
Synapse Documentation
Release 2.141.0

The Vertex Project

Jul 12, 2023

CONTENTS:

1 Introduction 3
1.1 Key Features . 3
1.2 What’s Next? . 5

2 Getting Started 7
2.1 Synapse Quickstart . 7
2.2 Open-Source Synapse . 8
2.3 Synapse Demo Instance . 8

3 Synapse User Guide 11
3.1 Background . 11
3.2 Data Model . 19
3.3 Analytical Model . 34
3.4 Design . 43
3.5 Tools . 53
3.6 Storm Reference . 77
3.7 Storm Advanced . 288

4 Synapse Admin Guide 319
4.1 Enable Synapse Power-Ups . 319
4.2 Create and Manage Users and Roles . 320
4.3 Assign and Manage Permissions . 324
4.4 Add Extended Model Elements . 344
4.5 Manage Model Deprecations . 346
4.6 Configure a Mirrored Layer . 347

5 Synapse Deployment Guide 349
5.1 Introduction . 349
5.2 Prepare your Hosts . 349
5.3 Decide on a Name . 350
5.4 Deploy AHA Service . 350
5.5 Deploy Axon Service . 351
5.6 Deploy JSONStor Service . 353
5.7 Deploy Cortex Service . 353
5.8 Deploy Cortex Mirror (optional) . 354
5.9 Enroll CLI Users . 355
5.10 What’s next? . 356

6 Synapse Devops Guide 357
6.1 Overview . 357
6.2 Common Devops Tasks . 358

i

6.3 Synapse Services . 373
6.4 Devops Details . 376

7 Synapse Developer Guide 417
7.1 Rapid Power-Up Development . 417
7.2 Synapse Architecture . 426
7.3 Cortex Development Quickstart . 428
7.4 Synapse Docker Builds . 431
7.5 Storm Service Development . 432
7.6 Storm API Guide . 439

8 Synapse Glossary 451
8.1 A . 451
8.2 B . 452
8.3 C . 452
8.4 D . 454
8.5 E . 456
8.6 F . 458
8.7 G . 459
8.8 H . 460
8.9 I . 461
8.10 K . 461
8.11 L . 462
8.12 M . 463
8.13 N . 463
8.14 O . 465
8.15 P . 465
8.16 Q . 467
8.17 R . 468
8.18 S . 469
8.19 T . 471
8.20 U . 475
8.21 V . 475
8.22 W . 476

9 Synapse Contributors Guide 477
9.1 Contributing to Synapse . 477
9.2 Synapse Doc Mastering . 485
9.3 Synapse Release Process . 489

10 Synapse Python API 493
10.1 synapse package . 493

11 Synapse HTTP/REST API 847
11.1 HTTP/REST API Conventions . 847
11.2 Authentication . 847
11.3 Cortex . 852
11.4 Aha . 859
11.5 Axon . 860

12 Synapse Data Model 863
12.1 Synapse Data Model - Types . 863
12.2 Synapse Data Model - Forms . 973
12.3 Datamodel Deprecation Policy . 1284

ii

13 Storm Library Documentation 1287
13.1 Storm Libraries . 1287
13.2 Storm Types . 1374

14 Synapse Power-Ups 1437
14.1 Rapid Power-Ups . 1437
14.2 Advanced Power-Ups . 1438

15 Synapse User Interface 1439

16 Synapse Support 1441
16.1 Slack . 1441
16.2 Service Desk . 1441

17 Synapse Changelog 1443
17.1 v2.141.0 - 2023-07-07 . 1443
17.2 v2.140.1 - 2023-06-30 . 1444
17.3 v2.140.0 - 2023-06-30 . 1444
17.4 v2.139.0 - 2023-06-16 . 1445
17.5 v2.138.0 - 2023-06-13 . 1446
17.6 v2.137.0 - 2023-06-09 . 1446
17.7 v2.136.0 - 2023-06-02 . 1449
17.8 v2.135.0 - 2023-05-24 . 1450
17.9 v2.134.0 - 2023-05-17 . 1450
17.10 v2.133.1 - 2023-05-09 . 1451
17.11 v2.133.0 - 2023-05-08 . 1451
17.12 v2.132.0 - 2023-05-02 . 1453
17.13 v2.131.0 - 2023-05-02 . 1454
17.14 v2.130.2 - 2023-04-26 . 1455
17.15 v2.130.1 - 2023-04-25 . 1456
17.16 v2.130.0 - 2023-04-25 . 1456
17.17 v2.129.0 - 2023-04-17 . 1456
17.18 v2.128.0 - 2023-04-11 . 1457
17.19 v2.127.0 - 2023-04-05 . 1459
17.20 v2.126.0 - 2023-03-30 . 1459
17.21 v2.125.0 - 2023-03-14 . 1461
17.22 v2.124.0 - 2023-03-09 . 1461
17.23 v2.123.0 - 2023-02-22 . 1462
17.24 v2.122.0 - 2023-01-27 . 1465
17.25 v2.121.1 - 2022-01-23 . 1467
17.26 v2.121.0 - 2022-01-20 . 1467
17.27 v2.120.0 - 2023-01-11 . 1468
17.28 v2.119.0 - 2023-01-09 . 1468
17.29 v2.118.0 - 2023-01-06 . 1470
17.30 v2.117.0 - 2023-01-04 . 1471
17.31 v2.116.0 - 2022-12-14 . 1472
17.32 v2.115.1 - 2022-12-02 . 1473
17.33 v2.115.0 - 2022-12-01 . 1473
17.34 v2.114.0 - 2022-11-15 . 1474
17.35 v2.113.0 - 2022-11-04 . 1475
17.36 v2.112.0 - 2022-10-18 . 1478
17.37 v2.111.0 - 2022-10-12 . 1478
17.38 v2.110.0 - 2022-10-07 . 1479
17.39 v2.109.0 - 2022-09-27 . 1480
17.40 v2.108.0 - 2022-09-12 . 1481

iii

17.41 v2.107.0 - 2022-09-01 . 1481
17.42 v2.106.0 - 2022-08-23 . 1483
17.43 v2.105.0 - 2022-08-19 . 1483
17.44 v2.104.0 - 2022-08-09 . 1484
17.45 v2.103.0 - 2022-08-05 . 1485
17.46 v2.102.0 - 2022-07-25 . 1487
17.47 v2.101.1 - 2022-07-14 . 1489
17.48 v2.101.0 - 2022-07-12 . 1489
17.49 v2.100.0 - 2022-06-30 . 1491
17.50 v2.99.0 - 2022-06-23 . 1491
17.51 v2.98.0 - 2022-06-17 . 1492
17.52 v2.97.0 - 2022-06-06 . 1492
17.53 v2.96.0 - 2022-05-31 . 1493
17.54 v2.95.1 - 2022-05-24 . 1493
17.55 v2.95.0 - 2022-05-24 . 1494
17.56 v2.94.0 - 2022-05-18 . 1494
17.57 v2.93.0 - 2022-05-04 . 1496
17.58 v2.92.0 - 2022-04-28 . 1497
17.59 v2.91.1 - 2022-04-24 . 1497
17.60 v2.91.0 - 2022-04-21 . 1498
17.61 v2.90.0 - 2022-04-04 . 1499
17.62 v2.89.0 - 2022-03-31 . 1499
17.63 v2.88.0 - 2022-03-23 . 1500
17.64 v2.87.0 - 2022-03-18 . 1501
17.65 v2.86.0 - 2022-03-09 . 1502
17.66 v2.85.1 - 2022-03-03 . 1503
17.67 v2.85.0 - 2022-03-03 . 1503
17.68 v2.84.0 - 2022-02-22 . 1504
17.69 v2.83.0 - 2022-02-17 . 1505
17.70 v2.82.1 - 2022-02-11 . 1505
17.71 v2.82.0 - 2022-02-10 . 1505
17.72 v2.81.0 - 2022-01-31 . 1506
17.73 v2.80.1 - 2022-01-26 . 1506
17.74 v2.80.0 - 2022-01-25 . 1506
17.75 v2.79.0 - 2022-01-18 . 1507
17.76 v2.78.0 - 2022-01-14 . 1507
17.77 v2.77.0 - 2022-01-07 . 1508
17.78 v2.76.0 - 2022-01-04 . 1508
17.79 v2.75.0 - 2021-12-16 . 1509
17.80 v2.74.0 - 2021-12-08 . 1510
17.81 v2.73.0 - 2021-12-02 . 1511
17.82 v2.72.0 - 2021-11-23 . 1511
17.83 v2.71.1 - 2021-11-22 . 1512
17.84 v2.71.0 - 2021-11-19 . 1512
17.85 v2.70.1 - 2021-11-08 . 1513
17.86 v2.70.0 - 2021-11-03 . 1513
17.87 v2.69.0 - 2021-11-02 . 1514
17.88 v2.68.0 - 2021-10-29 . 1514
17.89 v2.67.0 - 2021-10-27 . 1514
17.90 v2.66.0 - 2021-10-26 . 1515
17.91 v2.65.0 - 2021-10-16 . 1515
17.92 v2.64.1 - 2021-10-08 . 1516
17.93 v2.64.0 - 2021-10-06 . 1516
17.94 v2.63.0 - 2021-09-29 . 1517

iv

17.95 v2.62.1 - 2021-09-22 . 1517
17.96 v2.62.0 - 2021-09-21 . 1518
17.97 v2.61.0 - 2021-09-17 . 1518
17.98 v2.60.0 - 2021-09-07 . 1519
17.99 v2.59.0 - 2021-09-02 . 1519
17.100v2.58.0 - 2021-08-26 . 1520
17.101v2.57.0 - 2021-08-24 . 1520
17.102v2.56.0 - 2021-08-19 . 1521
17.103v2.55.0 - 2021-08-18 . 1521
17.104v2.54.0 - 2021-08-05 . 1521
17.105v2.53.0 - 2021-08-05 . 1522
17.106v2.52.1 - 2021-07-30 . 1524
17.107v2.52.0 - 2021-07-29 . 1524
17.108v2.51.0 - 2021-07-26 . 1524
17.109v2.50.0 - 2021-07-22 . 1525
17.110v2.49.0 - 2021-07-19 . 1525
17.111v2.48.0 - 2021-07-13 . 1526
17.112v2.47.0 - 2021-07-07 . 1526
17.113v2.46.0 - 2021-07-02 . 1526
17.114v2.45.0 - 2021-06-25 . 1527
17.115v2.44.0 - 2021-06-23 . 1527
17.116v2.43.0 - 2021-06-21 . 1528
17.117v2.42.2 - 2021-06-11 . 1529
17.118v2.42.1 - 2021-06-09 . 1529
17.119v2.42.0 - 2021-06-03 . 1529
17.120v2.41.1 - 2021-05-27 . 1530
17.121v2.41.0 - 2021-05-27 . 1530
17.122v2.40.0 - 2021-05-26 . 1530
17.123v2.39.1 - 2021-05-21 . 1531
17.124v2.39.0 - 2021-05-20 . 1531
17.125v2.38.0 - 2021-05-14 . 1532
17.126v2.37.0 - 2021-05-12 . 1532
17.127v2.36.0 - 2021-05-06 . 1533
17.128v2.35.0 - 2021-04-27 . 1533
17.129v2.34.0 - 2021-04-20 . 1534
17.130v2.33.1 - 2021-04-13 . 1534
17.131v2.33.0 - 2021-04-12 . 1534
17.132v2.32.1 - 2021-04-01 . 1535
17.133v2.32.0 - 2021-03-30 . 1535
17.134v2.31.1 - 2021-03-25 . 1536
17.135v2.31.0 - 2021-03-24 . 1536
17.136v2.30.0 - 2021-03-17 . 1536
17.137v2.29.0 - 2021-03-11 . 1537
17.138v2.28.1 - 2021-03-08 . 1537
17.139v2.28.0 - 2021-02-26 . 1538
17.140v2.27.0 - 2021-02-16 . 1538
17.141v2.26.0 - 2021-02-05 . 1539
17.142v2.25.0 - 2021-02-01 . 1539
17.143v2.24.0 - 2021-01-29 . 1540
17.144v2.23.0 - 2021-01-21 . 1540
17.145v2.22.0 - 2021-01-19 . 1541
17.146v2.21.1 - 2021-01-04 . 1541
17.147v2.21.0 - 2020-12-31 . 1541
17.148v2.20.0 - 2020-12-29 . 1542

v

17.149v2.19.0 - 2020-12-27 . 1542
17.150v2.18.1 - 2020-12-24 . 1542
17.151v2.18.0 - 2020-12-23 . 1543
17.152v2.17.1 - 2020-12-22 . 1543
17.153v2.17.0 - 2020-12-22 . 1543
17.154v2.16.1 - 2020-12-17 . 1544
17.155v2.16.0 - 2020-12-15 . 1544
17.156v2.15.0 - 2020-12-11 . 1545
17.157v2.14.2 - 2020-12-10 . 1545
17.158v2.14.1 - 2020-12-09 . 1545
17.159v2.14.0 - 2020-12-09 . 1546
17.160v2.13.0 - 2020-12-04 . 1546
17.161v2.12.3 - 2020-12-03 . 1546
17.162v2.12.2 - 2020-12-01 . 1546
17.163v2.12.1 - 2020-12-01 . 1547
17.164v2.12.0 - 2020-11-30 . 1547
17.165v2.11.0 - 2020-11-25 . 1547
17.166v2.10.2 - 2020-11-20 . 1548
17.167v2.10.1 - 2020-11-17 . 1548
17.168v2.10.0 - 2020-11-17 . 1548
17.169v2.9.2 - 2020-10-27 . 1549
17.170v2.9.1 - 2020-10-22 . 1550
17.171v2.9.0 - 2020-10-19 . 1550
17.172v2.8.0 - 2020-09-22 . 1552
17.173v2.7.3 - 2020-09-16 . 1552
17.174v2.7.2 - 2020-09-04 . 1553
17.175v2.7.1 - 2020-08-26 . 1553
17.176v2.7.0 - 2020-08-21 . 1554
17.177v2.6.0 - 2020-08-13 . 1555
17.178v2.5.1 - 2020-08-05 . 1555
17.179v2.5.0 - 2020-07-30 . 1556
17.180v2.4.0 - 2020-07-15 . 1557
17.181v2.3.1 - 2020-07-13 . 1557
17.182v2.3.0 - 2020-07-09 . 1557
17.183v2.2.2 - 2020-07-03 . 1558
17.184v2.2.1 - 2020-06-30 . 1558
17.185v2.2.0 - 2020-06-26 . 1559
17.186v2.1.2 - 2020-06-18 . 1559
17.187v2.1.1 - 2020-06-16 . 1559
17.188v2.1.0 - 2020-06-16 . 1560
17.189v2.0.0 - 2020-06-08 . 1560

18 Indices and tables 1561

Python Module Index 1563

Index 1567

vi

Synapse Documentation, Release 2.141.0

Star us on GitHub | Watch Synapse 101

CONTENTS: 1

https://github.com/vertexproject/synapse/
https://v.vtx.lk/new-syn101

Synapse Documentation, Release 2.141.0

2 CONTENTS:

CHAPTER

ONE

INTRODUCTION

Synapse is a versatile central intelligence and analysis system created to support analyst teams in every stage of the
intelligence life cycle.

The Vertex Project designed and developed Synapse to help analysts and algorithms answer complex questions which
require the fusion of large data sets from disparate sources that span multiple disciplines.

Synapse’s data store (known as a Cortex) is organized as a hypergraph. Combined with its structured and extensible
Data Model and the powerful and intuitive Storm query language, Synapse gives analysts unparalleled power and
flexibility to ask and answer any question, even over large and complex data sets.

1.1 Key Features

Extensible Data Model

Synapse includes an extensive (and extensible) Data Model capable of representing real-world objects, relationships,
and events in an intuitive and realistic manner.

Strong Typing

Synapse uses Type Normalization and Type Enforcement to apply meaningful constraints to data to ensure it is well-
formed, preventing “bad data” from cluttering the knowledge store. Type Awareness simplifies use of the Storm query
language and helps analysts discover novel relationships in the data.

Powerful and Intuitive Query Language

Synapse’s Storm query language is a powerful, intuitive “data language” used to interact with data in a Synapse Cortex.
Storm frees analysts from the limitations of “canned” queries or hard-coded data navigation and allows them to ask -
and answer - any analytical question.

Unified Analysis Platform

Synapse’s unified data store provides analysts with a shared view into the same set of data and analytical annotations,
allowing them to better coordinate, collaborate, and peer-review their work.

Designed and Tested in Partnership with Analysts

Synapse is the product of a unique close collaboration between Vertex developers and analysts that leverages innovative
software design and engineering to directly support analyst needs and workflows.

Modular Architecture

Synapse is extensible through Power-Ups (see Power-Up) that add functionality, integrate with third-party data sources,
or connect to external databases.

Record Analytical Assessments

3

https://vertex.link/
https://en.wikipedia.org/wiki/Hypergraph

Synapse Documentation, Release 2.141.0

Synapse allows analysts to annotate data with assessments and observations through a flexible and extensible set of
tags (see Tag). By recording assessments and data in a structured manner, analysts and algorithms can leverage both
in their queries and workflows.

“Git for Analysis”

Synapse supports the use of layers (see Layer) to comprise a View into Synapse’s data store. Analysts can create a Fork
of a given view and use it for testing or research without modifying the underlying production data. Once work in the
fork is complete, changes can be merged into the production view or discarded.

Fine-Grained Access Controls

Synapse provides access controls and detailed permissions that can be applied to users or roles. Permissions can be
specified broadly or to a level of detail that restricts a user to setting a single property on a single form.

Flexible Automation

Synapse allows you to create custom automation for both analytical and administrative tasks, ensuring consistency and
eliminating tedious or time-consuming workflows. Automation (see Storm Reference - Automation) is provided using
event-based triggers (Trigger), scheduled cron jobs, or stored macros.

API Access

Synapse includes multiple well-documented APIs for interacting with the data store and other Synapse components.
(See Synapse HTTP/REST API and Synapse Python API .)

Lightning Fast Performance

Synapse uses LMDB for high-performance key-value indexing and storage, combined with asynchronous, streaming
processing. This means queries start returning results as soon as they are available - so your “time to first node” is
typically milliseconds, regardless of the size of your result set.

Horizontally and Vertically Scalable

A single Synapse Cortex can easily scale vertically to hold tens of billions of nodes. In addition, Synapse supports
high-availability topologies such as mirroring.

4 Chapter 1. Introduction

Synapse Documentation, Release 2.141.0

1.2 What’s Next?

Get Started!
• There are several options for you to deploy and

start using Synapse! See our Getting Started guide
to see which one is right for you.

• Watch Synapse 101

Users
• Synapse User Guide
• Storm Reference
• Changelog
• Ask a question in Slack

DevOps
• Synapse Devops Guide
• Synapse Deployment Guide
• Synapse sizing guide

Developers
• Synapse Developer Guide
• Synapse HTTP/REST API
• Synapse Python API
• Synapse Data Model
• Storm Library Documentation

Admins
• Synapse Admin Guide

Synapse UI (commercial)
• Synapse UI (“Optic”) documentation (includes

guides for users, devops, and developers)

Learn More
• Upcoming Webinars
• Video Library
• Visit The Vertex Project Website

Connect With Us!
• Slack
• Twitter
• LinkedIn
• “Star” us on Github

1.2. What’s Next? 5

https://v.vtx.lk/new-syn101
https://synapse.docs.vertex.link/en/latest/synapse/changelog.html
https://v.vtx.lk/join-slack
https://docsend.com/view/kmbkkq9pjhtjsbmk
https://synapse.docs.vertex.link/projects/optic/en/latest/index.html
https://v.vtx.lk/luma
https://v.vtx.lk/youtube
https://vertex.link/
https://v.vtx.lk/join-slack
https://v.vtx.lk/twitter
https://v.vtx.lk/linkedin
https://github.com/vertexproject/synapse

Synapse Documentation, Release 2.141.0

6 Chapter 1. Introduction

CHAPTER

TWO

GETTING STARTED

So you’ve looked over our Introduction to Synapse and want to try it out! What do you do next?

Open-source Synapse and demo versions of commercial Synapse (Synapse Enterprise) are both available for you to
deploy and test. Both versions include the same key features, including Synapse’s core architecture and functionality,
our extensive data model, and the full capabilities of the Storm query language and libraries.

Open-source versions of Synapse provide a command-line interface (the Storm CLI) to interact with Synapse and its
data. You can download Open-Source Synapse from our Github repository or use Synapse Quickstart to easily load a
basic instance of Synapse.

Demo instances of Synapse Enterprise include Synapse’s web-based UI, also known as Optic.

• If you want to get started with Synapse as quickly as possible, then a Synapse Demo Instance or Synapse Quick-
start are right for you.

• If you’re interested in deploying your own test or production environment, then take a look at Open-Source
Synapse.

We’ll explain each option in more detail below.

2.1 Synapse Quickstart

Synapse Quickstart is a Docker container that includes everything you need to start using Synapse and the Storm CLI
right away. Because Synapse Quickstart is self-contained, you can easily install and launch this basic Synapse instance
on Linux, Windows, or MacOS.

You can find the instructions to download and install Synapse Quickstart here.

Synapse Quickstart is best for:

• Individual users.

• Users who want to test Synapse without the need for a formal deployment.

• Users who are most interested in learning about Synapse’s data and analytical models and the Storm query
langauge (vs. deployment or development tasks).

• Users who want to test or use Synapse with proprietary or sensitive data that must be hosted locally.

Synapse Quickstart is not pre-loaded with any data.

7

https://synapse.docs.vertex.link/en/latest/synapse/userguides/syn_tools_storm.html
https://www.docker.com/resources/what-container/
https://github.com/vertexproject/synapse-quickstart

Synapse Documentation, Release 2.141.0

2.2 Open-Source Synapse

The full open-source version of Synapse is available from our Github repository. Instructions for deploying a test or
production environment are available in the Synapse Deployment Guide.

Open-source Synapse is best for:

• Users who want to work with or try out a full version of Synapse.

• Supporting multiple users and / or networked users, including the (optional) ability to configure roles and per-
missions.

• Developers who want to build on or integrate with Synapse.

• Users who want to test or use Synapse with proprietary or sensitive data that must be hosted locally.

Open-source Synapse is not pre-loaded with any data. However, some of Synapse’s Power-Ups are available as open
source and can help you automate adding data to Synapse:

• Synapse-MISP

• Synapse-MITRE-ATTACK

• Synapse-TOR

2.3 Synapse Demo Instance

Commercial Synapse (Synapse Enterprise) and our commercial demo instances include the web-based Synapse UI
(Optic). Demo instances are cloud-hosted, so there is nothing for you configure or deploy to get started - all you need
is a web browser (we recommend Chrome).

You can request a demo instance from our web site.

Note: Synapse Enterprise can be deployed either on premises or in the cloud. Only the demo instances are cloud-only.

Demo instances provide access to all of Synapse’s Rapid Power-Ups, both open-source and commercial. Any Rapid
Power-Up can be installed in your demo instance (although some Power-Ups may reqiure API keys and / or paid sub-
scriptions from the associated third-party).

Demo instances are updated automatically each week with any new releases of Synapse and Optic. New or updated
Rapid Power-Ups are available upon release and can be updated manually from the Power-Ups Tool.

In addition, demo instances are pre-loaded with sample data and tags (just under 300,000 objects). You can explore
the data on your own, or use our APT1 Scavenger Hunt as a guided way to learn about the Synapse UI and Storm query
language.

A demo instance is best for:

• Users who want to test all of Synapse’s features and capabilities, including those only available with Synapse
Enterprise.

• Supporting multiple users and / or networked users, including the (optional) ability to configure roles and per-
missions.

• Simple deployment - no hardware/software needed (other than a web browser).

• Developers who want insight into developing Power-Ups or Workflows.

• Users and developers who want access to the “latest and greatest” releases and features during testing.

8 Chapter 2. Getting Started

https://github.com/vertexproject/synapse
https://synapse.docs.vertex.link/en/latest/synapse/power_ups.html
https://synapse.docs.vertex.link/projects/rapid-powerups/en/latest/storm-packages/synapse-misp/index.html
https://synapse.docs.vertex.link/projects/rapid-powerups/en/latest/storm-packages/synapse-mitre-attack/index.html
https://synapse.docs.vertex.link/projects/rapid-powerups/en/latest/storm-packages/synapse-tor/index.html
https://vertex.link/request-a-demo
https://synapse.docs.vertex.link/en/latest/synapse/power_ups.html#rapid-power-ups
https://v.vtx.lk/scavenger-hunt

Synapse Documentation, Release 2.141.0

• Users who want to take advantage of all of Synapse’s features (including built-in Help for Synapse’s data model,
Storm auto-complete, etc.) while learning - even if you ultimately deploy an open-source version.

Note: Because demo instances are cloud-based, they are not suitable for hosting any sensitive or proprietary data.

2.3. Synapse Demo Instance 9

Synapse Documentation, Release 2.141.0

10 Chapter 2. Getting Started

CHAPTER

THREE

SYNAPSE USER GUIDE

This User Guide is written by and for Synapse users and is intended to provide a general overview of Synapse concepts
and operations. Technical documentation appropriate for Synapse deployment and development can be found elsewhere
in the Document Index.

The User Guide is a living document and will continue to be updated and expanded as appropriate. The current sections
are:

3.1 Background

The following sections provide background on Synapse and a brief introduction into graphs and hypergraphs.

3.1.1 Background - Why Synapse?

Synapse is a versatile central intelligence and analysis system created to support analyst teams in every stage
of the intelligence life cycle. We designed and developed Synapse to help analysts and algorithms answer complex
questions which require the fusion of large data sets from disparate sources that span multiple disciplines. Analysis is
based on the ability to represent data in a structured model that allows analysts to represent, annotate, and query across
the collected data.

Tip: See Synapse’s Key Features for an overview of Synapse’s advantages!

Perhaps most importantly, Synapse is based on a proven methodology informed by real-world experience.

The Vertex Project did not develop Synapse as a mathematical abstraction or software engineering experiment. Instead,
Synapse grew out of a real-world need to track a complex, diverse, and very large data set: namely, cyber threat data.

Synapse is the successor to the proprietary, directed graph-based analysis platform (Nucleus) used within Mandiant to
produce the APT1 Report.

The developers and analysts behind Synapse (and the earlier Nucleus system) came from a variety of government and
commercial backgrounds but shared a common goal: the desire to record, annotate, and track cyber threat activity
(specifically, nation-state level activity) both reliably and at scale. At the time when government and industry were just
beginning to grasp the scope and scale of the problem, “tracking” this complex activity was largely done using long-
form reports, spreadsheets, or domain knowledge residing in an analyst’s mind. There was no way to effectively store
large amounts of disparate data and associated analytical findings in such a way that relationships among those data
and analytical conclusions were readily apparent or easily discoverable. More importantly, critical analytical decisions
such as attribution were either impossible, or being made based on loose correlation, analysts’ recollection, or generally
accepted “truths” - and not based on concrete, verifiable data whose source and analysis could be traced and either
verified or questioned.

11

../index.html
https://www.mandiant.com/
https://www.mandiant.com/media/9941/download

Synapse Documentation, Release 2.141.0

In contrast, Synapse and its predecessors were designed from the beginning to support the following critical elements:

• The use of a shared analytical workspace to give all analysts access to the same data and assessments in real
time.

• The idea that the analysis captured within the system should “speak for itself”: that is, to the extent possible,
data and analytical findings must be represented in such a way that relationships among data and conclusions
about data should be self-evident.

These features give Synapse the following advantages:

• Synapse allows (and requires) analysts to “show their work” in a reasonably concise manner. Analysts should
not have to refer to long-form reporting (or rely on the unquestioned word of a subject matter expert) to trace a
line of analytical reasoning.

• Synapse allows analysts to better review and validate their findings. Conflicting analysis is highlighted through
the structure of the data itself. Analysis can readily be questioned, reviewed, deconflicted, and ultimately im-
proved.

Synapse’s predecessor was designed to store a broad range of threat data, including:

• Network infrastructure

• Malware and malware behavior

• Host- and network-based incident response data

• Detection signatures and signature hits

• Decoded network packet captures

• Targeting of organizations, individuals, and data

• Threat groups and threat actors

• People and personas

• Newsfeeds and reference materials

Synapse is the evolution of this technology, built on approximately six years of technical and analytical lessons learned
combined with four years (and counting!) of development and real-world use of Synapse itself:

• Synapse’s hypergraph design addresses many of the shortcomings identified with earlier directed graph and
prototype hypergraph systems.

• Because our experience taught us the power of a flexible analysis platform over any large and disparate data set,
Synapse has been designed to be flexible, modular, and adaptable to any knowledge domain - not just threat data.

Many of the real-world examples in this User Guide reference data from the fields of information technology or threat
tracking, given Synapse’s history. But Synapse’s structures, processes, and queries can be applied to other knowledge
domains and data sets as well. The intent of Synapse is that any data that could be represented in a spreadsheet,
database, or graph database can be represented in a Synapse hypergraph using an appropriate data model.

12 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

3.1.2 Background - Graphs and Hypergraphs

To understand the power of Synapse, it helps to have some additional background. Without delving into mathematical
definitions, this section introduces key concepts related to a hypergraph, and contrasts them with those of a graph or
a directed graph. Most people should be familiar with the concept of a graph – even if not in the strict mathematical
sense – or with data that can be visually represented in graph form.

• Graphs

• Directed Graphs

• Analysis with Graphs

• Hypergraphs

• Analysis with a Synapse Hypergraph

• Conclusions

Graphs

A graph is a mathematical structure used to model pairwise relations between objects. Graphs consist of:

• vertices (or nodes) that represent objects, and

• edges that connect two vertices in some type of relationship.

Edges are specifically pairwise or two-dimensional: an edge connects exactly two nodes. Both nodes and edges may
have properties that describe their relevant features. In this sense both nodes and edges can be thought of as representa-
tional objects within the graph: nodes typically represent things (“nouns”) and edges typically represent relationships
(“verbs”).

Examples

Cities and Roads. A simple example of data that can be represented by a graph are cities connected by roads. If
abstracted into graph format, each city would be a vertex or node and a road connecting two cities would be an edge.
Since you can travel from City A to City B or from City B to City A on the same road, the graph is directionless or
undirected.

Social Networks. Another example is social networks based on “connections”, such as Facebook or LinkedIn. In this
case, each person would be a node and the connection between two people would be an edge. Because basic connections
in these networks are mutual (you can’t “friend” someone on Facebook without them agreeing to “friend” you in return),
it can be considered a directionless graph. (This is a simplification, but serves our purpose as an example.)

3.1. Background 13

Synapse Documentation, Release 2.141.0

Directed Graphs

A directed graph is a graph where the edges have a direction associated with them. In other words, the relationship
represented by the edge is one-way. Where an edge in an undirected graph is often represented by a straight line, an
edge in a directed graph is represented by an arrow.

Examples

Cities and Roads. In our cities-and-roads example, the graph would be a directed graph if the roads were all one-way
streets: in this case you can use a particular road to go from City A to City B, but not from City B to City A.

Social Networks. Social networks that support a “follows” relationship (such as Twitter) can be represented as directed
graphs. Each person is still a node, but the “follows” relationship is one way – I can “follow” you, but you don’t have
to follow me. If you choose to follow me, that would be a second, independent one-way edge in the opposite direction.
(Again, this is a simplification but works for a basic illustration.)

Other Examples. Many other types of data can be represented with nodes and directed edges. For example, in infor-
mation security you can represent data and relationships such as:

<malware_file> -- <performed DNS lookup for> --> <domain>

or

<domain> -- <has DNS A record for> --> <ip_address>

In these examples, files, domains and IP addresses are nodes and “performed DNS lookup” or “has DNS A record” (i.e.,
“resolved to”) are edges (relationships). The edges are directed because a malware binary can contain programming to
resolve a domain name, but a domain can’t “perform a lookup” for a malware binary; the relationship (edge) is one-way.

In addition to nodes and edges, some directed graph implementations may allow labeling or tagging of nodes and edges
with additional information. These tags can act as metadata for various purposes, such as to create analytically relevant
groupings.

Many tools exist to visually represent various types of data in a directed graph format; Maltego (which bills itself as a
“. . . tool that renders directed graphs for link analysis”) is a well-known example.

14 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Analysis with Graphs

Directed graphs have become increasingly popular for representing and conducting analysis across large data sets.
Analysis using a directed graph can be highly generalized into three methods for interacting with the data:

• Lifting or retrieving data. Lifting simply asks about and returns specific nodes or edges from the graph. For
example, you can ask about the node representing your Twitter account or the node representing IP address
1.2.3.4. You can also ask about sets of nodes that share some common feature – for example, all of the Twitter
users who signed up for the service in January 2014, or all the PE executables whose compile date is 6/19/1992.

• Filtering the results. Once you lift an initial data set (a node or set of nodes), filtering allows you to refine
your results by including or excluding data based on some criteria. For example, once you have the set of Twitter
users who signed up in January 2014, you may decide to exclude users who list their location as the United States.
Similarly, once you have the set of files compiled on 6/19/1992, you can filter those results to only include files
whose size is greater than 26576 bytes.

• Traversing the graph structure. Once you’ve lifted an initial data set, you can ask about relationships between
your data set and other nodes by pathing (traversing) along the edges (relationships) that connect those nodes. For
example, if you retrieve the node for your Twitter account, you can identify all of the accounts you are following
on Twitter by traversing all of the “follows” edges from your node to the nodes of accounts that you follow.
Similarly, if you retrieve the node for IP address 1.2.3.4, you can retrieve all of the domains that resolve to that
IP by pathing backwards (remember, edges are directional) along the all of the “has DNS A record for” edges
that point from various domains to that IP.

Some graph implementations may include a limited form of pivoting across nodes with like properties. Once you’ve
lifted an initial data set, pivoting allows you to retrieve additional nodes or edges that share some property in common
with your original data. For example, you can retrieve the node representing a PE executable and then “pivot” to any
other PE executables that share the same PE import hash or the same PE compile time. (Note that this description of a
“pivot” is effectively just lifting a set of nodes that share a specific property value, such as an import hash.)

Analysis Limitations

Despite their utility and increased use, directed graphs have certain limitations, most notably the “two-dimensionality”
inherent in the concept of an edge. The fact that an edge can only connect exactly two nodes leads to a variety of
consequences, including:

• Performance. Even though a directed graph edge can only join two nodes, in theory there is no limit to the
total number of edges to or from a given node. These “edge dense” or “heavy” nodes represent a potential
performance limitation when attempting to conduct analysis across a large or complex directed graph. The
computational resources required to traverse large numbers of edges, hold the resulting set of nodes in memory,
and then perform additional operations on the results (filtering, pivoting, additional traversals, etc.) can become
prohibitive.

Example: “edge dense” nodes may include those representing extremely common objects such as IP address
127.0.0.1 or the MD5 hash representing the “empty” (zero-byte) file. Tens of thousands of domains may have
been configured to resolve to 127.0.0.1 at various times. Similarly, hundreds of thousands of individual malware
samples may attempt to write a zero-byte file to disk to test write permissions before infecting a host. Attempting
a query that traverses the edges pointing to or from one of those nodes can return significant amounts of irrelevant
data at best, or be performance-prohibitive at worst.

• Data Representation. Some relationships involve more than two objects, which may require some creativity
to force them into a two-dimensional directed graph model. One side effect may be a multiplication of edges
(because you need to show the relationship of several foos to a single bar), or the arbitrary “clustering” of data
to combine what would normally be two or more nodes into a single node simply so the cluster can be associated
with another node via a single edge.

3.1. Background 15

Synapse Documentation, Release 2.141.0

Example: “genetic parentage” is a multi-dimensional relationship. In modeling genealogy research, you need to
represent two parents and a child. In a directed graph, you can do this by representing “parentage” as a directed
relationship between a single parent (n1) and the child (n2). If each individual parent is a single node, you require
three nodes and two edges to represent the complete relationship among two parents and the child.

Alternately, you could conflate the two parent nodes into as single node (n1) that consisted of the combination
of the two individuals, with an edge between this “pair” (n1) and the child (n2). Here you use only two nodes
and a single edge, but have created a semi-artificial “cluster” node to do so; and you will need to create a unique
“cluster” node for every set of two parents that have a child. In addition, there may be cases where you want
to treat one of the parents as an individual person (node) for other purposes (for example, to note the person’s
date of birth and date of death as properties on that person’s node). Now the same person may be represented in
multiple places in the directed graph, both as an individual node and as one part of multiple “parent clusters”.

The issue may seem only moderately challenging for genealogy but consider a broader field like plant biology.
In an attempt to create a more drought-tolerant or disease-resistant rose bush, botanists may combine genetic
material from multiple “parents” to produce a hybrid offspring.

Hypergraphs

A hypergraph is a generalization of a graph in which an edge can join any number of nodes. Because an edge is no
longer limited to joining exactly two nodes, edges in a hypergraph are often called hyperedges. If a directed graph
where edges join exactly two nodes is two-dimensional, then a hypergraph where a hyperedge can join any number
(n-number) of nodes is n-dimensional.

