this same context may be available by examining nearby connections
in the data model (e.g., an IP address may be linked to a server with an open port running the TOR service),
having the context on the node itself is particularly useful.

Tags can also be used as an initial or interim means to track or record observations before transitioning to a more
structured representation using the Synapse data model. For example, cyber threat intelligence often tracks targeted
organizations based on the industry or industries they are a part of. This can be modeled in Synapse by linking an
organization (ou:org node) to a set of industries (ou:industry) that the organization belongs to. But it is up to
Synapse users to decide on and create the set of named industries (ou: industry nodes) that are most useful to their
analysis.

It may be easier to initially represent industries using tags placed on ou: org nodes (such as #ind. finance or #ind.
telecommunications). This allows you to “try out” (and easily change) a set of industries / industry names before

3.4. Design 51

Synapse Documentation, Release 2.141.0

making a final decision. Later you can create the ou: industry nodes and convert the tags into model elements.

Tags Associated with Forms

In some cases, it may be useful to leverage both tags and forms for your analysis. This is useful in cases where both of
the following apply:

» The tag is associated with an assertion about something “concrete” (such as an event or entity) where that object
should exist in its own right (i.e., as a node). This allows you to:

- record information about the object (properties or other tags).
— identify relationships (such as shared property values) with other objects.
— navigate to related objects within Synapse.

 The tag is still useful in order to provide valuable context to other nodes, where this context would not be clear
if a user had to identify it by navigating to other “nearby” data.

To address this need, forms in the Synapse data model can be directly linked to a tag (syn: tag node) they are associated
with via an explicit :tag property. This allows you to still apply the relevant tag to other nodes for context, but easily
navigate from nodes that have the tag, to the associated syn:tag node, to the node associated with the tag (via the
:tag property).

An example from cyber threat intelligence is the idea of a threat group or threat cluster. A “threat group” is often a
notional concept that represents an unknown organization or set of individuals responsible for a set of malicious activity.
It is common to use tags (#cno.threat.t42) applied to nodes (such as FQDN:s, files, hashes, and so on) to associate
those indicators with a specific threat group. This is valuable context to immediately identify that an indicator is “bad”
and associated with known activity.

But threat groups - even notional ones - still ultimately represent something in the real world. It is useful to record
additional information about the threat group, such as other names the group is known by, or a known or suspected
country of origin. Representing this information as properties makes it easier to query and pivot across, and provides
greater flexibility over trying to somehow record all of this information on the node syn:tag=cno.threat.t42.

Since both approaches are useful, the threat group can be represented as a risk:threat node with associated prop-
erties, but also linked to its associated tag (syn:tag = cno.threat.t42) via the risk: threat:tag property.

Tip: Tracking threat activity is a good example of how initially using tags can evolve into more concrete and structured
representation in the Synapse data model. When researchers identify activity that cannot be associated with a known
threat, they commonly create a new threat cluster to track the new incident and associated data. Because little is known
about the activity (and associated threat), it’s easiest to simply create a tag to represent this. As additional related
activity is identified, this new threat may be linked to (and merged with) an existing group (risk: threat node). Or,
the new threat cluster may grow on its own to the point where researchers believe it is its own entity - at which point a
new risk:threat node can be created. If, over time, the threat can be tied to a real world entity or organization, the
risk:threat can be linked to an organization (ou:org) via the risk: threat:org property.

52 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

3.5 Tools

3.5.1 storm

The Synapse Storm tool (commonly referred to as the Storm CLI) is a text-based interpreter that leverages the Storm
query language (see Storm Reference - Introduction).

* Connecting to a Cortex with the Storm CLI
e Storm CLI Basics

* Accessing External Commands

Connecting to a Cortex with the Storm CLI

To access the Storm CLI you must use the storm module to connect to a local or remote Synapse Cortex.

Note: If you're just getting started with Synapse, you can use the Synapse Quickstart to quickly set up and connect to
a local Cortex using the Storm CLI.

To connect to a local or remote Synapse Cortex using the Storm CLI, simply run the Synapse storm module by
executing the following Python command from a terminal window, where the <url/> parameter is the URL path to the
Synapse Cortex.

python -m synapse.tools.storm <url>
The URL has the following format:
<scheme>://<server>:<port>/<cortex>
or
<scheme>://<user>:<password>@<server>:<port>/<cortex>
if authentication is used.
Example URL paths:
e cell://vertex/storage (default if using Synapse Quickstart)
e tcp://synapse.woot.com:1234/cortex01
¢ ssl://synapse.woot.com:1234/cortex01
Once connected, you will be presented with the following Storm CLI command prompt:

storm>

Storm CLI Basics

Once connected to a Synapse Cortex with the Storm CLI, you can execute any Storm queries or Storm commands
directly. Detailed information on using the Storm query language to interact with data in a Synapse Cortex can be
found in the Storm Reference.

To view a list of available Storm commands, type help from the Storm CLI prompt:
storm> help

¢ Detailed help for any command can be viewed by entering -h or --help after the individual command.

3.5. Tools 53

https://github.com/vertexproject/synapse-quickstart

Synapse Documentation, Release 2.141.0

* For additional detail on Storm commands, see Storm Reference - Storm Commands.
To exit the Storm CLI, enter !quit:
storm> !quit

e The !quit command is technically an “external” (to Storm) command, so must be preceded by the bang (excla-
mation point) symbol.

Accessing External Commands

You can access a subset of external Synapse tools and commands from within the Storm CLI. External commands
differ from native Storm commands in that they are preceded by a bang / exclamation point (!) symbol.

You can view the available external commands by typing !'help from the Storm CLI prompt:

storm> 'help

lexport - Export the results of a storm query into a nodes file.
lhelp - List interpreter extended commands and display help output.
lpullfile - Download a file by sha256 and store it locally.

Ipushfile - Upload a file and create a file:bytes node.

lquit - Quit the current command line interpreter.

Irunfile - Run a local storm file.

Notably, the Synapse pushfile and pullfile tools (used to upload and download files from a Synapse storage Axon)
are accessible from the Storm CLI:

storm> !pushfile

storm> !pullfile

See pushfile and pullfile for additional detail on these tools.

Help for any external command can be viewed by entering -h or --help after the command:
storm> !export -h

storm> !export --help

3.5.2 pushfile

The Synapse pushfile command can be used to upload files to a storage Axon (see Axon in the Synapse Devops
Guide) and optionally create an associated file:bytes node in a Cortex.

Large-scale file ingest / upload is best performed using an automated feed / module / API. However, pushfile can be
useful for uploading one-off files.

Syntax

pushfile is executed from an operating system command shell. The command usage is as follows:

usage: synapse.tools.pushfile [-h] -a AXON [-c CORTEX] [-r] [-t TAGS] filenames.
—[filenames ...]

Where:
* AXON is the telepath URL to a storage Axon.

» CORTEX is the optional path to a Cortex where a corresponding file:bytes node should be created.

54 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

— Note: while this is an optional parameter, it doesn’t make much sense to store a file in an Axon that can’t
be referenced from within a Cortex.

» TAGS is an optional list of tags to be applied to the file:bytes node created in the Cortex.
— -t takes a comma separated list of tags.
— The tag should be specified by name only (i.e., without the # character).
e -rrecursively finds all files when a glob pattern is used for a file name.
e filenames is one or more names (with optional paths), or glob patterns, to the local file(s) to be uploaded.

— If multiple file names are specified, any tag provided with the -t option will be added to each uploaded
file.

Example

Upload the file myreport.pdf to the specified Axon, create a file:bytes node in the specified Cortex, and tag the
file:bytes node with the tag #sometag (replace the Axon and Cortex path below with the path to your Cortex. Note
that the command is wrapped for readability):

python -m synapse.tools.pushfile -a tcp://axon.vertex.link:5555/axon®0
-c tcp://cortex.vertex.link:4444/cortex00 -t sometag /home/user/reports/myreport.pdf

Executing the command will result in various status messages (lines are wrapped for readability):

2019-07-03 11:46:30,567 [INFO] log level set to DEBUG
[common.py:setlogging:MainThread:MainProcess]

2019-07-03 11:46:30,568 [DEBUG] Using selector: EpollSelector
[selector_events.py:__init__:MainThread:MainProcess]

adding tags: ['sometag']

Uploaded [myreport.pdf] to axon

file: myreport.pdf (2606351) added to core
(sha256:229cdde419ba9549023de39c6a®ca8af74b45fade2d7a22cdc4105a75cd40ab®) as myreport.

—pdf

e adding tags: ['sometag'] indicates the tag #sometag was applied to the file:bytes node.
* Uploaded [myreport.pdf] to axon indicates the file was successfully uploaded to the storage Axon.

e file: myreport.pdf (2606351) added to core (sha256:229cdde4...5cd40ab0®) as
myreport.pdf indicates the file:bytes node was created in the Cortex.

— The message gives the new node’s primary property value (sha256:229cdde419ba9549023de39c6alca8af74b45fade2d!
and also notes the :name secondary property value assigned to the node (myreport.pdf).

— pushfile sets the file:bytes:name property to the base name of the local file being uploaded.

If a given file already exists in the Axon (deconflicted based on the file’s SHA256 hash), pushfile will not re-upload
the file. However, the command will still process any other options, including:

* creating the file:bytes node in the Cortex if it does not already exist.
* applying any specified tag.

* setting (or overwriting) the :name property on any existing file:bytes node with the base name of the local
file specified.

For example (lines wrapped for readability):

3.5. Tools 55

Synapse Documentation, Release 2.141.0

python -m synapse.tools.pushfile -a tcp://axon.vertex.link:5555/axon®0
-c tcp://cortex.vertex.link:4444/cortex00 -t anothertag,athirdtag
/home/user/reports/anotherreport.pdf

2019-07-03 11:59:03,366 [INFO] log level set to DEBUG
[common.py:setlogging:MainThread:MainProcess]

2019-07-03 11:59:03,367 [DEBUG] Using selector: EpollSelector
[selector_events.py:__init__:MainThread:MainProcess]

adding tags: ['anothertag'. 'athirdtag']
Axon already had [anotherreport.pdf]
file: anotherreport.pdf (2606351) added to core
(sha256:229cdde419ba9549023de39c6alca8af74b45fade2d7a22cdc4105a75cd40ab0)
as anotherreport.pdf

Note the status indicating the Axon already had the specified file. Similarly, the status noting the file:bytes node was
added to the Cortex lists the same SHA256 hash as our first upload (i.e., anotherreport . pdf has the same SHA256
hash as myreport.pdf) and indicates the :name property has been updated (as anotherreport.pdf).

The file:bytes node for the uploaded report can now be viewed in the specified Cortex by lifting (see Storm Reference
- Lifting) the file using the SHA256 / primary property value from the pushfile status output:

file:bytes=sha256:229cdde419ba9549023de39c6al®ca8af74b45fade2d7a22cdc4105a75cd40ab0

file:bytes=sha256:229cdde419ba9549023de39c6a®ca8af74b45fade2d7a22cdc4105a75cd40abd
.created = 2019/07/03 18:46:40.542
:md5 = 23a14d3a4508628e7e09a4c4868dfb17
:mime ??
:name = anotherrepport.pdf
:shal = 99b6b984988581cae681£65b92198ed77609bd11
:sha256 = 229cdde419ba9549023de39c6al®ca8af74b45fade2d7a22cdc4105a75cd40ab0
:size = 2606351
#anothertag
#athirdtag
#sometag
complete. 1 nodes in 3 ms (333/sec).

Viewing the node’s properties, we see that Synapse has set the :name property and has calculated and set the MDS5,
SHA1, and SHA256 hash secondary property values, as well as the file’s size in bytes. Similarly the two tags from our
two example pushfile commands have been added to the node.

Alternatively, a glob pattern could be used to upload all PDF files in a given directory:

python -m synapse.tools.pushfile -a tcp://axon.vertex.link:5555/axon®0
-Cc tcp://cortex.vertex.link:4444/cortex00 -t anothertag,athirdtag
/home/user/reports/*.pdf

56 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

3.5.3 pulifile

The Synapse pullfile command can be used to retrieve (download) one or more files from a storage Axon (see Axon
in the Synapse Devops Guide).

Syntax

pullfile is executed from an operating system command shell. The command usage is as follows:

[usage: synapse.tools.pullfile [-h] -a AXON [-o OUTPUT] [-1 HASHES]

Where:
* AXON is the telepath URL to a storage Axon.
* OUTPUT is the optional directory path where the downloaded file(s) should be written.
— If no option is specified, the file(s) will be written to the current working directory.

— Itis not possible to specify multiple -o options with a single pullfile command (i.e., a different -o option
with each -1 HASH, for example). If multiple -o options are specified, the last OUTPUT path specified will
be used.

— Files saved locally are named using their SHA256 hash value.
e HASHES is the SHA256 hash(es) of the file(s) to be retrieved.

— Multiple hashes can be specified, but each must be listed with its own -1 option (i.e., -1 HASH_0 -1
HASH_1 ... -1 HASH_n).

Example

Download the two files with the specified SHA256 hashes from the specified Axon to the local /home/user/
Documents directory (replace the Axon path below with the path to your Axon. Note that the command is wrapped for
readability):

python -m synapse.tools.pullfile -a tcp://axon.vertex.link:5555/axon00
-0 /home/user/Documents
-1 229cdde419ba9549023de39c6alca8af74b45fade2d7a22cdc4105a75cd40ab0®
-1 52c672f45adacca4878461c1bdd5800af8518e675819a0bdcd5c64a72075a478

Executing the command will result in various status messages showing the query and successful retrieval of the file(s):

Fetching 229cdde419ba9549023de39c6alca8af74b45fade2d7a22cdc4105a75cd40ab® to file
Fetched 229cdde419ba9549023de39c6alca8af74b45fade2d7a22cdc4105a75cd40ab® to file
Fetching 52c672f45adacca4878461c1bdd5800af8518e675819a0bdcd5c64a72075a478 to file
Fetched 52c672f45adacca4878461c1bdd5800af8518e675819a0bdcd5c64a72075a478 to file

3.5. Tools 57

Synapse Documentation, Release 2.141.0

3.5.4 feed
The Synapse feed tool is a way to ingest data exported from one Cortex into another Cortex. Users should be familiar

with both the Synapse data model (Data Model - Terminology et al.) as well as Synapse concepts such as packed nodes
and splices in order to use and understand the feed tool effectively.

Syntax

The feed tool is executed from an operating system command shell. The command usage is as follows (line is wrapped
for readability):

usage: synapse.tools.feed [-h] (--cortex CORTEX | --test) [--debug] [--format FORMAT] [--
—modules MODULES]
[--chunksize CHUNKSIZE] [--offset OFFSET] [files ...]

Where: - -h displays detailed help and these command line options - CORTEX specifies the telapth URL to the Cortex
where the data should be ingested.

* --test means to perform the ingest against a temporary, local Cortex instead of a live cortex, for testing or
validation

— When using a temporary Cortex, you do not need to provide a path.
» --debug specifies to drop into an interactive prompt to inspect the state of the Cortex post-ingest.
» FORMAT specifies the format of the input files.
— Currently, only the values “syn.nodes”, “syn.splices”, and “syn.nodeedits” are supported.
— Defaults to “syn.nodes” if not specified
» MODULES specifies a path to a Synapse CoreModule class that will be loaded into the temporary Cortex.
— This option has no effect if the --test option is not specified
— For more on Core Modules, see Cortex Development Quickstart
» CHUNKSIZE specifies how many lines or chunks of data to read at a time from the given files.
— Defaults to 1000 if not specified
* OFFSET specifies how many chunks of data to skip over (starting at the beginning)
e files is a series of file paths containing data to load into the Cortex (or temporary Cortex)

— Every file must be either json-serialized data, msgpack-serialized data, yaml-serialized data, or a json lines
file. The files do not have to all be of the same type.

Ingest Examples - Overview

The feed tool

58 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Ingest Example 1

This example demonstrates loading a set of nodes via the feed tool with the “syn.nodes” format option. The nodes are
of a variety of types, and are encoded in a json lines (jsonl) format.

JSONL File:

The jsonl file (testnodes. jsonl) contains a list of nodes in their packed form. Each line in the file corresponds to a
single node, with all of the properties, tags, and nodedata on the node encoded in a json friendly format.

[["it:reveng: function", "9710579930d831abd88acfflf2ecd®4f"], {"iden":

. "508204ebc73709faal6lba8clllaec323£63a78a84495694f317feb067£41802", "tags": {"my":.

<~ [null, null], "my.cool": [null, null], "my.cool.tag": [null, null]}, "props": {".
—.created": 1625069466909, "description": "An example function"}, "tagprops": {},
—'"nodedata": {3}, "path": {}}]

[["inet:ipv4", 386412289], {"iden":
—"d6270ca2dc592cd0e8edf8c73000f80b63df4bcd601c9a631d8c68666fdda5ae", "tags": {"my":.

<~ [null, null], "my.cool": [null, null], "my.cool.tag": [null, null]}, "props": {".
—created": 1625069584577, "type": "unicast"}, "tagprops": {}, "nodedata": {}, "path": {}
—1}]

[["inet:url", "https://synapse.docs.vertex.link/en/latest/synapse/userguide.html
—#userguide"], {"iden":
—"dba0a280fc1f8cf317dffal37df0el761b6£f94cacb£56523809d4£17d8263840", "tags": {"my":.

<~ [null, null], "my.cool": [null, null], "my.cool.tag": [null, null]}, "props": {".
—created": 1625069758843, "proto": "https", "path": "/en/latest/synapse/userguide.html
—#userguide", "params": "", "fqgdn": "synapse.docs.vertex.link", "port": 443, "base":
—'"https://synapse.docs.vertex.link/en/latest/synapse/userguide.html#userguide"},
—"tagprops": {}, "nodedata": {}, "path": {}}]

[["file:bytes", "sha256:ffd19426d3£f020996c482255b92a547a2f63afcfcl11b45a98fb3£fb5be69dd75¢c
"], {"iden": "137fd16d2caab221e7580be63c149f83a11dd11f10f078d9f582fedef9b57ad5", "tags
<" {"my": [null, null], "my.cool": [null, null], "my.cool.tag": [null, null]}, "props
<": {".created": 1625070470041, "sha256":
—"££d19426d3£020996c482255b92a547a2f63afcfcl11b45a98fb3fb5be69dd75c", "md5":
—"belbb5ab2057d69fb6d0a9d0684168fe", "shal": "57d13f1fa2322058dc80e5d6d768546b47238fcd",
— "size": 16}, "tagprops": {}, "nodedata": {}, "path": {}}]

Verifying the Data:

Typically, users will want to double check the data they have before loading it into a production Cortex. The feed tool
allows us to perform an ingest our of nodes file against an empty, ephemeral Cortex, so that we can check what nodes

get created before slamming them into production. To load testnodes. jsonl into an ephemeral Cortex and drop into
a prompt to explore the ingested nodes, run:

[python -m synapse.tools.feed --test --debug --format syn.nodes testnodes.jsonl]

Assuming the command completed with no errors, we should now have a cmdr prompt connected to our test Cortex:
[cli>]

From which we can issue Storm commands to interact with and validate the nodes that were just ingested. For example:

cli> storm #my.cool.tag

it:reveng:function=9710579930d831abd88acfflf2ecd®4f
.created = 2021/06/30 19:46:31.810

(continues on next page)

3.5. Tools 59

Synapse Documentation, Release 2.141.0

(continued from previous page)

:description = An example function

#my .cool.tag
inet:ipv4=23.8.47.1

.created = 2021/06/30 19:46:31.810

:type = unicast

#my .cool.tag
inet:url=https://synapse.docs.vertex.link/en/latest/synapse/userguide.html#userguide

.created = 2021/06/30 19:46:31.810

:base = https://synapse.docs.vertex.link/en/latest/synapse/userguide.html
—#userguide

:fqdn = synapse.docs.vertex.link

:params =
:path = /en/latest/synapse/userguide.html#userguide
:port = 443

:proto = https
#my .cool.tag
file:bytes=sha256: ££fd19426d3£f020996c482255b92a547a2f63afcfc11b45a98fb3fb5be69dd75¢c
.created = 2021/06/30 19:46:31.810
:md5 = belbb5ab2057d69fb6d0a9d0684168fe
:shal = 57d13f1£fa2322058dc80e5d6d768546b47238fcd
:sha256 = ££d19426d3£020996c482255b92a547a2f63afcfcl1b45a98fb3fb5be69dd75¢c
:size = 16
#my.cool.tag
complete. 4 nodes in 16 ms (250/sec).