Looked at another way, they key features of a hypergraph are:

• Everything is a node. Objects (“nouns”) are still nodes in a hypergraph, similar to a directed graph. However,
relationships (“verbs”, commonly represented as edges in a directed graph) are now also represented as nodes.
Where an edge in a directed graph consists of three objects (two nodes and the edge connecting them), in a
hypergraph the same data is represented as a single multi-dimensional node.

• Hyperedges connect arbitrary sets of nodes. An edge in a directed graph connects exactly two nodes (repre-
sented as an arrow connecting two points). A hyperedge can connect an arbitrary number of nodes; this makes
hypergraphs more challenging to visualize in a “flat” form. As in the image above, hyperedges are commonly
represented as a set of disconnected nodes encircled by a boundary; the boundary represents the hyperedge
“joining” the nodes into a related group. Just as there is no limit to the number of edges to or from a node in a
directed graph, a node in a hypergraph can be joined by any number of hyperedges (i.e., be part of any number
of “groups”).

In Synapse, hyperedges are represented by tags, which can be thought of as labels applied to nodes.

16 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Analysis with a Synapse Hypergraph

Synapse is a specific implementation of a hypergraph model. Within Synapse, an individual hypergraph is called a
Cortex. A Cortex is a scalable hypergraph implementation which also includes key/value-based node properties and a
data model which facilitates normalization.

Analysis of data using a Cortex leverages some of the same methods as a directed graph: lifting nodes and filtering
results are still part of the process. However, in the absence of pairwise edges there is no traversal. Instead, all navigation
is based on a pivot. (Technically, selecting a set of nodes from a Cortex based on a tag could be considered “navigating”
along a hyperedge. But mostly everything is a pivot.)

Synapse optimizes this ability to pivot across properties through two key design features: type safety and property
normalization.

• Type safety ensures that all node properties have an explicitly declared Type and these types are enforced across
the data model. For example, where a property value is an IP address, that IP address is declared and stored as an
integer for consistency - as opposed to being stored as an integer in some instances and a dotted-decimal string
in others. (Technically an IPv4 address is stored as an IPV4 (inet:ipv4) type, which can be thought of as an
integer with additional constraints on things like allowable values.)

• Property normalization ensures that properties are represented in a consistent manner for both storage and
display purposes, regardless of the format in which they are received. Synapse takes a “do what I mean” approach
to input where possible, attempting to recognize common formats and normalize them on the user’s behalf. This
allows users to work with data in a way that should feel natural.

For example, a user can enter an IP address as an integer, a hex value, or a dotted decimal string; Synapse will
automatically store the IP as an integer and represent it back to the user as a dotted-decimal string. Similarly, a
user can enter a directory path using either Windows format (C:\foo\bar\baz.exe) or Linux format (/home/
user/foo/bar) and using any combination of upper and lowercase letters; Synapse will automatically enforce
normalization such as the use of forward slashes for directory separators and the use of all lower-case letters for
drive, path, and file names.

These features make pivoting highly effective because they ensure that data of the same type and / or with the same
value is represented consistently throughout the Cortex.

In contrast, lack of consistency can cause analysts to miss relevant correlations - either because the same data is repre-
sented in multiple forms, or because the burden is placed on the analyst to properly normalize their input when entering
data or querying the system. It is significantly harder to identify correlations when the same data is represented or
referenced in multiple ways throughout a system.

Synapse’s optimized use of pivots, combined with the ability to represent relationships (including complex “multi-
dimensional” relationships) as nodes, provides some significant advantages over a directed graph.

Performance

“Asking questions” of a hypergraph may be less computationally intensive than in a directed graph. As a simple
example, let’s say you want to know all of the IP addresses that a domain has resolved to.

Directed Graph

In a directed graph, “resolves to” (“has a DNS A record for”) is a relationship (edge). To answer the question of which
IP addresses a domain has resolved to, you need to:

• lift the node for the domain; and

• traverse an arbitrary number of “resolves to” edges to reach the set of nodes represented by the endpoints of all
those edges (i.e., the IP addresses).

3.1. Background 17

Synapse Documentation, Release 2.141.0

For a handful of edges (a small number of IPs) this traversal is not very difficult; but if the domain has resolved to
hundreds or thousands of IP addresses, traversing all of those edges becomes more computationally intensive.

Looked at another way (and depending on the specific implementation of the directed graph), an edge traversal in a
directed graph may be the computational equivalent of two pivots:

Assume a generic representation of an edge as a tuple comprised of two nodes and the specific edge relationship ({n1,
edge,n2}). In our example, a “resolves to” edge would be represented by a domain (n1), the relationship “resolves
to” (the edge tuple), and the IP address (n2). In this case, traversing the “resolves to” edges is really two pivots:

• lift the node (n1) for the domain;

• pivot from that node to all of the “resolves to” edges where the domain is the n1 of the “resolves to” tuple;

• pivot from the n2 (IP address) of each “resolves to” tuple to the node representing that n2.

Synapse Hypergraph (Cortex)

In a Cortex, a single node represents the “resolves to” (“has DNS A record for”) relationship, with the domain and IP
address involved in the relationship both stored as properties on that node. To determine the IP addresses a domain has
resolved to, you simply need to:

• lift the “DNS A record” nodes where the domain is a property;

• pivot from the IP address property of those nodes to the nodes representing the IP addresses themselves.

Alternately, you could simply view the IP addresses as properties on the lifted “DNS A record” nodes themselves
without performing the pivot at all.

No Loss of Granularity

The pairwise nature of edges in a directed graph may result in a loss of granularity for complex relationships that
realistically involve three or more elements. In order to “fit” those relationships into a directed graph model, one option
is to arbitrarily combine some of those elements into a single node in order to force the relationship to be pairwise.
This results in some loss of detail as elements that should rightly be treated as independent components are artificially
conflated. Synapse’s ability to represent multidimensional relationships as a single node removes this limitation.

Discovery

“Asking questions of” or exploring a directed graph has some inherent limitations. First, since relationships are repre-
sented by edges, an analyst is limited to asking about (traversing) known relationships (that is, edges that are already
defined in the model). This may limit the discovery of new or unexpected patterns or correlations.

Similarly, while directed graphs may support some navigation via pivots, analysts are often limited to pivoting via the
same property and value on the same node type. For example, I can ask about all PE file nodes that have the same
PE import hash value as a given PE file node because I am asking about the same value for the same property across
the same node type. In a directed graph it is harder to ask about a value that may be present in different properties on
different node types. Synapse’s use of type enforcement and property normalization removes this restriction.

For example, let’s say you have a malicious domain and you determine the set of IP addresses that the domain has
resolved to. You want to know if any of those IP addresses have also been used to send spear phishing email messages.
Speaking generically, there is no readily apparent relationship between an IP address as the resolution of a domain, and
an IP address as the source of an email message, other than the fact that they are both IP addresses. This lack of an
apparent relationship (edge) implies that you can’t get your answer using a few simple traversals.

How you answer this question will vary depending on the specific implementation of the directed graph. However, if
you assume an implementation with the following defined edges:

<domain> -- <has DNS A record> --> <IP address>

18 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

and

<IP address> -- <was source IP for> --> <RFC822 file>

Then you may be able to obtain an answer through a multi-part query similar to the following:

1. Start from (lift) the domain.

2. Traverse the set of “has DNS A record” edges from the domain to obtain the set of IP addresses the domain has
resolved to.

3. From those IP addresses, traverse any “was source IP for” edges to the set of RFC822 messages (if any) associated
with the IPs.

4. From the RFC822 messages, traverse back along the “was source IP for” edges to get the subset of IP addresses
that were used to send email messages.

If the above sounds messy and a bit redundant, to an extent it is. There may be slightly more “elegant” solutions given
alternate directed graph implementations (for example, if the source IP of an email message was stored as a property
on the email message node as opposed to being associated with the message via an edge). But it still requires some
creative navigation amongst nodes, edges, and properties to find the answer.

In a Synapse hypergraph, the IP addresses can appear as properties on both the set of “domain has DNS A record” nodes
(as the “resolved to” property, for example) and the set of “spear phishing email nodes” (as the “source IP” property,
for example). You can simply pivot between the two node types based on the value of those properties to find your
answer. Not only is the navigation itself significantly easier, but you are able to readily ask questions across disparate
or arbitrary data types (DNS records and email messages), as long as they share a particular typed value in common –
even if that value represents a different property in each case.

Conclusions

Though hypergraphs may be less familiar than traditional graphs, they offer distinct performance and analytical ad-
vantages over directed graph models, addressing historical shortcomings in representation, navigation, and analytical
capability. Synapse, as a specific implementation of a hypergraph model, incorporates additional design features (type
safety, property normalization, and a robust query language, in addition to storage and indexing optimization for per-
formance) that further enhance its power and flexibility as an analysis tool.

3.2 Data Model

Synapse includes a number of built in types and forms which are available for use out of the box. Some of these built
in concepts are discussed in the following sections.

See the Synapse Data Model technical reference for descriptions of individual types and forms, as well as the data
model deprecation policy.

3.2.1 Data Model - Terminology

Note: This section describes the Synapse data model from a conceptual user perspective. See the Synapse Data Model
technical documentation for information that may be more useful for developers.

Synapse is a distributed key-value hypergraph analysis framework. That is, Synapse is a particular implementation
of a Hypergraph model; an instance of a Synapse hypergraph is called a Cortex. In our brief discussion of graphs and
hypergraphs, we pointed out some fundamental concepts related to Synapse’s implementation:

3.2. Data Model 19

Synapse Documentation, Release 2.141.0

• (Almost) everything is a node. Most of Synapse’s data model consists of nodes; there are a limited number
of pairwise (“two-dimensional”) edges in Synapse. We use “lightweight” (light) edges to support specific use
cases, but mostly everything is a node.

• Tags act as hyperedges. In a directed graph, an edge connects exactly two nodes. In Synapse, tags are labels that
can be applied to an arbitrary number of nodes. These tags effectively act as an n-dimensional edge (a hyperedge)
that connects or groups any number of nodes.

• (Almost) every key navigation of the graph is a pivot. Because Synapse’s data model primarily consists of
nodes, you generally don’t explore Synapse’s data by traversing edges. Instead, you pivot from the properties of
one set of nodes to the properties of another set of nodes (though you also traverse the occasional light edge).

To build on those concepts, you need to understand the basic elements of the Synapse data model. The fundamental
terms and objects you should be familiar with are:

• Type

• Form

• Node

• Property

• Tag

• Lightweight (Light) Edge

Tip: Synapse uses a query language called Storm (see Storm Reference - Introduction) to interact with data and tags.
Storm allows a user to lift, filter, pivot, traverse, and modify data based on node properties, values, tags, and light edges.
Understanding these model elements will improve your ability to use Storm and interact with Synapse data.

Type

A type is the definition of a data element within the Synapse data model. A type describes what the element is and
enforces how it should look, including how it should be normalized, if necessary, for both storage (including indexing)
and representation (display).

The Synapse data model includes standard types such as integers and strings, as well as types defined within Synapse
such as globally unique identifiers (guid), date/time values (time), time intervals (ival), and tags (syn:tag).

Knowledge domain-specific objects may also be specialized types. For example, an IPv4 address (inet:ipv4) is its
own type. An IPv4 address is stored as an integer, but the type has additional constraints (i.e., to ensure that IPv4s
created in Synapse only use integer values that fall within the allowable IPv4 address space). These constraints may be
defined by a constructor (ctor) that specifies how a property of that type can be created (constructed).

For the most part, users do not interact with types directly. Types are primarily used “behind the scenes” to define and
support the Synapse data model. From a user perspective:

• Strong typing means every element in Synapse has a type. Forms define the objects that can be represented in
Synapse. Forms have properties (primary and secondary) and every property is defined as a particular type.

• Type enforcement helps prevent “bad data” from getting into Synapse. Synapse has “rules” for how properties
of a given type can be created. This prevents simple errors like entering an email address value where you need
an FQDN, but also ensures (to the extent possible) that values “make sense” for their type (e.g., that a URL looks
reasonably like a URL).

• Type awareness makes it easier to navigate data within Synapse. Synapse and Storm are “model aware” and
know which types are used for each property in the model. This simplifies exploring or pivoting across data
because Synapse and Storm automatically recognize relationships where different forms share properties with

20 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

the same type and same value. This makes navigation easier in general, but also allows Synapse to show you
relationships you may not know exist.

Type-Specific Behavior

Synapse includes various type-specific optimizations to improve performance and functionality. Some of these are
“back end” optimizations (i.e., for indexing and storage) while some are more “front end” in terms of how users can
interact with data of certain types via Storm. See Storm Reference - Type-Specific Storm Behavior for additional detail.

Viewing or Working with Types

Types are defined within the Synapse source code. An auto-generated dictionary of Types (Base Types and Types) can
be found in the online documentation.

Types can also be viewed within Synapse. A full list of current types can be displayed with the following Storm
command:

storm> syn:type

You can view detail about a specific type as follows:

storm> syn:type=inet:fqdn
syn:type=inet:fqdn

:ctor = synapse.models.inet.Fqdn
:doc = A Fully Qualified Domain Name (FQDN).

See Storm Reference - Model Introspection for additional detail on working with model elements within Storm.

Form

A form is the definition of an object in the Synapse data model. A form acts as a “template” that tells you how to
create a particular object (Node). While the concepts of form and node are closely related, it is useful to maintain
the distinction between the template for creating an object (a form) and an instance of a particular object (a node).
inet:fqdn is a form; inet:fqdn = woot.com is a node.

A form consists of the following:

• A primary property. The primary property must be unique across all possible instances of that form. In addition,
the primary property must have a specific type. In many cases, a form will be its own type - for example, the
inet:fqdn form has a type of inet:fqdn. While all forms are types (that is, must be defined as a type), not all
types have associated forms.

• Optional secondary properties. Secondary properties must also have a type. Properties may have additional
constraints, such as:

– Whether the property is read-only once set.

– Any normalization (outside of type-specific normalization) that should occur for the property (such as
converting a string to all lowercase, stripping any whitespace, etc.).

Secondary properties are form-specific and are explicitly defined for each form. Synapse also supports a set of universal
secondary properties (universal properties) that are valid for all forms.

Property discusses these concepts in greater detail.

Forms comprise the essential “structure” of the data that analysts work with. Understanding the forms Synapse uses to
represent various objects or concepts is key to working with Synapse data.

3.2. Data Model 21

https://github.com/vertexproject/synapse

Synapse Documentation, Release 2.141.0

Form Namespace

The Synapse data model uses a structured namespace for forms. Each form name consists of at least two namespace
elements separated by a colon (:). For example:

• file:bytes

• inet:email

• inet:fqdn

• ou:org

The first element in the namespace represents a rough “category” for the form (i.e., inet for Internet-related objects).
The Synapse data model is meant to be extensible. The ability to group portions of the data model into related categories
makes a large model easier to manage, and also allows Synapse users to focus on those portions of the model most
relevant to them.

The second and / or subsequent elements in the form name define the specific “subcategory” or “thing” within the
form’s primary category (e.g., inet:fqdn represents a fully qualified domain name (FQDN) within the “Internet”
(inet) category, and inet:dns:query represents a query using the DNS protocol within the “Internet” category).

Properties have a namespace that extends the form namespace (form names are also primary properties). See Property
and Property Namespace below for additional detail.

Viewing or Working with Forms

Like types, forms are defined within the Synapse source code. An auto-generated dictionary of Forms can be found in
the online documentation.

Forms can also be viewed within Synapse. A full list of current forms can be displayed with the following Storm
command:

storm> syn:form

You can view detail about a specific form as follows (form only):

storm> syn:form=inet:fqdn
syn:form=inet:fqdn

:doc = A Fully Qualified Domain Name (FQDN).
:runt = false
:type = inet:fqdn

Or a form with its secondary properties:

storm> syn:prop:form=inet:fqdn
syn:prop=inet:fqdn

:doc = A Fully Qualified Domain Name (FQDN).
:extmodel = false
:form = inet:fqdn
:type = inet:fqdn
:univ = false

syn:prop=inet:fqdn.seen
:base = .seen
:doc = The time interval for first/last observation of the node.
:extmodel = false
:form = inet:fqdn

(continues on next page)

22 Chapter 3. Synapse User Guide

https://github.com/vertexproject/synapse

Synapse Documentation, Release 2.141.0

(continued from previous page)

:relname = .seen
:ro = false
:type = ival
:univ = false

syn:prop=inet:fqdn.created
:base = .created
:doc = The time the node was created in the cortex.
:extmodel = false
:form = inet:fqdn
:relname = .created
:ro = true
:type = time
:univ = false

syn:prop=inet:fqdn:domain
:base = domain
:doc = The parent domain for the FQDN.
:extmodel = false
:form = inet:fqdn
:relname = domain
:ro = true
:type = inet:fqdn
:univ = false

syn:prop=inet:fqdn:host
:base = host
:doc = The host part of the FQDN.
:extmodel = false
:form = inet:fqdn
:relname = host
:ro = true
:type = str
:univ = false

syn:prop=inet:fqdn:issuffix
:base = issuffix
:doc = True if the FQDN is considered a suffix.
:extmodel = false
:form = inet:fqdn
:relname = issuffix
:ro = false
:type = bool
:univ = false

syn:prop=inet:fqdn:iszone
:base = iszone
:doc = True if the FQDN is considered a zone.
:extmodel = false
:form = inet:fqdn
:relname = iszone
:ro = false
:type = bool
:univ = false

syn:prop=inet:fqdn:zone
:base = zone
:doc = The zone level parent for this FQDN.

(continues on next page)

3.2. Data Model 23

Synapse Documentation, Release 2.141.0

(continued from previous page)

:extmodel = false
:form = inet:fqdn
:relname = zone
:ro = false
:type = inet:fqdn
:univ = false

See Storm Reference - Model Introspection for additional detail on working with model elements within Storm.

Node

A node is a unique object within Synapse. Nodes represent standard objects (“nouns”) such as IP addresses, files,
people, conferences, or airplanes. They can also represent more abstract objects such as industries, risks, attacks, or
goals. However, in Synapse nodes can also represent relationships (“verbs”) because many things that would be edges
in a directed graph are nodes in a Synapse hypergraph. You can think of a node generically as a “thing” - most “things”
you want to model within Synapse are nodes.

Every node consists of the following:

• A primary property, represented by the Form of the node plus its value (<form> = <valu>). All primary
properties must be unique for a given form. For example, the primary property of the node for the FQDN
woot.com is inet:fqdn = woot.com. The uniqueness of the <form> = <valu> pair ensures there can be
only one node in Synapse that represents the domain woot.com. Because this unique pair “defines” the node,
the comma-separated form / value combination (<form>,<valu>) is also known as the node’s Ndef (short for
“node definition”).

• One or more universal properties. As the name implies, universal properties are applicable to all nodes.

• Optional secondary properties. Similar to primary properties, secondary properties consist of a property name
(of a specific type) and the property’s associated value for the node (<prop> = <pval>). Secondary properties
are specific to a given kind of node and provide additional detail about that particular node.

• Optional tags. A Tag acts as a label with a particular meaning that can be applied to a node to provide context.
Tags are discussed in greater detail below.

Viewing or Working with Nodes

To view or work with nodes, your instance of Synapse must contain nodes (data). Users interact with data in Synapse
using the Storm query language (Storm Reference - Introduction).

Node Example

The Storm query below lifts and displays the node for the domain www.google.com:

storm> inet:fqdn=www.google.com
inet:fqdn=www.google.com

:domain = google.com
:host = www
:issuffix = false
:iszone = false
:zone = google.com

(continues on next page)

24 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

.created = 2023/07/12 15:15:57.140
#rep.moz.500

In the output above:

• inet:fqdn = www.google.com is the primary property (<form> = <valu>).

• .created is a universal property showing when the node was added to the Cortex.

• :domain, :host, etc. are form-specific secondary properties with their associated values (<prop> =
<pval>). For readability, secondary properties are displayed as relative properties within the namespace of
the form’s primary property (e.g., :iszone as opposed to inet:fqdn:iszone).

• #rep.moz.500 is a tag indicating that www.google.com has been reported by web analytics company Moz as
one of their top 500 most popular websites.

Property

Properties are the individual elements that define a Form or (with their specific values) that comprise a Node.

Primary Property

Every Form consists of (at minimum) a primary property that is defined as a specific Type. Every Node consists of
(at minimum) a primary property (its form) plus the node-specific value of the primary property (<form> = <valu>).
When defining a form to represent a particular “thing”, the primary property must be defined so that its value is unique
across all possible instances of that “thing”.

The concept of a unique primary property is straightforward for forms that represent simple objects. For example, the
“thing” that makes an IP address unique is the IP address itself: inet:ipv4 = 1.2.3.4. Defining a primary property
for more complex nodes (such as those representing a Relationship or an Event) can be more challenging; these forms
are often GUID forms.

Because a primary property uniquely defines a node, it cannot be modified once the node is created. To “change” a
node’s primary property you must delete and re-create the node.

Secondary Property

A Form can include optional secondary properties that provide additional detail about the form. Each secondary
property must be defined as an explicit Type. A Node may include secondary properties with their associated values
(<prop> = <pval>).

Secondary properties may further describe a given form and its associated nodes. For example, the Autonomous System
(AS) that an IP address belongs to (inet:ipv4:asn) does not “define” the IP (and in fact an IP’s associated AS can
change), but it provides further detail about the IP address.

Many secondary properties are derived from a node’s primary property (derived properties) and are automatically set
when the node is created. For example, creating the node file:path='c:\windows\system32\cmd.exe'will auto-
matically set the properties :base = cmd.exe, :base:ext = exe, and :dir = c:/windows/system32. Because
a node’s primary property cannot be changed once set, any secondary properties derived from the primary property
also cannot be changed (i.e., are read-only). Non-derived secondary properties can be set, modified, or deleted.

3.2. Data Model 25

https://moz.com/top500

Synapse Documentation, Release 2.141.0

Universal Property

Most secondary properties are form-specific and provide additional detail about particular objects within the data model.
However, Synapse defines a subset of secondary properties as universal properties that are applicable to all forms.
Universal properties include:

• .created, which is set for all nodes and whose value is the date / time that the node was created within that
instance of Synapse.

• .seen, which is optional for all nodes and whose value is a time interval (minimum or “first seen” and maximum
or “last seen”) during which the node was observed, existed, or was valid.

Property Namespace

Properties extend the Form Namespace. Forms (form names) are primary properties, and consist of at least two
elements separated by a colon (:). Secondary properties exist within the namespace of their primary property (form).
Secondary properties are preceded by a colon (:) and use the colon to separate additional namespace elements,
if needed. (Universal properties are preceded by a period (.) to distinguish them from form-specific secondary
properties.) For example, the secondary (both universal and form-specific) properties of inet:fqdn include:

• inet:fqdn.created (universal property)

• inet:fqdn:zone (secondary property)

Secondary properties also make up a relative namespace (set of relative properties) with respect to their primary
property (form). The Storm query language allows (or in some cases, requires) you to reference a secondary property
using its relative property name (i.e., :zone vs. inet:fqdn:zone).

Relative properties are also used for display purposes within Synapse for visual clarity (see the Node Example above).

Secondary properties may have their own “namespace”. Both primary and secondary properties use colons to separate
elements of the property name. However, not all separators represent property “boundaries”; some act more as “sub-
namespace” separators. For example file:bytes is a primary property / form. A file:bytes form may include
secondary properties such as :mime:pe:imphash and :mime:pe:complied. In this case :mime and :mime:pe are
not secondary properties, but sub-namespaces for individual MIME data types and the “PE executable” data type
specifically.

Viewing or Working with Properties

Properties are used to describe forms and are defined within the Synapse source code with their respective Forms.
Universal properties are not defined “per-form” but have their own section (Universal Properties) in the online technical
documentation.

Properties can also be viewed within Synapse. A full list of current properties can be displayed with the following
Storm command:

storm> syn:prop

You can view individual primary or secondary properties as follows:

Primary property:

storm> syn:prop=inet:fqdn
syn:prop=inet:fqdn

:doc = A Fully Qualified Domain Name (FQDN).
:extmodel = false
:form = inet:fqdn

(continues on next page)

26 Chapter 3. Synapse User Guide

https://github.com/vertexproject/synapse

Synapse Documentation, Release 2.141.0

(continued from previous page)

:type = inet:fqdn
:univ = false

Secondary property:

storm> syn:prop=inet:fqdn:domain
syn:prop=inet:fqdn:domain

:base = domain
:doc = The parent domain for the FQDN.
:extmodel = false
:form = inet:fqdn
:relname = domain
:ro = true
:type = inet:fqdn
:univ = false

See Storm Reference - Model Introspection for additional detail on working with model elements within Storm.

Tag

Tags are annotations applied to nodes. They can be thought of as labels that provide context to the data represented by
the node.

Broadly speaking, within Synapse:

• Nodes represent things: objects, relationships, or events. In other words, nodes typically represent observables
that are verifiable and largely unchanging.

• Tags typically represent assessments: observations that could change if the data or the analysis of the data
changes.

For example:

• An Internet domain is an “observable thing” - a domain exists, was registered through a domain registrar, and
can be created as a node such as inet:fqdn = woot.com.

• Whether a domain has been sinkholed is an assessment. A researcher may need to evaluate data related to that
domain (such as domain registration records or current and past IP resolutions) to decide whether the domain
appears to be sinkholed. This assessment can be represented by applying a tag such as #cno.infra.dns.sink.
holed to the inet:fqdn = woot.com node.

Tags are unique within the Synapse model because tags are both nodes and labels applied to nodes. The tag #cno.
infra.dns.sink.holed can be applied to another node; but the tag itself also exists as the node syn:tag = cno.
infra.dns.sink.holed. This difference is illustrated in the example below.

Tip: Synapse does not have any pre-defined tags. Users are free to create tags that are meaningful for their analysis.
See Analytical Model - Tag Concepts for more detail.

3.2. Data Model 27

Synapse Documentation, Release 2.141.0

Viewing or Working with Tags

As tags are nodes (data) within the Synapse, they can be viewed and operated upon just like other nodes. Users typically
interact with data using the Storm query language (Storm Reference - Introduction).

Tag Example

The Storm query below displays the node for the tag cno.infra.dns.sink.holed:

storm> syn:tag=cno.infra.dns.sink.holed
syn:tag=cno.infra.dns.sink.holed

:base = holed
:depth = 4
:doc = A domain (zone) that has been sinkholed.
:title = Sinkholed domain
:up = cno.infra.dns.sink
.created = 2023/07/12 15:15:57.327

The Storm query below displays the tag #cno.infra.dns.sink.holed applied to the node inet:fqdn =
hugesoft.org:

storm> inet:fqdn=hugesoft.org
inet:fqdn=hugesoft.org

:domain = org
:host = hugesoft
:issuffix = false
:iszone = true
:zone = hugesoft.org
.created = 2023/07/12 15:15:57.350
#cno.infra.dns.sink.holed

Note that a tag applied to a node uses the “hashtag” symbol (#). This is a visual cue to distinguish tags on a node
from the node’s secondary properties. The symbol is also used within the Storm syntax to reference a tag as opposed
to a syn:tag node.

Lightweight (Light) Edge

Lightweight (light) edges are used in Synapse to provide greater flexibility and improved performance when represent-
ing certain types of relationships. A light edge is similar to an edge in a traditional directed graph; each light edge links
exactly two nodes (n1 and n2), and consists of:

• A direction. Light edge relationships only “make sense” in one direction, given the forms that they link. For
example, an article can reference an indicator such as an MD5 hash, but an MD5 hash does not “reference” an
article.

• A “verb” that represents the relationship (e.g., refs for “references” in the example above).

Light edges do not have properties, and you cannot apply tags to light edges - hence the “light” in light edge.

Light edges are used for performance and flexibility in certain use cases, such as:

• The only information you need to record about a relationship is that it exists (that is, no properties are required
to further “describe” the relationship). An example is meta:ruleset -(contains)> meta:rule.

28 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

• The objects (nodes) involved in the relationship may vary. That is, either the n1 or n2 node (or both) may be
any kind of node, depending on the context of the relationship. Examples include meta:source -(seen)> *
(where a data source may “see”, observe, or provide data on any n2 object) and * -(refs)> * (where a variety
of n1 nodes may “reference” or contain a reference to any n2 node).

Synapse’s data model does not include any pre-defined light edges. In addition, Synapse does not enforce or restrict
the objects (nodes) that can be linked with light edges. Users are free to create / define their own light edges and use
them as they see fit.

Tip: Light edges should not be used as a convenience to short-circuit proper data modeling using forms. Using forms
and nodes (combined with Synapse’s strong typing, type enforcement, and type awareness) are key to the powerful
analysis and performance capabilities of a Synapse hypergraph.

Viewing or Working with Light Edges

Light edges are not “objects” in Synapse in the same way as forms, types, or properties. (In fact, light edges do not
exist until you create them.) The Storm model commands (specifically the model.edge.* commands) include options
for working with light edges that exist in a given Cortex.

Internal to The Vertex Project, we have defined a number of light edges for our own use. Light edges may also be
created by Vertex-provided components such as Power-Ups (see Power-Up). Any light edges used by Power-Ups are
described in the associated Power-Up documentation.

Light edge conventions used by The Vertex Project are documented within the Synapse source code. Light edges that
can be used with a given form are also documented with the Forms in the Synapse Data Model technical reference.
These conventions are not currently enforced and meant as recommendations.

3.2.2 Data Model - Object Categories

Recall that within the Synapse data model:

• Nodes commonly represent “things”: observables that can be verified and are unlikely to change over time.

• Tags commonly represent “assessments”: judgements or evaluations that may change given new data or revised
analysis.

Within Synapse, forms are the building blocks of our analysis system. Forms are used to create nodes, which are the
objects used to represent (model) knowledge and answer analytical questions about the captured information. This
means that the proper design of forms is essential.

In Synapse’s hypergraph-based model (where almost everything is a node) forms take on additional significance.
Specifically, forms must be used to represent more than just “nouns” and must be used to capture several general
categories of objects. These categories can be broadly defined as entities, relationships, and events.

• Entity

• Relationship

• Event

• Instance Knowledge vs. Fused Knowledge

This section discusses the informal “categories” of objects that can be modeled in Synapse. See Data Model - Form
Categories for a discussion of some of the common “categories” of forms used to represent these objects.

3.2. Data Model 29

https://github.com/vertexproject/synapse

Synapse Documentation, Release 2.141.0

Entity

Forms can represent atomic entities, whether real or abstract. For cyber threat data, entities include domains, IP
addresses (IPv4 or IPv6), hosts (computers / devices), usernames, passwords, accounts, files, social media posts, and
so on. Other entities include people, organizations, and countries. Any entity can be defined by a form and represented
by a node. Entities are often (though not always) represented as a Simple Form. The term “simple” means that these
forms can be represented as a primary property with a single value that uniquely defines the entity.

Example

An email address (inet:email) is a basic example of an entity-type node / simple form:

storm> inet:email=kilkys@yandex.ru
inet:email=kilkys@yandex.ru

:fqdn = yandex.ru
:user = kilkys
.created = 2023/07/12 15:14:43.044

Relationship

Forms can represent specific relationships among entities. In a directed graph a relationship is represented as a directed
edge joining exactly two nodes; but in a hypergraph the entire relationship is represented by a single node (form), and
the relationship may consist of any number of elements – not just two.

For cyber threat data, relationships include a domain resolving to an IP address or a malware dropper containing or
extracting another file. Other types of relationships include a company being a subsidiary of another business, an
employee working for a company, or a person being a member of a group.

Relationship-type forms are often represented as a Composite (Comp) Form. Comp forms have a primary property
consisting of a comma-separated list of two or more values that uniquely define the relationship.

Example

A DNS A record (inet:dns:a) is a basic example of a relationship-type form / comp form:

storm> inet:dns:a=(google.com,172.217.9.142)
inet:dns:a=('google.com', '172.217.9.142')

:fqdn = google.com
:ipv4 = 172.217.9.142
.created = 2023/07/12 15:14:43.118

Event

Forms can represent individual time-based occurrences. The term event implies that an entity existed or a relationship
occurred at a specific point in time. Events represent the combination of a form and a timestamp for when the form
was observed.

Examples of event forms include an individual login to an account, a specific DNS query, or a domain registration
(whois) record captured on a specific date.

The structure of an event form may vary depending on the specific event being modeled. For “simple” events that can
be uniquely represented by the combination of a timestamp and an entity, the form may be a Composite (Comp) Form
that happens to include a timestamp as one element of the form’s value. For exaple, an inet:whois:rec form consists
of a whois record and the time that record was observed or retrieved.

For more “multi-dimensional” events involving several components, the form may be a Guid Form with the timestamp
as one of several secondary properties on the form (i.e., as in an inet:dns:request form).

30 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Example

A specific, individual DNS query (inet:dns:request) is an example of an event-type form:

storm> inet:dns:request=00000a17dbe261d10ce6ed514872bd37
inet:dns:request=00000a17dbe261d10ce6ed514872bd37

:query = ('tcp://199.68.196.162', 'download.applemusic.itemdb.com', '1')
:query:name = download.applemusic.itemdb.com
:query:name:fqdn = download.applemusic.itemdb.com
:query:type = 1
:reply:code = 0
:server = tcp://178.62.239.55
:time = 2018/09/30 16:01:27.506
.created = 2023/07/12 15:14:43.182

Instance Knowledge vs. Fused Knowledge

For certain types of data, event forms and relationship forms can encode similar information but represent the difference
between instance knowledge and fused knowledge.

• Event forms represent the specific point-in-time existence of an entity or occurrence of a relationship - an instance
of that knowledge.

• Relationship forms can leverage the universal .seen property to set “first observed” and “last observed” times
during which an entity existed or a relationship was true. This date range can be viewed as fused knowledge -
knowledge that summarizes or “fuses” the data from many individual observations (instances) of the node over
time.

Instance knowledge and fused knowledge represent differences in data granularity. Whether to create an event form or
a relationship form (or both) depends on how much detail is required for your analysis. This consideration often applies
to relationships that change over time, particularly those that may change frequently.

Example

DNS A records are a good example of these differences. The IP address that a domain resolves to may change in-
frequently (e.g., for a website hosted on a stable server) or may change quite often (e.g., where the IP is dynamically
assigned or where load balancing is used).

One option to represent and track DNS A records is to create individual timestamped forms (events) every time you
check the domain’s current resolution (e.g., inet:dns:request and inet:dns:answer forms). This represents a
very high degree of granularity as the nodes will record the exact time a domain resolved to a given IP, potentially
down to the millisecond. The nodes can also capture additional detail such as the querying client, the responding
server, the response code, and so on. However, the number of such nodes could readily reach into the hundreds of
millions, if not billions, if you create nodes for every resolution of every domain you want to track.

On the other hand, it may be sufficient to know that a domain resolved to an IP address during a given period of
time – a “first observed” and “last observed” (.seen) range. A single inet:dns:a node can be created to show that
domain woot.com resolved to IP address 1.2.3.4, where the earliest observed resolution was 2014/08/06 at 13:56
and the most recently observed resolution was 2018/05/29 at 7:32. These timestamps can be extended (earlier or later)
if additional data changes our observation boundaries.

This second approach loses some granularity:

• The domain is not guaranteed to have resolved to that IP continuously throughout the entire time period.

• Given only this node, we don’t know exactly when the domain resolved to the IP address during that time period,
except for the earliest and most recent observations.

3.2. Data Model 31

Synapse Documentation, Release 2.141.0

However, this fused knowledge may be sufficient for our needs and may be preferable to creating thousands of nodes
for individual DNS resolutions.

Of course, a hybrid approach is also possible, where most DNS A record data is recorded in fused inet:dns:a nodes
but it is also possible to record high-resolution, point-in-time inet:dns:request and inet:dns:answer nodes when
needed.

3.2.3 Data Model - Form Categories

Synapse forms can be broadly grouped into conceptual categories based on the object a form is meant to represent -
an Entity, a Relationship, or an Event.

Synapse forms can also be broadly grouped based on how their primary properties (<form> = <valu>) are formed.

Recall that <form> = <valu> must be unique for all forms of a given type. In other words, the <valu> must be
defined so that it uniquely identifies any given node of that form; it represents that form’s “essence” or “thinghood” in
a way that allows the unambiguous deconfliction of all possible nodes of that form.

Conceptually speaking, the general categories of forms in Synapse are:

• Simple Form

• Composite (Comp) Form

• Guid Form

• Generic Form

• Digraph (Edge) Form

This list represents a conceptual framework for understanding the Synapse data model.

Simple Form

A simple form refers to a form whose primary property is a single typed <valu>. They are commonly used to represent
an Entity, and so tend to be the most readily understood from a modeling perspective.

Examples

• IP addresses. An IP address (IPv4 or IPv6) must be unique within its address space and can be defined by
the address itself: inet:ipv4 = 1.2.3.4. Secondary properties include the associated Autonomous System
number and whether the IP belongs to a specialized or reserved group (e.g., private, multicast, etc.).

• Email addresses. An email address must be unique in order to route email to the correct account / individual and
can be defined by the address itself: inet:email = joe.smith@company.com. Secondary properties include
the domain where the account receives mail and the username for the account.

Composite (Comp) Form

A composite (comp) form is one where the primary property is a comma-separated list of two or more typed <valu>
elements. While no single element makes the form unique, a combination of elements can uniquely define a given node
of that form. Comp forms are often (though not universally) used to represent a Relationship.

Examples

• Fused DNS A records. A DNS A record can be uniquely defined by the combination of the domain (inet:fqdn)
and the IP address (inet:ipv4) in the A record. Synapse’s inet:dns:a form represents the knowledge that a
given domain resolved to a specific IP at some time, or within a time window (fused knowledge): inet:dns:a
= (woot.com, 1.2.3.4). The time window is captured by the universal .seen property.

32 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

• Web-based accounts. An account at an online service (such as Github or Twitter) can be uniquely defined by
the combination of the domain where the service is hosted (inet:fqdn) and the unique user ID (inet:user)
used to identify the account: inet:web:acct = (twitter.com, vtxproject).

• Social networks. Many online services allow users to establish relationships with other users of that service.
These relationships may be one-way (you can follow someone on Twitter) or two-way (you can mutually connect
with someone on LinkedIn). A given one-way social network relationship (“Alice follows Bob”) can be uniquely
defined by the two users (inet:web:acct) involved in the relationship: inet:web:follows = ((twitter.
com,alice), (twitter.com,bob)). (A two-way relationship can be defined by two one-way relationships.)

Note that each of the elements in the inet:web:follows comp form is itself a comp form (inet:web:acct).

Guid Form

A guid (Globally Unique Identifier) form is uniquely defined by a machine-generated 128-bit number. Guids account
for cases where it is impossible to uniquely define a thing based on a property or set of properties. Guids are also useful
for cases where the amount of data available to create a particular object (node) may vary greatly (i.e., not all properties
/ details are available from all data sources).

A guid form can be considered a special case of a Simple Form where the typed <valu> is of type <guid>.

Note: Guid forms can be arbitrary (generated ad-hoc by Synapse) or predictable / deconflictable (generated based on
a specific set of inputs). See the guid section of Storm Reference - Type-Specific Storm Behavior for a more detailed
discussion of this concept.

Examples

• People. Synapse uses a guid as the primary property for a person (ps:person) node. There is no single property
or set of properties that uniquely and unambiguously define a person. A person’s full name, date of birth, or place
of birth (or the combination of all three) are not guaranteed to be fully unique across an entire population. Iden-
tification numbers (such as Social Security or National ID numbers) are country-specific, and not all countries
require each citizen to have an ID number.

• Host execution / sandbox data. The ability to model detailed behavior of a process executing on a host (or in
a sandbox) is important for disciplines such as incident response and malware analysis. Modeling this data is
challenging because of the number of effects that execution may have on a system (files read, written, or deleted;
network activity initiated). Even if we focus on a specific effect (“a process wrote a new file to disk”), there are
still a number of details that may define a “unique instance” of “process writes file”: the specific host where the
process ran, the program that wrote the file to disk, the process that launched the program, the time the execution
occurred, the file that was written, the file’s path, and so on. While all of these elements could be used to create
a comp form, in the “real world” not all of this data may be available in all cases, making a guid a better option
for forms such as it:exec:file:write.

Generic Form

The Synapse data model includes a number of “generic” forms that can be used to represent metadata and / or arbitrary
data.

In an ideal world, all data represented in Synapse would be accurately modeled using an appropriate form. However,
designing a new form for the data model may require extended discussion, subject matter expertise, and testing against
“real world” data - not to mention time to implement model changes. In addition, sometimes data needs to be added
to a Cortex for reference or analysis purposes where the data simply does not have sufficient detail to be represented
accurately, even if an appropriate form existed.

3.2. Data Model 33

Synapse Documentation, Release 2.141.0

The use of generic forms is not ideal - the representation of “generic” data may be lossy, which may impact effective
analysis. But generic forms may be necessary for adding arbitrary to Synapse, either because an appropriate model
element does not yet exist but the data is needed now; or because there is no other effective way to represent the data.

These generic forms exist in two primary parts of the data model: meta:* forms and graph:* forms. Examples
include:

• meta:seen nodes, used to represent a data source used to ingest data into Synapse. Data sources may include
sensors or third-party connectors such as Synapse Power-Ups. A meta:source is linked to the data it provides
via a -(seen)> light edge.

• meta:rule nodes, used to represent a generic detection rule for cases where a more specific form (such as
it:av:sig or it:app:yara:rule) is not available.

Some generic forms are “edge forms” (see Digraph (Edge) Form, below) used to represent relationships between arbi-
trary forms.

Digraph (Edge) Form

Note: The use of light edges (see Lightweight (Light) Edge) is preferred over edge forms (which predate light edges)
where possible.

A digraph form (“edge” form) is a specialized Composite (Comp) Form whose primary property value consists of two
<form>,<valu> pairs (“node definitions”, or ndefs). An edge form is a specialized relationship form that can be used
to link two arbitrary forms in a generic relationship.

Edge forms have not been officially deprecated. However, edge forms (used to create nodes) incur some additional
performance overhead vs. light edges (particularly for large numbers of edge nodes). In addition, there are some
nuances to working with edge nodes using Storm (see Pivot to Digraph (Edge) Nodes, for example) that can make
navigating Synapse data more complex. For these reasons, light edges are now preferred.

3.3 Analytical Model

The analytical model that is used in Synapse is driven primarily by the use of tags to make assessments. This is
discussed in the following sections:

3.3.1 Analytical Model - Tag Concepts

Recall from Data Model - Terminology that two of the key components within Synapse are nodes and tags. Broadly
speaking:

• Nodes represent “things”: observables that can be verified and are unlikely to change over time.

• Tags represent assessments: conclusions that may change in light of new data.

The types, forms, and properties that define nodes make up the Synapse data model. The tags applied to nodes can be
thought of as the analytical model used to record assessments about Synapse data. This section provides additional
background on tags before a more in-depth discussion on their use:

• Tags as Nodes

• Tags as Labels

34 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Tags as Nodes

Tags are used to record analytical observations, but tags are also nodes within Synapse. Every tag is a syn:tag node.

A tag node’s primary property (<form> = <valu>) is the name of the tag; so the tag foo.bar has the primary property
syn:tag = foo.bar. The dotted notation can be used to construct tag hierarchies / tag trees to organize tags and
represent varying levels of specificity (see below).

This example shows the node for the tag syn:tag = rep.feye.apt1:

storm> syn:tag=rep.feye.apt1
syn:tag=rep.feye.apt1

:base = apt1
:depth = 2
:doc = Indicator or activity FireEye calls (or associates with) APT1.
:title = APT1 (FireEye)
:up = rep.feye
.created = 2023/07/12 15:14:57.343

The syn:tag node has the following properties:

• .created, which is a universal property showing when the node was added to a Cortex.

• :title and :doc, which store concise and more detailed definitions for the tag. Having definitions on tag nodes
helps ensure tags are applied (and interpreted) correctly by Synapse analysts and other users.

The :depth, :up, and :base secondary properties help to lift and pivot across tag nodes:

• :depth is the “location” of the tag in a given tag tree, with the count starting from zero. A single-element tag
(syn:tag = rep) has :depth = 0, while a three-element tag (syn:tag = rep.feye.apt1) has :depth =
2.

• :base is the final (rightmost) element in the tag tree.

• :up is the tag one “level” up in the tag tree.

Additional information on viewing and pivoting across tags can be found in Storm Reference - Model Introspection.
For details on the Storm query language, see Storm Reference - Introduction.

Tags (syn:tag forms) have a number of type-specific behaviors within Synapse with respect to how they are indexed,
created, and manipulated via Storm. Most important for practical purposes is that syn:tag nodes are created “on the
fly” when a tag is applied to another node. You do not need to create the syn:tag node before the tag can be used;
applying the tag will cause the creation of the appropriate syn:tag node (or nodes).

See the syn:tag section within Storm Reference - Type-Specific Storm Behavior for additional detail on tags and tag
behavior in Synapse and Storm.

Tags as Labels

Synapse does not include any pre-populated tags. A good set of tags (that is, a good analytical model) should be
structured to best answer relevant questions for the analysis being performed. Organizations using Synapse have the
flexibility to create a tag structure that is most useful to them.

A tag’s value (syn:tag = <valu>) is simply a string and can be set to any user-defined alphanumeric value. The
strings are designed to use a dotted naming convention, with the period (.) used as a separator to delimit individual
elements of a tag if necessary. This dotted notation means it is possible to create tag hierarchies or tag trees. These trees
can be used to “categorize” different types of tags (with each top-level or root tag representing a particular category).
The structure can also support increasingly detailed or specific observations. For example, the top level tag foo can

3.3. Analytical Model 35

Synapse Documentation, Release 2.141.0

represent a broad set of observations, while foo.bar and foo.baz could represent subsets of foo or more specific
observations related to foo.

Within a tag tree, specific terms are used for the tags and their components:

• Leaf tag: The full tag.

• Root tag: The top / leftmost element in a given tag.

• Base tag: The bottom / rightmost element in a given tag.

For the tag foo.bar.baz:

• foo.bar.baz is the leaf tag (leaf).

• foo is the root tag (root).

• baz is the base tag (base).

When you apply a tag to a node, all of the tags above that tag in the tag tree are automatically applied as well (and the
appropriate syn:tag nodes are created if they do not exist). That is, when you apply the tag foo.bar.baz to a node,
Synapse automatically applies the tags foo.bar and foo as well.

When you delete (remove) a tag from a node, the tag and all tags below it in the tag tree are deleted. If you delete the
tag foo.bar.baz from a node, the tags foo.bar and foo will remain. However, if you delete the tag foo from a node
with the tag foo.bar.baz, then all three tags (foo, foo.bar, and foo.bar.baz) are deleted.

Deleting a tag from a node does not delete the syn:tag node for the tag itself.

See the syn:tag section within Storm Reference - Type-Specific Storm Behavior for additional detail on tags and tag
behavior within Synapse and Storm.

See Analytical Model - Tags as Analysis and Design Concepts - Analytical Model for additional considerations for tag
use and creating tag trees.

Tag Timestamps

Applying a tag to a node has a particular meaning; it is an assessment about that node with respect to the current data
in Synapse. Many assessments are binary in the sense that they are either always true or always false; in these cases,
the presence or absence of a tag can accurately reflect the current assessment, based on available data.

There are other cases where an assessment may be true only for a period of time or within a specified time frame.
Internet infrastructure is one example; you can annotate whether an IP address is part of an anonymization service
such as TOR using tags such as cno.infra.anon.tor. But this information can change over time if the TOR service
is removed or the IP address is reallocated to a different customer. The relevant tag can be applied while the IP is a
TOR node and removed when that is no longer true; but completely removing the tag causes us to lose the historical
knowledge that the IP was a TOR node at one time.

Synapse supports the optional use of timestamps (technically, time intervals) with any tag applied to a node. The
timestamps can represent “when” (first known / last known times) the assessment represented by the tag was relevant
for the node to which the tag is applied. (These timestamps are analogous to the .seen universal property used to
represent the first and last known times the data represented by a node was true / real / in existence.)

Applying a timestamp to a tag affects that specific tag only. The timestamps are not automatically propagated to tags
higher up (or lower down) in the tag tree. This is because the specific tag to which the timestamps are applied is the
most relevant with respect to those timestamps; tags elsewhere in the tree may have different shades of meaning and
the timestamps may not apply to those tags in the same way (or at all).

Like .seen properties, tag timestamps represent a time range and not necessarily specific instances (other than the
“first known” and “last known” observations). This means that the assessment represented by the tag is not guaranteed
to have been true throughout the entire date range (though depending on the meaning of the tag, that may in fact be the

36 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

case). That said, the use of timestamps allows much greater granularity in recording observations in cases where the
timing of an assessment (“when” something was true or applicable) is relevant.

Example - Tor Exit Nodes

Many web sites provide lists of TOR nodes or allow users to query IP addresses to determine whether they are TOR
nodes. These sites may provide “first seen” and “last seen” dates for when the IP was identified as part of the TOR
network. These dates can be used as timestamps for “when” the tag #cno.infra.anon.tor was applicable to that IP
address.

If we have a data source that verifies that IP address 197.231.221.211 was a TOR node between December 19, 2017
and February 15, 2019, we can apply the tag #cno.infra.anon.tor with the appropriate time range as follows:

storm> inet:ipv4 = 197.231.221.211 [+#cno.infra.anon.tor = (2017/12/19, 2019/02/15)]
inet:ipv4=197.231.221.211

:asn = 37560
:dns:rev = exit1.ipredator.se
:latlong = 8.4219,-9.7478
:loc = lr.lo.voinjama
:type = unicast
.created = 2023/07/12 15:14:57.431
#cno.infra.anon.tor = (2017/12/19 00:00:00.000, 2019/02/15 00:00:00.000)

Tag Display

When a tag is used as a label applied to a node, the data is displayed differently than it is for a syn:tag node. This
example shows a node with multiple tags applied:

storm> inet:fqdn = aunewsonline.com
inet:fqdn=aunewsonline.com

:domain = com
:host = aunewsonline
:issuffix = false
:iszone = true
:zone = aunewsonline.com
.created = 2023/07/12 15:14:57.487
#cno.threat.t15.own = (2009/09/08 00:00:00.000, 2013/09/08 00:00:00.000)
#rep.feye.apt1
#rep.symantec.commentcrew

Tags on a node are listed alphabetically following the node’s properties. Tags are prefixed with the pound / hashtag (#
) symbol to indicate they are tags.

By default, Storm displays only the leaf tags applied to a node (e.g., #rep.feye.apt1 but not #rep.feye or #rep)
and any tags with Tag Timestamps or Tag Properties (even if they are not leaf tags).

Any timestamp values are displayed following an equals sign after the tag. In the example above, the tag #cno.threat.
t15.own indicates the domain is associated with (“owned” by) internally-tracked Threat Cluster 15 (T15). The dates
reflect our assessment that T15 “owned” / controlled the FQDN between September 8, 2009 and September 8, 2013.

3.3. Analytical Model 37

Synapse Documentation, Release 2.141.0

Tag Properties

Synapse supports the creation and use of custom tag properties that can provide additional context to a given tag or
set of tags. Tag properties must be created programmatically before they can be used. Once a tag property is created,
it can be applied (appended) to any tag.

Note: Synapse still supports the use of tag properties, but their use is now discouraged in most cases in favor of
extended model properties. A discussion of extended model elements (forms, properties, etc.) is beyond the scope of
this document. Storm libraries for working with extended model elements can be found here: $lib.model.ext.

3.3.2 Analytical Model - Tags as Analysis

Analysis consists of collecting and evaluating data and drawing conclusions based on the data available to you. As-
suming data is collected and modeled accurately within Synapse, the data itself - nodes and their properties - should
not change. But as you collect more data or re-evaluate existing data, your assessment of that data - often encoded in
tags - may change over time. Nodes and properties are largely stable; tags are meant to be flexible and readily modified
if needed.

Every knowledge domain has its own focus and set of analytical questions it attempts to answer. The “answers” to some
of these questions can be recorded in Synapse as tags applied to relevant nodes. These tags provide context to the data
in Synapse.

The Synapse data model for tags is simple - it consists of the single syn:tag form. The appropriate use of tags to
annotate data is more nuanced. You can think of tags - their structure and application - as an analytical model that
complements and extends the power of the data model.

This analytical model:

• Is largely independent from the data model. You do not need to write code to implement new tags or design
a tag structure; you simply need to create the appropriate syn:tag nodes.

• Is specific to an analytical discipline. Tags used for cyber threat analysis may be very different from tags used
to track financial fraud.

• Is tightly coupled with the specific questions you want to answer. The tags you create and apply should be
driven by your particular analysis goals.

– The tags should annotate assessments and conclusions that are important to your analysis.

– The tags should allow you to ask meaningful questions of your data.

The effective use of Synapse to conduct analysis depends on:

• The data model: how you represent the data you care about using Synapse’s forms, properties, and types.

• The analytical model: how you design and use a set of tags to annotate data, provide context, and answer the
questions that matter to you.

38 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Tag Examples

The sections below provide a few examples of the kinds of context - observations and assessments - that you can
represent with tags. Recording these assessments in Synapse alongside the relevant data provides immediate context
to that data, and allows you to query both data (nodes) and assessments (tags).

These examples are simply meant to illustrate a few possible “real-world” applications for tags. There is no “right” or
“wrong” set of tags (although there are “better” and “worse” design decisions that may impact your ability to answer
questions efficiently).

See Design Concepts - Analytical Model for considerations in designing tags and tag trees.

See Design Concepts - General for considerations on whether to model something as a form, a property, a tag, or a tag
associated with a node.

See Tags Associated with Forms for Synapse’s ability to link tags to nodes to more easily cross-reference tags with data
model elements that those tags represent.

Domain-Specific Assessments

The purpose of analysis is to draw relevant conclusions from the data at hand. The conclusions will vary based on the
knowledge domain, but could include big-picture assessments such as “The increase in widget manufacturing due to
lower production costs has had a negative effect on the demand for gizmos” or “The threat group Vicious Wombat is
working on behalf of the Derpistan government”.

Those large assessments can be made based on numerous smaller assessments (tags) which are themselves based on
the observables (nodes) in Synapse. To build up to those larger assessments, you must start by recording those smaller
assessments as tags on nodes.

The folowing examples from cyber threat intelligence illustrate some of the assessments that can be recorded using
tags.

Tip: The specific tags referenced below are based on The Vertex Project’s tag trees and use our conventions. Use
what works for you!

Threat Clusters

A common practice in threat intelligence involves deciding not only whether an indicator (such as a file, domain, or
IP address) is malicious, but whether it should be associated with a threat cluster. That is, can an indicator be linked
to other indicators (e.g., from the same indcident or intrusion) to create a known set of related indicators and activity.
“Threat clusters” may be built up and expanded over time to represent a broader set of activity presumed to be carried
out by some (generally unknown) set of malicious actors (a “threat group”).

You can tag nodes to indicate that the node is associated with a particular threat cluster. For example:

cno.threat.<cluster>

Where cno is a top-level tag for assessments related to Computer Network Operations (CNO), threat is a sub-tag
used for threat clusters / threat groups, and <cluster> is the “name” of the particular threat cluster based on your
organization’s conventions (names, numbers, etc.)

3.3. Analytical Model 39

Synapse Documentation, Release 2.141.0

Tactics, Techniques, and Procedures (TTPs)

The methodologies (sometimes known as tactics, techniques, and procedures or TTPs) that a threat group uses to
conduct activity provide insight into the group and its operations. Knowledge of past TTPs may help predict future
actions or operations. Sets of TTPs observed together may provide a “fingerprint” of a group’s activity. General
knowledge of TTPs in current use can help organizations more effectively protect and defend their assets.

“TTP” can cover a broad range of observed activity, from whether a group uses zero-day exploits to the specific packer
used to obfuscate a piece of malware. When a node represents an instance of the use of a TTP, it may be useful to tag
the node with the TTP in question.

For example, you have an email message (RFC822 file) that you assess is a phishing attack. You can tag the relevant
node or nodes (such as the file:bytes of the message and / or the inet:email:message node representing the
message metadata) with that TTP:

cno.ttp.phish.message

Where cno is our top-level tag, ttp represents the TTP sub-tree, phish represents assessments related to phishing, and
message indicates the node(s) represent the phishing email (e.g., as opposed to an attachment or URL representing the
phishing payload, or the sending email address or IP representing the source).

Third-Party Assertions

Some third-party data sources provide both data and tags or labels associated with that data. For example, Shodan may
provide data on an IPv4 address (such as which ports were open as of the last Shodan scan) as well as tags such as
self-signed or vpn. Similarly, VirusTotal may provide metadata and multiscanner data for files along with tags such
as peexe or invalid-signature.

In addition, many commercial organizations conduct their own threat tracking and analysis and publish their research.
This type of research commonly includes “indicators of compromise” or IOCs - hashes, domains, IP addresses, and
so on indicative of the reported activity. These reports do not necessarily include tags provided by the reporting or-
ganization. But the report may make it clear that the reporter associates the IOCs with particular malware families,
“campaigns”, or threat groups.

Shodan’s label indicating that an IPv4 address hosted a VPN and ESET’s reporting that a SHA1 hash is associated with
the X-Agent malware family are both assertions. These assertions are valuable data and can be useful to your analysis.

That said, you may not have the means to verify these assertions yourself. To accept the assertion at face value means
you need to trust the third-party in question. “Trust” may include things like understanding the source of the data;
knowing their general reputation (i.e., within your analysis community); or building trust over time as you determine
the reliabilty and accuracy of their reporting.

Your own assertions are presumably “more trustworthy” based on direct access to your internal data and processes.
Assertions made by others may be open to question or validation, so it can be useful to record these third-party as-
sessments separately. This allows you to retain the context of what “other people” say while keeping those (potentially
lower-confidence) assertions separate from your own.

You can use tags to annotate “other people’s analysis” by tagging relevant nodes with what “other people” say about
them:

• rep.eset.sednit: ESET says this SHA1 hash is associated with Sednit

• rep.shodan.vpn: Shodan says this IPv4 hosts a VPN

• rep.vt.peexe: VirusTotal says this file is a PE executable

Where rep is a top-level tag for third-party reporting, the second tag element (e.g., eset) is the name of the reporting
organization, and the third tag element is the information the third party is reporting.

40 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Domain-Relevant Observations

Within a particular knowledge domain, it may be useful to record observations that support your analysis process in
some way. In other words, the observations are relevant to your analysis, but do not represent the specific output or
objective of your analysis.

In cyber threat intelligence, a primary goal is to track malicious activity and maintain awareness of the current threat
landscape, often in terms of malware, threat groups, and techniques / TTPs. Part of this tracking includes noting
infrastructure (such as IP addresses, netblocks, or domains) used in malicious activity.

Identifying network infrastructure as TOR nodes, anonymous VPN endpoints, or sinkhole IPs is not a primary goal of
threat intelligence, but knowing this information can be useful and help prevent analysts from mis-identifying threat
actor infrastructure.

You can use tags to annotate identified infrastructure (such as inet:ipv4 nodes) of interest:

• cno.infra.anon.tor: The IPv4 is a TOR exit node

• cno.infra.anon.vpn: The IPv4 is an anonymous VPN exit point

• cno.infra.dns.sink.hole: The IPv4 is used to resolve sinkholed FQDNs

Once again cno is our top-level tag for Computer Network Operations, infra indicates the “infrastructure” sub-tree,
the third element indicates the kind of infrastructure (anon for anonymous, dns for DNS, etc.), and so on.

Tags as Hypotheses

Another way to look at tags is as hypotheses. If a tag represents the outcome of an assessment, then every tag can be
seen as having an underlying question - a hypothesis - it is attempting to answer. Deciding to apply the tag is equivalent
to deciding that the underlying hypothesis is true.

Making these assessments typically involves the judgment of a human analyst; so evaluating and tagging data within
Synapse is one of an analyst’s primary tasks.

Hypotheses may be simple or complex; tags typically represent relatively simple concepts that are used collectively to
support (or refute) more complex theories. Because the concept of encoding analytical conclusions within a system
like Synapse may be unfamiliar, a few examples may be helpful.

Example 1

The question “can this newly identified FQDN be associated with any known threat cluster?” can be thought of as n
number of individual hypotheses based on the number of known threat clusters:

• Hypothesis 1: This domain is associated with Threat Cluster 1.

• Hypothesis 2: This domain is associated with Threat Cluster 2.

• . . .

• Hypothesis n: This domain is associated with Threat Cluster n.

If an analyst determines that the domain is associated with Threat Cluster 46, placing a Threat Cluster 46 tag (e.g., cno.
threat.t46) on that FQDN effectively means that the hypothesis “This domain is associated with Threat Cluster 46”
has been assessed to be true (and by implication, that all competing hypotheses are false).

Example 2

Deciding whether a domain is meant to imitate (masquerade as) a legitimate domain for malicious purposes can also
be thought of as a set of hypotheses.

“Masquerading” is a threat actor technique (TTP) designed to influence a targeted user to trust something enough to
perform an action. A domain that “looks like” a valid FQDN or an email address that “looks like” a trusted sender may

3.3. Analytical Model 41

Synapse Documentation, Release 2.141.0

encourage the victim to click a link or open an attachment. In threat intelligence, the focus is on threat actor TTPs, so
the TTPs we’re interested in are (by definition) malicious.

Let’s say an analyst comes across the suspicious domain akcdndata.com. To decide whether this is an example of a
masquerade, the analyst needs to decide:

• Is the FQDN akcdndata.com associated with known malicious activity?

• Does the FQDN akcdndata.com imitate a legitimate company, site, or service?

A number of possibilities (hypotheses) exist, such as:

• Hypothesis 1: The domain is NOT malicious.

• Hypothesis 2: The domain IS malicious, but is not meant to imitate anything.

• Hypothesis 3: The domain IS malicious, and is meant to imitate a legitimate resource.

The tag (or tags) the analyst decides to apply depend on which hypotheses they can prove or disprove (assert are true,
or not).

Deciding on Hypothesis 1 vs. Hypothesis 2 may involve things like reviewing domain registration data, associated
DNS infrastructure, or seeing if the FQDN shows up in public reporting of malicious activity.

If Hypothesis 1 is true, we would not tag the FQDN. If Hypothesis 2 is true, we can simply assert that the FQDN is
malicious (with a tag such as cno.mal).

If Hypothesis 2 is true, deciding on Hypothesis 3 may be trickier. Does the FQDN “look like” anything familiar? It
may “look like” Akamai CDN (content delivery network) but that’s a bit of a stretch. . .maybe it is just a coincidence?
Do we have any context around how the FQDN was used maliciously that might indicate that the threat actors wanted
to mislead victims into thinking the FQDN was associated with Akamai?

If we have enough evidence to support Hypothesis 3, we can apply a TTP tag such as cno.ttp.se.masq (cno as our
top-level tag, ttp for our TTP sub-tree, se for social engineering TTPs, and masq for masquerade).

Individual Hypotheses to Broader Reasoning

The hypotheses represented by the tags in the examples above are fairly narrow in scope - an indicator is associated
with a threat cluster (cno.threat.t42), a domain was designed to mislead users by imitating a legitimate web site or
service (cno.ttp.se.masq). With Synapse, you can leverage these more focused hypotheses to answer broader, more
complex questions.

A newly identified zero-day exploit has been circulating in the wild and is in use by multiple threat groups. The
associated vulnerability has been assigned CVE-2021-9999 (a number we made up). The exploit is delivered via a
malicious XLSX file sent as an email (phishing) attachment.

You believe that “Threat Group 12 was the first group to use the zero day associated with CVE-2021-9999”. To prove
or disprove this hypothesis, you could query Synapse for all files (file:bytes nodes) that:

• exploit CVE-2021-9999 (i.e., have a tag such as rep.vt.cve_2021_9999), and

• are associated with a known threat cluster or threat group (i.e., are tagged cno.threat.<cluster>)

If you have data for any associated phishing messages, you can pivot from the malicious XLSX files to their associated
emails (inet:email:message:attachment -> inet:email:message) and look for the phishing message with
the oldest date. By identifying the threat group associated with the earliest known email, you can determine whether
the zero-day was first used by Threat Group 12 or some other group.

You are able to take tags associated with simple assessments (“this file exploits CVE-2021-9999” or “this file is asso-
ciated with Threat Cluster 12”) and combine nodes (files / file:bytes), properties (inet:email:message:date),
and tags to answer a more complex question. That’s the power of Synapse!

42 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Note: This example is simplified; you would of course perform additional research besides what is described above
(such as searching for additional samples that exploit the vulnerability and any associated phishing attempts, attributing
identified samples that are not yet associated with a Threat Cluster, etc.)

Assuming you have completed your research and the data is in Synapse and tagged appropriately, you can easily answer
the above question using the Storm query language using a query such as the following:

file:bytes#rep.vt.cve_2021_9999 +#cno.threat -> inet:email:message:attachment
-> inet:email:message | min :date | -> # +syn:tag^=cno.threat

3.4 Design

There is a balance between using data in the graph, and using tags for analysis. The following sections discuss that in
additional detail.

3.4.1 Design Concepts - Data Model

Synapse’s ability to support powerful and effective analysis is due in large part to Synapse’s data model. The forms,
properties, and types used in Synapse are the result of our direct experience using Synapse for a broad range of analysis
(along with lively and occasionally heated internal discussion and design sessions with our developers and analysts!).

A full discussion of the considerations (and complexities) of a well-designed data model are beyond the scope of this
documentation. However, there are several principles that we rely on that help shed light on our approach:

• The model is an abstraction. A data model (and associated tags / analytical model) provides structure for data
and assertions that allow us to quickly view data, relationships, and context, and to ask questions of the data in
powerful ways. That said, analysis often involves subtle distinctions and qualifications - which is why analysis
is often provided in long-form reports where natural language can convey uncertainties or caveats related to
conclusions.

Capturing data and analysis in a structured model abstracts away some of these subtleties - in some cases, trading
them for consistent representation and programmatic access. A data model can never fully capture the richness
and detail of a long-form report. But a good data model can sufficiently capture critical relationships and analyti-
cal findings so that an analyst only rarely needs to refer to external reporting or original sourcing for clarification.

• The model should be self-evident. While the model is an abstraction, it should not be abstracted to the point
where the data and analysis in the model cannot stand on their own. While at times supplemental external reports
or notes may be helpful, they should not be required to understand the information represented in Synapse. The
model should convey the maximum amount of information possible: objects, relationships, and annotations
should be unambiguous, well-defined, and clearly understood. An analyst with subject matter knowledge but no
prior exposure to a given set of findings should be able to look at that information in Synapse and understand the
associated analysis.

• Take the broadest perspective possible. Many data models suffer from being “overly-fitted”. They are designed
for a specific analytical discipline and the objects and relationships they contain reflect a narrow use case. We
believe that Synapse’s data model should represent objects and relationships as they are in the real world - not
just “as they are used” in a particular limited context. For example, an “organization” (ou:org) in Synapse can
represent any set of people with a common goal - from a company, to a government, to a threat group, to a
department, to your kid’s soccer team. This makes the model both more flexible and more broadly applicable so
we can easily incorporate new data sets / sources and additional types of analysis.

• The model should be driven by real-world need and relevance. Any model should be designed around the
analytical questions that it needs to be answer. Some models are designed as academic abstractions (“how would

3.4. Design 43

Synapse Documentation, Release 2.141.0

we classify all possible exploitable vulnerabilities in software?”) without consideration for the practical questions
that the data is intended to address. Are some exploits theoretically possible, but never yet observed in the real
world? Are some distinctions too fine-grained (or not fine-grained enough) for your analysis needs? Subject
matter experts should have significant input into the type of data modeled, what analysis needs to be performed
on the data, and how the data should be represented.

The best models evolve in a cycle of forethought combined with real-world stress-testing. Creating a model
with little or no forethought can lead to a narrowly-focused and fragmented data model – in the face of some
immediate need, analysts or developers may focus on the trees while missing the big picture of the forest. That
said, even the best model planned in advance will fall short when faced with the inconsistencies of real-world
data. Experience has shown us that there are always edge cases that cannot be anticipated. The most effective
models are typically planned up front, then tested against real-world data and refined before being placed fully
into production.

• Test the basics and build from there. No data model is set in stone – in fact, a good model will expand and evolve
with analytical need. That said, changes to the model may require revising or updating existing model elements
and associated analysis, and some changes are easier to make than others. When introducing a new element to
the model, consider carefully what the “essence” of that element is - what makes it unique and therefore how
it should “look” within the model - and design a form to capture that. It is perfectly fine (and even preferable!)
to start with a limited or “stub” form while you test it against real data. It is relatively easy to make additive
changes to the data model (introduce new forms or new secondary properties). It is more challenging to modify
the model once you have encoded data into nodes, because those modifications may require migrating existing
data to account for your changes.

3.4.2 Design Concepts - Analytical Model

The tag hierarchies (tag trees) that you use to annotate data represent your analytical model. Your ability to conduct
meaningful analysis depends in part on whether your analytical model is well-designed to meet your needs. The tags
and tag trees that work best for you may be different from those that work well for another organization.

A full discussion of tag tree design is beyond the scope of this document. However, the following points should be
taken into consideration in designing your tags and associated analytical model:

• Tag Trees

• Tag Definitions

• Tag Management

• Level of Detail

• Flexibility

• Precision

• Consistency of Use

Tag Trees

The structure of a tag tree is an important consideration because the order of tag elements can affect the types of analysis
questions you can most easily answer. Because tag trees generally move from “less specific” to “more specific”, the
structure you choose affects how (or whether) you can narrow your focus effectively. The structure you create should
allow you to increase specificity in a way that is meaningful to the questions you’re trying to answer.

For example, let’s say you are storing copies of articles from various news feeds within Synapse (i.e., as media:news
nodes). You want to use tags to annotate the subject matter of the articles. Two possible options would be:

Tag Tree #1

44 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

<country>.<topic>.<subtopic>.<subtopic>:
us.economics.trade.gdp
us.economics.trade.deficit
us.economics.banking.lending
us.economics.banking.regulatory
us.politics.elections.national
france.politics.elections.national
france.politics.elections.local
china.economics.banking.lending

Tag Tree #2

<topic>.<subtopic>.<subtopic>.<country>:
economics.trade.gdp.us
economics.trade.deficit.us
economics.banking.lending.us
economics.banking.regulatory.us
politics.elections.national.us
politics.elections.national.france
politics.elections.local.france
economics.banking.lending.china

Using Synapse’s Storm (Storm Reference - Introduction) query language, it is easy to ask about nodes that have a
specific tag (#my.tag). With Storm you can also ask about tag nodes (syn:tag = my.tag) in various ways based on
their properties, and then pivot from the syn:tag nodes to nodes that have those tags applied. These latter queries are
not difficult but may be less intuitive in practice.

The example questions below illustrate how your choice of tag structure makes it easier (or harder) to ask certain
questions.

Example 1: “Show me all the articles related to France”:

• Tag Tree #1:

storm> #france

• Tag Tree #2:

storm> syn:tag:base=france -> *

Example 2: “Show me all the articles on banking within the US”:

• Tag Tree #1:

storm> #us.economics.banking

• Tag Tree #2:

storm> syn:tag^=economics.banking +syn:tag:base=us -> *

Example #3: “Show me all the articles about global trade”:

• Tag Tree #1:

storm> syn:tag:base=trade -> *

• Tag Tree #2:

storm> #economics.trade

Example #4: “Show me all the articles about national elections”:

3.4. Design 45

Synapse Documentation, Release 2.141.0

• Tag Tree #1:

storm> syn:tag:base=national -> *

• Tag Tree #2:

storm> #politics.elections.national

Tag Tree #1 makes it easier to ask the first two questions; Tag Tree #2 makes it easier to ask the last two questions. As
you can see, choosing one tag tree over the other doesn’t prevent you from asking certain questions. If you choose the
first tree, you can still ask about global trade issues. But asking that question (creating an appropriate Storm query)
is a bit move involved. Creating a query based on a poorly-structured set of tags can get more difficult as both the tag
depth (nubmer of tag elements) and the total number of tags increases.

These differences in query structure may seem relatively minor. But structuring your tags to make it “easier” to ask the
questions that are most important to you has two important effects:

• More efficient for Synapse to return the requested data: In general, lifting data (selecting nodes) by the tag
present on a node is more efficient than lifting syn:tag nodes and then pivoting to nodes that have those tags.
This efficiency may be further affected if you are performing additional operations (filtering, additional pivots)
on the results. These performance impacts may be relatively minor but can compound over larger data sets.

• Simpler for analysts to remember: Analysts want to spend their time analyzing data, not figuring out how to
ask the right question (craft the right query) to retrieve the data in the first place. This has a much bigger impact
on an analyst’s workflow - simpler is better!

Neither tag tree is right or wrong; which is more suitable depends on the types of questions you want to answer. If
your analysis focuses primarily on news content within a particular region, the first option (which places “country” at
the root of the tree) is probably more suitable. If your analysis focuses more on global geopolitical topics, the second
option is probably better. As a general rule, the analytical focus that you “care about most” should generally go at the
top of the hierarchy in order to make it easier to ask those questions.

Tag Definitions

Tag (syn:tag) nodes allow you to store both short-form and long-form definitions directly on the node itself (as
:title and :doc properties, respectively). We recommend that you consistently use these properties to clearly define
the meaning of the tags you create within Synapse.

Synapse’s forms (the data model) and your set of tags (analytical model) should convey key relationships and assess-
ments in a concise way. Your ability to view nodes and tags and understand their meaning should be simpler (and
faster) than reading a report about why an analyst interprets X to mean Y.

That said, tags are a “shorthand” used to represent specific observations and annotations. The meaning of a tag such
as cno.infra.anon.tor may not be readily apparent. There is a risk that different analysts may interpret and use
the same tag in different ways. This risk increases as both the number of tags and the number of different analysts
increases.

Storing a tag’s definition directly within Synapse on the associated syn:tag node makes Synapse “self-documenting”:
an analyst can view the tag’s definition at any time directly within Synapse. You do not need to refer to an external
application or dictionary to look up a tag’s precise meaning and appropriate use.

46 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Tag Management

Because tags are simply nodes, any user with the appropriate permissions can create a new tag. This ability to create
tags on the fly makes tags extremely powerful, flexible, and convenient for analysts – they can create annotations to
reflect their observations right when they are conducting analysis, without the need to wait for code changes or approval
cycles.