Loading the Data:

Once we’ve inspected and verified the data is acceptable for loading, we can point the feed tool to the Cortex we want
to load the nodes into, and the same nodes should be added

python -m synapse.tools.feed --cortex tcp://cortex.vertex.link:4444/cortex00 --format
— '"syn.nodes'
testnodes. jsonl

However, once we’ve inspected the data, let’s say that the it:reveng:function and inet:ipv4 nodes are not allowed in
the production Cortex, but the inet:url and file:bytes are. We can skip these two nodes by using a combination of the
chunksize and offset parameters:

python -m synapse.tools.feed --cortex tcp://cortex.vertex.link:4444/cortex00 --format
— 'syn.nodes'
testnodes. jsonl --chunksize 1 --offset 1

With the chunksize parameter signifying that the feed tool should read two lines at a time from the file and process
those before reading the next line, and the offset parameter meaning the feed tool should skip all lines before and
including line 1 (so lines 1 and 0) when attempting to add nodes, and only add nodes once it’s read in lines 2 and
beyond.

60 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Ingest Example 2

This example demonstrates loading a series of splices via the “syn.splices” format option. Splices are atomic
edits made to the Cortex, so they are more granular, and thus more voluminous than just nodes. For
instance, the storm command [it:host=1cad54991eaff5bba5d2015c29c3e3a3 :desc="synapse server"
:name="syn007"] results in this set of splices (which have been saved to testsplices.yaml).

- - node:add
- ndef:
- it:host
- lcad54991eaff5bba5d2015c29c3e3a3
time: 1625087167677
user: 267d945a32e3ae246ecf71e®bc6ab20e
- - prop:set
- ndef:
- it:host
- lcad54991eaff5bba5d2015c29c3e3a3
oldv: null
prop: .created
time: 1625087167677
user: 267d945a32e3ae246ecf71e®bcbab20e
valu: 1625087167677
- - prop:set
- ndef:
- it:host
- 1cad54991eaff5bba5d2015c29c3e3a3
oldv: null
prop: desc
time: 1625087167679
user: 267d945a32e3ae246ecf71e®bc6ab20e
valu: synapse server
- - prop:set
- ndef:
- it:host
- lcad54991eaff5bba5d2015c29c3e3a3
oldv: null
prop: name
time: 1625087167680
user: 267d945a32e3ae246ecf71e®bc6ab20e
valu: syn007
- - node:add
- ndef:
- it:hostname
- syn007
time: 1625087167680
user: 267d945a32e3ae246ecf71e®bcb6ab20e
- - prop:set
- ndef:
- it:hostname
- syn007
oldv: null
prop: .created

(continues on next page)

3.5. Tools 61

Synapse Documentation, Release 2.141.0

(continued from previous page)

time: 1625087167680
user: 267d945a32e3ae246ecf71e®bcbab20e
valu: 1625087167680

Verifying the Data:

To load testsplices.yaml into a test Cortex to see the splices getting applied, we can run the feed tool like so:

[python -m synapse.tools.feed --test --debug --format "syn.splice" testsplices.yaml]

Which drops us into a cmdr prompt, where we can verify that the it:host node and it :hostname nodes were created:

cli> storm it:host

it:host=1cad54991eaff5bba5d2015c29c3e3a3
.created = 2021/06/30 21:34:57.181
:desc = synapse server
:name = syn007

complete. 1 nodes in 5 ms (200/sec).
cli> storm it:hostname
it:hostname=syn007

.created = 2021/06/30 21:34:57.182
complete. 1 nodes in 5 ms (200/sec).

Loading the Data:

As before, once the data has been inspected and approved, we can point the feed tool at the Cortex we want to apply
the splices to in order to apply them.

python -m synapse.tools.feed --cortex tcp://cortex.vertex.link:4444/cortex00 --format
—'syn.splice'
testsplices.yaml

3.5.5 csvtool

The Synapse csvtool command can be used to ingest structured data from a comma-separated values (CSV) file to
create nodes in a Cortex. csvtool is useful for bulk-loading CSV-formatted data without the need to develop custom
ingest code. (For other data formats such as JSON, yaml, or msgpack, see feed.)

The --export option can be used to export a set of data from a Cortex into a CSV file.

Storm queries are used both to ingest and export data using csvtool. Users should be familiar with the Storm query
language (Storm Reference - Introduction et al.) and the Synapse data model (Data Model - Terminology et al.) in
order to use csvtool effectively.

The Storm syntax used with csvtool makes use of a few more advanced Storm concepts such as variables, methods,
libraries, and some programming flow control concepts (e.g., for loops and switch statements). However, the examples
below should be fairly self-explanatory. In other words, users do not need to understand in detail how those concepts
work in order to create basic stormfile queries and start loading data using csvtool.

62 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

That said, the set of advanced Storm concepts and features can be fully leveraged within a stormfile to perform com-
plex data ingest. Interested users are encouraged to refer to the appropriate sections of the Storm reference documents
for a more detailed discussion of those concepts, which may be useful for creating more complex stormfile queries
(or Storm queries in general).

Storm Reference - Subqueries

Storm Reference - Advanced - Variables
Storm Reference - Advanced - Methods
Storm Reference - Advanced - Control Flow
Storm Libraries

Storm Types

Syntax

csvtool is executed from an operating system command shell. The command usage is as follows (line is wrapped for

readability):

usage: synapse.tools.csvtool [-h] [--logfile LOGFILE] [--csv-header] [--cli] [--debug]
(--cortex CORTEX | --test) [--export] stormfile csvfiles [csvfiles ...]

Where:

-h displays detailed help and examples.

LOGFILE is the optional name / path to log Storm events associated with running the csvtool command as a
JSONL file. Messages are appended to this file when they are written to them.

--csv-header is an option that indicates the first row in the CSV file is a header row and should be skipped for
purposes of parsing and node creation.

--cli opens a cmdr command prompt after csvtool exits.

— The command prompt will be connected to the Cortex specified by the --cortex CORTEX or --test
option.

--debug will send verbose output to stdout during execution.

CORTEX specifies the telepath URL to the Cortex where the data should be ingested.

--test specifies the data should be loaded into a temporary local Cortex (i.e., for testing / validation).
— When using a temporary Cortex, you do not need to provide a path.

--export is used to extract data from the specified Cortex into a CSV file.

stormfile is the name / path to a file containing a Storm query that tells Synapse how to ingest the CSV data
(or how to lift and export data if the --export option is used).

csvfiles is the name / path to one or more CSV files containing the data to be ingested (or the name/path where
the CSV output should be written if the --export option is used).

— If multiple csvfiles are listed for ingest, they are all processed with the specified stormfile.

— Only a single csvfile can be specified for output with --export.

Note:

The same events are output by both --logfile and --debug; one is written to file and the other is written to

stdout.

3.5. Tools 63

Synapse Documentation, Release 2.141.0

help

The detailed help (-h) output for csvtool is shown below (lines are wrapped for readability).

python -m synapse.tools.csvtool -h

usage: synapse.tools.csvtool [-h] [--logfile LOGFILE] [--csv-header] [--cli] [--debug]
(--cortex CORTEX | --test) [--export] stormfile csvfiles [csvfiles ...]

Command line tool for ingesting csv files into a cortex

The storm file is run with the CSV rows specified in the variable "rows" so most storm.
—files
will use a variable based for loop to create edit nodes. For example:

for ($£fqdn, $ipv4, $tag) in $rows {
[inet:dns:a=($fqdn, $ipv4) +#S$tag]
}

More advanced uses may include switch cases to provide different logic based on a
column value.

for ($type, $valu, $info) in $rows {

switch $type {
fgdn: {
[inet:fgdn=$valu]
}

"person name": {
[ps:name=$valu]

}

5’:: {
// default case...

}

switch $info {
"known malware": { [+#cno.mal] }
}
}

positional arguments:

stormfile A STORM script describing how to create nodes
from rows.
csvfiles CSV files to load.

optional arguments:

-h, --help show this help message and exit

--logfile LOGFILE Set a log file to get JSON lines from the
server events.

(continues on next page)

64 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

--csv-header Skip the first line from each CSV file.
--cli Drop into a cli session after loading data.
--debug Enable verbose debug output.

--cortex CORTEX, -c CORTEX
The telepath URL for the cortex (or alias
from ~/.syn/aliases).