There is also some risk to this approach, particularly with large numbers of analysts, as analysts may create tags in an
uncoordinated and haphazard fashion. Creating arbitrary (and potentially duplicative or contradictory) tags can work
against effective analysis.

Your approach to tag creation and approval will depend on your needs and your environment. Where possible, we
recommend a middle ground between “tag free-for-all” and “tightly-enforced change management”. It is useful for
an analyst to have the ability to create a tag on demand to record an observation in the moment; if the analyst must
wait for review and approval, the observation is likely to be lost as the analyst moves on to other tasks. That said, it is
also helpful to have some type of regular review process to ensure the tags are being used in a consistent manner, fit
appropriately into your analytical model, and have been given clear definitions.

Level of Detail

Tag trees can be arbitrarily deep (that is, can support an arbitrary number of tag elements). If one function of tag trees
is to represent an increasing level of detail, then deep tag trees can potentially represent very fine-grained observations.

While more detail is sometimes helpful, tag trees should reflect the level of detail that is relevant for your analysis, and
no more. That is, the analysis being performed should drive the set of tags being used.

Contrast this with taking an arbitrary model or taxonomy and using it to create associated tags without considering
whether that taxonomy is relevant or applicable to your analysis. In the best case, using a set of tags that is not well-
suited is simply be unnecessary - it may provide more detail than you really need. In the worst case, it can actually
create more work for analysts and be detrimental to the analysis process.

Tags often represent an analytical assertion - this generally means that a human analyst needs to evaluate the data,
make an assessment, and decide what tag (or tags) to apply to the data. If you use too many tags, or overly detailed
(deep) tags, this translates directly in to “more work” (keystrokes or mouse clicks) that an analyst has to perform to
annotate the data. There is also overhead associated with tag creation itself, particularly if someone needs to review or
approve newly created tags.

More importantly, while the act of applying a tag to a node may be relatively easy, the analytical decision to apply
the tag may require careful review and evaluation of the evidence. If tags are overly detailed and represent shades of
meaning that are irrelevant, analysts may get bogged down in “analysis paralysis” - worrying about whether tag A or
tag B is correct when that distinction doesn’t matter to the analysis at hand.

In that situation, the (inappropriate or overly detailed) tags are driving the analysis instead of the analysis driving the
tags needed to support the analytical work. When tags drive the analysis, the act of annotating the data - figuring out
which tags to apply - takes over from performing real analysis.

Tip: When designing a tag tree, we recommend that tags have no more than five elements. For example:

syn:tag = foo.bar.baz.faz.fuzz

As always, your specific use case may vary but this works well as general guidance.

3.4. Design 47

Synapse Documentation, Release 2.141.0

Flexibility

Just as a good data model evolves to meet changing needs, your analytical model (tag trees) will expand and change
over time. No matter how carefully you plan your tag structure, you will identify exceptions, edge cases, and new
observations that you want to capture. As far as possible, your tag structure should be flexible enough to account for
future changes.

Within Synapse, it is relatively easy to “migrate” tags (i.e., to decide that a tag should have a different name or reside
in a different part of the tag tree, and to re-tag existing nodes with the new tag) as long as the change is one-to-one.
Migration works best where the tag name changes but the meaning of the tag does not. (See the Storm movetag
command for details.)

For example, if you decide that foo.bar.baz.hurr and foo.bar.baz.derp are overly specific and should both be
represented by foo.bar.baz, it is easy to merge those tags. Similarly, if you create the tag foo.bar and later decide
that tag should live under the top-level tag wut, you can migrate foo.bar to wut.foo.bar.

This flexibility provides a safety net when designing your tag trees. It gives you the freedom to “not get it right” the first
time (or the second, or the third!). Especially when you roll out a new set of tags, it is helpful to test them in practice
before you finalize the tags or tag structure. The ability to say “if we don’t get it quite right we can rename it later”
frees up analysts or developers to experiment.

It is harder to modify tags by “splitting” them. For example, if you create the tag foo.bar and later decide that you
really want to track two variations of bar (such as foo.bar.um and foo.bar.wut), it can be painstaking to review
your existing foo.bar nodes to separate them into the appropriate categories.

Precision

Each tag should have a single, specific meaning. This means that each assessment represented by a tag can be evaluated
(and the associated tags applied) independently. If you combine multiple assessments into a single tag, then you run
into problems if one portion of that assessment turns out to be true and another portion turns out to be false.

As a simple example, let’s say you want to tag indicators with both the threat group and malware family the indicator
is associated with. It might be tempting to create a tag such as:

• syn:tag = cno.viciouswombat.redtree

. . . to show that an indicator with that tag (such as an FQDN) is associated with both the Vicious Wombat threat group
and the Redtree malware family.

That’s all well and good, until:

• You find out that the FQDN is used by both Redtree and Blueflower malware.

• You change your mind and decide the FQDN is associated with the Paisley Unicorn threat group, not Vicious
Wombat.

By limiting a tag’s meaning to a single assessment or assertion, you can easily change or remove the individual tag if
that particular assessment changes:

• syn:tag = cno.threat.viciouswombat

• syn:tag = cno.threat.paisleyunicorn

• syn:tag = cno.mal.redtree

• syn:tag = cno.mal.blueflower

48 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Consistency of Use

Creating a set of well-designed tag trees is ineffective if those tags aren’t used consistently – that is, by a majority of
analysts across a majority of relevant data. It’s true that 100% visibility into a given data set and 100% analyst review
and annotation of that data is an unrealistic goal. However, for data and annotations that represent your most pressing
analytical questions, you should strive for as much completeness as possible.

Looked at another way, inconsistent use of tags can result in gaps that can skew your assessment of the data. At best,
this can lead to the inability to draw meaningful conclusions; at worst, to faulty analysis.

This inconsistency often occurs as both the number of analysts and the number of tags increase. The larger the team
of analysts, the more difficult it is for that team to work closely and consistently together. Similarly, the more tags
available to represent different assessments, the fewer tags an analyst can reasonably work with. In both cases, analysts
may tend to drift towards analytical tasks that are most immediately relevant to their work or most interesting to them
– thus losing sight of the collective analytical goals of the entire team.

Consider an example of tracking Internet domains that masquerade as legitimate companies for malicious purposes.
If some analysts are annotating this data but others are not, your ability to answer questions about this data is skewed.
Let’s say Threat Cluster 12 is associated with 200 domains, and 173 of them imitate real companies, but only 42 have
been annotated with “masquerade” tags (cno.ttp.se.masq).

If you try to use the data to answer the question “does Threat Cluster 12 consistently register domains that imitate valid
companies?”, your assessment is likely to be “no” (only 42 out of 200 domains have the associated tag) based on the
incompletely annotated data. There are gaps in your analysis because the information to answer this question has only
been partially recorded.

As the scope of analysis within Synapse increases, it is essential to recognize these gaps as a potential shortcoming that
may need to be addressed. Options include:

• Establish policy around which assessments and observations (and associated tags) are essential or “required”,
and which are secondary (“as time allows”).

• Designate individual analysts or teams to be responsible for particular tasks and associated tags - often matching
their expertise, such as “malware analysis”.

• Leverage Synapse’s tools such as triggers, cron jobs, or macros to apply tags in cases where this can be automated.
Automation also helps to ensure tags are applied consistently. (See Storm Reference - Automation for a more
detailed discussion of Synapse’s automation tools.)

3.4.3 Design Concepts - General

In designing both data and analytical models, one of the first choices that must be made is whether something should
be represented as:

• a form

• a property

• a light edge

• a tag

• a tag associated with a form

Every modeling decision is unique, and a full discussion of the modeling process is beyond the scope of these docu-
ments. We include some basic guidance below as background.

3.4. Design 49

Synapse Documentation, Release 2.141.0

Forms

In the majority of cases, if there is something you want to represent in Synapse, it should be a form. Synapse’s data
model can represent everything from objects, to relationships, to events as forms. (See Data Model - Object Categories
for a more detailed discussion.)

As part of Synapse’s data model, forms are more structured and less likely to change. This structure allows you to more
easily identify relationships between objects in Synapse and to navigate the data. Forms should be used to represent
things that are observable or verifiable at some level - this is true even for more abstract forms like “vulnerabilities”
(risk:vuln) or “goals” (ou:goal). If something represents an assessment or conclusion, it is likely a better candidate
for a tag.

In designing a form, we recommend not “over-fitting” the form to a specific use case. As a simple example, an email
address is an email address - there is no difference between a email address used as an email sender and an email address
used to register a domain. Creating two separate objects for email:sender and email:registrant confuses the
object (an email address) with how the object is used. The “how” is apparent in other parts of the data model (e.g.,
when used as an email sender, the email address will be present in the :from property of an inet:email:message).

We also recommend designing forms broadly - this may require some out-of-the-box thinking to consider how the form
may apply to other fields, disciplines, or even locales (“how something works” in the United States may be different
from how it works in Argentina or Malaysia).

Properties

Properties are details that further define a form. When creating a form, there are probably a number of “things you
want to record” about the form that immediately come to mind. These are obvious candidates for properties.

A few considerations when designing properties:

• Properties should be highly “intrinsic” to their forms. The more closely related something is to an object, the
more likely it should be a property of that object. Things that are not highly intrinsic are better candidates for
their own forms, for “relationship” forms, or for tags.

• Consider whether a property has enough “thinghood” to also be its own form (and possibly type).

• The data model supports multi-value array properties, but arrays are not meant to store an excessive number of
values (largely for performance and visualization purposes). In this situation, a “relationship” form might be
preferable. Another option would be to “reverse” the property relationship.

For example, a compromise (risk:compromise) may consist of a number of different attacks (risk:attack
nodes) representing steps in the overall compromise. Instead of risk:compromise having an :attacks array
with a large number of values, a risk:attack has a :compromise property so that multiple attacks can be
linked back to a single compromise.

Light Edges

In Synapse, it is preferable to represent most relationships as forms in the data model, as forms support the use of
additional descriptive properties as well as tags for context. However, light edges can replace “relationship” forms
where:

• Additional properties or tags are unnecessary. That is, the only thing you need to record is that the relationship
exists. In this case, a light edge can provide some performance gains over a relationship form.

• The relationship you are representing could exist between a broad range of objects (vs. two specific kinds
of objects). This is best illustrated with some examples.

A DNS A record represents a specific relationship between an FQDN (inet:fqdn) and the IP address
(inet:ipv4) that the A record points to. This specific relationship will never exist between any other objects - an

50 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

FQDN’s A record will never point to a MAC address, and a file will never resolve to an IP. A form (inet:dns:a)
is appropriate here because the objects in the relationship are consistent - there is a one-to-one “A record” rela-
tionship between FQDNs and IPv4 addresses.

Other relationships may be “one-to-many” or “many-to-many” in that the object on one or both sides of the
relationship may vary.

A data source (meta:source node) can observe or provide data on various objects (such as a hash or an FQDN).
Creating a relationship form to represent each possible combination of meta:source node and object compli-
cates the data model. This “one-to-many” relationship can be represented more efficiently with a seen light
edge.

Similarly, a variety of objects such as articles (media:news), presentations (ou:presentation), or files
(file:bytes) may contain references to a range of objects of interest, from indicators to people to events.
This “many-to-many” relationship can be represented more efficiently with a refs (references) light edge.

See Lightweight (Light) Edge for additional discussion.

Note: Digraph nodes (also known as ‘edge nodes’) were previously used to account for these types of arbitrary (one-
to-many or many-to-many) relationships but the use of light edges is now preferred. See Digraph (Edge) Form for
additional discussion.

Tags

Tags should be used for:

• Observations or assessments that may change. The flexibility to add, remove, and migrate or change tags makes
them useful to represent information that may be re-evaluated over time.

• Any time you need to arbitrarily group nodes to identify a subset of data or otherwise aid your analysis. For
example:

– media:news nodes can represent a wide range of publications, from public whitepapers to internal incident
reports. Tags could be used to identify different types of media:news nodes to make certain nodes easier
to select (lift).

– Data tracked using tags (such as indicators or other objects associated with threat clusters - i.e., #cno.
threat.<threat>) can easily grow to tens or hundreds of thousands of nodes. A report on the threat
group will not include every tagged node. A tag can be used to indicate the “key” nodes / data points / items
of interest that form the basis of a report. (The Vertex Project uses “story” tags and subtags to represent key
elements of a report / “story” - for example vtx.story.<storyname>, vtx.story.<storyname>.core,
etc.)

• Cases where having a tag on a node provides valuable context for an analyst looking at the node (i.e., knowing that
an IP address is a TOR exit node). While this same context may be available by examining nearby connections
in the data model (e.g., an IP address may be linked to a server with an open port running the TOR service),
having the context on the node itself is particularly useful.

Tags can also be used as an initial or interim means to track or record observations before transitioning to a more
structured representation using the Synapse data model. For example, cyber threat intelligence often tracks targeted
organizations based on the industry or industries they are a part of. This can be modeled in Synapse by linking an
organization (ou:org node) to a set of industries (ou:industry) that the organization belongs to. But it is up to
Synapse users to decide on and create the set of named industries (ou:industry nodes) that are most useful to their
analysis.

It may be easier to initially represent industries using tags placed on ou:org nodes (such as #ind.finance or #ind.
telecommunications). This allows you to “try out” (and easily change) a set of industries / industry names before

3.4. Design 51

Synapse Documentation, Release 2.141.0

making a final decision. Later you can create the ou:industry nodes and convert the tags into model elements.

Tags Associated with Forms

In some cases, it may be useful to leverage both tags and forms for your analysis. This is useful in cases where both of
the following apply:

• The tag is associated with an assertion about something “concrete” (such as an event or entity) where that object
should exist in its own right (i.e., as a node). This allows you to:

– record information about the object (properties or other tags).

– identify relationships (such as shared property values) with other objects.

– navigate to related objects within Synapse.

• The tag is still useful in order to provide valuable context to other nodes, where this context would not be clear
if a user had to identify it by navigating to other “nearby” data.

To address this need, forms in the Synapse data model can be directly linked to a tag (syn:tag node) they are associated
with via an explicit :tag property. This allows you to still apply the relevant tag to other nodes for context, but easily
navigate from nodes that have the tag, to the associated syn:tag node, to the node associated with the tag (via the
:tag property).

An example from cyber threat intelligence is the idea of a threat group or threat cluster. A “threat group” is often a
notional concept that represents an unknown organization or set of individuals responsible for a set of malicious activity.
It is common to use tags (#cno.threat.t42) applied to nodes (such as FQDNs, files, hashes, and so on) to associate
those indicators with a specific threat group. This is valuable context to immediately identify that an indicator is “bad”
and associated with known activity.

But threat groups - even notional ones - still ultimately represent something in the real world. It is useful to record
additional information about the threat group, such as other names the group is known by, or a known or suspected
country of origin. Representing this information as properties makes it easier to query and pivot across, and provides
greater flexibility over trying to somehow record all of this information on the node syn:tag=cno.threat.t42.

Since both approaches are useful, the threat group can be represented as a risk:threat node with associated prop-
erties, but also linked to its associated tag (syn:tag = cno.threat.t42) via the risk:threat:tag property.

Tip: Tracking threat activity is a good example of how initially using tags can evolve into more concrete and structured
representation in the Synapse data model. When researchers identify activity that cannot be associated with a known
threat, they commonly create a new threat cluster to track the new incident and associated data. Because little is known
about the activity (and associated threat), it’s easiest to simply create a tag to represent this. As additional related
activity is identified, this new threat may be linked to (and merged with) an existing group (risk:threat node). Or,
the new threat cluster may grow on its own to the point where researchers believe it is its own entity - at which point a
new risk:threat node can be created. If, over time, the threat can be tied to a real world entity or organization, the
risk:threat can be linked to an organization (ou:org) via the risk:threat:org property.

52 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

3.5 Tools

3.5.1 storm

The Synapse Storm tool (commonly referred to as the Storm CLI) is a text-based interpreter that leverages the Storm
query language (see Storm Reference - Introduction).

• Connecting to a Cortex with the Storm CLI

• Storm CLI Basics

• Accessing External Commands

Connecting to a Cortex with the Storm CLI

To access the Storm CLI you must use the storm module to connect to a local or remote Synapse Cortex.

Note: If you’re just getting started with Synapse, you can use the Synapse Quickstart to quickly set up and connect to
a local Cortex using the Storm CLI.

To connect to a local or remote Synapse Cortex using the Storm CLI, simply run the Synapse storm module by
executing the following Python command from a terminal window, where the <url> parameter is the URL path to the
Synapse Cortex.

python -m synapse.tools.storm <url>

The URL has the following format:

<scheme>://<server>:<port>/<cortex>

or

<scheme>://<user>:<password>@<server>:<port>/<cortex>

if authentication is used.

Example URL paths:

• cell://vertex/storage (default if using Synapse Quickstart)

• tcp://synapse.woot.com:1234/cortex01

• ssl://synapse.woot.com:1234/cortex01

Once connected, you will be presented with the following Storm CLI command prompt:

storm>

Storm CLI Basics

Once connected to a Synapse Cortex with the Storm CLI, you can execute any Storm queries or Storm commands
directly. Detailed information on using the Storm query language to interact with data in a Synapse Cortex can be
found in the Storm Reference.

To view a list of available Storm commands, type help from the Storm CLI prompt:

storm> help

• Detailed help for any command can be viewed by entering -h or --help after the individual command.

3.5. Tools 53

https://github.com/vertexproject/synapse-quickstart

Synapse Documentation, Release 2.141.0

• For additional detail on Storm commands, see Storm Reference - Storm Commands.

To exit the Storm CLI, enter !quit:

storm> !quit

• The !quit command is technically an “external” (to Storm) command, so must be preceded by the bang (excla-
mation point) symbol.

Accessing External Commands

You can access a subset of external Synapse tools and commands from within the Storm CLI. External commands
differ from native Storm commands in that they are preceded by a bang / exclamation point (!) symbol.

You can view the available external commands by typing !help from the Storm CLI prompt:

storm> !help
!export - Export the results of a storm query into a nodes file.
!help - List interpreter extended commands and display help output.
!pullfile - Download a file by sha256 and store it locally.
!pushfile - Upload a file and create a file:bytes node.
!quit - Quit the current command line interpreter.
!runfile - Run a local storm file.

Notably, the Synapse pushfile and pullfile tools (used to upload and download files from a Synapse storage Axon)
are accessible from the Storm CLI:

storm> !pushfile

storm> !pullfile

See pushfile and pullfile for additional detail on these tools.

Help for any external command can be viewed by entering -h or --help after the command:

storm> !export -h

storm> !export --help

3.5.2 pushfile

The Synapse pushfile command can be used to upload files to a storage Axon (see Axon in the Synapse Devops
Guide) and optionally create an associated file:bytes node in a Cortex.

Large-scale file ingest / upload is best performed using an automated feed / module / API. However, pushfile can be
useful for uploading one-off files.

Syntax

pushfile is executed from an operating system command shell. The command usage is as follows:

usage: synapse.tools.pushfile [-h] -a AXON [-c CORTEX] [-r] [-t TAGS] filenames␣
→˓[filenames ...]

Where:

• AXON is the telepath URL to a storage Axon.

• CORTEX is the optional path to a Cortex where a corresponding file:bytes node should be created.

54 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

– Note: while this is an optional parameter, it doesn’t make much sense to store a file in an Axon that can’t
be referenced from within a Cortex.

• TAGS is an optional list of tags to be applied to the file:bytes node created in the Cortex.

– -t takes a comma separated list of tags.

– The tag should be specified by name only (i.e., without the # character).

• -r recursively finds all files when a glob pattern is used for a file name.

• filenames is one or more names (with optional paths), or glob patterns, to the local file(s) to be uploaded.

– If multiple file names are specified, any tag provided with the -t option will be added to each uploaded
file.

Example

Upload the file myreport.pdf to the specified Axon, create a file:bytes node in the specified Cortex, and tag the
file:bytes node with the tag #sometag (replace the Axon and Cortex path below with the path to your Cortex. Note
that the command is wrapped for readability):

python -m synapse.tools.pushfile -a tcp://axon.vertex.link:5555/axon00
-c tcp://cortex.vertex.link:4444/cortex00 -t sometag /home/user/reports/myreport.pdf

Executing the command will result in various status messages (lines are wrapped for readability):

2019-07-03 11:46:30,567 [INFO] log level set to DEBUG
[common.py:setlogging:MainThread:MainProcess]

2019-07-03 11:46:30,568 [DEBUG] Using selector: EpollSelector
[selector_events.py:__init__:MainThread:MainProcess]

adding tags: ['sometag']
Uploaded [myreport.pdf] to axon
file: myreport.pdf (2606351) added to core
(sha256:229cdde419ba9549023de39c6a0ca8af74b45fade2d7a22cdc4105a75cd40ab0) as myreport.

→˓pdf

• adding tags: ['sometag'] indicates the tag #sometag was applied to the file:bytes node.

• Uploaded [myreport.pdf] to axon indicates the file was successfully uploaded to the storage Axon.

• file: myreport.pdf (2606351) added to core (sha256:229cdde4...5cd40ab0) as
myreport.pdf indicates the file:bytes node was created in the Cortex.

– The message gives the new node’s primary property value (sha256:229cdde419ba9549023de39c6a0ca8af74b45fade2d7a22cdc4105a75cd40ab0)
and also notes the :name secondary property value assigned to the node (myreport.pdf).

– pushfile sets the file:bytes:name property to the base name of the local file being uploaded.

If a given file already exists in the Axon (deconflicted based on the file’s SHA256 hash), pushfile will not re-upload
the file. However, the command will still process any other options, including:

• creating the file:bytes node in the Cortex if it does not already exist.

• applying any specified tag.

• setting (or overwriting) the :name property on any existing file:bytes node with the base name of the local
file specified.

For example (lines wrapped for readability):

3.5. Tools 55

Synapse Documentation, Release 2.141.0

python -m synapse.tools.pushfile -a tcp://axon.vertex.link:5555/axon00
-c tcp://cortex.vertex.link:4444/cortex00 -t anothertag,athirdtag
/home/user/reports/anotherreport.pdf

2019-07-03 11:59:03,366 [INFO] log level set to DEBUG
[common.py:setlogging:MainThread:MainProcess]

2019-07-03 11:59:03,367 [DEBUG] Using selector: EpollSelector
[selector_events.py:__init__:MainThread:MainProcess]

adding tags: ['anothertag'. 'athirdtag']
Axon already had [anotherreport.pdf]
file: anotherreport.pdf (2606351) added to core
(sha256:229cdde419ba9549023de39c6a0ca8af74b45fade2d7a22cdc4105a75cd40ab0)
as anotherreport.pdf

Note the status indicating the Axon already had the specified file. Similarly, the status noting the file:bytes node was
added to the Cortex lists the same SHA256 hash as our first upload (i.e., anotherreport.pdf has the same SHA256
hash as myreport.pdf) and indicates the :name property has been updated (as anotherreport.pdf).

The file:bytes node for the uploaded report can now be viewed in the specified Cortex by lifting (see Storm Reference
- Lifting) the file using the SHA256 / primary property value from the pushfile status output:

file:bytes=sha256:229cdde419ba9549023de39c6a0ca8af74b45fade2d7a22cdc4105a75cd40ab0

file:bytes=sha256:229cdde419ba9549023de39c6a0ca8af74b45fade2d7a22cdc4105a75cd40ab0
.created = 2019/07/03 18:46:40.542
:md5 = 23a14d3a4508628e7e09a4c4868dfb17
:mime = ??
:name = anotherrepport.pdf
:sha1 = 99b6b984988581cae681f65b92198ed77609bd11
:sha256 = 229cdde419ba9549023de39c6a0ca8af74b45fade2d7a22cdc4105a75cd40ab0
:size = 2606351
#anothertag
#athirdtag
#sometag

complete. 1 nodes in 3 ms (333/sec).

Viewing the node’s properties, we see that Synapse has set the :name property and has calculated and set the MD5,
SHA1, and SHA256 hash secondary property values, as well as the file’s size in bytes. Similarly the two tags from our
two example pushfile commands have been added to the node.

Alternatively, a glob pattern could be used to upload all PDF files in a given directory:

python -m synapse.tools.pushfile -a tcp://axon.vertex.link:5555/axon00
-c tcp://cortex.vertex.link:4444/cortex00 -t anothertag,athirdtag
/home/user/reports/*.pdf

56 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

3.5.3 pullfile

The Synapse pullfile command can be used to retrieve (download) one or more files from a storage Axon (see Axon
in the Synapse Devops Guide).

Syntax

pullfile is executed from an operating system command shell. The command usage is as follows:

usage: synapse.tools.pullfile [-h] -a AXON [-o OUTPUT] [-l HASHES]

Where:

• AXON is the telepath URL to a storage Axon.

• OUTPUT is the optional directory path where the downloaded file(s) should be written.

– If no option is specified, the file(s) will be written to the current working directory.

– It is not possible to specify multiple -o options with a single pullfile command (i.e., a different -o option
with each -l HASH, for example). If multiple -o options are specified, the last OUTPUT path specified will
be used.

– Files saved locally are named using their SHA256 hash value.

• HASHES is the SHA256 hash(es) of the file(s) to be retrieved.

– Multiple hashes can be specified, but each must be listed with its own -l option (i.e., -l HASH_0 -l
HASH_1 ... -l HASH_n).

Example

Download the two files with the specified SHA256 hashes from the specified Axon to the local /home/user/
Documents directory (replace the Axon path below with the path to your Axon. Note that the command is wrapped for
readability):

python -m synapse.tools.pullfile -a tcp://axon.vertex.link:5555/axon00
-o /home/user/Documents
-l 229cdde419ba9549023de39c6a0ca8af74b45fade2d7a22cdc4105a75cd40ab0
-l 52c672f45adacca4878461c1bdd5800af8518e675819a0bdcd5c64a72075a478

Executing the command will result in various status messages showing the query and successful retrieval of the file(s):

Fetching 229cdde419ba9549023de39c6a0ca8af74b45fade2d7a22cdc4105a75cd40ab0 to file
Fetched 229cdde419ba9549023de39c6a0ca8af74b45fade2d7a22cdc4105a75cd40ab0 to file
Fetching 52c672f45adacca4878461c1bdd5800af8518e675819a0bdcd5c64a72075a478 to file
Fetched 52c672f45adacca4878461c1bdd5800af8518e675819a0bdcd5c64a72075a478 to file

3.5. Tools 57

Synapse Documentation, Release 2.141.0

3.5.4 feed

The Synapse feed tool is a way to ingest data exported from one Cortex into another Cortex. Users should be familiar
with both the Synapse data model (Data Model - Terminology et al.) as well as Synapse concepts such as packed nodes
and splices in order to use and understand the feed tool effectively.

Syntax

The feed tool is executed from an operating system command shell. The command usage is as follows (line is wrapped
for readability):

usage: synapse.tools.feed [-h] (--cortex CORTEX | --test) [--debug] [--format FORMAT] [--
→˓modules MODULES]
[--chunksize CHUNKSIZE] [--offset OFFSET] [files ...]

Where: - -h displays detailed help and these command line options - CORTEX specifies the telapth URL to the Cortex
where the data should be ingested.

• --test means to perform the ingest against a temporary, local Cortex instead of a live cortex, for testing or
validation

– When using a temporary Cortex, you do not need to provide a path.

• --debug specifies to drop into an interactive prompt to inspect the state of the Cortex post-ingest.

• FORMAT specifies the format of the input files.

– Currently, only the values “syn.nodes”, “syn.splices”, and “syn.nodeedits” are supported.

– Defaults to “syn.nodes” if not specified

• MODULES specifies a path to a Synapse CoreModule class that will be loaded into the temporary Cortex.

– This option has no effect if the --test option is not specified

– For more on Core Modules, see Cortex Development Quickstart

• CHUNKSIZE specifies how many lines or chunks of data to read at a time from the given files.

– Defaults to 1000 if not specified

• OFFSET specifies how many chunks of data to skip over (starting at the beginning)

• files is a series of file paths containing data to load into the Cortex (or temporary Cortex)

– Every file must be either json-serialized data, msgpack-serialized data, yaml-serialized data, or a json lines
file. The files do not have to all be of the same type.

Ingest Examples - Overview

The feed tool

58 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Ingest Example 1

This example demonstrates loading a set of nodes via the feed tool with the “syn.nodes” format option. The nodes are
of a variety of types, and are encoded in a json lines (jsonl) format.

JSONL File:

The jsonl file (testnodes.jsonl) contains a list of nodes in their packed form. Each line in the file corresponds to a
single node, with all of the properties, tags, and nodedata on the node encoded in a json friendly format.

[["it:reveng:function", "9710579930d831abd88acff1f2ecd04f"], {"iden":
→˓"508204ebc73709faa161ba8c111aec323f63a78a84495694f317feb067f41802", "tags": {"my":␣
→˓[null, null], "my.cool": [null, null], "my.cool.tag": [null, null]}, "props": {".
→˓created": 1625069466909, "description": "An example function"}, "tagprops": {},
→˓"nodedata": {}, "path": {}}]
[["inet:ipv4", 386412289], {"iden":
→˓"d6270ca2dc592cd0e8edf8c73000f80b63df4bcd601c9a631d8c68666fdda5ae", "tags": {"my":␣
→˓[null, null], "my.cool": [null, null], "my.cool.tag": [null, null]}, "props": {".
→˓created": 1625069584577, "type": "unicast"}, "tagprops": {}, "nodedata": {}, "path": {}
→˓}]
[["inet:url", "https://synapse.docs.vertex.link/en/latest/synapse/userguide.html
→˓#userguide"], {"iden":
→˓"dba0a280fc1f8cf317dffa137df0e1761b6f94cacbf56523809d4f17d8263840", "tags": {"my":␣
→˓[null, null], "my.cool": [null, null], "my.cool.tag": [null, null]}, "props": {".
→˓created": 1625069758843, "proto": "https", "path": "/en/latest/synapse/userguide.html
→˓#userguide", "params": "", "fqdn": "synapse.docs.vertex.link", "port": 443, "base":
→˓"https://synapse.docs.vertex.link/en/latest/synapse/userguide.html#userguide"},
→˓"tagprops": {}, "nodedata": {}, "path": {}}]
[["file:bytes", "sha256:ffd19426d3f020996c482255b92a547a2f63afcfc11b45a98fb3fb5be69dd75c
→˓"], {"iden": "137fd16d2caab221e7580be63c149f83a11dd11f10f078d9f582fedef9b57ad5", "tags
→˓": {"my": [null, null], "my.cool": [null, null], "my.cool.tag": [null, null]}, "props
→˓": {".created": 1625070470041, "sha256":
→˓"ffd19426d3f020996c482255b92a547a2f63afcfc11b45a98fb3fb5be69dd75c", "md5":
→˓"be1bb5ab2057d69fb6d0a9d0684168fe", "sha1": "57d13f1fa2322058dc80e5d6d768546b47238fcd",
→˓ "size": 16}, "tagprops": {}, "nodedata": {}, "path": {}}]

Verifying the Data:

Typically, users will want to double check the data they have before loading it into a production Cortex. The feed tool
allows us to perform an ingest our of nodes file against an empty, ephemeral Cortex, so that we can check what nodes
get created before slamming them into production. To load testnodes.jsonl into an ephemeral Cortex and drop into
a prompt to explore the ingested nodes, run:

python -m synapse.tools.feed --test --debug --format syn.nodes testnodes.jsonl

Assuming the command completed with no errors, we should now have a cmdr prompt connected to our test Cortex:

cli>

From which we can issue Storm commands to interact with and validate the nodes that were just ingested. For example:

cli> storm #my.cool.tag

it:reveng:function=9710579930d831abd88acff1f2ecd04f
.created = 2021/06/30 19:46:31.810

(continues on next page)

3.5. Tools 59

Synapse Documentation, Release 2.141.0

(continued from previous page)

:description = An example function
#my.cool.tag

inet:ipv4=23.8.47.1
.created = 2021/06/30 19:46:31.810
:type = unicast
#my.cool.tag

inet:url=https://synapse.docs.vertex.link/en/latest/synapse/userguide.html#userguide
.created = 2021/06/30 19:46:31.810
:base = https://synapse.docs.vertex.link/en/latest/synapse/userguide.html

→˓#userguide
:fqdn = synapse.docs.vertex.link
:params =
:path = /en/latest/synapse/userguide.html#userguide
:port = 443
:proto = https
#my.cool.tag

file:bytes=sha256:ffd19426d3f020996c482255b92a547a2f63afcfc11b45a98fb3fb5be69dd75c
.created = 2021/06/30 19:46:31.810
:md5 = be1bb5ab2057d69fb6d0a9d0684168fe
:sha1 = 57d13f1fa2322058dc80e5d6d768546b47238fcd
:sha256 = ffd19426d3f020996c482255b92a547a2f63afcfc11b45a98fb3fb5be69dd75c
:size = 16
#my.cool.tag

complete. 4 nodes in 16 ms (250/sec).

Loading the Data:

Once we’ve inspected and verified the data is acceptable for loading, we can point the feed tool to the Cortex we want
to load the nodes into, and the same nodes should be added.

python -m synapse.tools.feed --cortex tcp://cortex.vertex.link:4444/cortex00 --format
→˓'syn.nodes'
testnodes.jsonl

However, once we’ve inspected the data, let’s say that the it:reveng:function and inet:ipv4 nodes are not allowed in
the production Cortex, but the inet:url and file:bytes are. We can skip these two nodes by using a combination of the
chunksize and offset parameters:

python -m synapse.tools.feed --cortex tcp://cortex.vertex.link:4444/cortex00 --format
→˓'syn.nodes'
testnodes.jsonl --chunksize 1 --offset 1

With the chunksize parameter signifying that the feed tool should read two lines at a time from the file and process
those before reading the next line, and the offset parameter meaning the feed tool should skip all lines before and
including line 1 (so lines 1 and 0) when attempting to add nodes, and only add nodes once it’s read in lines 2 and
beyond.

60 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Ingest Example 2

This example demonstrates loading a series of splices via the “syn.splices” format option. Splices are atomic
edits made to the Cortex, so they are more granular, and thus more voluminous than just nodes. For
instance, the storm command [it:host=1cad54991eaff5bba5d2015c29c3e3a3 :desc="synapse server"
:name="syn007"] results in this set of splices (which have been saved to testsplices.yaml).

- - node:add
- ndef:
- it:host
- 1cad54991eaff5bba5d2015c29c3e3a3
time: 1625087167677
user: 267d945a32e3ae246ecf71e0bc6a620e

- - prop:set
- ndef:
- it:host
- 1cad54991eaff5bba5d2015c29c3e3a3
oldv: null
prop: .created
time: 1625087167677
user: 267d945a32e3ae246ecf71e0bc6a620e
valu: 1625087167677

- - prop:set
- ndef:
- it:host
- 1cad54991eaff5bba5d2015c29c3e3a3
oldv: null
prop: desc
time: 1625087167679
user: 267d945a32e3ae246ecf71e0bc6a620e
valu: synapse server

- - prop:set
- ndef:
- it:host
- 1cad54991eaff5bba5d2015c29c3e3a3
oldv: null
prop: name
time: 1625087167680
user: 267d945a32e3ae246ecf71e0bc6a620e
valu: syn007

- - node:add
- ndef:
- it:hostname
- syn007
time: 1625087167680
user: 267d945a32e3ae246ecf71e0bc6a620e

- - prop:set
- ndef:
- it:hostname
- syn007
oldv: null
prop: .created

(continues on next page)

3.5. Tools 61

Synapse Documentation, Release 2.141.0

(continued from previous page)

time: 1625087167680
user: 267d945a32e3ae246ecf71e0bc6a620e
valu: 1625087167680

...

Verifying the Data:

To load testsplices.yaml into a test Cortex to see the splices getting applied, we can run the feed tool like so:

python -m synapse.tools.feed --test --debug --format "syn.splice" testsplices.yaml

Which drops us into a cmdr prompt, where we can verify that the it:host node and it:hostname nodes were created:

cli> storm it:host

it:host=1cad54991eaff5bba5d2015c29c3e3a3
.created = 2021/06/30 21:34:57.181
:desc = synapse server
:name = syn007

complete. 1 nodes in 5 ms (200/sec).

cli> storm it:hostname

it:hostname=syn007
.created = 2021/06/30 21:34:57.182

complete. 1 nodes in 5 ms (200/sec).

Loading the Data:

As before, once the data has been inspected and approved, we can point the feed tool at the Cortex we want to apply
the splices to in order to apply them.

python -m synapse.tools.feed --cortex tcp://cortex.vertex.link:4444/cortex00 --format
→˓'syn.splice'
testsplices.yaml

3.5.5 csvtool

The Synapse csvtool command can be used to ingest structured data from a comma-separated values (CSV) file to
create nodes in a Cortex. csvtool is useful for bulk-loading CSV-formatted data without the need to develop custom
ingest code. (For other data formats such as JSON, yaml, or msgpack, see feed.)

The --export option can be used to export a set of data from a Cortex into a CSV file.

Storm queries are used both to ingest and export data using csvtool. Users should be familiar with the Storm query
language (Storm Reference - Introduction et al.) and the Synapse data model (Data Model - Terminology et al.) in
order to use csvtool effectively.

The Storm syntax used with csvtool makes use of a few more advanced Storm concepts such as variables, methods,
libraries, and some programming flow control concepts (e.g., for loops and switch statements). However, the examples
below should be fairly self-explanatory. In other words, users do not need to understand in detail how those concepts
work in order to create basic stormfile queries and start loading data using csvtool.

62 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

That said, the set of advanced Storm concepts and features can be fully leveraged within a stormfile to perform com-
plex data ingest. Interested users are encouraged to refer to the appropriate sections of the Storm reference documents
for a more detailed discussion of those concepts, which may be useful for creating more complex stormfile queries
(or Storm queries in general).

• Storm Reference - Subqueries

• Storm Reference - Advanced - Variables

• Storm Reference - Advanced - Methods

• Storm Reference - Advanced - Control Flow

• Storm Libraries

• Storm Types

Syntax

csvtool is executed from an operating system command shell. The command usage is as follows (line is wrapped for
readability):

usage: synapse.tools.csvtool [-h] [--logfile LOGFILE] [--csv-header] [--cli] [--debug]
(--cortex CORTEX | --test) [--export] stormfile csvfiles [csvfiles ...]

Where:

• -h displays detailed help and examples.

• LOGFILE is the optional name / path to log Storm events associated with running the csvtool command as a
JSONL file. Messages are appended to this file when they are written to them.

• --csv-header is an option that indicates the first row in the CSV file is a header row and should be skipped for
purposes of parsing and node creation.

• --cli opens a cmdr command prompt after csvtool exits.

– The command prompt will be connected to the Cortex specified by the --cortex CORTEX or --test
option.

• --debug will send verbose output to stdout during execution.

• CORTEX specifies the telepath URL to the Cortex where the data should be ingested.

• --test specifies the data should be loaded into a temporary local Cortex (i.e., for testing / validation).

– When using a temporary Cortex, you do not need to provide a path.

• --export is used to extract data from the specified Cortex into a CSV file.

• stormfile is the name / path to a file containing a Storm query that tells Synapse how to ingest the CSV data
(or how to lift and export data if the --export option is used).

• csvfiles is the name / path to one or more CSV files containing the data to be ingested (or the name/path where
the CSV output should be written if the --export option is used).

– If multiple csvfiles are listed for ingest, they are all processed with the specified stormfile.

– Only a single csvfile can be specified for output with --export.

Note: The same events are output by both --logfile and --debug; one is written to file and the other is written to
stdout.

3.5. Tools 63

Synapse Documentation, Release 2.141.0

help

The detailed help (-h) output for csvtool is shown below (lines are wrapped for readability).

python -m synapse.tools.csvtool -h

usage: synapse.tools.csvtool [-h] [--logfile LOGFILE] [--csv-header] [--cli] [--debug]
(--cortex CORTEX | --test) [--export] stormfile csvfiles [csvfiles ...]

Command line tool for ingesting csv files into a cortex

The storm file is run with the CSV rows specified in the variable "rows" so most storm␣
→˓files
will use a variable based for loop to create edit nodes. For example:

for ($fqdn, $ipv4, $tag) in $rows {
[inet:dns:a=($fqdn, $ipv4) +#$tag]

}

More advanced uses may include switch cases to provide different logic based on a
column value.

for ($type, $valu, $info) in $rows {

switch $type {
fqdn: {

[inet:fqdn=$valu]
}

"person name": {
[ps:name=$valu]

}

*: {
// default case...

}
}

switch $info {
"known malware": { [+#cno.mal] }

}
}

positional arguments:

stormfile A STORM script describing how to create nodes
from rows.

csvfiles CSV files to load.

optional arguments:
-h, --help show this help message and exit
--logfile LOGFILE Set a log file to get JSON lines from the

server events.
(continues on next page)

64 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

--csv-header Skip the first line from each CSV file.
--cli Drop into a cli session after loading data.
--debug Enable verbose debug output.
--cortex CORTEX, -c CORTEX

The telepath URL for the cortex (or alias
from ~/.syn/aliases).

--test, -t Perform a local CSV ingest against a temporary
cortex.

--export Export CSV data to file from storm using
$lib.csv.emit(...) events.

Ingest Examples - Overview

The key components for using the csvtool command are the CSV file itself (csvfile) and the file containing the
Storm query (stormfile) used to ingest the data.

The stormfile contains a Storm query to describe how the data from the CSV file(s) should be used to create nodes
in a Cortex, including optionally setting properties and / or adding tags.

Note: When ingesting large sets of CSV-formatted data where the data has not been vetted, it may be useful to use the
Edit “Try” Operator (?=) operator instead of the equivalent (=) operator within the Storm syntax in the stormfile
used to create nodes. When using the try operator (?=), Storm will process what it can, creating nodes from “well-
formatted” data and simply skipping rows that may contain bad data. In contrast, using the equivalent operator (=)
will result in Storm throwing an error and halting processing if bad data is encountered.

Ingest Example 1

This example demonstrates loading a structured set of data to create nodes of a single form (in this case, DNS A records)
and set secondary properties (in this case, the .seen universal property).

CSV File:

A CSV file (testfile.csv) contains a list of domains, the IP addresses the domains have resolved to, and the first
and last observed times for the resolution, as represented by the example header and row data below:

domain,IP,first,last
woot.com,1.2.3.4,2018/04/18 13:12:47,2018/06/23 09:45:12
hurr.net,5.6.7.8,2018/10/03 00:47:29,2018/10/04 18:26:06
derp.org,4.4.4.4,2019/06/09 09:00:18,2019/07/03 15:07:52

Note: Because the file contains a header row, we need to use the --csv-header option to tell csvtool to skip the
first row when ingesting data.

We want to load the data in the CSV file into a Cortex as a set of DNS A records (inet:dns:a nodes) with the first
and last dates represented as the .seen universal property.

Stormfile:

Storm references the set of rows in the CSV file by the $rows built-in variable. We need to define a set of variables
(see Storm Reference - Advanced - Variables) to represent each field in a row (i.e., each column in the CSV file) and

3.5. Tools 65

Synapse Documentation, Release 2.141.0

tell Storm to iterate over each row using a For Loop. For example:

for ($fqdn, $ipv4, $first, $last) in $rows

This assigns the variable $fqdn to the first column (i.e., the one containing woot.com), $ipv4 to the second column,
and so on, and sets up the “for” loop.

We then need a Storm query that tells the “for” loop what to do with each row - that is, how to create the DNS A records
from each row in the CSV file:

[inet:dns:a = ($fqdn, $ipv4) .seen=($first, $last)]

We combine these elements to create our stormfile, as follows:

for ($fqdn, $ipv4, $first, $last) in $rows {

[inet:dns:a = ($fqdn, $ipv4) .seen=($first, $last)]

}

Testing the Ingest:

Typically, users will want to test that their stormfile loads and formats the data correctly by first ingesting the data
into a local test cortex (--test) before loading the data into a production Cortex. This is typically done using either
the --debug or --logfile option to check for errors and reviewing the loaded data (via --cli).

Testing the data will highlight common errors such as:

• Invalid Storm syntax in the stormfile.

• Data in the CSV file that does not pass Type validation on node creation (i.e., bad or incorrect data, such as an
IP address in an FQDN column).

We can attempt to load our data into a test Cortex using the following command (line is wrapped for readability):

python -m synapse.tools.csvtool --logfile mylog.json --csv-header --cli --test
stormfile testfile.csv

Assuming the command executed with no errors, we should have a cmdr CLI prompt for our local test Cortex:

cli>

We can now issue Storm commands to interact with and validate the data (i.e., did csvtool create the expected number
of nodes, were the properties set correctly, etc.)

For example:

cli> storm inet:dns:a

inet:dns:a=('hurr.net', '5.6.7.8')
.created = 2019/07/03 22:25:43.966
.seen = ('2018/10/03 00:47:29.000', '2018/10/04 18:26:06.000')
:fqdn = hurr.net
:ipv4 = 5.6.7.8

inet:dns:a=('derp.org', '4.4.4.4')
.created = 2019/07/03 22:25:43.968
.seen = ('2019/06/09 09:00:18.000', '2019/07/03 15:07:52.000')
:fqdn = derp.org

(continues on next page)

66 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

:ipv4 = 4.4.4.4
inet:dns:a=('woot.com', '1.2.3.4')

.created = 2019/07/03 22:25:43.962

.seen = ('2018/04/18 13:12:47.000', '2018/06/23 09:45:12.000')
:fqdn = woot.com
:ipv4 = 1.2.3.4

complete. 3 nodes in 12 ms (250/sec).

Loading the Data:

Once we have validated that our data has loaded correctly, we can modify our csvtool command to load the data into
a live Cortex (replace the Cortex path below with the path to your Cortex; line is wrapped for readability):

python -m synapse.tools.csvtool --logfile mylog.json --csv-header
--cortex tcp://cortex.vertex.link:4444/cortex00 stormfile testfile.csv

Ingest Example 2

This example demonstrates loading a more complex set of data to create nodes of multiple types, apply a single tag to
all nodes, and apply custom tags to only some nodes based on additional criteria.

CSV File:

A CSV file (testfile.csv) contains a set of malicious indicators, listed by type and the indicator value, as represented
by the example header and row data below:

Indicator type,Indicator,Description
URL,http://search.webstie.net/,
FileHash-SHA256,b214c7a127cb669a523791806353da5c5c04832f123a0a6df118642eee1632a3,
FileHash-SHA256,b20327c03703ebad191c0ba025a3f26494ff12c5908749e33e71589ae1e1f6b3,
FileHash-SHA256,7fd526e1a190c10c060bac21de17d2c90eb2985633c9ab74020a2b78acd8a4c8,
FileHash-SHA256,b4e3b2a1f1e343d14af8d812d4a29440940b99aaf145b5699dfe277b5bfb8405,
hostname,dns.domain-resolve.org,
hostname,search.webstie.net,

Note that while the CSV file contains a header field titled “Description”, that field in this particular file contains no
data.

Let’s say that in addition to the raw indicators, we know that the indicators came from a blog post describing the
activity of the Vicious Wombat threat group, and that the SHA256 hashes are samples of the UMPTYSCRUNCH
malware family. To provide additional context for the data in our Cortex, we want to:

• Tag all of the indicators as associated with Vicious Wombat (#cno.threat.viciouswombat).

• Tag all of the SHA256 hashes as associated with UMPTYSCRUNCH malware (#cno.mal.umptyscrunch).

Stormfile:

Similar to our first example, we need to define a set of variables to represent each column (field) for each row and set
up the “for” loop:

for ($type, $value, $desc) in $rows

In this case, the rows contain different types of data that will be used to create different nodes (forms). The Indicator
type column ($type) tells us what type of data is available and what type of node we should create. We can use a

3.5. Tools 67

Synapse Documentation, Release 2.141.0

“switch” statement to tell Storm how to handle each type of data (i.e., each value in the $type field). Since we know
the SHA256 hashes refer to UMPTYSCRUNCH malware samples, we want to add tags to those nodes:

switch $type {

URL: {
[inet:url = $value]

}

FileHash-SHA256: {
[hash:sha256 = $value +#cno.mal.umptyscrunch]

}

hostname: {
[inet:fqdn = $value]

}
}

Finally, because we know all of the indicators are associated with the Vicious Wombat threat group, we want to add a
tag to all of the indicators. We can add that after the “switch” statement:

[+#cno.threat.viciouswombat]

So our full stormfile script looks like this:

for ($type, $value, $desc) in $rows {

switch $type {

URL: {
[inet:url = $value]

}

FileHash-SHA256: {
[hash:sha256 = $value +#cno.mal.umptyscrunch]

}

hostname: {
[inet:fqdn = $value]

}
}

[+#cno.threat.viciouswombat]
}

Testing the Ingest:

We can now test our ingest by loading the data into a test Cortex (line is wrapped for readability):

python -m synapse.tools.csvtool --logfile mylog.json --csv-header --cli --test
stormfile testfile.csv

From the cmdr CLI, we can now query the data to make sure the nodes were created and the tags applied correctly. For
example:

Check that two inet:fqdn nodes were created and given the #cno.threat.viciouswombat tag:

68 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

cli> storm inet:fqdn#cno

inet:fqdn=search.webstie.net
.created = 2019/07/05 14:49:20.110
:domain = webstie.net
:host = search
:issuffix = False
:iszone = False
:zone = webstie.net
#cno.threat.viciouswombat

inet:fqdn=dns.domain-resolve.org
.created = 2019/07/05 14:49:20.117
:domain = domain-resolve.org
:host = dns
:issuffix = False
:iszone = False
:zone = domain-resolve.org
#cno.threat.viciouswombat

complete. 2 nodes in 14 ms (142/sec).

Check that four hash:sha256 nodes were created and given both the Vicious Wombat and the UMPTYSCRUNCH
tags:

cli> storm hash:sha256

hash:sha256=7fd526e1a190c10c060bac21de17d2c90eb2985633c9ab74020a2b78acd8a4c8
.created = 2019/07/05 14:49:20.115
#cno.mal.umptyscrunch
#cno.threat.viciouswombat

hash:sha256=b20327c03703ebad191c0ba025a3f26494ff12c5908749e33e71589ae1e1f6b3
.created = 2019/07/05 14:49:20.115
#cno.mal.umptyscrunch
#cno.threat.viciouswombat

hash:sha256=b214c7a127cb669a523791806353da5c5c04832f123a0a6df118642eee1632a3
.created = 2019/07/05 14:49:20.113
#cno.mal.umptyscrunch
#cno.threat.viciouswombat

hash:sha256=b4e3b2a1f1e343d14af8d812d4a29440940b99aaf145b5699dfe277b5bfb8405
.created = 2019/07/05 14:49:20.116
#cno.mal.umptyscrunch
#cno.threat.viciouswombat

complete. 4 nodes in 3 ms (1333/sec).

Loading the Data:

Once the data has been validated, we can load it into our live Cortex (replace the Cortex path below with the path to
your Cortex; line is wrapped for readability):

python -m synapse.tools.csvtool --logfile mylog.json --csv-header
--cortex tcp://cortex.vertex.link:4444/cortex00 stormfile testfile.csv

3.5. Tools 69

Synapse Documentation, Release 2.141.0

Export Examples - Overview

The --export option allows you to export a set of data from a Cortex into a CSV file.

When --export is used:

• stormfile contains:

– the Storm query that specifies the data to be exported; and

– a statement telling Storm how to format and generate the rows of the CSV file.

• csvfile is the location where the data should be written.

The Storm $lib.csv library includes functions for working with CSV files. The $lib.csv.emit() function will
emit CSV rows; the parameters passed to the function define the data that should be included in each row.

$lib.csv.emit() will create one row for each node that it processes (i.e., each node in the Storm “pipeline” that
passes through the $lib.csv.emit() command), as determined by the preceding Storm query.

Export Example 1

For this example, we will export the data we imported in Ingest Example 2. For this simple example, we want to export
the set of malicious indicators associated with the Vicious Wombat threat group.

Stormfile:

To lift all the indicators associated with Vicious Wombat, we can use the following Storm query:

#cno.threat.viciouswombat

We then need to tell $lib.csv.emit() how to format our exported data. We want to list the indicator type (its form)
and the indicator itself (the node’s primary property value).

While this seems pretty straightforward, there are two considerations:

• Given our example above, we have multiple node types to export (inet:url, hash:sha256, inet:fqdn).

• While we can reference any secondary property directly using its relative property name (i.e., :zone for
inet:fqdn:zone), referencing the primary property value is a bit trickier, as is referencing the form of the
node.

$node is a built-in Storm variable that represents the current node passing through the Storm pipeline. $node supports
a number of methods (Storm Reference - Advanced - Methods) that allow Storm to access various attributes of the current
node. In this case:

• The $node.form() method will access (return) the current node’s form.

• The $node.value() method will access (return) the current node’s primary property value.

This means we can tell $lib.csv.emit() to create a CSV file with a list of indicators as follows:

$lib.csv.emit($node.form(), $node.value())

So our overall stormfile to lift and export all of the Vicious Wombat indicators is relatively simple:

#cno.threat.viciouswombat
$lib.csv.emit($node.form(), $node.value())

70 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Exporting the Data:

We can now test our export of the data we ingested in Ingest Example 2 (replace the Cortex path below with the path
to your Cortex; line is wrapped for readability):

python -m synapse.tools.csvtool --debug --export
--cortex tcp://cortex.vertex.link:4444/cortex00 stormfile export.csv

If we view the contents of export.csv, we should see our list of indicators:

inet:fqdn,search.webstie.net
hash:sha256,7fd526e1a190c10c060bac21de17d2c90eb2985633c9ab74020a2b78acd8a4c8
inet:fqdn,dns.domain-resolve.org
hash:sha256,b20327c03703ebad191c0ba025a3f26494ff12c5908749e33e71589ae1e1f6b3
hash:sha256,b214c7a127cb669a523791806353da5c5c04832f123a0a6df118642eee1632a3
hash:sha256,b4e3b2a1f1e343d14af8d812d4a29440940b99aaf145b5699dfe277b5bfb8405
inet:url,http://search.webstie.net/

Export Example 2

For this example, we will export the DNS A records we imported in Ingest Example 1. We will create a CSV file that
matches the format of our original ingest file, with columns for domain, IP, and first / last resolution times.

Stormfile:

To lift the DNS A records for the domains woot.com, hurr.net, and derp.org, we can use the following Storm
query:

inet:dns:a:fqdn=woot.com inet:dns:a:fqdn=hurr.net inet:dns:a:fqdn=derp.org

In this case we want $lib.csv.emit() to include:

• the domain (:fqdn property of the inet:dns:a node).

• the IP (:ipv4 property of the inet:dns:a node).

• the first observed resolution (the first half of the .seen property).

• the most recently observed resolution (the second half of the .seen property).

As a first attempt, we could specify our output format as follows to export those properties:

$lib.csv.emit(:fqdn, :ipv4, .seen)

This exports the data from the relevant nodes as expected, but does so in the following format:

woot.com,16909060,"(1524057167000, 1529747112000)"

We have a few potential issues with our current output:

• The IP address is exported using its raw integer value instead of in human-friendly dotted-decimal format.

• The .seen value is exported into a single field as a combined "(<min>, <max>)" pair, not as individual comma-
separated timestamps.

• The .seen values are exported using their raw Epoch millis format instead of in human-friendly datetime strings.

We need to do some additional formatting to get the output we want in the CSV file.

IP Address

3.5. Tools 71

Synapse Documentation, Release 2.141.0

Synapse stores IP addresses as integers, so specifying :ipv4 for our output definition gives us the raw integer value for
that property. If we want the human-readable value, we need to use the human-friendly representation (Repr) of the
value. We can do this using the $node.repr() method to tell Storm to obtain and use the repr value of a node instead of
its raw value ($node.value()).

$node.repr() by itself (e.g., with no parameters passed to the method) returns the repr of the primary property value
of the node passing through the runtime. Our original Storm query, above, lifts DNS A records - so the nodes passing
through the runtime are inet:dns:a nodes, not IPv4 nodes. This means that using $node.repr() by itself will return
the repr of the inet:dns:a node, not the :ipv4 property.

We can tell $node.repr() to return the repr of a specific secondary property of the node by passing the string of the
property name to the method:

$node.repr(ipv4)

.seen times

.seen is an ival (interval) type whose property value is a paired set of minimum and maximum timestamps. To export
the minimum and maximum as separate fields in our CSV file, we need to split the .seen value into two parts by
assigning each timestamp to its own variable. We can do this as follows:

($first, $last) = .seen

However, simply splitting the value will result in the variables $first and $last storing (and emitting) the raw Epoch
millis value of the time, not the human-readable repr value. Similar to the way in which we obtained the repr value for
the :ipv4 property, we need to assign the human-readable repr values of the .seen property to $first and $last:

($first, $last) = $node.repr(".seen")

Stormfile

We can now combine all of these elements into a Storm query that:

• Lifts the inet:dns:a nodes we want to export.

• Splits the human-readable version of the .seen property into two time values and assigns them to variables.

• Generates $lib.csv.emit() messages to create the CSV rows.

Our full stormfile query looks like this:

inet:dns:a:fqdn=woot.com inet:dns:a:fqdn=hurr.net inet:dns:a:fqdn=derp.org

($first, $last) = $node.repr(".seen")

$lib.csv.emit(:fqdn, $node.repr(ipv4), $first, $last)

Warning: The data submitted to $lib.csv.emit() to create the CSV rows must exist for every node processed
by the function. For example, if one of the inet:dns:a nodes lifted by the Storm query and submitted to $lib.
csv.emit() does not have a .seen property, Storm will generate an error and halt further processing, which may
result in a partial export of the desired data.

Subqueries (Storm Reference - Subqueries) or various flow control processes (Storm Reference - Advanced - Control
Flow) can be used to conditionally account for the presence or absence of data for a given node.

Exporting the Data:

72 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

We can now test our export of the data we ingested in Ingest Example 1 (replace the Cortex path below with the path
to your Cortex; line is wrapped for readability):

python -m synapse.tools.csvtool --debug --export
--cortex tcp://cortex.vertex.link:4444/cortex00 stormfile export.csv

If we view the contents of export.csv, we should see the following:

woot.com,1.2.3.4,2018/04/18 13:12:47.000,2018/06/23 09:45:12.000
hurr.net,5.6.7.8,2018/10/03 00:47:29.000,2018/10/04 18:26:06.000
derp.org,4.4.4.4,2019/06/09 09:00:18.000,2019/07/03 15:07:52.000

3.5.6 genpkg

The Synapse genpkg tool can be used to generate a Storm Package containing new Storm commands and Storm
modules from a YAML definition and optionally push it to a Cortex or PkgRepo.

Syntax

genpkg is executed from an operating system command shell. The command usage is as follows:

usage: synapse.tools.genpkg [-h] [--push <url>] [--save <path>] [--optic <path>]
→˓<pkgfile>

Where:

• pkgfile is the path to the Storm Package YAML file.

• --save takes a file name to save the completed package JSON as.

• --push takes an optional Telepath URL to a Cortex or PkgRepo for the package to be pushed to.

• --optic takes an optional path to a directory containing Optic module files.

Package Layout

The expected filesystem layout for a Storm package is:

foopkg.yml
storm/

commands/
foocmd

modules/
foomod

optic/
index.html

Commands and modules defined in the package YAML file are expected to have corresponding files containing the
Storm code for their implementation. It is not required to have both commands and modules in a Storm package; you
may have a package with only commands, or only modules.

3.5. Tools 73

Synapse Documentation, Release 2.141.0

Package YAML

A Storm package YAML may contain the following definitions:

• name: Name of the Storm package.

• version: Version of the Storm package. A Cortex may contain multiple versions of the same package.

• synapse_minversion: Optional minimum required Synapse version a Cortex must be running to load the
package.

• onload: Optional Storm code to run in a Cortex when the package is loaded.

• modules: Storm module definitions.

• commands: Storm command definitions.

The example below shows the YAML included in the foopkg.yml file.

foopkg.yml

name: foopkg
version: 1.0.0
synapse_minversion: [2, 23, 0]

onload: $lib.import(foomod).onload()

modules:
- name: foomod
modconf:
srcguid: f751f9ad20e75547be230ae1a425fb9f

commands:
- name: foocmd
descr: |
One line description on the first line.
Followed by a more detailed description talking about what the command does and any
useful additional information.

Examples:
A couple examples of the command
inet:ipv4 | foocmd
inet:ipv4 | limit 1 | foocmd --yield

asroot: true
cmdargs:
- - --debug
- default: false
action: store_true
help: Show verbose debug output.

- - --yield
- default: false
action: store_true
help: Yield the newly created nodes.

(continues on next page)

74 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

- - --timeout
- default: 0
type: int
help: Specify a timeout in seconds.

cmdconf:
srcguid: f751f9ad20e75547be230ae1a425fb9f

forms:
input:
- inet:ipv4

output:
- inet:ipv4

nodedata:
- [foodata, file:bytes]

Modules

Modules can be used to expose reusable Storm functions. Each module defines a name, which is used for importing
elsewhere via $lib.import(), and optionally a modconf dictionary containing additional configuration values which
will be accessible in the module’s Storm via $modconf.

The example below shows the Storm code included in the foomod file.

foomod

function onload() {
[meta:source=$modconf.srcguid

:name="foomod"
:type="foo"

]
fini { return($lib.null) }

}

function bar(x, y) {
return ($($x + $y))

}

Commands

Multiple Storm commands can be added to a Storm service package, with each defining the following attributes:

• name: Name of the Storm command to expose in the Cortex.

• descr: Description of the command which will be available in help displays.

• asroot: Whether the command should be run with root permissions. This allows users to be granted access to
run the command without requiring them to have all the permissions needed by the Storm command. An example
asroot permission for foocmd would be ('storm', 'asroot', 'cmd', 'asroot', 'foocmd').

• cmdargs: An optional list of arguments for the command.

• cmdconf: An optional dictionary of additional configuration variables to provide to the command Storm execu-
tion.

3.5. Tools 75

Synapse Documentation, Release 2.141.0

• forms: List of input and output forms for the command, as well as a list of nodedata keys and the corresponding
form on which they may be set by the service.

The example below shows the Storm code included in the foocmd file.

foocmd

$foo = $lib.import(foomod)

[:asn = $foo.bar(:asn, $(20))]

$node.data.set(foodata, $lib.time.now())

Building the Example Package

To build the package and push it directly to a Cortex:

python -m synapse.tools.genpkg --push tcp://user:pass@127.0.0.1:27492 foopkg.yml

Note: Users must have the pkg.add permission to add a package to a Cortex.

Once the package has been successfully pushed to the Cortex, the additional Storm Commands will be listed in the
output of storm help under the package they were loaded from:

package: foopkg
foocmd : One line description on the first line.

The new commands may now be used like any other Storm command:

cli> storm inet:ipv4=192.168.0.113 | foocmd
Executing query at 2023/07/12 15:13:58.668
....
inet:ipv4=192.168.0.113

.created = 2023/07/12 15:13:58.651
:asn = 40
:type = private

complete. 1 nodes in 48 ms (20/sec).

If immediately pushing the package to a Cortex is not desired, it can instead be built and saved to foo.json to load
later:

python -m synapse.tools.genpkg --save foo.json foopkg.yml

76 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

3.5.7 easycert

The Synapse easycert tool can be used to manage CA, host, and user certificates.

Syntax

easycert is executed using python -m synapse.tools.easycert. The command usage is as follows:

usage: easycert [-h] [--certdir CERTDIR] [--importfile {cas,hosts,users}] [--ca] [--p12]␣
→˓[--server] [--server-sans SERVER_SANS] [--csr] [--sign-csr] [--signas SIGNAS]

name

Command line tool to generate simple x509 certs

positional arguments:
name common name for the certificate (or filename for CSR signing)

optional arguments:
-h, --help show this help message and exit
--certdir CERTDIR Directory for certs/keys
--importfile {cas,hosts,users}

import certs and/or keys into local certdir
--ca mark the certificate as a CA/CRL signer
--p12 mark the certificate as a p12 archive
--server mark the certificate as a server
--server-sans SERVER_SANS

server cert subject alternate names
--csr generate a cert signing request
--sign-csr sign a cert signing request
--signas SIGNAS sign the new cert with the given cert name

3.6 Storm Reference

Synapse uses the Storm Query language to do lifting and modification of data in the graph. Basic Storm usage is
documented in the following sections.

3.6.1 Storm Reference - Introduction

Storm is the query language used to interact with data in Synapse. Storm allows you to ask about, retrieve, annotate,
add, modify, and delete data within a Synapse Cortex. If you are using the community version of Synapse, you will
access Synapse via the Storm command-line interface (Storm CLI) (see storm):

storm> <query>

If you are a Vertex Project customer, you will access Synapse via the Synapse webUI (also known as Optic.

Note: If you’re just getting started with Synapse, you can use the Synapse Quickstart to quickly set up and connect to
a local Cortex using the Storm CLI.

This section covers several important high-level Storm concepts:

3.6. Storm Reference 77

https://synapse.docs.vertex.link/projects/optic/en/latest/index.html
https://github.com/vertexproject/synapse-quickstart

Synapse Documentation, Release 2.141.0

• Storm Background

• Basic Storm Operations

– Lift, Filter, and Pivot Criteria

• Whitespace and Literals in Storm

– Backtick Format Strings

• Storm Operating Concepts

– Working Set

– Operation Chaining

– Node Consumption

– Storm as a Pipeline

• Advanced Storm Operations

Storm Background

In designing Storm, we needed it to be flexible and powerful enough to allow interaction with large amounts of data
and a wide range of disparate data types. However, we also needed Storm to be intuitive and efficient so it would
be accessible to a wide range of users. We wrote Storm specifically to be used by analysts and other users from a
variety of knowledge domains who are not necessarily programmers and who would not want to use what felt like a
“programming language”.

Wherever possible, we masked Storm’s underlying programmatic complexity. The intent is for Storm to act more like
a “data language”, allowing users to:

• Reference data and query operations in an intuitive form. We took a “do what I mean” approach for how
users interact with and use Storm so that users can focus on the data and the relationships among the data, not
the query language. Once you get the gist of it, Storm “just works”! This is because Storm and Synapse make
use of a number of features “under the hood” such as property normalization, type enforcement / type awareness,
and syntax and query optimization, to make Storm easier for you to use. Synapse and Storm do the work in the
background so you can focus on analysis.

• Use a simple yet powerful syntax to run Storm queries. Storm uses intuitive keyboard symbols (such as
an “arrow” (->) for pivot operations) for efficient querying, as well as a natural language-like syntax. This
makes using Storm feel more like “asking a question” than “constructing a data query”. In fact, one method
we use to teach Storm to new users is to practice “translating” questions into queries (you’ll be surprised how
straightforward it is!).

Analysts still need to learn the Storm “language” - forms (Form) and tags (Tag) are Storm’s “words”, and Storm
operators allows you to construct “sentences”. That said, the intent is for Storm to function more like “how do I ask
this question about the data?” and not “how do I write a program to get the data I need?”

Finally – and most importantly – giving analysts direct access to Storm allows them to create arbitrary queries and
provides them with an extraordinarily powerful analytical tool. Analysts are not constrained to a set of “canned”
queries provided through a GUI or an API. Instead, they can follow their analysis wherever it takes them, creating
queries as needed and working with the data in whatever manner is most appropriate to their research.

78 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Basic Storm Operations

Storm allows users to perform all of the common operations used to interact with data in Synapse:

• Lift: – retrieve data based on specified criteria. (Storm Reference - Lifting)

• Filter: – refine your results by including or excluding a subset of nodes based on specified criteria. (Storm
Reference - Filtering)

• Pivot: – take a set of nodes and identify other nodes that share one or more property values with the lifted set.
(Storm Reference - Pivoting)

• Data modification: – add, modify, annotate, and delete nodes from Synapse. (Storm Reference - Data Modifi-
cation)

Additional operations include:

• Traverse light edges. (Lightweight (Light) Edge, Traverse (Walk) Light Edges)

• Pipe (send) nodes to Storm commands (Storm Reference - Storm Commands). Storm supports an extensible
set of commands such as limit, max, or uniq. These commands provide specific functionality to further extend
the analytical power of Storm. Additional Storm commands allow management of permissions for users and
roles, Synapse views and layers, and Synapse’s automation features (Storm Reference - Automation). Available
commands can be displayed by running help from the Storm CLI.

Storm also incorporates a number of Advanced Storm Operations that provide even greater power and flexibility.

Note: While Storm queries can range from the very simple to the highly complex, all Storm queries are constructed
from this relatively small set of “building blocks”. Most users, especially when they first start, only need the handful
of blocks listed above!

Lift, Filter, and Pivot Criteria

The main operations carried out with Storm are lifting, filtering, and pivoting (we include traversing light edges as part
of “pivoting”). When conducting these operations, you need to be able to clearly specify the data you are interested in
– your selection criteria. In most cases, the criteria you specify will be based on one or more of the following:

• A property (primary or secondary) on a node.

• A specific value for a property (<form> = <valu> or <prop> = <pval>) on a node.

• A tag on a node.

• The existence of a light edge linking nodes.

• The name (“verb”) of a specific light edge linking nodes.

All of the above elements – nodes, properties, values, and tags – are the fundamental building blocks of the Synapse
data model (see Data Model - Terminology). As such, an understanding of the Synapse data model is essential to
effective use of Storm.

3.6. Storm Reference 79

Synapse Documentation, Release 2.141.0

Whitespace and Literals in Storm

Storm allows (and in some cases requires) whitespace within Storm to separate syntax elements such as commands and
command arguments.

Quotation marks are used to preserve whitespace characters and other special characters in literals used within Storm.

Using Whitespace Characters

Whitespace characters (i.e., spaces) are used within Storm to separate command line arguments. Specifically, whites-
pace characters are used to separate commands, command arguments, command operators, variables and literals.

When entering a query/command in Storm, one or more whitespace characters are required between the following
command line arguments:

• A command (such as max) and command line parameters (in this case, the property :asof):

storm> inet:whois:rec:fqdn=vertex.link | max :asof

• An unquoted literal and any subsequent argument or operator:

storm> inet:email=support@vertex.link | count

storm> inet:email=support@vertex.link -> *

Whitespace characters can optionally be used when performing the following operations:

• Assigning values using the equals sign assignment operator:

storm> [inet:ipv4=192.168.0.1]

storm> [inet:ipv4 = 192.168.0.1]

• Comparison operations:

storm> file:bytes:size>65536

storm> file:bytes:size > 65536

• Pivot operations:

storm> inet:ipv4->*

storm> inet:ipv4 -> *

• Specifying the content of edit brackets or edit parentheses:

storm> [inet:fqdn=vertex.link]

storm> [inet:fqdn=vertex.link]

storm> [inet:fqdn=vertx.link (inet:ipv4=1.2.3.4 :asn=5678)]

storm> [inet:fqdn=vertex.link (inet:ipv4=1.2.3.4 :asn=5678)]

Whitespace characters cannot be used between reserved characters when performing the following CLI operations:

80 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

• Add and remove tag operations. The plus (+) and minus (-) sign characters are used to add and remove tags to
and from nodes in Synapse respectively. When performing tag operations using these characters, a whitespace
character cannot be used between the actual character and the tag name (e.g., +#<tag>).

storm> inet:ipv4 = 192.168.0.1 [-#oldtag +#newtag]

Entering Literals

Storm uses quotation marks (single and double) to preserve whitespace and other special characters that represent
literals. If values with these characters are not quoted, Synapse may misinterpret them and throw a syntax error.

Single (' ') or double (" ") quotation marks can be used when specifying a literal in Storm during an assignment
or comparison operation. Enclosing a literal in quotation marks is required when the literal:

• begins with a non-alphanumeric character,

• contains a space (\s), tab (\t) or newline(\n) character, or

• contains a reserved Synapse character (for example, \) , =] } |).

Enclosing a literal in single quotation marks will preserve the literal meaning of each character. That is, each character
in the literal is interpreted exactly as entered.

• Note that if a literal (such as a string) includes a single quotation mark / tick mark, it must be enclosed
in double quotes.

• Wrong: 'Storm's intuitive syntax makes it easy to learn and use.'

• Right: "Storm's intuitive syntax makes it easy to learn and use."

Enclosing a literal in double quotation marks will preserve the literal meaning of all characters except for the backslash
(\) character, which is interpreted as an ‘escape’ character. The backslash can be used to include special characters
such as tab (\t) or newline (\n) within a literal.

• If you need to include a literal backslash within a double-quoted literal, you must enter it as a “double
backslash” (the first backslash “escapes” the following backslash character):

– Wrong: "C:\Program Files\Mozilla Firefox\firefox.exe"

– Right: "C:\\Program Files\\Mozilla Firefox\\firefox.exe"

Note that because the above example does not include a single quote / tick mark as part of the literal, you
can simply enclose the file path in single quotes:

• Also right: 'C:\Program Files\Mozilla Firefox\firefox.exe'

The Storm queries below demonstrate assignment and comparison operations that do not require quotation marks:

• Lifting the domain vtx.lk:

storm> inet:fqdn = vtx.lk

• Lifting the file name windowsupdate.exe:

storm> file:base = windowsupdate.exe

The commands below demonstrate assignment and comparison operations that require the use of quotation marks.
Failing to enclose the literals below in quotation marks will result in a syntax error.

• Lift the file name windows update.exe which contains a whitespace character:

3.6. Storm Reference 81

Synapse Documentation, Release 2.141.0

storm> file:base = 'windows update.exe'

• Lift the file name windows,update.exe which contains the comma special character:

storm> file:base = "windows,update.exe"

Backtick Format Strings

Backticks (` `) can be used to specify a format string in Storm, with curly braces used to specify expressions which
will be substituted into the string at runtime. Any valid Storm expression may be used in a format string, such as
variables, node properties, tags, or function calls.