--test, -t Perform a local CSV ingest against a temporary
cortex.
--export Export CSV data to file from storm using

$lib.csv.emit(...) events.

Ingest Examples - Overview
The key components for using the csvtool command are the CSV file itself (csvfile) and the file containing the
Storm query (stormfile) used to ingest the data.

The stormfile contains a Storm query to describe how the data from the CSV file(s) should be used to create nodes
in a Cortex, including optionally setting properties and / or adding tags.

Note: When ingesting large sets of CSV-formatted data where the data has not been vetted, it may be useful to use the
Edit “Try” Operator (?=) operator instead of the equivalent (=) operator within the Storm syntax in the stormfile
used to create nodes. When using the try operator (?=), Storm will process what it can, creating nodes from “well-
formatted” data and simply skipping rows that may contain bad data. In contrast, using the equivalent operator (=)
will result in Storm throwing an error and halting processing if bad data is encountered.

Ingest Example 1

This example demonstrates loading a structured set of data to create nodes of a single form (in this case, DNS A records)
and set secondary properties (in this case, the . seen universal property).

CSV File:

A CSV file (testfile.csv) contains a list of domains, the IP addresses the domains have resolved to, and the first
and last observed times for the resolution, as represented by the example header and row data below:

domain, IP, first,last

woot.com,1.2.3.4,2018/04/18 13:12:47,2018/06/23 09:45:12
hurr.net,5.6.7.8,2018/10/03 00:47:29,2018/10/04 18:26:06
derp.org,4.4.4.4,2019/06/09 09:00:18,2019/07/03 15:07:52

Note: Because the file contains a header row, we need to use the --csv-header option to tell csvtool to skip the
first row when ingesting data.

We want to load the data in the CSV file into a Cortex as a set of DNS A records (inet:dns:a nodes) with the first
and last dates represented as the . seen universal property.

Stormfile:

Storm references the set of rows in the CSV file by the $rows built-in variable. We need to define a set of variables
(see Storm Reference - Advanced - Variables) to represent each field in a row (i.e., each column in the CSV file) and

3.5. Tools 65

Synapse Documentation, Release 2.141.0

tell Storm to iterate over each row using a For Loop. For example:

[for ($£qdn, $ipv4, $first, $last) in S$rows]

This assigns the variable $£qdn to the first column (i.e., the one containing woot.com), $ipv4 to the second column,
and so on, and sets up the “for” loop.

‘We then need a Storm query that tells the “for”” loop what to do with each row - that is, how to create the DNS A records
from each row in the CSV file:

[[inet:dns:a = ($fqdn, $ipv4) .seen=($first, $last)] J

‘We combine these elements to create our stormfile, as follows:

for ($£fqdn, $ipv4, $first, $last) in S$rows {
[inet:dns:a = ($fqdn, $ipv4) .seen=($first, $last) 1]

}

Testing the Ingest:

Typically, users will want to test that their stormfile loads and formats the data correctly by first ingesting the data
into a local test cortex (--test) before loading the data into a production Cortex. This is typically done using either
the --debug or --1logfile option to check for errors and reviewing the loaded data (via --c11i).

Testing the data will highlight common errors such as:
¢ Invalid Storm syntax in the stormfile.

 Data in the CSV file that does not pass Type validation on node creation (i.e., bad or incorrect data, such as an
IP address in an FQDN column).

We can attempt to load our data into a test Cortex using the following command (line is wrapped for readability):

python -m synapse.tools.csvtool --logfile mylog.json --csv-header --cli --test
stormfile testfile.csv

Assuming the command executed with no errors, we should have a cmdr CLI prompt for our local test Cortex:

[cli>]

We can now issue Storm commands to interact with and validate the data (i.e., did csvtool create the expected number
of nodes, were the properties set correctly, etc.)

For example:

cli> storm inet:dns:a

inet:dns:a=('hurr.net', '5.6.7.8")
.created = 2019/07/03 22:25:43.966
.seen = ('2018/10/03 00:47:29.000', '2018/10/04 18:26:06.000"')
:fqdn = hurr.net
:ipvd = 5.6.7.8
inet:dns:a=('derp.org', '4.4.4.4")
.created = 2019/07/03 22:25:43.968
.seen = ('2019/06/09 09:00:18.000', '2019/07/03 15:07:52.000')
:fqdn = derp.org

(continues on next page)

66 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)
:ipvd = 4.4.4.4
inet:dns:a=('woot.com', '1.2.3.4")
.created = 2019/07/03 22:25:43.962
.seen = ('2018/04/18 13:12:47.000', '2018/06/23 09:45:12.000')
:fqdn = woot.com
:ipv4 1.2.3.4
complete. 3 nodes in 12 ms (250/sec).

Loading the Data:

Once we have validated that our data has loaded correctly, we can modify our csvtool command to load the data into
a live Cortex (replace the Cortex path below with the path to your Cortex; line is wrapped for readability):

python -m synapse.tools.csvtool --logfile mylog.json --csv-header
--cortex tcp://cortex.vertex.link:4444/cortex00 stormfile testfile.csv

Ingest Example 2

This example demonstrates loading a more complex set of data to create nodes of multiple types, apply a single tag to
all nodes, and apply custom tags to only some nodes based on additional criteria.

CSV File:

A CSV file (testfile.csv) contains a set of malicious indicators, listed by type and the indicator value, as represented
by the example header and row data below:

Indicator type,Indicator,Description

URL,http://search.webstie.net/,
FileHash-SHA256,b214c7a127cb669a523791806353da5c5c04832f123a0a6df118642eeel632a3,
FileHash-SHA256,b20327c03703ebad191c0ba®25a3f26494£ff12c5908749e33e7158%aelelf6b3,
FileHash-SHA256,7fd526e1a190c10c060bac21del7d2c90eb2985633c9ab74020a2b78acd8a4c8,
FileHash-SHA256,b4e3b2alfle343d14af8d812d4a29440940b99aaf145b5699dfe277b5b£fb8405,
hostname, dns.domain-resolve.org,

hostname, search.webstie.net,

Note that while the CSV file contains a header field titled “Description”, that field in this particular file contains no
data.

Let’s say that in addition to the raw indicators, we know that the indicators came from a blog post describing the
activity of the Vicious Wombat threat group, and that the SHA256 hashes are samples of the UMPTYSCRUNCH
malware family. To provide additional context for the data in our Cortex, we want to:

 Tag all of the indicators as associated with Vicious Wombat (#cno. threat.viciouswombat).
* Tag all of the SHA256 hashes as associated with UMPTYSCRUNCH malware (#cno.mal.umptyscrunch).
Stormlfile:

Similar to our first example, we need to define a set of variables to represent each column (field) for each row and set
up the “for” loop:

[for ($type, $value, $desc) in $rows J

In this case, the rows contain different types of data that will be used to create different nodes (forms). The Indicator
type column ($type) tells us what type of data is available and what type of node we should create. We can use a

3.5. Tools 67

Synapse Documentation, Release 2.141.0

“switch” statement to tell Storm how to handle each type of data (i.e., each value in the $type field). Since we know
the SHA256 hashes refer to UMPTYSCRUNCH malware samples, we want to add tags to those nodes:

switch $type {

URL: {
[inet:url = $value]

}

FileHash-SHA256: {
[hash:sha256 = $value +#cno.mal.umptyscrunch]

}

hostname: {
[inet:fgdn = $value]

Finally, because we know all of the indicators are associated with the Vicious Wombat threat group, we want to add a
tag to all of the indicators. We can add that after the “switch” statement:

[[+#cno.threat.viciouswombat] J

So our full stormfile script looks like this:

for ($type, $value, $desc) in $rows {
switch $type {

URL: {
[inet:url = $value]

}

FileHash-SHA256: {
[hash:sha256 = $value +#cno.mal.umptyscrunch]

3

hostname: {
[inet:fqdn = $value]

}
1
[+#cno.threat.viciouswombat]
}
Testing the Ingest:

We can now test our ingest by loading the data into a test Cortex (line is wrapped for readability):

python -m synapse.tools.csvtool --logfile mylog.json --csv-header --cli --test
stormfile testfile.csv

From the cmdr CLI, we can now query the data to make sure the nodes were created and the tags applied correctly. For
example:

Check that two inet: fqdn nodes were created and given the #cno.threat.viciouswombat tag:

68 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

cli> storm inet:fqgdn#cno

inet: fqdn=search.webstie.net
.created = 2019/07/05 14:49:20.110
:domain = webstie.net
:host = search
:issuffix = False
:iszone = False
:zone = webstie.net
#cno.threat.viciouswombat
inet: fqdn=dns.domain-resolve.org
.created = 2019/07/05 14:49:20.117
:domain = domain-resolve.org
:host = dns
:issuffix = False
:iszone = False
:zone = domain-resolve.org
#cno.threat.viciouswombat
complete. 2 nodes in 14 ms (142/sec).

Check that four hash:sha256 nodes were created and given both the Vicious Wombat and the UMPTYSCRUNCH
tags:

cli> storm hash:sha256

hash:sha256=7£fd526e1a190c10c060bac21del7d2c90eb2985633c9ab74020a2b78acd8a4c8
.created = 2019/07/05 14:49:20.115
#cno.mal . umptyscrunch
#cno.threat.viciouswombat
hash:sha256=b20327c03703ebad191c0ba®25a3£26494££f12c5908749e33e71589%9aelelf6b3
.created = 2019/07/05 14:49:20.115
#cno.mal .umptyscrunch
#cno.threat.viciouswombat
hash:sha256=b214c7a127cb669a523791806353da5c5c04832f123a0a6df118642eeel632a3
.created = 2019/07/05 14:49:20.113
#cno.mal .umptyscrunch
#cno.threat.viciouswombat
hash:sha256=b4e3b2alfle343d14af8d812d4a29440940b99aaf145b5699dfe277b5b£fb8405
.created = 2019/07/05 14:49:20.116
#cno.mal . umptyscrunch
#cno.threat.viciouswombat
complete. 4 nodes in 3 ms (1333/sec).