• Use a variable in a string:

storm> $ip = "1.2.3.4" $str = `The IP is {$ip}`

• Use node properties in a string:

storm> inet:ipv4=1.2.3.4 $lib.print(`IP {$node.repr()}: asn={:asn} .seen={.seen} foo={
→˓#foo}`)

• Lift a node using a format string:

storm> $ip=1.2.3.4 $port=22 inet:client=`{$ip}:{$port}`

Backtick format strings may also span multiple lines, which will include the newlines when displayed:

storm> inet:ipv4=1.2.3.4 $lib.print(`
IP {$node.repr()}:
asn={:asn}
.seen={.seen}
foo={#foo}`)

Like double quotes, backticks will preserve the literal meaning of all characters except for the backslash (\) character,
which is interpreted as an ‘escape’ character. The backslash can be used to include special characters such as tab (\t)
or newline (\n), or to include a backtick (`) or curly brace ({) in the string.

Storm Operating Concepts

Storm has several notable features in the way it interacts with and operates on data. We mention these concepts briefly
here to familiarize you with them; they’re important but also pretty intuitive, so you don’t need to worry about them
too much for standard Storm queries and operations. These concepts are much more important if you’re using more
advanced Storm constructs such as variables or control flow, but we want to introduce the concepts here.

82 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Working Set

Most objects in Synapse are nodes. Most Storm operations start by lifting (selecting) a node or set of nodes.

• The set of nodes that you start with is called your initial working set.

• The set of nodes at any given point in your Storm query is called your current working set.

Operation Chaining

Users commonly interact with data (nodes) in Synapse using operations such as lift, filter, and pivot. Storm allows
multiple operations to be chained together to form increasingly complex queries:

storm> inet:fqdn=vertex.link

storm> inet:fqdn=vertex.link -> inet:dns:a

storm> inet:fqdn=vertex.link -> inet:dns:a -> inet:ipv4

storm> inet:fqdn=vertex.link -> inet:dns:a -> inet:ipv4 +:type=unicast

The above example demonstrates chaining a lift (inet:fqdn=vetex.link) with two pivots (-> inet:dns:a, ->
inet:ipv4) and a filter (+:type=unicast).

When Storm operations are concatenated in this manner, they are processed in order from left to right with each
operation (lift, filter, or pivot) acting on the output of the previous operation. A Storm query is not evaluated as a single
whole; Storm evaluates your working set of nodes against each operation in order before moving to the next operation.

Note: Technically, any query you construct is first evaluated as a whole to ensure it is a syntactically valid query -
Synapse will complain if your Storm syntax is incorrect. But once Synapse has checked your Storm syntax, nodes are
processed by each Storm operation in order.

You do not have to write (or execute) Storm queries “one operation at a time” - this example is simply meant to illustrate
how you can chain individual Storm operations together to form longer queries. If you know that the question you want
Storm to answer is “show me the unicast IPv4 addresses that the FQDN vertex.link has resolved to”, you can simply
run the final query. But you can also “build” queries one operation at a time if you’re exploring the data or aren’t sure
yet where your analysis can take you.

The ability to build queries operation by operation means that a Storm query can parallel an analyst’s natural thought
process: you perform one Storm operation and then consider the “next step” you want to take in your analysis. “Show
me X data. . . that’s interesting, now show me Y data that relates to X. . . hm, now take a subset of Y and show me any
relationship to Z data. . . ” and so on. Each “now show me. . . ” commonly corresponds to a new Storm operation that
can be added to your existing Storm query to navigate through the data.

3.6. Storm Reference 83

Synapse Documentation, Release 2.141.0

Node Consumption

Storm operations typically transform your working set in some way. That is, the nodes that “go into” (are inbound) to
a given Storm operation are not necessarily the nodes that “come out” of that operation.

Take our operation chaining example above:

• Our initial working set consists of the single node inet:fqdn=vertex.link, which we selected with a lift
operation.

• When we pivot to the DNS A records for that FQDN, we navigate away from (drop) our initial inet:fqdn
node, and navigate to (add) the DNS A nodes. Our current working set now consists of the DNS A records
(inet:dns:a nodes) for vertex.link.

• Similarly, when we pivot to the IPv4 addresses, we navigate away from (drop) the DNS A nodes and navigate to
(add) the IPv4 nodes. Our current working set is made up of the inet:ipv4 nodes.

• Finally, when we perform our filter operation, we may discard (drop) any IPv4 nodes representing non-unicast
IPs (such as inet:ipv4=127.0.0.1) if present.

We refer to this transformation (in particular, dropping) of some or all nodes by a given Storm operation as consuming
nodes. Most Storm operations consume nodes (that is, change your working set in some way - what comes out of the
operation is not the same set of nodes that goes in).

For standard Storm queries this process should be fairly intuitive (“now that you point that out. . . of course that is what’s
happening”). However, the idea of node consumption and the transformation of your current working set is important
to keep in mind for more advanced Storm.

Storm as a Pipeline

Just as each Storm operation in the chain is processed individually from left to right, each node in your working set is
evaluated individually against a given Storm operation. You can think of your Storm query as a pipeline of operations,
with each node “fired” one at a time through the pipeline. Whether you start with one node or 10,000 nodes, they are
evaluated against your Storm query one by one.

A key advantage to processing nodes one by one is that it significantly reduces Synapse’s latency and memory use -
this is a big part of what makes Synapse so fast and responsive. Synapse can start providing you with results for the
initial nodes processed right away, while it continues processing the remaining nodes. In other words, you don’t have
to wait for your entire query to complete for all of your nodes before getting your answer.

For standard Storm, this behavior is transparent to you as the user - you run a Storm query, you get a response. However,
this pipeline behavior can be important to understand when working with (or troubleshooting) Storm queries that
leverage features such as subqueries, variables, or control flow operations.

Advanced Storm Operations

In our experience, the more analysts use Storm, the more they want even greater power and flexibility from the language
to support their analytical workflow! To meet these demands, Storm evolved a number of advanced features, including:

• Variables (Storm Reference - Advanced - Variables)

• Methods (Storm Reference - Advanced - Methods)

• Control Flow (Storm Reference - Advanced - Control Flow)

• Storm Libraries

• Storm Types

84 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Analysts do not need to use or understand these more advanced concepts in order to use Storm or Synapse. Basic
Storm functions are sufficient for a wide range of analytical needs and workflows. However, these additional features
are available to both “power users” and developers as needed:

• For analysts, once they are comfortable with Storm basics, many of them want to expand their Storm skills
specifically because it facilitates their analysis.

• For developers, writing extensions to Synapse in Storm has the advantage that the extension can be deployed or
updated on the fly. Contrast this with extensions written in Python, for example, which would require restarting
the system during a maintenance window in order to deploy or update the code.

Note: Synapse’s Rapid Power-Ups (Power-Up), are written entirely in Storm and exposed to Synapse users as Storm
commands!

3.6.2 Storm Reference - Document Syntax Conventions

This section covers the following important conventions used within the Storm Reference Documents:

• Storm and Layers

• Storm Syntax Conventions

• Usage Statements vs. Specific Storm Queries

• Type-Specific Behavior

• Whitespace

Storm and Layers

The Storm Reference documentation provides basic syntax examples that assume a simple Storm environment -
that is, a Cortex with a single Layer. For multi-Layer Cortexes, the effects of specific Storm commands - particularly
data modification commands - may vary based on the specific arrangement of read / write Layers, the Layer in which
the command is executed, and the permissions of the user.

Storm Syntax Conventions

The Storm Reference documentation provides numerous examples of both abstract Storm syntax (usage statements)
and specific Storm queries. The following conventions are used for Storm usage statements:

• Items that must be entered literally on the command line are in bold. These items include command names and
literal characters.

• Items that represent “variables” that must be replaced with a name or value are placed within angle brackets (<
>) in italics. Most “variables” are self-explanatory, however a few commonly used variable terms are defined
here for convenience:

– <form> refers to a form / node primary property, such as inet:fqdn.

– <valu> refers to the value of a primary property, such as woot.com in inet:fqdn=woot.com.

– <prop> refers to a node secondary property (including universal properties) such as inet:ipv4:asn or
inet:ipv4.created.

– <pval> refers to the value of a secondary property, such as 4808 in inet:ipv4:asn=4808.

– <query> refers to a Storm query.

3.6. Storm Reference 85

Synapse Documentation, Release 2.141.0

– <inet:fqdn> refers to a Storm query whose results contain the specified form(s)

– <tag> refers to a tag (#sometag as opposed to a syn:tag form).

• Bold brackets are literal characters. Parameters enclosed in non-bolded brackets are optional.

• Parameters not enclosed in brackets are required.

• A vertical bar signifies that you choose only one parameter. For example:

– a | b indicates that you must choose a or b.

– [a | b] indicates that you can choose a, b, or nothing (the non-bolded brackets indicate the parameter
is optional).

• Ellipses (. . .) signify the parameter can be repeated on the command line.

• The storm command that must precede a Storm query is assumed and is omitted from examples.

Example:

[<form> = <valu> [: <prop> = <pval> . . .]]

The Storm query above adds a new node.

• The outer brackets are in bold and are required literal characters to specify a data modification (add) operation.
Similarly, the equals signs are in bold to indicate literal characters.

• <form> and <valu> would need to be replaced by the specific form (such as inet:ipv4) and primary property
value (such as 1.2.3.4) for the node being created.

• The inner brackets are not bolded and indicate that one or more secondary properties can optionally be specified.

• <prop> and <pval> would need to be replaced by the specific secondary property and value to add to the node,
such as :loc = us.

• The ellipsis (...) indicate that additional secondary properties can optionally be specified.

Usage Statements vs. Specific Storm Queries

Examples of specific queries represent fully literal input, but are not shown in bold for readability. For example:

Usage statement:

[<form> = <valu> [: <prop> = <pval> . . .]]

Example query:

[inet:ipv4 = 1.2.3.4 :loc = us]

Type-Specific Behavior

Some data types within the Synapse data model have been optimized in ways that impact their behavior within Storm
queries (e.g., how types can be input, lifted, filtered, etc.) See Storm Reference - Type-Specific Storm Behavior for
details.

86 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Whitespace

Whitespace may be used in the examples for formatting and readability.

3.6.3 Storm Reference - Lifting

Lift operations retrieve a set of nodes from a Synapse Cortex based on specified criteria. While all lift operations are
retrieval operations, they can be broken down into “types” of lifts based on the criteria, comparison operator, or special
handler used:

• Simple Lifts

• Try Lifts

• Lifts Using Standard Comparison Operators

• Lifts Using Extended Comparison Operators

See Storm Reference - Document Syntax Conventions for an explanation of the syntax format used below.

See Storm Reference - Type-Specific Storm Behavior for details on special syntax or handling for specific data types.

Simple Lifts

“Simple” lifts refers to the most “basic” lift operations. That is, operations to retrieve a set of nodes based on:

• The presence of a specific primary or secondary property.

• The presence of a specific primary property value or secondary property value.

• The presence of a specific tag or tag property.

The only difference between “simple” lifts and “lifts using comparison operators” is that we have defined simple lifts
as those that use the equals (=) comparator, which is the easiest comparator to use to explain basic lift concepts.

Syntax:

<form> [= <valu>]

<form> = <valu> : <prop> [= <pval>]

<tag> [: <tagprop> [<operator> <pval>]]

#: <tagprop> [<operator> <pval>]

Examples:

Lift by primary property (<form>):

• Lift all domain nodes:

storm> inet:fqdn

• Lift all mutex nodes:

storm> it:dev:mutex

Lift a specific node (<form> = <valu>):

• Lift the node for the domain google.com:

3.6. Storm Reference 87

Synapse Documentation, Release 2.141.0

storm> inet:fqdn = google.com

• Lift the node for a specific MD5 hash:

storm> hash:md5 = d41d8cd98f00b204e9800998ecf8427e

Lift a specific compound node:

• Lift the DNS A record showing that domain woot.com resolved to IP 1.2.3.4:

storm> inet:dns:a = (woot.com, 1.2.3.4)

Lift a specific GUID node:

• Lift the organization node with the specified GUID:

storm> ou:org=2f92bc913918f6598bcf310972ebf32e

Lift a specific digraph (edge) node:

• Lift the edge:has node linking the person node representing “Bob Smith” to his email address:

storm> edge:has=((ps:person,12af06294ddf1a0ac8d6da34e1dabee4),(inet:email, bob.
→˓smith@gmail.com))

Lift by the presence of a secondaray property (<prop>):

• Lift the DNS SOA record nodes that have an email property:

storm> inet:dns:soa:email

Lift by a specific property value (<prop> = <pval>):

• Lift the organization node with the alias vertex:

storm> ou:org:alias = vertex

• Lift all DNS A records for the domain blackcake.net:

storm> inet:dns:a:fqdn = blackcake.net

• Lift all the files with a PE compiled time of 1992-06-19 22:22:17:

storm> file:bytes:mime:pe:compiled = "1992/06/19 22:22:17"

• Lift all the files with a PE compiled time that falls within the year 2019:

storm> file:bytes:mime:pe:compiled=2019*

Lift all nodes with a specific tag:

• Lift all nodes with the tag #cno.infra.anon.tor:

storm> #cno.infra.anon.tor

Lift all nodes with a specific tag property:

• Lift all nodes with a tag that has a :risk tag property:

88 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Lift all nodes with a specific tag and tag property:

• Lift all nodes with a #rep.symantec tag that has a :risk tag property:

storm> #rep.symantec:risk

Lift all nodes with a specific tag, tag property, and value:

• Lift all nodes with a #rep.symantec tag with a :risk tag property and a value greater than 10:

storm> #rep.symantec:risk>10

Usage Notes:

• Lifting nodes by form alone (e.g., lifting all inet:fqdn nodes or all inet:email nodes) is possible but generally
impractical / undesirable as it will potentially return an extremely large data set.

• Lifting by form alone when piped to the Storm limit command may be useful for returning a small number of
“exemplar” nodes.

• Lifting nodes by <form> = <valu> is the most common method of lifting a single node.

• When lifting a form whose <valu> consists of multiple components (e.g., a compound node or digraph node),
the components must be passed as a comma-separated list enclosed in parentheses.

• Lifting nodes by the presence of a secondary property alone (<prop>) may be impractical / undesirable (similar
to lifting by form alone), but may be feasible in limited cases (i.e., where it is known that only a relatively small
number of nodes have a given secondary property).

• Lifting nodes by the value of a secondary property (<prop> = <pval>) is useful for lifting all nodes that share a
secondary property with the same value; and may be used to lift individual nodes with unique or relatively unique
secondary properties in cases where entering the primary property is impractical (such as for GUID nodes).

• When lifting nodes by secondary property value where the value is a time (date / time), you do not need to use
full YYYY/MM/DD hh:mm:ss.mmm syntax. Synapse allows the use of both lower resolution values (e.g., YYYY/
MM/DD) and wildcard values (e.g., YYYY/MM*). In particular, wildcard syntax can be used to specify any values
that match the wildcard expression. See the type-specific documentation for time types for a detailed discussion
of these behaviors.

• Lifting nodes by tag alone (#<tag>) lifts nodes of all forms with that tag. To lift specific forms only, use Lift by
Tag (#) or an additional filter (see Storm Reference - Filtering).

• Tag properties are supported in Synapse, but no tag properties are included by default. See Tag Properties for
additional detail.

Try Lifts

Try lifts refer to lifts that “try” to perform a Cortex lift operation, and fail silently if Type normalization is not successful.
Try lifts prevent a Cortex from throwing a runtime execution error, and terminating query execution if an invalid Type
is encountered.

When lifting nodes by property value using the equals (=) comparator, if Type validation fails for a supplied property
value, the Cortex will throw a BadTypeValu error, and terminate the query as shown below.

storm> inet:ipv4 = evil.com inet:ipv4 = 8.8.8.8
ERROR: illegal IP address string passed to inet_aton

3.6. Storm Reference 89

Synapse Documentation, Release 2.141.0

To suppress errors, and prevent premature query termination, Storm supports the use of the try operator (?=) when
performing property value lifts. This operator is useful when you are performing multiple Cortex operations in suc-
cession within a single query, lifting nodes using external data that has not been normalized, or lifting nodes during
automation, and do not want a query to terminate if an invalid Type is encountered.

Syntax:

<form>[:<prop>] ?= <pval>

Examples:

• Try to lift the MD5 node 174cc541c8d9e1accef73025293923a6:

storm> hash:md5 ?= 174cc541c8d9e1accef73025293923a6

• Try to lift the DNS nodes whose inet:dns:a:ipv4 secondary property value equals '192.168.0.100'. No-
tice that an error message is not displayed, despite an invalid IPv4 address '192.168.0.1000' being entered:

storm> inet:dns:a:ipv4 ?= 192.168.0.1000

• Try to lift the email address nodes 'jack@soso.net' and 'jane@goodgirl.com'. Notice that despite the first
email address being entered incorrectly, the error message is suppressed, and the query executes to completion.

storm> inet:email ?= "jack[at]soso.net" inet:email ?= "jane@goodgirl.com"
inet:email=jane@goodgirl.com

:fqdn = goodgirl.com
:user = jane
.created = 2023/07/12 15:15:21.469

Usage Notes:

• The try operator should be used when you want Storm query execution to continue even if an invalid Type is
encountered.

• It is not recommended to use the try operator when you want to raise an error, or stop query execution if an
invalid Type is encountered.

Lifts Using Standard Comparison Operators

Lift operations can be performed using most of the standard mathematical / logical comparison operators (comparators):

• = : equals (described above)

• < : less than

• > : greater than

• <= : less than or equal to

• >= : greater than or equal to

Lifting by “not equal to” (!=) is not supported.

Syntax:

<prop> <comparator> <pval>

Examples:

Lift using less than comparator:

• Lift domain WHOIS records where the domain’s registration (created) date was before June 1, 2014:

90 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

storm> inet:whois:rec:created < 2014/06/01

Lift using greater than comparator:

• Lift files whose size is larger than 1MB:

storm> file:bytes:size > 1048576

Lift using less than or equal to comparator:

• Lift people (person nodes) born on or before January 1, 1980:

storm> ps:person:dob <= 1980/01/01

• Lift files that were compiled in 2012 or earlier:

storm> file:bytes:mime:pe:compiled<=2012*

Lift using greater than or equal to comparator:

• Lift WHOIS records retrieved on or after December 1, 2018 at 12:00:

storm> inet:whois:rec:asof >= "2018/12/01 12:00"

Usage Notes:

• When lifting nodes by secondary property value where the value is a time (date / time), you do not need to use
full YYYY/MM/DD hh:mm:ss.mmm syntax. Synapse allows the use of both lower resolution values (e.g., YYYY/
MM/DD) and wildcard values (e.g., YYYY/MM*). In particular, wildcard syntax can be used to specify any values
that match the wildcard expression. See the type-specific documentation for time types for a detailed discussion
of these behaviors.

Lifts Using Extended Comparison Operators

Storm supports a set of extended comparison operators (comparators) for specialized lift operations. In most cases, the
same extended comparators are available for both lifting and filtering:

• Lift by Regular Expression (~=)

• Lift by Prefix (^=)

• Lift by Time or Interval (@=)

• Lift by Range (*range=)

• Lift by Set Membership (*in=)

• Lift by Proximity (*near=)

• Lift by (Arrays) (*[])

• Lift by Tag (#)

• Recursive Tag Lift (##)

3.6. Storm Reference 91

Synapse Documentation, Release 2.141.0

Lift by Regular Expression (~=)

The extended comparator ~= is used to lift nodes based on standard regular expressions.

Note: Lift by Prefix (^=) is supported for string types and can be used to match the beginning of string properties.

Syntax:

<form> [: <prop>] ~= <regex>

Example:

• Lift files with PDB paths containing the string rouji:

storm> file:bytes:mime:pe:pdbpath ~= "rouji"

Lift by Prefix (^=)

Synapse performs prefix indexing on string types, which optimizes lifting nodes whose <valu> or <pval> starts with
a given prefix. The extended comparator ^= is used to lift nodes by prefix.

Syntax:

<form> [: <prop>] ^= <prefix>

Examples:

Lift primary property by prefix:

• Lift all usernames that start with “pinky”:

storm> inet:user^=pinky

Lift secondary property by prefix:

• Lift all organizations whose name starts with “International”:

storm> ou:org:name^=international

Usage Notes:

• Extended string types that support dotted notation (such as the loc or syn:tag types) have custom behaviors with
respect to lifting and filtering by prefix. See the respective sections in Storm Reference - Type-Specific Storm
Behavior for additional details.

Lift by Time or Interval (@=)

Synapse supports numerous data forms whose properties are date / time values (<ptype> = <time>) or time windows /
intervals (<ptype> = <ival>). Storm supports the custom @= comparator to allow lifting based on comparisons among
various combinations of times and intervals.

See Storm Reference - Type-Specific Storm Behavior for additional detail on the use of time and ival data types.

Syntax:

<prop> @=(<ival_min> , <ival_max>)

<prop> @= <time>

92 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Examples:

Lift by comparing an interval to an interval:

• Lift all DNS A records whose .seen values fall between July 1, 2018 and August 1, 2018:

storm> inet:dns:a.seen@=(2018/07/01, 2018/08/01)

Lift by comparing a time to an interval:

• Lift DNS requests that occurred on May 3, 2018 (between 05/03/2018 00:00:00 and 05/03/2018 23:59:59):

storm> inet:dns:request:time@=("2018/05/03 00:00:00", "2018/05/04 00:00:00")

Lift by comparing a time to a time:

• Lift all WHOIS records that were retrieved on July 17, 2017:

storm> inet:whois:rec:asof@=2017/07/17

Lift using an interval with relative times:

• Lift the WHOIS email nodes that were observed between January 1, 2019 and the present:

storm> inet:whois:email.seen@=(2019/01/01, now)

• Lift the DNS requests that occurred within one day after October 15, 2018:

storm> inet:dns:request:time@=(2018/10/15,"+1 day")

Lift by comparing tag time intervals:

• Lift all the domain nodes that were associated with Threat Group 43 between January 2013 and January 2015:

storm> inet:fqdn#cno.threat.t43.tc@=(2013/01/01, 2015/01/01)

Usage Notes:

• When specifying an interval, the minimum value is included in the interval but the maximum value is not (the
equivalent of “greater than or equal to <min> and less than <max>”). This behavior is slightly different than
that for *range=, which includes both the minimum and maximum.

• When comparing an interval to an interval, Storm will return nodes whose interval has any overlap with the
specified interval.

– For example, a lift interval of September 1, 2018 to October 1, 2018 (2018/09/01, 2018/10/01) will match
nodes with any of the following intervals:

∗ August 12, 2018 to September 6, 2018.

∗ September 13, 2018 to September 17, 2018.

∗ September 30, 2018 to November 5, 2018.

• When comparing a time to an interval, Storm will return nodes whose time falls within the specified interval.

• When comparing a time to a time, Storm will return nodes whose timestamp is an exact match. (Interval (@=
) syntax is supported for this comparison, but the regular equals comparator (=) can also be used.)

• When specifying interval date/time values, Synapse allows the use of both lower resolution values (e.g., YYYY/
MM/DD) and wildcard values (e.g., YYYY/MM*) for the minimum and/or maximum interval values. In addition,

3.6. Storm Reference 93

Synapse Documentation, Release 2.141.0

plain wildcard time syntax may provide a simpler and more intuitive means to specify some intervals. For ex-
ample inet:whois:rec:asof=2018* is equivalent to inet:whois:rec:asof@=('2018/01/01', '2019/
01/01'). See the type-specific documentation for time types for a detailed discussion of these behaviors.

Lift by Range (*range=)

The range extended comparator (*range=) supports lifting nodes whose <form> = <valu> or <prop> = <pval> fall
within a specified range of values. The comparator can be used with types such as integers and times (including types
that are extensions of those types, such as IP addresses).

Syntax:

<form> [: <prop>] *range = (<range_min> , <range_max>)

Examples:

Lift by primary property in range:

• Lift all IP addresses between 192.168.0.0 and 192.168.0.10:

storm> inet:ipv4*range=(192.168.0.0, 192.168.0.10)

Lift by secondary property in range:

• Lift files whose size is between 1000 and 100000 bytes:

storm> file:bytes:size*range=(1000,100000)

• Lift WHOIS records that were captured between November 29, 2013 and June 14, 2016:

storm> inet:whois:rec:asof*range=(2013/11/29, 2016/06/14)

• Lift DNS requests made within one day of 12/01/2018:

storm> inet:dns:request:time*range=(2018/12/01, "+-1 day")

Usage Notes:

• When specifying a range, both the minimum and maximum values are included in the range (the equivalent of
“greater than or equal to <min> and less than or equal to <max>”).

• When specifying a range of time values, Synapse allows the use of both lower resolution values (e.g., YYYY/MM/
DD) and wildcard values (e.g., YYYY/MM*) for the minimum and/or maximum range values. In addition, plain
wildcard time syntax may provide a simpler and more intuitive means to specify some time ranges. For example
inet:whois:rec:asof=2018* is equivalent to inet:whois:rec:asof*range=('2018/01/01', '2018/
12/31 23:59:59.999'). See the type-specific documentation for time types for a detailed discussion of these
behaviors.

94 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Lift by Set Membership (*in=)

The set membership extended comparator (*in=) supports lifting nodes whose <form> = <valu> or <prop> = <pval>
matches any of a set of specified values. The comparator can be used with any type.

Syntax:

<form> [: <prop>] *in = (<set_1> , <set_2> , . . .)

Examples:

Lift by primary property in a set:

• Lift IP addresses matching any of the specified values:

storm> inet:ipv4*in=(127.0.0.1, 192.168.0.100, 255.255.255.254)

Lift by secondary property in a set:

• Lift files whose size in bytes matches any of the specified values:

storm> file:bytes:size*in=(4096, 16384, 65536)

• Lift tags that end in foo, bar, or baz:

storm> syn:tag:base*in=(foo,bar,baz)

Lift by Proximity (*near=)

The proximity extended comparator (*near=) supports lifting nodes by “nearness” to another node based on a specified
property type. Currently, *near= supports proximity based on geospatial location (that is, nodes within a given radius
of a specified latitude / longitude).

Syntax:

<form> [: <prop>] *near = ((<lat> , <long>), <radius>)

Examples:

• Lift locations (geo:place nodes) within 500 meters of the Eiffel Tower:

storm> geo:place:latlong*near=((48.8583701,2.2944813),500m)

Usage Notes:

• In the example above, the latitude and longitude of the desired location (i.e., the Eiffel Tower) are explicitly
specified as parameters to *near=.

• Radius can be specified in the following metric units:

– Kilometers (km)

– Meters (m)

– Centimeters (cm)

– Millimeters (mm)

• Numeric values of less than 1 (e.g., 0.5km) must be specified with a leading zero.

3.6. Storm Reference 95

Synapse Documentation, Release 2.141.0

• The *near= comparator works for geospatial data by lifting nodes within a square bounding box centered at
<lat>,<long>, then filters the nodes to be returned by ensuring that they are within the great-circle distance
given by the <radius> argument.

Lift by (Arrays) (*[])

Storm uses a special “by” syntax to lift (or filter) by comparison with one or more elements of an array type. The syntax
consists of an asterisk (*) preceding a set of square brackets ([]), where the square brackets contain a comparison
operator and a value that can match one or more elements in the array. This allows users to match values in the array
list without needing to know the exact order or values of the array itself.

Syntax:

<form> : <prop> [<operator> <pval>]

Examples:

• Lift the organization(s) (ou:org nodes) whose names include “IBM”:

storm> ou:org:names*[=ibm]

• Lift the x509 certificates (crypto:x509:cert) that reference domains ending with .biz:

storm> crypto:x509:cert:identities:fqdns*[="*.biz"]

• Lift the organizations whose names start with “tech”:

storm> ou:org:names*[^=tech]

Usage Notes:

• The comparison operator used must be valid for lift operations for the type used in the array. For example,
inet:fqdn suffix matching (i.e., crypto:x509:cert:identities:fqdns*[="*.com"]), can be used to lift
arrays consisting of domains, but the prefix operator (^=), which is only valid when filtering inet:fqdns,
cannot.

• The standard equals (=) operator can be used to filter nodes based on array properties, but the value specified
must exactly match the full property value in question:

– For example: ou:org:names=("the vertex project","the vertex project llc",vertex)

• See the array section of the Storm Reference - Type-Specific Storm Behavior document for additional details.

Lift by Tag (#)

The tag extended comparator (#) supports lifting nodes based on a form combined with a given tag; tag and tag property;
tag, tag property, and tag property value; or tag and associated timestamp being applied to the node.

Note: Lifting by form and tag (<form>#<tag>), including similar lifts using tag properties / timestamps / etc., is
actually a Synapse-optimized “lift and filter” operation as opposed to a standard lift. The operation is equivalent to
<form> +#<tag> except that the lift by tag syntax is optimized for performance.

• Using the explicit filter (<form> +#<tag>) lifts all nodes of the specified form and then downselects to only
those forms with the specified tag.

• Storm optimizes the lift by tag syntax to lift only those nodes of the specified form that have the specified tag.

96 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

See Filter by Tag (#) for additional detail on filtering with tags.

Syntax:

<form> # <tag>

<form> # <tag> [: <tagprop> [<operator> <pval>]]

<form> # <tag> @= <time> | (<min_time> , <max_time>)

Examples:

Lift forms by tag:

• Lift the IPv4 addresses associated with Tor infrastructure:

storm> inet:ipv4#cno.infra.anon.tor

Lift forms by tag and tag property:

• Lift the domains that have a risk score reported by DomainTools:

storm> inet:fqdn#rep.domaintools:risk

Lift forms by tag, tag property, and value:

• Lift the domains that have a risk score from DomainTools of 90 or higher:

storm> inet:fqdn#rep.domaintools:risk>=90

Lift forms by tag and time:

• Lift domains that were associated with Threat Cluster 15 as of October 30, 2009:

storm> inet:fqdn#cno.threat.t15.tc@=2009/10/30

Lift forms by tag and time interval:

• Lift IP addresses that were part of Tor infrastructure between October 1, 2018 and December 31, 2018:

storm> inet:ipv4#cno.infra.anon.tor@=(2018/10/01,2018/12/31)

Usage Notes:

• Tag properties are supported in Synapse, but no tag properties are included by default. See Tag Properties for
additional detail.

• Currently it is not possible to lift forms by tag property alone. That is, inet:fqdn#:risk is invalid.

– It is possible to perform an equivalent operation using a lift and filter operation, i.e., #:risk +inet:fqdn.

• Tag timestamps are interval (ival) types. See the time and ival sections of the Storm Reference - Type-Specific
Storm Behavior document for additional details on working with times and intervals.

3.6. Storm Reference 97

Synapse Documentation, Release 2.141.0

Recursive Tag Lift (##)

The recursive tag extended comparator (##) supports lifting nodes with any tag whose syn:tag node is itself tagged
with a specific tag.

Tags can be applied to syn:tag nodes; that is, tags can be used to tag other tags. The ability to “tag the tags” can be
used to represent certain types of analytical relationships. For example:

• syn:tag nodes representing threat groups can be tagged to indicate their assessed country of origin.

• syn:tag nodes representing malware or tools can be tagged with their assessed availability (e.g., public, private,
private but shared, etc.)

A recursive tag lift performs the following actions:

1. For the specified tag (##<sometag>), lift the nodes that have that tag (i.e., the equivalent of #<sometag>),
including any syn:tag nodes.

2. For any lifted syn:tag nodes, lift all nodes tagged with those tags (including any additional syn:tag nodes).

3. Repeat #2 until no more syn:tag nodes are lifted.

4. Return the tagged nodes. Note that syn:tag nodes themselves are not returned.

Syntax:

<tag>

Examples:

• Lift all nodes tagged with any tags (such as threat group tags) that FireEye claims are associated with Russia:

storm> ##aka.feye.cc.ru

Usage Notes:

In the example above, the tag aka.feye.cc.ru could be applied to syn:tag nodes representing FireEye’s “Russian”
threat groups (e.g., aka.feye.thr.apt28, aka.feye.thr.apt29, etc.) Using a recursive tag lift allows you to easily
lift all nodes tagged by any of those tags.

3.6.4 Storm Reference - Filtering

Filter operations are performed on the output of a previous Storm operation such as a lift or pivot. A filter operation
downselects from the working set of nodes by either including or excluding a subset of nodes based on a set of criteria.

• + specifies an inclusion filter. The filter downselects the working set to only those nodes that match the specified
criteria.

• - specifies an exclusion filter. The filter downselects the working set to all nodes except those that match the
specified criteria.

The types of filter operations within Storm are highly flexible and consist of the following:

• Simple Filters

• Filters Using Standard Comparison Operators

• Filters Using Extended Comparison Operators

• Compound Filters

• Subquery Filters

• Expression Filters

98 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

• Embedded Property Syntax

In most cases, the criteria and available comparators for lift operations (Storm Reference - Lifting) are also available
for filter operations.

Note: When filtering based on a secondary property (<prop>) or secondary property value (<prop> = <pval>),
you can specify the property using either the relative property name (:baz) or the full form and property name
(foo:bar:baz).

Using the relative property name allows for simplified syntax and more efficient data entry (“less typing”) within the
CLI. Full property names can be used for clarity (i.e., specifying exactly what you want to filter on).

Full property names may be required in cases where multiple nodes in the inbound node set have the same secondary
property (e.g., inet:dns:a:ipv4 and inet:url:ipv4) and you only wish to filter based on the property / property
value of one of the forms.

In the examples below, both syntaxes (full and relative) are provided where appropriate for completeness and clarity.
See the Property section of Data Model - Terminology for additional discussion of properties.

See Storm Reference - Document Syntax Conventions for an explanation of the syntax format used below.

See Storm Reference - Type-Specific Storm Behavior for details on special syntax or handling for specific data types.

Simple Filters

“Simple” filters refers to the most “basic” filter operations: that is, operations to include (+) or exclude (-) a subset
of nodes based on:

• The presence of a specific primary or secondary property in the working set of nodes.

• The presence of a specific primary property value or secondary property value in the working set of nodes.

Note: Filter by Tag (#) is addressed below.

The only difference between “simple” filters and “filters using comparison operators” is that we define simple filters as
those that use the equals (=) comparator, which is the “simplest” comparator to use to explain basic filtering concepts.

Syntax:

<query> + | - <form> [= <valu>]

<query> + | - [<form>] : <prop> [= <pval>]

Examples:

Filter by Form (<form>):

• Filter results to only include domains:

<query> +inet:fqdn

Filter by Primary Property Value:

• Filter results to exclude the domain google.com:

<query> -inet:fqdn=google.com

Filter by Presence of Secondary Property:

• Filter results to exclude any DNS SOA records with an “email” property:

3.6. Storm Reference 99

Synapse Documentation, Release 2.141.0

<query> -inet:dns:soa:email

<query> -:email

Filter by Secondary Property Value:

• Filter results to include only those domains that are also logical zones:

<query> +inet:fqdn:iszone=1

<query> +:iszone=1

• Filter results to exclude any files with a PE compiled time of 1992-06-19 22:22:17:

<query> -file:bytes:mime:pe:compiled="1992/06/19 22:22:17"

<query> -:mime:pe:compiled="1992/06/19 22:22:17"

• Filter results to include only those files compiled in 2019:

<query> +file:bytes:mime:pe:compiled=2019*

<query> +:mime:pe:compiled=2019*

Filter by Presence of Universal Property:

• Filter results to include only those domains with a .seen property:

<query> +inet:fqdn.seen

<query> +.seen

Usage Notes:

• The comparator (comparison operator) specifies how <form> or <prop> is evaluated with respect to <valu> or
<pval>. The most common comparator is equals (=), although other comparators are available (see below).

• When filtering nodes by secondary property value where the value is a time (date / time), you do not need to use
full YYYY/MM/DD hh:mm:ss.mmm syntax. Synapse allows you to use either lower resolution values (e.g., YYYY/
MM/DD) or wildcard values (e.g., YYYY/MM*). In particular, wildcard syntax can be used to specify any values
that match the wildcard expression. See the type-specific documentation for time types for a detailed discussion
of these behaviors.

Filters Using Standard Comparison Operators

Filter operations can be performed using any of the standard mathematical / logical comparison operators (compara-
tors):

• =: equals (described above)

• != : not equals

• < : less than

• > : greater than

• <= : less than or equal to

100 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

• >= : greater than or equal to

Syntax:

<query> + | - <form> | <prop> <comparator> <valu> | <pval>

Examples:

Filter by Not Equals:

• Filter results to exclude the domain google.com:

<query> +inet:fqdn != google.com

Filter by Less Than:

• Filter results to include only WHOIS records collected prior to January 1, 2017:

<query> +inet:whois:rec:asof < 2017/01/01

<query> +:asof < 2017/01/01

Filter by Greater Than:

• Filter results to exclude files larger than 4096 bytes:

<query> -file:bytes:size > 4096

<query> -:size > 4096

Filter by Less Than or Equal To:

• Filter results to include only WHOIS nodes for domains created on or before noon on January 1, 2018:

<query> +inet:whois:rec:created <= "2018/01/01 12:00"

<query> +:created <= "2018/01/01 12:00"

Filter by Greater Than or Equal To:

• Filter results to include only people born on or after January 1, 1980:

<query> +ps:person:dob >= 1980/01/01

<query> +:dob >= 1980/01/01

Usage Notes:

• Storm supports both equals (=) and not equals (!=) comparators for filtering, although use of not equals is
not strictly necessary. Because filters are either inclusive (+) or exclusive (-), you can use an “equals” filter
to create equivalent logic for any “not equals” expression. That is, “include domains not equal to google.com”
(+inet:fqdn != google.com) is equivalent to “exclude the domain google.com” (-inet:fqdn = google.
com).