Loading the Data:

Once the data has been validated, we can load it into our live Cortex (replace the Cortex path below with the path to
your Cortex; line is wrapped for readability):

python -m synapse.tools.csvtool --logfile mylog.json --csv-header
--cortex tcp://cortex.vertex.link:4444/cortex00 stormfile testfile.csv

3.5. Tools 69

Synapse Documentation, Release 2.141.0

Export Examples - Overview

The --export option allows you to export a set of data from a Cortex into a CSV file.
When --export is used:
» stormfile contains:
— the Storm query that specifies the data to be exported; and
— a statement telling Storm how to format and generate the rows of the CSV file.
» csvfile is the location where the data should be written.

The Storm $1ib.csv library includes functions for working with CSV files. The $1ib.csv.emit() function will
emit CSV rows; the parameters passed to the function define the data that should be included in each row.

$1ib.csv.emit () will create one row for each node that it processes (i.e., each node in the Storm “pipeline” that
passes through the $1ib.csv.emit() command), as determined by the preceding Storm query.

Export Example 1

For this example, we will export the data we imported in /ngest Example 2. For this simple example, we want to export
the set of malicious indicators associated with the Vicious Wombat threat group.

Stormfile:

To lift all the indicators associated with Vicious Wombat, we can use the following Storm query:

[#cno .threat.viciouswombat]

We then need to tell $1ib.csv.emit () how to format our exported data. We want to list the indicator type (its form)
and the indicator itself (the node’s primary property value).

While this seems pretty straightforward, there are two considerations:
* Given our example above, we have multiple node types to export (inet:url, hash:sha256, inet: fqdn).

* While we can reference any secondary property directly using its relative property name (i.e., :zone for
inet:fqdn:zone), referencing the primary property value is a bit trickier, as is referencing the form of the
node.

$node is a built-in Storm variable that represents the current node passing through the Storm pipeline. $node supports
anumber of methods (Storm Reference - Advanced - Methods) that allow Storm to access various attributes of the current
node. In this case:

* The $node.form() method will access (return) the current node’s form.
* The $node.value() method will access (return) the current node’s primary property value.

This means we can tell $1ib.csv.emit () to create a CSV file with a list of indicators as follows:

[$lib .csv.emit($node. form(), $node.value()) }

So our overall stormfile to lift and export all of the Vicious Wombat indicators is relatively simple:

#cno. threat.viciouswombat
$1lib.csv.emit($node.form(), $node.value())

70 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Exporting the Data:

We can now test our export of the data we ingested in Ingest Example 2 (replace the Cortex path below with the path
to your Cortex; line is wrapped for readability):

python -m synapse.tools.csvtool --debug --export
--cortex tcp://cortex.vertex.link:4444/cortex00 stormfile export.csv

If we view the contents of export.csv, we should see our list of indicators:

inet:fqdn,search.webstie.net
hash:sha256,7£d526e1a190c10c060bac21del7d2c90eb2985633c9ab74020a2b78acd8a4c8
inet:fqdn,dns.domain-resolve.org
hash:sha256,b20327c03703ebad191cOba®25a3£f26494£f£f12c5908749e33e71589%aelelf6b3
hash:sha256,b214c7a127cb669a523791806353da5¢c5c04832f123a0a6df118642eeel632a3
hash:sha256,b4e3b2alfle343d14af8d812d4a29440940b99aaf145b5699dfe277b5bfbh8405
inet:url,http://search.webstie.net/

Export Example 2

For this example, we will export the DNS A records we imported in Ingest Example 1. We will create a CSV file that
matches the format of our original ingest file, with columns for domain, IP, and first / last resolution times.

Stormfile:

To lift the DNS A records for the domains woot.com, hurr.net, and derp.org, we can use the following Storm
query:

[inet :dns:a:fgdn=woot.com inet:dns:a:fqdn=hurr.net inet:dns:a:fqgdn=derp.org

In this case we want $1ib.csv.emit () to include:
¢ the domain (: £qdn property of the inet:dns: a node).
e the IP (:ipv4 property of the inet:dns:a node).
* the first observed resolution (the first half of the . seen property).
* the most recently observed resolution (the second half of the . seen property).

As a first attempt, we could specify our output format as follows to export those properties:

[$lib .csv.emit(:£fqdn, :ipv4, .seen)

This exports the data from the relevant nodes as expected, but does so in the following format:

[Woot .com, 16909060, " (1524057167000, 1529747112000)"

We have a few potential issues with our current output:
* The IP address is exported using its raw integer value instead of in human-friendly dotted-decimal format.

* The . seen value is exported into a single field as a combined " (<min>, <max>)" pair, not as individual comma-
separated timestamps.

* The . seen values are exported using their raw Epoch millis format instead of in human-friendly datetime strings.
We need to do some additional formatting to get the output we want in the CSV file.

IP Address

3.5. Tools 71

Synapse Documentation, Release 2.141.0

Synapse stores IP addresses as integers, so specifying : ipv4 for our output definition gives us the raw integer value for
that property. If we want the human-readable value, we need to use the human-friendly representation (Repr) of the
value. We can do this using the $node.repr() method to tell Storm to obtain and use the repr value of a node instead of
its raw value ($node.value()).

$node.repr() by itself (e.g., with no parameters passed to the method) returns the repr of the primary property value
of the node passing through the runtime. Our original Storm query, above, lifts DNS A records - so the nodes passing
through the runtime are inet : dns:a nodes, not IPv4 nodes. This means that using $node . repr () by itself will return
the repr of the inet:dns:a node, not the : ipv4 property.

We can tell $node.repr() to return the repr of a specific secondary property of the node by passing the string of the
property name to the method:

[$node .repr(ipv4)]

.seen times

.seen is an /val (interval) type whose property value is a paired set of minimum and maximum timestamps. To export
the minimum and maximum as separate fields in our CSV file, we need to split the .seen value into two parts by
assigning each timestamp to its own variable. We can do this as follows:

[($first, $last) = .seen]

However, simply splitting the value will result in the variables $first and $last storing (and emitting) the raw Epoch
millis value of the time, not the human-readable repr value. Similar to the way in which we obtained the repr value for
the :ipv4 property, we need to assign the human-readable repr values of the . seen property to $first and $last:

[($first, $last) = $node.repr(".seen") J

Stormfile

We can now combine all of these elements into a Storm query that:
e Lifts the inet:dns:a nodes we want to export.
* Splits the human-readable version of the . seen property into two time values and assigns them to variables.
* Generates $1ib.csv.emit () messages to create the CSV rows.

Our full stormfile query looks like this:

inet:dns:a: fgdn=woot.com inet:dns:a:fqgdn=hurr.net inet:dns:a:fqgdn=derp.org
($first, $last) = $node.repr(".seen")

$lib.csv.emit(: fqgdn, $node.repr(ipv4), $first, $last)

Warning: The data submitted to $1ib.csv.emit () to create the CSV rows must exist for every node processed
by the function. For example, if one of the inet:dns:a nodes lifted by the Storm query and submitted to $1ib.
csv.emit() does not have a . seen property, Storm will generate an error and halt further processing, which may
result in a partial export of the desired data.

Subqueries (Storm Reference - Subqueries) or various flow control processes (Storm Reference - Advanced - Control
Flow) can be used to conditionally account for the presence or absence of data for a given node.

Exporting the Data:

72 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

We can now test our export of the data we ingested in /ngest Example 1 (replace the Cortex path below with the path
to your Cortex; line is wrapped for readability):

python -m synapse.tools.csvtool --debug --export
--cortex tcp://cortex.vertex.link:4444/cortex00 stormfile export.csv

If we view the contents of export.csv, we should see the following:

woot.com,1.2.3.4,2018/04/18 13:12:47.000,2018/06/23 09:45:12.000
hurr.net,5.6.7.8,2018/10/03 00:47:29.000,2018/10/04 18:26:06.000
derp.org,4.4.4.4,2019/06/09 09:00:18.000,2019/07/03 15:07:52.000

3.5.6 genpkg

The Synapse genpkg tool can be used to generate a Storm Package containing new Storm commands and Storm
modules from a YAML definition and optionally push it to a Cortex or PkgRepo.

Syntax

genpkg is executed from an operating system command shell. The command usage is as follows:

usage: synapse.tools.genpkg [-h] [--push <url>] [--save <path>] [--optic <path>]
—<pkgfile>

Where:
* pkgfile is the path to the Storm Package YAML file.
* --save takes a file name to save the completed package JSON as.
» --push takes an optional Telepath URL to a Cortex or PkgRepo for the package to be pushed to.

e --optic takes an optional path to a directory containing Optic module files.

Package Layout

The expected filesystem layout for a Storm package is:

(foopkg.yml

storm/
commands/
L— foocmd
modules/
L— foomod
optic/
L— index.html

L J

Commands and modules defined in the package YAML file are expected to have corresponding files containing the
Storm code for their implementation. It is not required to have both commands and modules in a Storm package; you
may have a package with only commands, or only modules.

3.5. Tools 73

Synapse Documentation, Release 2.141.0

Package YAML

A Storm package YAML may contain the following definitions:
e name: Name of the Storm package.
» version: Version of the Storm package. A Cortex may contain multiple versions of the same package.

* synapse_minversion: Optional minimum required Synapse version a Cortex must be running to load the
package.

* onload: Optional Storm code to run in a Cortex when the package is loaded.
e modules: Storm module definitions.
¢ commands: Storm command definitions.

The example below shows the YAML included in the foopkg.yml file.

foopkg.yml

name: foopkg
version: 1.0.0
synapse_minversion: [2, 23, 0]

onload: $lib.import(foomod).onload()

modules:
- name: foomod
modconf:

srcguid: £751f9ad20e75547be230aelad25fb9f

commands :
- name: foocmd
descr: |
One line description on the first line.
Followed by a more detailed description talking about what the command does and any
useful additional information.

Examples:
A couple examples of the command
inet:ipv4 | foocmd
inet:ipv4 | limit 1 | foocmd --yield
asroot: true
cmdargs:
- - --debug
- default: false
action: store_true
help: Show verbose debug output.

- - --yield
- default: false
action: store_true
help: Yield the newly created nodes.

(continues on next page)

74 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

- - --timeout
- default: ®
type: int
help: Specify a timeout in seconds.
cmdconf:
srcguid: £751f9ad20e75547be230aelad25fb9f
forms:
input:
- inet:ipv4
output:
- inet:ipv4
nodedata:
- [foodata, file:bytes]

Modules

Modules can be used to expose reusable Storm functions. Each module defines a name, which is used for importing
elsewhere via $1ib.import (), and optionally a modconf dictionary containing additional configuration values which
will be accessible in the module’s Storm via $modconf.

The example below shows the Storm code included in the foomod file.

foomod

function onload() {

[meta:source=$modconf.srcguid
:name="foomod"
:type="foo"

]

fini { return($lib.null) }

}

function bar(x, y) {
return ($($x + $y))
}

Commands

Multiple Storm commands can be added to a Storm service package, with each defining the following attributes:
* name: Name of the Storm command to expose in the Cortex.
 descr: Description of the command which will be available in help displays.

e asroot: Whether the command should be run with root permissions. This allows users to be granted access to
run the command without requiring them to have all the permissions needed by the Storm command. An example
asroot permission for foocmd would be ('storm', 'asroot', 'cmd', 'asroot', 'foocmd').

* cmdargs: An optional list of arguments for the command.

e cmdconf: An optional dictionary of additional configuration variables to provide to the command Storm execu-
tion.

3.5. Tools 75

Synapse Documentation, Release 2.141.0

e forms: List of input and output forms for the command, as well as a list of nodedata keys and the corresponding
form on which they may be set by the service.

The example below shows the Storm code included in the foocmd file.

foocmd

$foo = $1ib.import (foomod)
[:asn = $foo.bar(:asn, $(20))]

$node.data.set(foodata, $1ib.time.now())

Building the Example Package

To build the package and push it directly to a Cortex:

[python -m synapse.tools.genpkg --push tcp://user:pass@127.0.0.1:27492 foopkg.yml

Note: Users must have the pkg.add permission to add a package to a Cortex.

Once the package has been successfully pushed to the Cortex, the additional Storm Commands will be listed in the
output of storm help under the package they were loaded from:

package: foopkg
foocmd : One line description on the first line.

The new commands may now be used like any other Storm command:

cli> storm inet:ipv4=192.168.0.113 | foocmd
Executing query at 2023/07/12 15:13:58.668

inet:ipv4=192.168.0.113
.created = 2023/07/12 15:13:58.651
:asn = 40
:type = private

complete. 1 nodes in 48 ms (20/sec).

If immediately pushing the package to a Cortex is not desired, it can instead be built and saved to foo. json to load
later:

[python -m synapse.tools.genpkg --save foo.json foopkg.yml

76 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

3.5.7 easycert

The Synapse easycert tool can be used to manage CA, host, and user certificates.

Syntax

easycert is executed using python -m synapse.tools.easycert. The command usage is as follows:

usage: easycert [-h] [--certdir CERTDIR] [--importfile {cas,hosts,users}] [--ca] [--pl2].
—[--server] [--server-sans SERVER_SANS] [--csr] [--sign-csr] [--signas SIGNAS]
name

Command line tool to generate simple x509 certs

positional arguments:
name common name for the certificate (or filename for CSR signing)

optional arguments:
-h, --help show this help message and exit
--certdir CERTDIR Directory for certs/keys
--importfile {cas,hosts,users}
import certs and/or keys into local certdir

--ca mark the certificate as a CA/CRL signer
--pl2 mark the certificate as a pl2 archive
--server mark the certificate as a server

--server-sans SERVER_SANS
server cert subject alternate names

--Ccsr generate a cert signing request
--sign-csr sign a cert signing request
--signas SIGNAS sign the new cert with the given cert name

3.6 Storm Reference

Synapse uses the Storm Query language to do lifting and modification of data in the graph. Basic Storm usage is
documented in the following sections.

3.6.1 Storm Reference - Introduction

Storm is the query language used to interact with data in Synapse. Storm allows you to ask about, retrieve, annotate,
add, modify, and delete data within a Synapse Cortex. If you are using the community version of Synapse, you will
access Synapse via the Storm command-line interface (Storm CLI) (see storm):

[storm> <query>

If you are a Vertex Project customer, you will access Synapse via the Synapse webUI (also known as Optic.

Note: If you're just getting started with Synapse, you can use the Synapse Quickstart to quickly set up and connect to
a local Cortex using the Storm CLI.

This section covers several important high-level Storm concepts:

3.6. Storm Reference 77

https://synapse.docs.vertex.link/projects/optic/en/latest/index.html
https://github.com/vertexproject/synapse-quickstart

Synapse Documentation, Release 2.141.0

 Storm Background
* Basic Storm Operations
— Lift, Filter, and Pivot Criteria
» Whitespace and Literals in Storm
— Backtick Format Strings

» Storm Operating Concepts

Working Set

Operation Chaining

Node Consumption
— Storm as a Pipeline

* Advanced Storm Operations

Storm Background

In designing Storm, we needed it to be flexible and powerful enough to allow interaction with large amounts of data
and a wide range of disparate data types. However, we also needed Storm to be intuitive and efficient so it would
be accessible to a wide range of users. We wrote Storm specifically to be used by analysts and other users from a
variety of knowledge domains who are not necessarily programmers and who would not want to use what felt like a
“programming language”.

Wherever possible, we masked Storm’s underlying programmatic complexity. The intent is for Storm to act more like
a “data language”, allowing users to:

* Reference data and query operations in an intuitive form. We took a “do what I mean” approach for how
users interact with and use Storm so that users can focus on the data and the relationships among the data, not
the query language. Once you get the gist of it, Storm “just works”! This is because Storm and Synapse make
use of a number of features “under the hood” such as property normalization, type enforcement / type awareness,
and syntax and query optimization, to make Storm easier for you to use. Synapse and Storm do the work in the
background so you can focus on analysis.

* Use a simple yet powerful syntax to run Storm queries. Storm uses intuitive keyboard symbols (such as
an “arrow” (->) for pivot operations) for efficient querying, as well as a natural language-like syntax. This
makes using Storm feel more like “asking a question” than “constructing a data query”. In fact, one method
we use to teach Storm to new users is to practice “translating” questions into queries (you’ll be surprised how
straightforward it is!).

Analysts still need to learn the Storm “language” - forms (Form) and tags (Tag) are Storm’s “words”, and Storm
operators allows you to construct “sentences”. That said, the intent is for Storm to function more like “how do I ask
this question about the data?”” and not “how do I write a program to get the data I need?”

Finally — and most importantly — giving analysts direct access to Storm allows them to create arbitrary queries and
provides them with an extraordinarily powerful analytical tool. Analysts are not constrained to a set of “canned”
queries provided through a GUI or an API. Instead, they can follow their analysis wherever it takes them, creating
queries as needed and working with the data in whatever manner is most appropriate to their research.

78 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Basic Storm Operations

Storm allows users to perform all of the common operations used to interact with data in Synapse:
 Lift: — retrieve data based on specified criteria. (Storm Reference - Lifting)

¢ Filter: — refine your results by including or excluding a subset of nodes based on specified criteria. (Storm
Reference - Filtering)

 Pivot: — take a set of nodes and identify other nodes that share one or more property values with the lifted set.
(Storm Reference - Pivoting)

* Data modification: — add, modify, annotate, and delete nodes from Synapse. (Storm Reference - Data Modifi-
cation)

Additional operations include:
» Traverse light edges. (Lightweight (Light) Edge, Traverse (Walk) Light Edges)

* Pipe (send) nodes to Storm commands (Storm Reference - Storm Commands). Storm supports an extensible
set of commands such as /imit, max, or uniq. These commands provide specific functionality to further extend
the analytical power of Storm. Additional Storm commands allow management of permissions for users and
roles, Synapse views and layers, and Synapse’s automation features (Storm Reference - Automation). Available
commands can be displayed by running help from the Storm CLI.

Storm also incorporates a number of Advanced Storm Operations that provide even greater power and flexibility.

Note: While Storm queries can range from the very simple to the highly complex, all Storm queries are constructed
from this relatively small set of “building blocks”. Most users, especially when they first start, only need the handful
of blocks listed above!

Lift, Filter, and Pivot Criteria

The main operations carried out with Storm are lifting, filtering, and pivoting (we include traversing light edges as part
of “pivoting”). When conducting these operations, you need to be able to clearly specify the data you are interested in
— your selection criteria. In most cases, the criteria you specify will be based on one or more of the following:

* A property (primary or secondary) on a node.

* A specific value for a property (<form> = <valu> or <prop> = <pval>) on a node.
* A tag on a node.

 The existence of a light edge linking nodes.

* The name (“verb”) of a specific light edge linking nodes.

All of the above elements — nodes, properties, values, and tags — are the fundamental building blocks of the Synapse
data model (see Data Model - Terminology). As such, an understanding of the Synapse data model is essential to
effective use of Storm.