• When filtering nodes by secondary property value where the value is a time (date / time), you do not need to use
full YYYY/MM/DD hh:mm:ss.mmm syntax. Synapse allows you to use either lower resolution values (e.g., YYYY/
MM/DD) or wildcard values (e.g., YYYY/MM*). In particular, wildcard syntax can be used to specify any values
that match the wildcard expression. See the type-specific documentation for time types for a detailed discussion
of these behaviors.

3.6. Storm Reference 101

Synapse Documentation, Release 2.141.0

Filters Using Extended Comparison Operators

Storm supports a set of extended comparison operators (comparators) for specialized filter operations. In most cases,
the same extended comparators are available for both lifting and filtering:

• Filter by Regular Expression (~=)

• Filter by Prefix (^=)

• Filter by Time or Interval (@=)

• Filter by Range (*range=)

• Filter by Set Membership (*in=)

• Filter by Proximity (*near=)

• Filter by (Arrays) (*[])

• Filter by Tag (#)

Filter by Regular Expression (~=)

The extended comparator ~= is used to filter nodes based on regular expressions (PCRE / Perl compatible regular
expressions).

Syntax:

<query> + | - <form> | <prop> ~= <regex>

Examples:

Filter by Regular Expression:

• Filter results to include only mutexes that start with the string “Net”:

<query> +it:dev:mutex ~= "^Net"

Usage Notes:

• Filtering using regular expressions is performed by matching the regex against the relevant property of each node
in the working set. Note that prefix filtering (see below) is supported for string types and can be used as a more
efficient alternative in some cases.

Filter by Prefix (^=)

Synapse performs prefix indexing on strings (and string-derived types), which optimizes filtering nodes whose <valu>
or <pval> starts with a given prefix. The extended comparator ^= is used to filter nodes by prefix.

Syntax:

<query> + | - <form> | <prop> ^= <prefix>

Examples:

Filter by primary property by prefix:

• Filter results to include only usernames that start with “pinky”:

<query> +inet:user ^= pinky

Filter by secondary property by prefix:

102 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

• Filter results to include only organizations whose name starts with “International”:

<query> +ou:org:name ^= international

<query> +:name ^= international

Usage Notes:

• Extended string types that support dotted notation (such as the loc or syn:tag types) have custom behaviors
with respect to lifting and filtering by prefix. See the respective sections in Storm Reference - Type-Specific Storm
Behavior for additional details.

Filter by Time or Interval (@=)

The time extended comparator (@=) supports filtering nodes based on comparisons among various combinations of
times and intervals.

See Storm Reference - Type-Specific Storm Behavior for additional detail on the use of time and ival data types.

Syntax:

<query> + | - <prop> @=(<ival_min> , <ival_max>)

<query> + | - <prop> @= <time>

Examples:

Filter by comparing an interval to an interval:

• Filter results to include only those DNS A records whose .seen values fall between July 1, 2018 and August 1,
2018:

<query> +inet:dns:a.seen@=(2018/07/01, 2018/08/01)

<query> +.seen@=(2018/07/01, 2018/08/01)

• Filter results to include only those nodes (e.g., IP addresses) that were associated with TOR network infrastructure
between June 1, 2016 and September 30, 2016 (note the interval here applies to the timestamps for the tag that
indicates a node was associated with TOR):

<query> +#cno.infra.anon.tor@=(2016/06/01, 2016/09/30)

Filter by comparing a time to an interval:

• Filter results to include only those DNS request nodes whose requests occurred between 2:00 PM November 12,
2017 and 9:30 AM November 14, 2017:

<query> +inet:dns:request:time@=("2017/11/12 14:00:00", "2017/11/14 09:30:00")

<query> +:time@=("2017/11/12 14:00:00", "2017/11/14 09:30:00")

Filter by comparing an interval to a time:

• Filter results to include only those DNS A records whose resolution time windows include the date December 1,
2017:

<query> +inet:dns:a.seen@=2017/12/01

3.6. Storm Reference 103

Synapse Documentation, Release 2.141.0

<query> +.seen@=2017/12/01

Filter by comparing a time to a time:

• Filter results to include only those WHOIS records whose domain was registered (created) exactly on March 19,
1986 at 5:00 AM:

<query> +inet:whois:rec:created@="1986/03/19 05:00:00"

<query> +:created@="1986/03/19 05:00:00"

Filter using an interval with relative times:

• Filter results to include only those inet:whois:email nodes that were observed between January 1, 2018 and
the present:

<query> +inet:whois:email.seen@=(2018/01/01, now)

<query> +.seen@=(2018/01/01, now)

• Filter results to include only DNS requests whose requests occurred within one week after October 15, 2018:

<query> +inet:dns:request:time@=(2018/10/15, "+ 7 days")

<query> +:time@=(2018/10/15, "+ 7 days")

Usage Notes:

• When specifying an interval, the minimum value is included in the interval but the maximum value is excluded
(the equivalent of “greater than or equal to <min> and less than <max>”). This behavior is slightly different
than that for *range=, which includes both the minimum and maximum.

• When comparing an interval to an interval, Storm will return nodes whose interval has any overlap with the
specified interval.

– For example, a filter interval of September 1, 2018 to October 1, 2018 (2018/09/01, 2018/10/01) will match
nodes with any of the following intervals:

∗ 2018/08/12 to 2018/09/06 (range overlaps with the <min> value).

∗ 2018/09/13 to 2018/09/17 (range falls between <min> and <max> values).

∗ 2018/09/30 to 2018/11/05 (range overlaps with the <max> value).

• When comparing a time to an interval, Storm will return nodes whose timestamp falls within the specified
interval.

• When comparing a time to a time, Storm will return nodes whose timestamp is an exact match. Interval syntax
(e.g., :time@=<time>) syntax is supported when specifying an exact time match, although you can simply use
the equals comparator instead (e.g., :time=<time>).

• Because tags can have optional timestamps (min / max interval values), interval filters can also be used to filter
based on tag timestamps.

• When specifying interval date/time values, Synapse allows you to use either lower resolution values (e.g., YYYY/
MM/DD) or wildcard values (e.g., YYYY/MM*) for the minimum and/or maximum interval values. In addition, plain
wildcard time syntax may provide a simpler and more intuitive means to specify some intervals. For example

104 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

+inet:whois:rec:asof=2018* (or +:asof=2018*) is equivalent to +inet:whois:rec:asof@=('2018/
01/01', '2019/01/01') (or +:asof@=('2018/01/01, '2019/01/01')). See the type-specific documen-
tation for time types for a detailed discussion of these behaviors.

Filter by Range (*range=)

The range extended comparator (*range=) supports filtering nodes whose <form> = <valu> or <prop> = <pval>
fall within a specified range of values. The comparator can be used with types such as integers and times, including
types that are extensions of those types, such as IP addresses.

Syntax:

<query> + | - <form> | <prop> *range = (<range_min> , <range_max>)

Examples:

Filter by primary property in range:

• Filter results to include all IP addresses between 192.168.0.0 and 192.168.0.10:

<query> +inet:ipv4*range=(192.168.0.0, 192.168.0.10)

Filter by secondary property in range:

• Filter results to include files whose size in bytes is within the specified range:

<query> +file:bytes:size*range=(1000, 100000)

<query> +:size*range=(1000, 100000)

• Filter results to include WHOIS records that were captured between the specified dates:

<query> +inet:whois:rec:asof*range=(2013/11/29, 2016/06/14)

<query> +:asof*range=(2013/11/29, 2016/06/14)

• Filter results to include DNS requests made within 1 day of December 1, 2018:

<query> +inet:dns:request:time*range=(2018/12/01, "+-1 day")

<query> +:time*range=(2018/12/01, "+-1 day")

Usage Notes:

• When specifying a range (*range=), both the minimum and maximum values are included in the range (the
equivalent of “greater than or equal to <min> and less than or equal to <max>”). This behavior is slightly
different than that for time interval (@=), which includes the minimum but not the maximum.

• The *range= extended comparator can be used with time types, although the time / interval extended comparator
(@=) is preferred.

• When specifying a range of time values, Synapse allows you to use either lower resolution val-
ues (e.g., YYYY/MM/DD) or wildcard values (e.g., YYYY/MM*) for the minimum and/or maximum range
values. In addition, plain wildcard time syntax may provide a simpler and more intuitive means
to specify some time ranges. For example +inet:whois:rec:asof=2018* (or +:asof=2018*)
is equivalent to +inet:whois:rec:asof*range=('2018/01/01', '2018/12/31 23:59:59.999') (or
+:asof*range=('2018/01/01', '2018/12/31 23:59:59.999')). See the type-specific documentation
for time types for a detailed discussion of these behaviors.

3.6. Storm Reference 105

Synapse Documentation, Release 2.141.0

Filter by Set Membership (*in=)

The set membership extended comparator (*in=) supports filtering nodes whose <form> = <valu> or <prop> =
<pval> matches any of a set of specified values. The comparator can be used with any type.

Syntax:

<query> + | - <form> | <prop> *in = (<set_1> , <set_2> , . . .)

Examples:

Filter by primary property in set:

• Filter results to include IP addresses matching any of the specified values:

<query> +inet:ipv4*in=(127.0.0.1, 192.168.0.100, 255.255.255.254)

Filter by secondary property in set:

• Filter results to include files whose size in bytes matches any of the specified values:

<query> +file:bytes:size*in=(4096, 16384, 65536)

<query> +:size*in=(4096, 16384, 65536)

• Filter results to exclude tags that end in foo, bar, or baz:

<query> -syn:tag:base*in=(foo, bar, baz)

<query> -:base*in=(foo, bar, baz)

Filter by Proximity (*near=)

The proximity extended comparator (*near=) supports filtering nodes by “nearness” to another node based on a spec-
ified property type. Currently, *near= supports proximity based on geospatial location (that is, nodes within a given
radius of a specified latitude / longitude).

Syntax:

<query> + | - <form> | <prop> *near = ((<lat> , <long>), <radius>)

Examples:

Filter by proximity:

• Filter results to include only Acme Corporation offices within 1 km of a specific coffee shop:

<query> +geo:place:latlong*near=((47.6050632,-122.3339756),1 km)

<query> +:latlong*near=((47.6050632,-122.3339756),1 km)

• Filter results to include only Acme Corporation offices within 1 mile of a specific coffee shop:

<query> +geo:place:latlong*near=((47.6050632,-122.3339756), 1 mile)

<query> +:latlong*near=((47.6050632,-122.3339756), 1 mile)

106 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Usage Notes:

• In the example above, the latitude and longitude of the desired location (i.e., the coffee shop) are explicitly
specified as parameters to *near=.

• Radius can be specified in the following units. The values in parentheses are the acceptable terms for specifying
a given unit:

– Kilometers (km / kilometer / kilometers)

– Meters (m / meter / meters)

– Centimeters (cm / centimeter / centimeters)

– Millimeters (mm / millimeter / millimeters)

– Miles (mile / miles)

– Yards (yard / yards)

– Feet (foot / feet)

• When specifying a radius, values of less than 1 must be specified with a leading zero (e.g., 0.5 km is valid; .5
km is not).

• The *near= comparator works by identifying nodes within a square bounding box centered at <lat>, <long>,
then filters the nodes to be returned by ensuring that they are within the great-circle distance given by the <ra-
dius> argument.

Filter by (Arrays) (*[])

Storm uses a special “by” syntax to filter (or lift) by comparison with one or more elements of an array type. The syntax
consists of an asterisk (*) preceding a set of square brackets ([]), where the square brackets contain a comparison
operator and a value that can match one or more elements in the array. This allows users to match any value in the array
list without needing to know the exact order or values of the array itself.

Syntax:

<query> + | - <prop> *[<operator> <pval>]

Examples:

• Filter results to include only x509 certificates that reference a specific email address:

<query> +:identities:emails*[=root@localhost.localdomain]

• Filter results to exclude organizations whose names start with “ministry”:

<query> -:names*[^=ministry]

Usage Notes:

• Filter operations using secondary properties of type array must specify the property using its relative property
name. Filtering using the full property syntax will generate an error.

– ou:org | limit 10 | +:names*[=vertex] is valid syntax.

– ou:org | limit 10 | +ou:org:names*[=vertex] is invalid syntax.

• The comparison operator used must be valid for filter operations for the type used in the array.

• The standard equals (=) operator can be used to filter nodes based on array properties, but the value specified
must exactly match the full property value in question:

3.6. Storm Reference 107

Synapse Documentation, Release 2.141.0

– For example: ou:org +:names=("the vertex project","the vertex project llc",vertex)
will filter to any ou:org nodes whose :names property consists of exactly those names in exactly that
order.

• See the array section of the Storm Reference - Type-Specific Storm Behavior document for additional details on
working with arrays.

Filter by Tag (#)

The tag extended comparator (#) supports filtering nodes based on the tags applied to a node. You can filter based on
a given tag or on the timestamps associated with a given tag (using the interval comparator, @=).

Note: You can also use “filter by tag” to filter nodes based on any tags with tag properties, or tags with tag properties
and specific tag property values, if tag properties are present in your data model.

Tag Properties are still supported by Synapse, but their use has largely been deprecated in favor of extended model
properties where needed.

Syntax:

<query> + | - # <tag>

<query> + | - # <tag> @= <time> | (<min> , <max>)

Examples:

Filter by tag:

• Filter results to include only nodes that ESET says are part of the Seduploader malware family:

<query> +#rep.eset.seduploader

• Filter results to exclude nodes tagged as being associated with the TOR network:

<query> -#cno.infra.anon.tor

• Filter results to exclude nodes tagged as sinkholes:

<query> -#cno.infra.dns.sinkhole

Filter by tag and time:

• Filter results to include only nodes that were associated with TOR infrastructure as of December 12, 2019:

<query> +#cno.infra.anon.tor@=2019/12/12

Filter by tag and time interval:

• Filter results to include only those nodes associated with sinkhole infrastructure between January 1, 2017 and
January 1, 2018:

<query> +#cno.infra.dns.sinkhole@=(2017/01/01, 2018/01/01)

• Filter results to exclude nodes associated with threat cluster 17 after January 1, 2019:

<query> -#cno.threat.t17.own@=(2019/01/01, now)

Usage Notes

108 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

• When filtering by tag, you can only specify a single tag (though you can specify a tag “higher up” in a tag tree to
encompass any / all tags lower in the tree - e.g., +#foo.barwill include any nodes with the tag #foo.bar.hurr,
#foo.bar.derp, etc.). To filter on multiple different tags, use Compound Filters.

• Tag timestamps are interval (ival) types. See the time and ival sections of the Storm Reference - Type-Specific
Storm Behavior document for additional details on working with times and intervals.

Compound Filters

Storm allows you to use the logical operators and, or, and not (including and not) to construct compound filters.
You can use parentheses to group portions of the filter statement to indicate order of precedence and clarify logical
operations when evaluating the filter.

Syntax:

<query> + | - (<filter> and | or | not | and not . . .)

Examples:

• Filter results to exclude files that are less than or equal to 16384 bytes in size and were compiled prior to January
1, 2014:

<query> -(file:bytes:size <= 16384 and file:bytes:mime:pe:compiled < 2014/01/01)

<query> -(:size <= 16384 and :mime:pe:compiled < 2014/01/01)

• Filter results to include only files or domains that ESET claims are associated with Sednit:

<query> +((file:bytes or inet:fqdn) and #rep.eset.sednit)

• Filter results to include only files and domains that ESET claims are associated with Sednit that are not sinkholed:

<query> +((file:bytes or inet:fqdn) and (#rep.eset.sednit and not #cno.infra.dns.
→˓sinkhole))

Usage Notes:

• Logical operators must be specified in lower case.

• Synapse evalutes compound filters in order from left to right. Depending on the specific filter, left-to-right
order may differ from the standard Boolean order of operations (not then and then or).

• Parentheses should be used to logically group portions of the filter statement if necessary to clarify order of
operations.

Subquery Filters

You can use Storm’s subquery syntax (Storm Reference - Subqueries) to create filters. A subquery (enclosed in curly
braces ({ })) can be placed within a larger Storm query.

When nodes are passed to a subquery filter, they are evaluated against the filter’s criteria:

• Nodes are excluded (“consumed”, discarded) if they evaluate false.

• Nodes are included (not “consumed”, retained) if they evaluate true.

Most filter operations in Storm will modify (reduce) your current set of nodes based on some criteria of the nodes
themselves (e.g., a node’s form, property, or tag).

3.6. Storm Reference 109

Synapse Documentation, Release 2.141.0

Subquery filters allow you to filter your current set of nodes based on some criteria of nearby nodes. You use the
subquery filter to effectively “look ahead” at nodes one or more pivots away from your current nodes, and filter your
current nodes based on the properties of those “nearby” nodes.

The subquery pivot operation (used to “look ahead” at other nodes) is effectively performed in the background (without
navigating away from your current working set), which provides a more powerful and efficent way to filter your data.
(The alternative would be to actually navigate to the nearby nodes, filter those nodes, and then navigate back to the
data you are interested in.)

You can optionally use a mathematical comparison operation with a subquery filter, in order to filter your current set
of nodes based on the number of results returned by executing the subfilter’s Storm query (see example below).

Refer to the Storm Reference - Subqueries guide for additional information on subqueries and subquery filters.

Syntax:

<query> + | - { <query> }

<query> + | - { <query> } [<mathematical operator> <value>]

Examples:

• From an initial set of domains, filter results to only those domains that resolve to an IP address that Trend Micro
associates with the Pawn Storm threat group (i.e., an IP address tagged #rep.trend.pawnstorm):

<inet:fqdn> +{ -> inet:dns:a:fqdn :ipv4 -> inet:ipv4 +#rep.trend.pawnstorm }

• From an initial set of IPv4 addresses, filter results to only those IPv4s registered to an Autonomous System (AS)
whose name starts with “makonix”:

<inet:ipv4> +{ :asn -> inet:asn +:name^="makonix" }

• From an initial set of file:bytes nodes, filter results to only those that are detected as malicious by ten (10) or
more antivirus / malscanner vendors (i.e., files that are associated with 10 or more it:av:filehit nodes):

<file:bytes> +{ -> it:av:filehit }>=10

• From an initial set of x509 certificates (crypto:x509:cert), filter results to only those certificates linked to
more than one FQDN (inet:fqdn) identity:

<crypto:x509:cert> +{ :identities:fqdns -> inet:fqdn }>1

Expression Filters

You can filter your current set of data (nodes) based on the evaluation of a particular expression. Expression filters are
useful when you need to compute a value that you want to use for the filter, or when you want to filter based on a value
that may change (e.g., when using Storm queries that assign variables - see Storm Reference - Advanced - Variables).

Syntax:

<query> + | - $(<expression>)

Examples:

• From an initial set of network flows (inet:flow nodes), filter results to only those flows where the to-
tal number of bytes transferred in the flow between the source (inet:flow:src:txbytes) and destination
(inet:flow:dst:txbytes) is greater than 100MB (~100,000,000 bytes):

<inet:flow> +$(:src:txbytes + :dst:txbytes >=100000000)

110 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

• From an initial set of x509 certificates (crypto:x509:cert), filter results to only those certificates linked to
more than one FQDN (inet:fqdn) identity:

<crypto:x509:cert> $fqdns=:identities:fqdns +$($fqdns.size() > 1)

This example assigns the list of domains in the crypto:x509:cert:identities:fqdns property to the user-defined
variable $fqdns, computes the number of domains in the list using size(), and checks to see if the result is greater than
1.

(See the Storm Library Documentation for additional detail on Storm types and Storm libraries.)

Note: This certificates example is identical to the final example under Subquery Filters above, and shows an alternate
way to return the same data.

The expression filter above is more efficient than the subquery filter because the expression filter simply evaluates the
expression, where the subquery filter needs to pivot to the adjacent nodes in order to evaluate the results. This difference
in performance is negligible for small data sets but more pronounced when working with large numbers of nodes.

• From the set of nodes associated with any threat group or threat cluster (e.g., tagged #cno.threat.
<threat_name>), filter results to those nodes that are attributed to more than one threat (e.g., that have more than
one #cno.threat.<threat_name> tag. This may identify nodes that are incorrectly attributed to more than
one group; or instances where two threat clusters overlap, which may indicate that the clusters actually represent
a single set of activity):

#cno.threat +$($node.globtags(cno.threat.*).size() > 1)

This example uses the $node.globtags() method to select the set of tags on each node that match the specified expression
(cno.threat.*) and size() to count the number of matches.

Embedded Property Syntax

Storm includes a shortened syntax consisting of two colons (::) that can be used to reference a secondary property of
an adjacent node. Because the syntax can be used to “pull in” a property or property value from a nearby node, it is
known as “embedded property syntax”.

Embedded property syntax expresses something that is similar (in concept, though not in practice) to a secondary-to-
secondary property pivot (see Storm Reference - Pivoting). The syntax expresses navigation:

• From a secondary property of a form (such as inet:ipv4:asn), to

• The form for that secondary property (i.e., inet:asn), to

• A secondary property (or property value) of that target form (such as inet:asn:name).

This process can be repeated to reference properties of forms more than one pivot away.

Despite its similarity to a pivot operation, embedded property syntax is commonly used for:

• Filter operations (specifically, as a more concise alternative to certain Subquery Filters)

• Variable assignment (see Storm Reference - Advanced - Variables)

• Defining an Embed Column in the Synapse UI (Optic)

Syntax:

<query> [+ | -] : <prop> :: <prop>

<query> [+ | -] : <prop> :: <prop> = <pval>

3.6. Storm Reference 111

Synapse Documentation, Release 2.141.0

Note: In Storm, the leading colon (i.e., the colon before the name of the initial secondary property) is required.
When using this syntax to create an embed column in Optic, the initial colon should be omitted (i.e., asn::name vs
:asn::name). Optic will prepend the initial colon for you.

Examples:

Filter Example - Single Pivot

• From an initial set of IPv4 addresses, filter results to only those IPv4s registered to an Autonomous System (AS)
whose name starts with “makonix”:

<inet:ipv4> +:asn::name^="makonix"

Note that this example of embedded property syntax is equivalent to the following subquery filter (referenced above):

<inet:ipv4> +{ :asn -> inet:asn +:name^="makonix" }

Filter Example - Multiple Pivots

• From an initial set of it:exec:file:read operations, filter results to only those operations where the base file
name of the PDB path of the file performing the read operation is moonclient2.pdb:

<it:exec:file:read> +:sandbox:file::mime:pe:pdbpath::base=moonclient2.pdb

Variable Assignment Example

• Set the variable $name to the name of the Autonomous System (AS) associated with a given IPv4 address:

<inet:ipv4> $name=:asn::name

3.6.5 Storm Reference - Pivoting

Pivot operations are performed on the output of a previous Storm operation such as a lift or filter. Pivot operators are
used to perform pivot operations by navigating from one set of nodes to another based on a specified relationship. Most
often, this relationship is two properties (primary and / or secondary) that share the same value, and that may also share
the same Type.

That is, other than some specialized use cases (such as pivoting to or from tags), most pivots involve navigating between
the following kinds of properties:

• primary to secondary;

• secondary to primary;

• secondary to secondary; or

• primary to primary.

Note: Primary to primary property pivots are a specialized use case that is commonly handled using Raw Pivot Syntax,
below.

Where the source and target properties have the same value and the same type, Storm can leverage Synapse’s Type
Awareness to simplify pivot operations and identify implicit relationships. For example, type awareness is used for
Implicit Pivot Syntax and also for “wildcard” pivot operations (specialized use cases for the Pivot Out Operator and
the Pivot In Operator).

112 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

The pivot operations available within Storm are:

• Pivot Out Operator

• Pivot In Operator

• Pivot With Join

• Traverse (Walk) Light Edges

• Pivot Out and Walk

• Pivot In and Walk

• Pivot to Digraph (Edge) Nodes

• Pivot Across Digraph (Edge) Nodes

• Pivot to Tags

• Pivot from Tags

• Implicit Pivot Syntax

• Raw Pivot Syntax

Note: Light edges represent a special use case within the Synapse hypergraph; navigating (traversing) light edges
(Lightweight (Light) Edge) is included here as a “pivot-like” operation.

See Storm Reference - Document Syntax Conventions for an explanation of the syntax format used below.

See Storm Reference - Type-Specific Storm Behavior for details on special syntax or handling for specific data types.

Pivot Out Operator

The pivot out operator (->) is the primary Storm pivot operator. The pivot out operator is used for:

• primary to secondary property pivots,

• secondary to primary property pivots,

• secondary to secondary property pivots, and

• “wildcard” pivot out - pivot from any / all secondary properties of the inbound set of nodes to the equivalent
primary property of any nodes, leveraging Synapse’s Type Awareness.

Pivot to Digraph (Edge) Nodes and Pivot Across Digraph (Edge) Nodes are covered separately below.

Syntax:

• Primary to Secondary:

<query> -> <form> : <prop>

• Secondary to Primary:

<query> : <prop> -> <form>

• Secondary to Secondary:

<query> : <prop> -> <form> : <prop>

• “Wildcard” Pivot Out:

<query> -> *

3.6. Storm Reference 113

Synapse Documentation, Release 2.141.0

Examples:

Pivot from primary property (<form> = <valu>) to secondary property (<prop> = <pval>):

• Pivot from a set of domains to all of their subdomains regardless of depth (i.e., from a domain to all of the
domains where the inbound domain is a zone):

<inet:fqdn> -> inet:fqdn:zone

• Pivot from a set of domains to the DNS A records for those domains:

<inet:fqdn> -> inet:dns:a:fqdn

Pivot from secondary property (<prop> = <pval>) to primary property (<form> = <valu>):

• Pivot from a set of DNS A records to the resolution IP addresses contained in those records:

<inet:dns:a> :ipv4 -> inet:ipv4

Pivot from secondary property (<prop> = <pval>) to secondary property (<prop> = <pval>):

• Pivot from the WHOIS records for a set of domains to the DNS A records for the same domains:

<inet:whois:rec> :fqdn -> inet:dns:a:fqdn

“Wildcard” pivot out - pivot from all secondary properties to the primary properties of the equivalent forms (<prop>
= <pval> to <form> = <valu>):

• Pivot from a set of WHOIS records to all nodes whose primary property equals any of the secondary properties
of the WHOIS record:

<inet:whois:rec> -> *

In the example above, the pivot would navigate from the :fqdn, :registrar, and :registrant secondary properties
of the inet:whois:rec nodes (for example) to the associated inet:fqdn, inet:whois:rar, and inet:whois:reg
nodes.

Usage Notes:

• When pivoting from a secondary property (<prop> = <pval>), the secondary property must be specified using
the relative property name only (:baz vs. foo:bar:baz). If you specify the full property name before the pivot,
Storm interprets that as an additional lift (i.e., <inet:dns:a> inet:dns:a:fqdn -> inet:fqdn would be
interpreted as “take a set of DNS A records from an initial query, lift all DNS A records with an :fqdn property
(i.e., every DNS A node in the Cortex), and then pivot to the associated FQDN nodes”).

• Pivoting out using the asterisk wildcard (*) is sometimes called a refs out pivot because it pivots from all
secondary properties of the inbound nodes to all nodes referenced by those properties. That is, for each inbound
node, the “refs out” pivot will pivot from the node’s secondary properties to all the nodes that have a primary
property equal to that type and value.

• Pivoting using the wildcard is based on strong data typing within the Synapse data model and Synapse’s type
awareness, so will only pivot out to properties that match both <type> and <valu> / <pval>. This means that
the following nodes will not be returned by a wildcard pivot out:

– Nodes with matching <valu> / <pval> but of different <type>. For example, if a node’s secondary property
is a string (type <str>) that happens to contain a valid domain (type <inet:fqdn>), a wildcard pivot out from
the node with the string value will not return the inet:fqdn node.

– Digraph (edge) nodes, whose properties are of type <ndef> (node definition, or <form>,<valu> tuples).
See Pivot to Digraph (Edge) Nodes and Pivot Across Digraph (Edge) Nodes for details on pivoting to /
through those forms.

114 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

• It is possible to perform an explicit pivot between properties of different types. For example:
<inet:dns:query> :name -> inet:fqdn

• See Pivot Out and Walk for a more comprehensive alternative to the wildcard pivot out.

Pivot In Operator

The pivot in (<-) operator is similar to but separate from the pivot out (->) operator. The pivot in operator pivots to
the set of nodes that reference the current set of nodes.

Logically, any pivot in operation can be expressed as an equivalent pivot out operation. For example, the following two
pivots would be functionally equivalent:

• Pivot from a set of domains to their associated DNS A records:

<inet:fqdn> -> inet:dns:a:fqdn

• Use “pivot in” to navigate from a set of domains to the DNS A records that reference a set of domains:

<inet:fqdn> <- inet:dns:a:fqdn

Because of this equivalence, and because “left to right” logic is generally more intuitive, only pivot out has been fully
implemented in Storm. (The second example, above, will actually return an error.) The pivot in operator exists, but
is only used for certain special case pivot operations:

• “wildcard” pivot in - pivot from any / all primary properties of the inbound set of nodes to the equivalent
secondary property of any nodes, leveraging Synapse’s Type Awareness, and

• reverse Pivot to Digraph (Edge) Nodes and reverse Pivot Across Digraph (Edge) Nodes (covered separately be-
low).

Syntax:

• “Wildcard” Pivot In

<query> <- *

Example:

Pivot from all primary properties to all nodes with an equivalent secondary property (<form> = <valu> to <prop> =
<pval>):

• Pivot from a set of domains to all nodes with a secondary property that references the domains:

<inet:fqdn> <- *

In this example, the pivot might return nodes with secondary properties such as inet:whois:email:fqdn,
inet:dns:ns:zone, inet:dns:query:name:fqdn, and so on.

Usage Notes:

• Pivoting in using the asterisk wildcard (*) is sometimes called a refs in pivot because it pivots from the inbound
nodes to all nodes that reference those nodes. That is, for each inbound node, the “refs in” pivot will pivot from
the primary property of a node to all nodes that have a secondary property equal to that type and value.

• Pivoting in using the wildcard will return an instance of a node for each matching secondary property. For
example, where a node may have the same <pval> for two different secondary properties (such as :domain and
:zone on an inet:fqdn node), the pivot in will return two copies of the node. Results can be de-duplicated
using the Storm uniq command.

• Pivoting using the wildcard is based on strong data typing within the Synapse data model and Synapse’s type
awareness, so will only pivot in from properties that match both <type> and <valu> / <pval>. This means that
the following nodes will not be returned by a wildcard pivot in:

3.6. Storm Reference 115

Synapse Documentation, Release 2.141.0

– Nodes with matching <valu> / <pval> but of different <type>. For example, if a node’s primary property
(such as a domain, type <inet:fqdn>) - happens to be referenced as as a different type (such as a string,
type <str>) as a secondary property of another node, a wildcard pivot in to the inet:fqdn node will not
return the node with the string value.

– Digraph (edge) nodes, whose properties are of type <ndef> (node definition, or <form>,<valu> tuples).
See Pivot to Digraph (Edge) Nodes and Pivot Across Digraph (Edge) Nodes for details on pivoting to /
through those forms.

• Other than digraph (edge) node navigation / traversal, pivot in can only be used with the wildcard (*). That
is, pivot in does not support specifying a particular target form:

inet:fqdn=woot.com <- inet:dns:a:fqdn

The above query will return an error. A filter operation (see Storm Reference - Filtering) can be used to downselect
the results of a wildcard pivot in operation to a specific set of forms:

inet:fqdn=woot.com <- * +inet:dns:a

• See Pivot In and Walk for a more comprehensive alternative to the wildcard pivot in.

Pivot With Join

The pivot and join operator (-+>) performs the specified pivot operation but joins the results with the inbound set of
nodes. That is, the inbound nodes are retained and combined with the results of the pivot.

Another way to look at the difference between a pivot and a join is that a pivot operation consumes nodes (the inbound
set is discarded and only nodes resulting from the pivot operation are returned) but a pivot and join does not consume
the inbound nodes.

The pivot and join operator is used to retain the inbound nodes in any of the following cases:

• primary to secondary property pivots,

• secondary to primary property pivots,

• secondary to secondary property pivots, and

• “wildcard” pivot out - pivot from any / all secondary properties of the inbound set of nodes to the equivalent
primary property of any nodes.

Syntax:

• Primary to Secondary

<query> -+> <form> : <prop>

• Secondary to Primary

<query> : <prop> -+> <form>

• Secondary to Secondary

<query> : <prop> -+> <form> : <prop>

• “Wildcard” Pivot Out and Join

<query> -+> *

Examples:

Pivot and join from primary property (<form> = <valu>) to secondary property (<prop> = <pval>):

• Return a set of domains and all of their immediate subdomains:

116 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

<inet:fqdn> -+> inet:fqdn:domain

Pivot and join from secondary property (<prop> = <pval>) to primary property (<form> = <valu>):

• Return a set of DNS A records and their associated IP addresses:

<inet:dns:a> :ipv4 -+> inet:ipv4

Pivot and join from secondary property (<prop> = <pval>) to secondary property (<prop> = <pval>):

• Return the WHOIS records for a set of domains and the DNS A records for the same domains:

<inet:whois:rec> :fqdn -+> inet:dns:a:fqdn

“Wildcard” pivot out and join - pivot from all secondary properties to the primary properties of the equivalent
forms (<prop> = <pval> to <form> = <valu>):

• Return a set of WHOIS records and all nodes whose primary property equals any of the secondary properties of
the WHOIS record:

<inet:whois:rec> -+> *

Usage Notes:

• A pivot out and join operation follows the same caveats and constraints as the standard Pivot Out Operator.

Traverse (Walk) Light Edges

The traverse (walk) light edges operator (-(<verb>)> or <(<verb>)-) is used to traverse from a set of inbound nodes
to the set of nodes they are linked to by the specified light edge(s). Because a light edge is not a node, the navigation
is technically a “traversal” of the light edge as opposed to a property-to-property pivot.

Similar to an edge in a traditional directed graph, light edges have a “direction” (i.e., the relationship represented by a
light edge is “one way”). From a Storm syntax perspective, light edges can be traversed in either direction.

Syntax:

• Walk - Single Light Edge

<query> -(<verb>)> * | <form>

<query> <(<verb>)- * | <form>

• Walk - Multiple Light Edges

<query> -((<verb1> , <verb2> [, <verb3> . . .]))> * | <form>

<query> <((<verb1> , <verb2> [, <verb3> . . .]))- * | <form>

• Walk - Any Light Edge (Wildcard)

<query> -(*)> * | <form>

<query> <(*)- * | <form>

Examples:

Traverse the “refs” light edge from an article to the FQDNs “referenced” by the article:

<media:news> -(refs)> inet:fqdn

Traverse the “refs” light edge from an article to all of the nodes “referenced” by the article:

3.6. Storm Reference 117

Synapse Documentation, Release 2.141.0

<media:news> -(refs)> *

Traverse the “hasip” light edge from an IPv4 address to the CIDR block(s) the IP is part of:

<inet:ipv4> <(hasip)- inet:cidr4

Traverse the “hasip” and “ipwhois” light edges from an IPv4 address to any nodes linked via those light edges (i.e.,
typically the CIDR block(s) the IP is part of and the netblock registration record(s) for the IP):

<inet:ipv4> <((hasip, ipwhois))- *

Traverse any / all light edges from an article to all nodes linked by any light edge:

<media:news> -(*)> *

Usage Notes:

• The traversal syntax allows specification of a single verb, a list of verbs, or the “wildcard” / asterisk (*) to
reference any / all light edge verbs that may be present.

• There are no light edges (i.e., specific light edge verbs) defined in a Cortex by default. Users can create and
define their own according to their needs.

• The Storm model, edges, and lift.byverb commands can be used to work with light edges in a Cortex.

Pivot Out and Walk

The pivot out and walk (traverse) light edges operator (--> *) combines a wildcard pivot out (“refs out”) operation (
-> *) with a wildcard walk light edges operation (-(*)>).

Syntax:

<query> —-> *

Examples:

Pivot from an IP netblock registration record to all nodes referenced by the record’s secondary properties and all nodes
linked to the record by light edges:

<inet:whois:iprec> --> *

Usage Notes:

• The pivot out and walk operator can only be used with a wildcard (*); it is not possible to specify a particular
form as the target of the operation. A filter operation can be used to refine the results of the pivot and walk
operation if necessary.

• The pivot and walk operators (pivot out and walk / pivot in and walk) are useful for “exploring” data in a Cortex
as they will return all the nodes “next to” the working set of nodes (subject to Type Awareness) without requiring
the user to have specific knowledge of the data model.

• The Storm tee command can be used to perform concurrent pivot in and walk / pivot out and walk operations on
an inbound set of nodes:

<query> | tee { --> * } { <-- * }

118 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Pivot In and Walk

The pivot in and walk (traverse) light edges operator (<-- *) combines a wildcard pivot in (“refs in”) operation (<-
*) with a wildcard walk light edges operation (<(*)-).