3.6. Storm Reference 79

Synapse Documentation, Release 2.141.0

Whitespace and Literals in Storm
Storm allows (and in some cases requires) whitespace within Storm to separate syntax elements such as commands and
command arguments.

Quotation marks are used to preserve whitespace characters and other special characters in literals used within Storm.

Using Whitespace Characters

Whitespace characters (i.e., spaces) are used within Storm to separate command line arguments. Specifically, whites-
pace characters are used to separate commands, command arguments, command operators, variables and literals.

When entering a query/command in Storm, one or more whitespace characters are required between the following
command line arguments:

* A command (such as max) and command line parameters (in this case, the property :asof):

[storm> inet:whois:rec:fgdn=vertex.link | max :asof

* An unquoted literal and any subsequent argument or operator:

storm> inet:email=support@vertex.link | count

storm> inet:email=support@vertex.link -> *

Whitespace characters can optionally be used when performing the following operations:

» Assigning values using the equals sign assignment operator:

storm> [inet:ipv4=192.168.0.1]

storm> [inet:ipv4 = 192.168.0.1]

» Comparison operations:

storm> file:bytes:size>65536

storm> file:bytes:size > 65536

* Pivot operations:

storm> inet:ipv4->*

storm> inet:ipv4 -> *

 Specifying the content of edit brackets or edit parentheses:

storm> [inet:fgdn=vertex.link]
storm> [inet:fgdn=vertex.link]
storm> [inet:fgdn=vertx.link (inet:ipv4=1.2.3.4 :asn=5678)]

storm> [inet:fgdn=vertex.link (inet:ipv4=1.2.3.4 :asn=5678)]

Whitespace characters cannot be used between reserved characters when performing the following CLI operations:

80 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

¢ Add and remove tag operations. The plus (+) and minus (-) sign characters are used to add and remove tags to
and from nodes in Synapse respectively. When performing tag operations using these characters, a whitespace
character cannot be used between the actual character and the tag name (e.g., +#<tag>).

[storm> inet:ipv4 = 192.168.0.1 [-#oldtag +#newtag]]

Entering Literals

Storm uses quotation marks (single and double) to preserve whitespace and other special characters that represent
literals. If values with these characters are not quoted, Synapse may misinterpret them and throw a syntax error.

Single (' ') or double (" ") quotation marks can be used when specifying a literal in Storm during an assignment
or comparison operation. Enclosing a literal in quotation marks is required when the literal:

* begins with a non-alphanumeric character,
* contains a space (\s), tab (\'t) or newline(\n) character, or
* contains a reserved Synapse character (for example,\) , =1 } [).

Enclosing a literal in single quotation marks will preserve the literal meaning of each character. That is, each character
in the literal is interpreted exactly as entered.

» Note that if a literal (such as a string) includes a single quotation mark / tick mark, it must be enclosed
in double quotes.

* Wrong: 'Storm's intuitive syntax makes it easy to learn and use.'
* Right: "Storm's intuitive syntax makes it easy to learn and use."

Enclosing a literal in double quotation marks will preserve the literal meaning of all characters except for the backslash
(\) character, which is interpreted as an ‘escape’ character. The backslash can be used to include special characters
such as tab (\t) or newline (\n) within a literal.

* If you need to include a literal backslash within a double-quoted literal, you must enter it as a “double
backslash” (the first backslash “escapes” the following backslash character):

— Wrong: "C:\Program Files\Mozilla Firefox\firefox.exe"
— Right: "C:\\Program Files\\Mozilla Firefox\\firefox.exe"

Note that because the above example does not include a single quote / tick mark as part of the literal, you
can simply enclose the file path in single quotes:

e Alsoright: 'C:\Program Files\Mozilla Firefox\firefox.exe'
The Storm queries below demonstrate assignment and comparison operations that do not require quotation marks:

e Lifting the domain vtx.1lk:

[storm> inet:fqdn = vtx.lk]

* Lifting the file name windowsupdate.exe:

[storm> file:base = windowsupdate.exe]

The commands below demonstrate assignment and comparison operations that require the use of quotation marks.
Failing to enclose the literals below in quotation marks will result in a syntax error.

* Lift the file name windows update.exe which contains a whitespace character:

3.6. Storm Reference 81

Synapse Documentation, Release 2.141.0

[storm> file:base = 'windows update.exe'

* Lift the file name windows,update.exe which contains the comma special character:

[storm> file:base = "windows,update.exe"

Backtick Format Strings

Backticks (©) can be used to specify a format string in Storm, with curly braces used to specify expressions which
will be substituted into the string at runtime. Any valid Storm expression may be used in a format string, such as
variables, node properties, tags, or function calls.

» Use a variable in a string:

[storm> $ip = "1.2.3.4" $str = "The IP is {$ip}"

» Use node properties in a string:

storm> inet:ipv4=1.2.3.4 $lib.print(IP {$node.repr()}: asn={:asn} .seen={.seen} foo={
—#fool}")

* Lift a node using a format string:

[storm> $ip=1.2.3.4 S$port=22 inet:client="{$ip}:{$port}"

Backtick format strings may also span multiple lines, which will include the newlines when displayed:

storm> inet:ipv4=1.2.3.4 $lib.print(C
IP {$node.repr()}:

asn={:asn}

.seen={.seen}

foo={#foo})

Like double quotes, backticks will preserve the literal meaning of all characters except for the backslash (\) character,
which is interpreted as an ‘escape’ character. The backslash can be used to include special characters such as tab (\t)
or newline (\n), or to include a backtick () or curly brace ({) in the string.

Storm Operating Concepts

Storm has several notable features in the way it interacts with and operates on data. We mention these concepts briefly
here to familiarize you with them; they’re important but also pretty intuitive, so you don’t need to worry about them
too much for standard Storm queries and operations. These concepts are much more important if you’re using more
advanced Storm constructs such as variables or control flow, but we want to introduce the concepts here.

82 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Working Set

Most objects in Synapse are nodes. Most Storm operations start by lifting (selecting) a node or set of nodes.
* The set of nodes that you start with is called your initial working set.

» The set of nodes at any given point in your Storm query is called your current working set.

Operation Chaining

Users commonly interact with data (nodes) in Synapse using operations such as lift, filter, and pivot. Storm allows
multiple operations to be chained together to form increasingly complex queries:

storm> inet:fgdn=vertex.link
storm> inet:fqgdn=vertex.link -> inet:dns:a
storm> inet:fgdn=vertex.link -> inet:dns:a -> inet:ipv4

storm> inet:fgdn=vertex.link -> inet:dns:a -> inet:ipv4 +:type=unicast

The above example demonstrates chaining a lift (inet: fqdn=vetex.link) with two pivots (-> inet:dns:a, ->
inet:ipv4) and a filter (+: type=unicast).

When Storm operations are concatenated in this manner, they are processed in order from left to right with each
operation (lift, filter, or pivot) acting on the output of the previous operation. A Storm query is not evaluated as a single
whole; Storm evaluates your working set of nodes against each operation in order before moving to the next operation.

Note: Technically, any query you construct is first evaluated as a whole to ensure it is a syntactically valid query -
Synapse will complain if your Storm syntax is incorrect. But once Synapse has checked your Storm syntax, nodes are
processed by each Storm operation in order.

You do not have to write (or execute) Storm queries ‘“‘one operation at a time” - this example is simply meant to illustrate
how you can chain individual Storm operations together to form longer queries. If you know that the question you want
Storm to answer is “show me the unicast [Pv4 addresses that the FQDN vertex.link has resolved to”, you can simply
run the final query. But you can also “build” queries one operation at a time if you’re exploring the data or aren’t sure
yet where your analysis can take you.

The ability to build queries operation by operation means that a Storm query can parallel an analyst’s natural thought
process: you perform one Storm operation and then consider the “next step” you want to take in your analysis. “Show
me X data. ..that’s interesting, now show me Y data that relates to X...hm, now take a subset of Y and show me any
relationship to Z data...” and so on. Each “now show me...” commonly corresponds to a new Storm operation that
can be added to your existing Storm query to navigate through the data.

3.6. Storm Reference 83

Synapse Documentation, Release 2.141.0

Node Consumption

Storm operations typically transform your working set in some way. That is, the nodes that “go into” (are inbound) to
a given Storm operation are not necessarily the nodes that “come out” of that operation.

Take our operation chaining example above:

* Our initial working set consists of the single node inet: fqdn=vertex.link, which we selected with a lift
operation.

* When we pivot to the DNS A records for that FQDN, we navigate away from (drop) our initial inet:fqdn
node, and navigate to (add) the DNS A nodes. Our current working set now consists of the DNS A records
(inet:dns:a nodes) for vertex.link.

¢ Similarly, when we pivot to the IPv4 addresses, we navigate away from (drop) the DNS A nodes and navigate to
(add) the IPv4 nodes. Our current working set is made up of the inet:ipv4 nodes.

* Finally, when we perform our filter operation, we may discard (drop) any IPv4 nodes representing non-unicast
IPs (such as inet:ipv4=127.0.0.1) if present.

We refer to this transformation (in particular, dropping) of some or all nodes by a given Storm operation as consuming
nodes. Most Storm operations consume nodes (that is, change your working set in some way - what comes out of the
operation is not the same set of nodes that goes in).

For standard Storm queries this process should be fairly intuitive (“now that you point that out. . . of course that is what’s
happening”). However, the idea of node consumption and the transformation of your current working set is important
to keep in mind for more advanced Storm.

Storm as a Pipeline

Just as each Storm operation in the chain is processed individually from left to right, each node in your working set is
evaluated individually against a given Storm operation. You can think of your Storm query as a pipeline of operations,
with each node “fired” one at a time through the pipeline. Whether you start with one node or 10,000 nodes, they are
evaluated against your Storm query one by one.

A key advantage to processing nodes one by one is that it significantly reduces Synapse’s latency and memory use -
this is a big part of what makes Synapse so fast and responsive. Synapse can start providing you with results for the
initial nodes processed right away, while it continues processing the remaining nodes. In other words, you don’t have
to wait for your entire query to complete for all of your nodes before getting your answer.

For standard Storm, this behavior is transparent to you as the user - you run a Storm query, you get a response. However,
this pipeline behavior can be important to understand when working with (or troubleshooting) Storm queries that
leverage features such as subqueries, variables, or control flow operations.

Advanced Storm Operations

In our experience, the more analysts use Storm, the more they want even greater power and flexibility from the language

to support their analytical workflow! To meet these demands, Storm evolved a number of advanced features, including:
* Variables (Storm Reference - Advanced - Variables)

* Methods (Storm Reference - Advanced - Methods)

Control Flow (Storm Reference - Advanced - Control Flow)
e Storm Libraries

o Storm Types

84 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Analysts do not need to use or understand these more advanced concepts in order to use Storm or Synapse. Basic
Storm functions are sufficient for a wide range of analytical needs and workflows. However, these additional features
are available to both “power users” and developers as needed:

e For analysts, once they are comfortable with Storm basics, many of them want to expand their Storm skills
specifically because it facilitates their analysis.

* For developers, writing extensions to Synapse in Storm has the advantage that the extension can be deployed or
updated on the fly. Contrast this with extensions written in Python, for example, which would require restarting
the system during a maintenance window in order to deploy or update the code.

Note: Synapse’s Rapid Power-Ups (Power-Up), are written entirely in Storm and exposed to Synapse users as Storm
commands!

3.6.2 Storm Reference - Document Syntax Conventions

This section covers the following important conventions used within the Storm Reference Documents:
» Storm and Layers
e Storm Syntax Conventions
* Usage Statements vs. Specific Storm Queries
* Type-Specific Behavior

» Whitespace

Storm and Layers

The Storm Reference documentation provides basic syntax examples that assume a simple Storm environment -
that is, a Cortex with a single Layer. For multi-Layer Cortexes, the effects of specific Storm commands - particularly
data modification commands - may vary based on the specific arrangement of read / write Layers, the Layer in which
the command is executed, and the permissions of the user.

Storm Syntax Conventions

The Storm Reference documentation provides numerous examples of both abstract Storm syntax (usage statements)
and specific Storm queries. The following conventions are used for Storm usage statements:

* Items that must be entered literally on the command line are in bold. These items include command names and
literal characters.

* Items that represent “variables” that must be replaced with a name or value are placed within angle brackets (<
>) in italics. Most “variables” are self-explanatory, however a few commonly used variable terms are defined
here for convenience:

<form> refers to a form / node primary property, such as inet: fqdn.
— <valu> refers to the value of a primary property, such as woot.com in inet:fqdn=woot . com.

— <prop> refers to a node secondary property (including universal properties) such as inet:ipv4:asn or
inet:ipvé4.created.

— <pval> refers to the value of a secondary property, such as 4808 in inet:ipv4:asn=4808.

— <query> refers to a Storm query.

3.6. Storm Reference 85

Synapse Documentation, Release 2.141.0

— <inet:fqdn> refers to a Storm query whose results contain the specified form(s)

— <tag> refers to a tag (#sometag as opposed to a syn: tag form).
Bold brackets are literal characters. Parameters enclosed in non-bolded brackets are optional.
Parameters not enclosed in brackets are required.
A vertical bar signifies that you choose only one parameter. For example:

— a | b indicates that you must choose a or b.

— [a | b] indicates that you can choose a, b, or nothing (the non-bolded brackets indicate the parameter
is optional).

Ellipses (...) signify the parameter can be repeated on the command line.

The storm command that must precede a Storm query is assumed and is omitted from examples.

Example:

[<form> = <valu> [: <prop> = <pval> ...]]

The Storm query above adds a new node.

The outer brackets are in bold and are required literal characters to specify a data modification (add) operation.
Similarly, the equals signs are in bold to indicate literal characters.

<form> and <valu> would need to be replaced by the specific form (such as inet:ipv4) and primary property
value (such as 1.2.3.4) for the node being created.

The inner brackets are not bolded and indicate that one or more secondary properties can optionally be specified.

<prop> and <pval> would need to be replaced by the specific secondary property and value to add to the node,
such as :1loc = us.

The ellipsis (...) indicate that additional secondary properties can optionally be specified.

Usage Statements vs. Specific Storm Queries

Examples of specific queries represent fully literal input, but are not shown in bold for readability. For example:

Usage statement:

[<form> = <valu> [: <prop> = <pval> ...]]

Example query:

[inet:ipv4 = 1.2.3.4 :loc = us]

Type-Specific Behavior

Some data types within the Synapse data model have been optimized in ways that impact their behavior within Storm
queries (e.g., how types can be input, lifted, filtered, etc.) See Storm Reference - Type-Specific Storm Behavior for
details.

86

Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Whitespace

Whitespace may be used in the examples for formatting and readability.

3.6.3 Storm Reference - Lifting

Lift operations retrieve a set of nodes from a Synapse Cortex based on specified criteria. While all lift operations are
retrieval operations, they can be broken down into “types” of lifts based on the criteria, comparison operator, or special
handler used:

 Simple Lifts
* Try Lifts
e Lifts Using Standard Comparison Operators
e Lifts Using Extended Comparison Operators
See Storm Reference - Document Syntax Conventions for an explanation of the syntax format used below.

See Storm Reference - Type-Specific Storm Behavior for details on special syntax or handling for specific data types.

Simple Lifts

“Simple” lifts refers to the most “basic” lift operations. That is, operations to retrieve a set of nodes based on:
» The presence of a specific primary or secondary property.
» The presence of a specific primary property value or secondary property value.
» The presence of a specific tag or tag property.

The only difference between “simple” lifts and “lifts using comparison operators” is that we have defined simple lifts
as those that use the equals (=) comparator, which is the easiest comparator to use to explain basic lift concepts.

Syntax:

<form> [= <valu>]

<form> = <valu> : <prop> [= <pval>]

<tag> [: <tagprop> [<operator> <pval>]]
#: <tagprop> | <operator> <pval> |
Examples:

Lift by primary property (<form>):

e Lift all domain nodes:

[storm> inet: fqdn

e Lift all mutex nodes:

[storm> it:dev:mutex

Lift a specific node (<form> = <valu>):

e Lift the node for the domain google. com:

3.6. Storm Reference 87

Synapse Documentation, Release 2.141.0

[storm> inet:fqdn = google.com

* Lift the node for a specific MD5 hash:

[storm> hash:md5 = d41d8cd98f00b204e9800998ecf8427e

Lift a specific compound node:

* Lift the DNS A record showing that domain woot.com resolved to IP 1.2.3.4:

[storm> inet:dns:a = (woot.com, 1.2.3.4)

Lift a specific GUID node:
* Lift the organization node with the specified GUID:

[storm> ou:0rg=2£f92bc913918£6598bcf310972ebf32e

Lift a specific digraph (edge) node:

« Lift the edge :has node linking the person node representing “Bob Smith” to his email address:

—»smith@gmail.com))

storm> edge:has=((ps:person, 12af06294ddfla®ac8d6da34eldabeed), (inet:email, bob.

Lift by the presence of a secondaray property (<prop>):
* Lift the DNS SOA record nodes that have an email property:

[storm> inet:dns:soa:email

Lift by a specific property value (<prop> = <pval>):

* Lift the organization node with the alias vertex:

[storm> ou:org:alias = vertex

e Lift all DNS A records for the domain blackcake.net:

[storm> inet:dns:a: fgdn = blackcake.net

« Lift all the files with a PE compiled time of 1992-06-19 22:22:17:

[storm> file:bytes:mime:pe:compiled = "1992/06/19 22:22:17"

* Lift all the files with a PE compiled time that falls within the year 2019:

[storm> file:bytes:mime:pe:compiled=2019*

Lift all nodes with a specific tag:

* Lift all nodes with the tag #cno.infra.anon. tor:

[storm> #cno.infra.anon.tor

Lift all nodes with a specific tag property:

« Lift all nodes with a tag that has a :risk tag property:

88 Chapter 3

. Synapse User Guide

Synapse Documentation, Release 2.141.0

Lift all nodes with a specific tag and tag property:

Lift all nodes with a #rep.symantec tag that has a :risk tag property:

[storm> #rep.symantec:risk

Lift all nodes with a specific tag, tag property, and value:

Lift all nodes with a #rep. symantec tag with a :risk tag property and a value greater than 10:

[storm> #rep.symantec:risk>10

Usage Notes:

Lifting nodes by form alone (e.g., lifting all inet : fgdn nodes or all inet:email nodes) is possible but generally
impractical / undesirable as it will potentially return an extremely large data set.

Lifting by form alone when piped to the Storm /imit command may be useful for returning a small number of
“exemplar” nodes.

Lifting nodes by <form> = <valu> is the most common method of lifting a single node.

When lifting a form whose <valu> consists of multiple components (e.g., a compound node or digraph node),
the components must be passed as a comma-separated list enclosed in parentheses.

Lifting nodes by the presence of a secondary property alone (<prop>) may be impractical / undesirable (similar
to lifting by form alone), but may be feasible in limited cases (i.e., where it is known that only a relatively small
number of nodes have a given secondary property).

Lifting nodes by the value of a secondary property (<prop> = <pval>) is useful for lifting all nodes that share a
secondary property with the same value; and may be used to lift individual nodes with unique or relatively unique
secondary properties in cases where entering the primary property is impractical (such as for GUID nodes).

When lifting nodes by secondary property value where the value is a time (date / time), you do no