Syntax:

<query> <—- *

Examples:

Pivot from a set of IP addresses to all nodes that reference the IPs and all nodes linked to the IPs by light edges:

<inet:ipv4> <-- *

Usage Notes:

• The pivot in and walk operator can only be used with a wildcard (*); it is not possible to specify a particular
form as the target of the operation. A filter operation can be used to refine the results of the pivot and walk
operation if necessary.

• The pivot and walk operators (pivot out and walk / pivot in and walk) are useful for “exploring” data in a Cortex
as they will return all the nodes “next to” the working set of nodes (subject to Type Awareness) without requiring
the user to have specific knowledge of the data model.

• The Storm tee command can be used to perform concurrent pivot in and walk / pivot out and walk operations on
an inbound set of nodes:

<query> | tee { --> * } { <-- * }

Pivot to Digraph (Edge) Nodes

Digraph (edge) nodes (Digraph (Edge) Form) are of type edge or timeedge. These nodes (forms) are unique in that
their primary property value is a pair of node definitions (type Ndef) - that is, <form>, <valu> tuples. (timeedge
forms are comprised of two <form>, <valu> tuples and an additional <time> value). Each <form>, <valu> tuple
from the primary property is broken out as secondary property :n1 or :n2 of type <ndef>. This means that pivoting
to and from digraph nodes is a bit different than pivoting to and from nodes whose properties are a simple <valu> or
<pval>.

Note: Edge nodes are not formally deprecated, but the use of light edges (see Lightweight (Light) Edge) is now
preferred over edge nodes.

Syntax:

<query> -> <edge> | <timeedge> [:n2]

<query> -+> <edge> | <timeedge> [:n2]

<query> <- <edge> | <timeedge>

Examples:

Pivot out from a set of nodes whose ndefs (<form>, <valu>) are the first element (:n1) in a set of a digraph nodes:

• Pivot out from a person node to the set of digraph nodes representing things that person “has”:

<ps:person> -> edge:has

3.6. Storm Reference 119

Synapse Documentation, Release 2.141.0

• Pivot out from a person node to the set of timeedge digraph nodes representing places that person has been to
(and when):

<ps:person> -> edge:wentto

Pivot in from a set of nodes whose ndefs (<form>, <valu>) are the second element (:n2) in a set of a digraph nodes:

• Pivot in from an article to the set of digraph nodes representing things that “have” the article (e.g., people or
organizations who authored the article):

<media:news> <- edge:has

Usage Notes:

• To simplify working with digraph nodes and their ndef properties, Storm makes some assumptions (optimiza-
tions) when using the pivot out and pivot in operators:

– When pivoting to or from a set of nodes to a set of digraph nodes, pivot using the ndef (<form>,<valu>)
of the inbound nodes and not their primary property (<valu>) alone.

– When pivoting out to a digraph node, the inbound nodes’ <form>,<valu> ndef will be the first element
(:n1) of the digraph. You must explicitly specify :n2 as the target property to pivot using the second
element.

– When pivoting in to a digraph node, the inbound nodes’ <form>,<valu> ndef will be the second element
(:n2) of the digraph. It is not possible to pivot into the :n1 value.

• Pivoting to / from digraph nodes is one of the specialized use cases for the pivot in (<-) operator, however
the primary use case of pivot in with digraph nodes is reverse edge traversal (see Pivot Across Digraph (Edge)
Nodes). See Pivot In Operator for general limitations of the pivot in operator.

Pivot Across Digraph (Edge) Nodes

Because digraph nodes represent generic edge relationships, analytically we are often more interested in the nodes on
“either side” of the edge than in the digraph node itself. For this reason, the pivot operators have been optimized to
allow a syntax for easily navigating “across” these digraphs (edges).

Note: Edge nodes are not formally deprecated, but the use of light edges (see Lightweight (Light) Edge) is now
preferred over edge nodes.

Syntax:

<query> -> <edge> | <timeedge> -> * | <form>

<query> <- <edge> | <timeedge> <- * | <form>

Examples:

• Traverse a set of edge:has nodes to pivot from a person to all the things the person “has”:

<ps:person> -> edge:has -> *

• Traverse a set of edge:wentto nodes to pivot from a person to the locations the person has visited:

<ps:person> -> edge:wentto -> *

Usage Notes:

• Storm makes the following assumptions to optimize the two pivots:

120 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

– For pivots out, the first pivot is to the digraph nodes’ :n1 property and the second pivot is from the digraph
nodes’ :n2 property.

– For pivots in, the first pivot is to the digraph nodes’ :n2 property and the second pivot is from the digraph
nodes’ :n1 property.

• Pivoting “across” the digraph nodes still performs two pivot operations (i.e., to the digraph nodes and then from
them). As such it is still possible to apply an optional filter to the digraph nodes themselves before the second
pivot.

Pivot to Tags

Pivot to tags syntax allows you to pivot from a set of nodes with tags to the set of syn:tag nodes representing those
tags. This includes:

• pivot to all leaf tag nodes,

• pivot to all tag nodes,

• pivot to all tag nodes matching a specified pattern, and

• pivot to tag nodes matching an exact tag.

See the Analytical Model - Tag Concepts document for additional discussion of tags as nodes (syn:tag nodes) and
tags as labels applied to other nodes.

Syntax:

<query> -> # [* | <tag> .* | <tag>]

Examples:

Pivot to all leaf tag nodes:

• Pivot from a set of domains to the syn:tag nodes for all leaf tags applied to those domains (i.e., the longest /
final tag in each tree applied to each node):

<inet:fqdn> -> #

Pivot to ALL tag nodes:

• Pivot from a set of files to the syn:tag nodes for all tags applied to those files (i.e., each tag in each tag tree
applied to each node, from root to leaf):

<file:bytes> -> #*

Pivot to all tag nodes matching the specified pattern:

• Pivot from a set of IP addresses to the syn:tag nodes for all tags applied to those IPs that are part of the
anonymized infrastructure tag tree:

<inet:ipv4> -> #cno.infra.anon.*

Pivot to tag nodes exactly matching the specified tag:

• Pivot from a set of nodes to the syn:tag node for #foo.bar (if present on the inbound set of nodes):

<query> -> #foo.bar

Usage Notes:

3.6. Storm Reference 121

Synapse Documentation, Release 2.141.0

• Pivot to all tags (#*) and pivot by matching an initial pattern (#<tag>.*) will match all tags in the relevant tag
trees from the inbound nodes, not just the leaf tags. For example, for an inbound node with tag #foo.bar.baz,
#* will return the syn:tag nodes for foo, foo.bar, and foo.bar.baz.

• When using the asterisk / wildcard (*) to match a pattern, the wildcard(s) can be used anywhere within the tag
name (value); they are not limited to matching elements within the tag’s dotted namespace. For example, all of
the following are valid (though may return different results):

– -> #aka.thr.*

– -> #aka.t*

– -> #a*

– -> #*thr*

– -> #*.thr.*

• The pivot to tags operator does not support pivoting directly to a set of tags specified by a prefix match (^) or
regular expression (~). However, these operators can be used as part of a subsequent filter operation to further
refine the results of the pivot.

Pivot from Tags

Pivot from tags syntax allows you to pivot from a set of syn:tag nodes to the set of nodes that have those tags.

Syntax:

<syn:tag> -> * | <form>

Examples:

• Pivot to all domains tagged with tags from any of the inbound syn:tag nodes:

<syn:tag> -> inet:fqdn

• Pivot to all nodes tagged with tags from any of the inbound syn:tag nodes:

<syn:tag> -> *

Usage Notes:

• In many cases, pivot from tags is functionally equivalent to Lift by Tag (#). That is, the following queries will
both return all nodes tagged with #aka.feye.thr.apt1:

syn:tag=aka.feye.thr.apt1 -> *

#aka.feye.thr.apt1

Pivoting from tags is most useful when used in conjunction with Pivot to Tags - that is, taking a set of inbound
nodes, pivoting to the syn:tag nodes for any associated tags (pivot to tags), and then pivoting out again to other
nodes tagged with some or all of those tags (pivot from tags).

122 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Implicit Pivot Syntax

Pivot operations in Storm can always be executed by explicitly specifying the source and target properties for the pivot.
This is referred to as explicit pivot syntax or explicit syntax. For example:

inet:fqdn=vertex.link -> inet:dns:a:fqdn :ipv4 -> inet:ipv4

The above query:

• lifts the FQDN vertex.link,

• explicitly pivots from the primary property of the FQDN to any inet:dns:a:fqdn secondary property with the
same value, and

• explicitly pivots from the :ipv4 secondary property of the inet:dns:a nodes to the primary property of any
inet:ipv4 nodes with the same value.

Using explicit pivot syntax tells Storm exactly what you want to do; there is no ambiguity in the query. (Explicit
syntax may also be useful when first learning Storm to reinforce exactly what navigation is being carried out when you
perform a pivot operation.) However, the need to fully specify target properties (using form and property names) and
specifically reference source properties (using relative property names) can add overhead (“more typing”) to a Storm
query that is not necessary if the query is unambiguous (i.e., based on the inbound and outbound forms).

For this reason, Storm also supports implicit pivot syntax for certain types of pivots. Implicit pivot syntax takes
advantage of Synapse’s Type Awareness to “know” which properties can be pivoted to (or from), given the forms that
are inbound to and outbound from the pivot operation. In these cases, the source and/or target do not need to be
explicitly specified. This allows for more concise Storm syntax in cases where the source and / or target of the pivot is
self-evident given the forms used.

Implicit pivot syntax can be used in the following cases where the source and target properties have both the same type
AND the same value:

• Primary to secondary property pivots.

• Secondary to primary property pivots.

Implicit pivot syntax cannot be used for the following:

• Primary to primary property pivots (see Raw Pivot Syntax, below)

• Secondary to secondary property pivots.

• Pivots between primary and secondary (or secondary and primary) properties with the same value but of different
types.

Examples:

Pivot from primary property (<form> = <valu>) to secondary property (<prop> = <pval>) using implicit syntax:

• Pivot from a set of domains to their associated DNS A records:

Explicit syntax:

<inet:fqdn> -> inet:dns:a:fqdn

Implicit syntax:

<inet:fqdn> -> inet:dns:a

With implicit syntax, the target property :fqdn can be omitted because it is the only logical target given inet:fqdn
nodes as the source and inet:dns:a nodes as the target of the pivot.

3.6. Storm Reference 123

Synapse Documentation, Release 2.141.0

Note: While the inet:fqdn form has secondary properties that are also of type inet:fqdn (e.g., both :domain
and :zone) implicit syntax can only be used to pivot between primary and secondary OR secondary and primary
properties, but not both. That is, implicit syntax does not allow you to go from any / all properties of a given type in
the source nodes to any / all properties with the same type and value in the target nodes. Because the target of the pivot
is inet:dns:a nodes, the only logical target given the inbound nodes is the :fqdn secondary property, which means
the only logical source is the primary property of the inet:fqdn.

Pivot from secondary property (<prop> = <pval>) to primary property (<form> = <valu>) using implicit syntax:

• Pivot from a set of DNS A records to their associated IP addresses:

Explicit syntax:

<inet:dns:a> :ipv4 -> inet:ipv4

Implicit syntax:

<inet:dns:a> -> inet:ipv4

With implicit syntax, the source property :ipv4 can be omitted because it is the only logical source given a set of
inet:ipv4 nodes as the target.

Note: Similar to the last example, while the inet:dns:a form has both :ipv4 and :fqdn secondary properties,
implicit syntax can only be used to pivot between primary and secondary OR secondary and primary properties, but
not both. Because the target of the pivot is inet:ipv4 nodes, the only logical source property is the :ipv4 secondary
property of the inet:dns:a node.

Use of multiple implicit pivots:

• Pivot from a set of domains to their DNS A records and then to the associated IP addresses:

Regular (full) syntax:

<inet:fqdn> -> inet:dns:a:fqdn :ipv4 -> inet:ipv4

Implicit syntax:

<inet:fqdn> -> inet:dns:a -> inet:ipv4

The above example simply combines the previous two examples to illustrate the use of multiple implicit pivot operations
in a longer query.

Implicit syntax with multiple target properties:

• Pivot from a set of domains to the associated DNS MX records:

Implicit syntax:

<inet:fqdn> -> inet:dns:mx

In the example above, given the source and target forms, the logical pivot for implicit syntax is from the primary
property of the inbound FQDN to the secondary properties of the DNS MX nodes. However, an inet:dns:mx form
has two secondary properties of type inet:fqdn: the mail exchange server (inet:dns:mx:mx) and the domain that
uses the MX (inet:dns:mx:fqdn).

Using implicit syntax, Storm wil pivot from the source FQDN(s) to any DNS MX records where the domain matches
either of those secondary properties. For example, querying the FQDN google.com will return DNS MX records for

124 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Google (i.e., inet:dns:mx:fqdn=google.com) as well as MX records that may use Google as their mail exchange
(i.e., inet:dns:mx:mx=google.com).

If you want only one or the other of those types of records, you need to use explicit syntax to specify the target property,
i.e.:

<inet:fqdn> -> inet:dns:mx:fqdn

or

<inet:fqdn> -> inet:dns:mx:mx

Implicit syntax with multiple source properties:

• Pivot from a set of files to their associated SHA256 hashes:

Implicit syntax:

<file:bytes> -> hash:sha256

In the example above, given the source and target forms, the logical pivot for implicit syntax is from the secondary
properties of the inbound file to the primary property of the SHA256 nodes. However, a file:bytes form has two
secondary properties of type hash:sha256: the file’s SHA256 hash (file:bytes:sha256) and the hash of the file’s
rich header data (if the file is a PE executable - file:bytes:mime:pe:richhdr).

Using implicit syntax, Storm will pivot from both source properties (where present) to all of the associated SHA256
nodes - that is, those that match either the :sha256 or :mime:pe:richhdr value.

If you want only one or the other of those types of records, you need to use explicit syntax to specify the source property,
i.e.:

<file:bytes> :sha256 -> hash:sha256

or

<file:bytes> :mime:pe:richhdr -> hash:sha256

Raw Pivot Syntax

For certain edge cases, standard Storm pivot syntax (explicit or implicit) is insufficient. In these instances raw pivot
syntax acts as a “get out of jail free” card to perform specialized pivot operations. These include:

• primary-to-primary property pivots;

• pivots where the value of the target property (primary or secondary) is computed from the input node(s);

• extramodel pivots.

In raw pivot syntax, the target of the pivot is specified as a Storm query enclosed in curly braces. Raw pivots often
involve specifying a variable derived from the inbound node(s) and performing the raw pivot using the variable, though
this is not technically required. (See Storm Reference - Advanced - Variables for a discussion of using variables in
Storm).

For some raw pivot syntax use cases, you can compose an equivalent Storm query using lift and filter operations. For
example:

• lift a set of nodes;

• define a variable based on those nodes;

3.6. Storm Reference 125

Synapse Documentation, Release 2.141.0

• lift a second set of nodes using the variable;

• filter out the original nodes you lifted, thus leaving only the second set of lifted nodes.

However, executing this type of query using raw pivot syntax is slightly more efficient; the Storm query within the raw
pivot’s curly braces may still be a lift operation, but performing it inside a raw pivot means you do not have to explicitly
drop (filter out) your original nodes. (As with a regular pivot, the inbound nodes are consumed by the pivot operation
itself, eliminating the need for the filter.)

As always, these efficiencies may be trivial for smaller queries but can be significant for larger queries.

Syntax:

<query> -> { <query> }

Examples:

• Pivot from a string (it:dev:str) representing an FQDN to the inet:fqdn node for that FQDN (i.e., pivot
between two primary properties of different types).

Standard syntax (no raw pivot, lift / filter only):

<it:dev:str> $fqdn=$node.value() inet:fqdn=$fqdn -it:dev:str

Raw pivot syntax:

<it:dev:str> $fqdn=$node.value() -> { inet:fqdn=$fqdn }

3.6.6 Storm Reference - Data Modification

Storm can be used to directly modify the Synapse hypergraph by:

• adding or deleting nodes;

• setting, modifying, or deleting properties on nodes; and

• adding or deleting tags from nodes.

Users gain a powerful degree of flexibility and efficiency through the ability to create or modify data on the fly.

(Note: For adding or modifying data at scale, we recommend use of the Synapse csvtool (csvtool), the Synapse feed
utility (feed), or the programmatic ingest of data.)

Warning: The ability to add and modify data directly from Storm is powerful and convenient, but also means users
can inadvertently modify (or even delete) data inappropriately through mistyped syntax or premature striking of
the “enter” key. While some built-in protections exist within Synapse itself it is important to remember that there
is no “are you sure?” prompt before a Storm query executes.

The following recommended best practices will help prevent inadvertent changes to a Cortex:

• Use extreme caution when constructing complex Storm queries that may modify (or delete) large numbers of
nodes. It is strongly recommended that you validate the output of a query by first running the query on its
own to ensure it returns the expected results (set of nodes) before permanently modifying (or deleting) those
nodes.

• Use the Synapse permissions system to enforce least privilege. Limit users to permissions appropriate for
tasks they have been trained for / are responsible for.

See Storm Reference - Document Syntax Conventions for an explanation of the syntax format used below.

126 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

See Storm Reference - Type-Specific Storm Behavior for details on special syntax or handling for specific data types
(Type).

Edit Mode

To modify data in a Cortex using Storm, you must enter “edit mode”. Edit mode makes use of several conventions to
specify what changes should be made and to what data:

• Edit Brackets

• Edit Parentheses

• Edit “Try” Operator (?=)

• Autoadds and Depadds

Edit Brackets

The use of square brackets ([]) within a Storm query can be thought of as entering edit mode. The data in the brackets
specifies the changes to be made and includes changes involving nodes, properties, and tags. The only exception is the
deletion of nodes, which is done using the Storm delnode command.

The square brackets used for the Storm data modification syntax indicate “perform the enclosed changes” in a generic
way. The brackets are shorthand to request any of the following:

• Add Nodes

• Add or Modify Properties

• Add or Modify Properties Using Subqueries

• Delete Properties

• Add Light Edges

• Delete Light Edges

• Add Tags

• Modify Tags

• Remove Tags

This means that all of the above directives can be specified within a single set of brackets, in any combination and in
any order. The only caveat is that a node must exist before it can be modified, so you must add a node inside the brackets
(or lift a node outside of the brackets) before you add a secondary property or a tag.

Warning: It is critical to remember that the brackets are NOT a boundary that segregates nodes; the brackets
simply indicate the start and end of data modification operations. They do NOT separate “nodes the modifications
should apply to” from “nodes they should not apply to”. Storm Operation Chaining with left-to-right processing
order still applies. Editing is simply another Storm operation, so the specified edits will be performed on ALL
nodes “to the left of” the edit brackets - i.e., everything “inbound” to the edit operation as part of the Storm
pipeline, regardless of whether those nodes are within or outside the brackets.

The exception is modifications that are placed within Edit Parentheses which can be used to segregate specific edit
operations. Storm will also throw an error if you attempt to perform an edit operation on a node that cannot be
modified in that way - for example, attempting to set an :asn property on an inbound inet:fqdn node will fail
because there is no :asn secondary property on an inet:fqdn.

3.6. Storm Reference 127

Synapse Documentation, Release 2.141.0

Note: For simplicity, syntax examples below demonstrating how to add nodes, modify properties, etc. only use edit
brackets.

See Combining Data Modification Operations below for examples showing the use of edit brackets with and without
edit parentheses.

Edit Parentheses

Inside of Edit Brackets, Storm supports the use of edit parentheses (()). Edit parentheses (“parens”) are used
to explicitly limit a set of modifications to a specific node or nodes by enclosing the node(s) and their associated
modification(s) within the parentheses. This “overrides” the default behavior for edit brackets, which is that every
change specified within the brackets applies to every node generated by the previous Storm output (i.e., every node in
the Storm pipeline), whether the node is referenced inside or outside the brackets themselves. Edit parens thus allow
you to make limited changes “inline” with a more complex Storm query instead of having to use a smaller, separate
query to make those changes.

Note that multiple sets of edit parens can be used within a single set of edit brackets; each set of edit parens will delimit
a separate set of edits.

See Combining Data Modification Operations below for examples showing the use of edit brackets with and without
edit parentheses.

Edit “Try” Operator (?=)

Most edit operations will involve explicitly setting a primary or secondary property value using the equivalent (=)
comparison operator:

[inet:fqdn = woot.com]

inet:ipv4 = 1.2.3.4 [:asn = 444]

Storm also supports the optional “try” operator (?=) within edit brackets or edit parens. The try operator will attempt
to set a value that may or may not pass Type enforcement for that property. Similarly, the try operator can also be used
when setting tags, e.g. [+?#mytag].

Incorrectly specifying a property value is unlikely to occur for users entering Storm data modification queries at the
command line (barring outright user error), as users are directly vetting the data they are entering. However, the try
operator may be useful for Storm-based automated ingest of data (such as csvtool or feed) where the data source may
contain “bad” data.

Use of the try operator allows Storm to fail silently in the event it encounters a BadTypeValu error (i.e., skip the bad
event but continue processing). Contrast this behavior with using the standard equivalent operator (=), where if Storm
encounters an error it will halt processing.

See the array section of the Storm Reference - Type-Specific Storm Behavior for specialized “edit try” syntax when
working with arrays.

128 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Autoadds and Depadds

Synapse makes use of two optimization features when adding nodes or setting secondary properties: automatic addi-
tions (Autoadd) and dependent additions (Depadd).

Autoadd is the process where, on node creation, Synapse will automatically set any secondary properties that are
derived from a node’s primary property. Because these secondary properties are based on the node’s primary property
(which cannot be changed once set), the secondary properties are read-only.

Depadd is the process where, on setting a node’s secondary property value, if that property is of a type that is also a
form, Synapse will automatically create the form with the corresponding primary property value. (You can view this
as the secondary property “depending on” the existence of a node with the corresponding primary property.)

Autoadd and depadd work together (and recursively) to simplify adding data to a Cortex. Properties set via autoadd
may result in the creation of nodes via depadd; the new nodes may have secondary properties set via autoadd that result
in the creation of additional nodes via depadd, and so on.

Examples:

Note: The specific syntax and process of node creation, modification, etc. are described in detail below. The examples
here are simply meant to illustrate the autoadd and depadd concepts.

Create a node for the email address user@vertex.link. Note the secondary properties (:fqdn and :user) that are set via
autoadd.

storm> [inet:email = user@vertex.link]
inet:email=user@vertex.link

:fqdn = vertex.link
:user = user
.created = 2023/07/12 15:15:12.814

Create a node to represent the twitter account for The Vertex Project. Synapse creates the account itself
(``inet:web:acct``) with secondary properties for ``:webpage`` (explicitly set) as well as ``:site`` and ``:user`` (via
autoadd). Note the additional nodes that are created from those secondary properties via deppadd (``inet:url``,
``inet:user``, multiple FQDNs, etc.).

storm> [inet:web:acct=(twitter.com,vtxproject) :webpage=https://vertex.link/]
inet:web:acct=twitter.com/vtxproject

:site = twitter.com
:user = vtxproject
:webpage = https://vertex.link/
.created = 2023/07/12 15:15:12.906

storm> .created
inet:fqdn=link

:host = link
:issuffix = true
:iszone = false
.created = 2023/07/12 15:15:12.814

inet:fqdn=vertex.link
:domain = link
:host = vertex
:issuffix = false
:iszone = true

(continues on next page)

3.6. Storm Reference 129

Synapse Documentation, Release 2.141.0

(continued from previous page)

:zone = vertex.link
.created = 2023/07/12 15:15:12.814

inet:user=user
.created = 2023/07/12 15:15:12.814

inet:user=vtxproject
.created = 2023/07/12 15:15:12.906

inet:fqdn=twitter.com
:domain = com
:host = twitter
:issuffix = false
:iszone = true
:zone = twitter.com
.created = 2023/07/12 15:15:12.906

inet:fqdn=com
:host = com
:issuffix = true
:iszone = false
.created = 2023/07/12 15:15:12.906

inet:web:acct=twitter.com/vtxproject
:site = twitter.com
:user = vtxproject
:webpage = https://vertex.link/
.created = 2023/07/12 15:15:12.906

inet:url=https://vertex.link/
:base = https://vertex.link/
:fqdn = vertex.link
:params =
:path = /
:port = 443
:proto = https
.created = 2023/07/12 15:15:12.909

Add Nodes

Operation to add the specified node(s) to a Cortex.

Syntax:

[<form> = | ?= <valu> . . .]

Examples:

Create a simple node:

[inet:fqdn = woot.com]

Create a composite (comp) node:

[inet:dns:a=(woot.com, 12.34.56.78)]

Create a GUID node:

[ou:org=2f92bc913918f6598bcf310972ebf32e]

130 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

[ou:org="*"]

Create a digraph (edge) node:

[edge:refs=((media:news, 00a1f0d928e25729b9e86e2d08c127ce), (inet:fqdn, woot.com))]

Create multiple nodes:

[inet:fqdn=woot.com inet:ipv4=12.34.56.78 hash:md5=d41d8cd98f00b204e9800998ecf8427e]

Usage Notes:

• Storm can create as many nodes as are specified within the brackets. It is not necessary to create only one node
at a time.

• For nodes specified within the brackets that do not already exist, Storm will create and return the node. For nodes
that already exist, Storm will simply return that node.

• When creating a <form> whose <valu> consists of multiple components, the components must be passed as a
comma-separated list enclosed in parentheses.

• Once a node is created, its primary property (<form> = <valu>) cannot be modified. The only way to “change”
a node’s primary property is to create a new node (and optionally delete the old node). “Modifying” nodes
therefore consists of adding, modifying, or deleting secondary properties (including universal properties) or
adding or removing tags.

Add or Modify Properties

Operation to add (set) or change one or more properties on the specified node(s).

The same syntax is used to apply a new property or modify an existing property.

Syntax:

<query> [: <prop> = | ?= <pval> . . .]

Note: Synapse supports secondary properties that are arrays (lists or sets of typed forms), such as ou:org:names.
See the array section of the Storm Reference - Type-Specific Storm Behavior guide for slightly modified syntax used to
add or modify array properties.

Examples:

Add (or modify) secondary property:

<inet:ipv4> [:loc=us.oh.wilmington]

Add (or modify) universal property:

<inet:dns:a> [.seen=("2017/08/01 01:23", "2017/08/01 04:56")]

Add (or modify) a string property to an empty string value:

<media:news> [:summary=""]

Usage Notes:

• Additions or modifications to properties are performed on the output of a previous Storm query.

3.6. Storm Reference 131

Synapse Documentation, Release 2.141.0

• Storm will set or change the specified properties for all nodes in the current working set (i.e., all nodes inbound
to the <prop> = <pval> edit statement(s)) for which that property is valid, whether those nodes are within or
outside of the brackets unless Edit Parentheses are used to limit the scope of the modifications.

• Specifying a property will set the <prop> = <pval> if it does not exist, or modify (overwrite) the <prop> =
<pval> if it already exists. There is no prompt to confirm overwriting of an existing property.

• Storm will return an error if the inbound set of nodes contains any forms for which <prop> is not a valid property.
For example, attempting to set a :loc property when the inbound nodes contain both domains and IP addresses
will return an error as :loc is not a valid secondary property for a domain (inet:fqdn).

• Secondary properties must be specified by their relative property name. For example, for the form foo:bar
with the property baz (i.e., foo:bar:baz) the relative property name is specified as :baz.

• Storm can set or modify any secondary property (including universal properties) except those explicitly defined
as read-only ('ro' : 1) in the data model. Attempts to modify read only properties will return an error.

Add or Modify Properties Using Subqueries

Property values can also be set using a subquery to assign the secondary property’s value. The subquery executes
a Storm query to lift the node(s) whose primary property should be assigned as the value of the specified secondary
property.

This is a specialized use case that is most useful when working with property values that are guids (see GUID) as it
avoids the need to type or copy and paste the guid value. Using a subquery allows you to reference the guid node using
a more “human friendly” method (typically a secondary property).

(See Storm Reference - Subqueries for additional detail on subqueries.)

Syntax:

<query> [: <prop> = | ?= { <query> } . . .]

Examples:

Use a subquery to assign an organization’s (ou:org) guid as the secondary property of a ps:contact node:

storm> ps:contact=d41d8cd98f00b204e9800998ecf8427e [:org={ ou:org:alias=usgovdoj }]
ps:contact=d41d8cd98f00b204e9800998ecf8427e

:address = 950 pennsylvania avenue nw, washington, dc, 20530-0001
:loc = us.dc.washington
:org = 0fa690c06970d2d2ae74e43a18f46c2a
:orgname = u.s. department of justice
:phone = +1 (202) 514-2000
.created = 2023/07/12 15:15:13.212

In the example above, the subquery is used to lift the organization whose :alias property value is usgovdoj and
assign the organization’s (ou:org node) primary property (a guid value) to the :org property of the ps:contact
node.

Use a subquery to assign one or more industries (ou:industry) to an organization (ou:org):

storm> ou:org:alias=apple [:industries+={ ou:industry:sic*[=3571]␣
→˓ou:industry:sic*[=3663] }]
ou:org=2848b564bf1e68563e3fea4ce27299f3

:alias = apple
:industries = ['23cb136e41eb8391d85f6a9497ca268e',

→˓'360d50beaffb1a623ad29ff492754a64']
(continues on next page)

132 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

:loc = us.ca.cupertino
:name = apple
:names = ['apple', 'apple, inc.']
:phone = +1 (408) 996-1010
.created = 2023/07/12 15:15:13.276

In the example above, the subquery is used to lift the industry node(s) whose :sic property (Standard Industrial
Classification) includes the values 3571 and 3663 and adds the industry (ou:industry) nodes’ primary properties
(guid values) to the :industries secondary property of the ou:org node.

Note: Both the ou:org:industries and ou:industry:sic properties are arrays (lists or sets of typed forms), so
the query above uses some array-specific syntax. See the array section of the Storm Reference - Type-Specific Storm
Behavior guide for specialized syntax used to add or modify array properties.

Usage Notes:

• The usage notes specified under Add or Modify Properties above also apply when adding or modifying properties
using subqueries.

• When using a subquery to assign a property value, Storm will throw an error if the subquery fails to lift any
nodes.

• When using a subquery to assign a value to a property that takes only a single value, Storm will throw an error
if the subquery returns more than one node. For example, if the subquery { ou:org:alias=usgovdoj } is
meant to set a single :org property and the query returns more than one ou:org node with that alias, Storm will
error and the property will not be set.

– The Edit “Try” Operator (?=) can be used instead ([:org?={ ou:org:alias=usgovdoj }]); in
this case, if an error condition occurs, Storm will fail silently - the property will not be set but no error is
thrown and any subsequent Storm operations will continue.

• When using a subquery to assign a property value, the subquery cannot iterate more than 128 times or Storm will
throw an error. For example, attempting to assign “all the industries” to a single organization (ou:org=<guid>
[:industries+={ ou:industry }]) will error if there are more than 128 ou:industry nodes.

Delete Properties

Operation to delete (fully remove) one or more properties from the specified node(s).

Warning: Storm syntax to delete properties has the potential to be destructive if executed following an incorrect,
badly formed, or mistyped query. Users are strongly encouraged to validate their query by first executing it on
its own (without the delete property operation) to confirm it returns the expected nodes before adding the delete
syntax. While the property deletion syntax cannot fully remove a node from the hypergraph, it is possible for a bad
property deletion operation to irreversibly damage hypergraph pivoting and traversal.

Syntax:

<query> [-: <prop> . . .]

Examples:

Delete a property:

3.6. Storm Reference 133

Synapse Documentation, Release 2.141.0

<inet:ipv4> [-:loc]

Delete multiple properties:

<media:news> [-:author -:summary]

Usage Notes:

• Property deletions are performed on the output of a previous Storm query.

• Storm will delete the specified property / properties for all nodes in the current working set (i.e., all nodes resulting
from Storm syntax to the left of the -:<prop> statement), whether those nodes are within or outside of the
brackets unless Edit Parentheses are used to limit the scope of the modifications.

• Deleting a property fully removes the property from the node; it does not set the property to a null value.

• Properties which are read-only ('ro' : 1) as specified in the data model cannot be deleted.

Delete Nodes

Nodes can be deleted from a Cortex using the Storm delnode command.

Add Light Edges

Operation that links the specified node(s) to another node or set of nodes (as specified by a Storm expression) using a
lightweight edge (light edge).

See Lightweight (Light) Edge for details on light edges.

Syntax:

<query> [+(<verb>)> { <storm> }]

<query> [<(<verb>)+ { <storm> }]

Note: The nodes specified by the Storm expression ({ <storm> }) must either already exist in the Cortex or must
be created as part of the Storm expression in order for the light edges to be created.

Note: The query syntax used to create light edges will yield the nodes that are inbound to the edit brackets (that
is, the nodes represented by <query>).

Examples:

Link the specified FQDN and IPv4 to the media:news node referenced by the Storm expression using a “refs” light
edge:

inet:fqdn=woot.com inet:ipv4=1.2.3.4 [<(refs)+ {␣
→˓media:news=a3759709982377809f28fc0555a38193 }]

Link the specified media:news node to the set of indicators tagged APT1 (#aka.feye.thr.apt1) using a “refs” light edge:

media:news=a3759709982377809f28fc0555a38193 [+(refs)> { +#aka.feye.thr.apt1 }]

Link the specified inet:cidr4 netblock to any IP address within that netblock that already exists in the Cortex (as refer-
enced by the Storm expression) using a “hasip” light edge:

134 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

inet:cidr4=123.120.96.0/24 [+(hasip)> { inet:ipv4=123.120.96.0/24 }]

Link the specified inet:cidr4 netblock to every IP in its range (as referenced by the Storm expression) using a “hasip”
light edge, creating the IPs if they don’t exist:

inet:cidr4=123.120.96.0/24 [+(hasip)> { [inet:ipv4=123.120.96.0/24] }]

Usage Notes:

• No light edge verbs exist in a Cortex by default; they must be created.

• Light edge verbs are created at the user’s discretion “on the fly” (i.e., when they are first used to link nodes); they
do not need to be created manually before they can be used.

– We recommend that users agree on a consistent set of light edge verbs and their meanings.

– The Storm model commands can be used to list and work with any light edge verbs in a Cortex.

• A light edge’s verb typically has a logical direction (a report “references” a set of indicators that it contains, but
the indicators do not “reference” the report). However, it is up to the user to create the light edges in the correct
direction and use forms that are sensical for the light edge verb. That is, there is nothing in the Storm syntax
itself to prevent users linking any arbitrary nodes in arbitrary directions using arbitrary light edge verbs.

• The plus sign (+) used with the light edge expression within the edit brackets is used to create the light edge(s).

• Light edges can be created in either “direction” (e.g., with the directional arrow pointing either right (
+(<verb>)>) or left (<(<verb>)+) - whichever syntax is easier.

Delete Light Edges

Operation that deletes the light edge linking the specified node(s) to the set of nodes specified by a given Storm expres-
sion.

See Lightweight (Light) Edge for details on light edges.

Syntax:

<query> [-(<verb>)> { <storm> }]

<query> [<(<verb>)- { <storm> }]

Caution: The minus sign (-) used to reference a light edge outside of edit brackets simply instructs Storm to
traverse (“walk”) the specified light edge; for example, inet:cidr4=192.168.0.0/24 -(hasip)> inet:ipv4
(see Traverse (Walk) Light Edges). The minus sign used to reference a light edge inside of edit brackets instructs
Storm to delete the specified edges (i.e., inet:cidr4=192.168.0.0/24 [-(hasip)> { inet:ipv4=192.
168.0.0/24 }]).

Examples:

Delete the “refs” light edge linking the MD5 hash of the empty file to the specified media:news node:

hash:md5=d41d8cd98f00b204e9800998ecf8427e [<(refs)- {␣
→˓media:news=a3759709982377809f28fc0555a38193 }]

Delete the “hasip” light edge linking IP 1.2.3.4 to the specified CIDR block:

inet:cidr4=123.120.96.0/24 [-(hasip)> { inet:ipv4=1.2.3.4 }]

3.6. Storm Reference 135

Synapse Documentation, Release 2.141.0

Usage Notes:

• The minus sign (-) used with the light edge expression within the edit brackets is used to delete the light edge(s).

• Light edges can be deleted in either “direction” (e.g., with the directional arrow pointing either right (
-(<verb>)>) or left (<(<verb>)-) - whichever syntax is easier.

Add Tags

Operation to add one or more tags to the specified node(s).

Syntax:

<query> [+# <tag> . . .]

Example:

Add multiple tags:

<inet:fqdn> [+#aka.feye.thr.apt1 +#cno.infra.sink.holed]

Usage Notes:

• Tag additions are performed on the output of a previous Storm query.

• Storm will add the specified tag(s) to all nodes in the current working set (i.e., all nodes resulting from Storm
syntax to the left of the +#<tag> statement) whether those nodes are within or outside of the brackets unless
Edit Parentheses are used to limit the scope of the modifications.

Add Tag Timestamps or Tag Properties

Synapse supports the use of Tag Timestamps and Tag Properties to provide additional context to tags where appropriate.

Syntax:

Add tag timestamps:

<query> [+# <tag> = <time> | (<min_time> , <max_time>) . . .]

Add tag property:

<query> [+# <tag> : <tagprop> = <pval> . . .]

Examples:

Add tag with single timestamp:

<inet:fqdn> [+#cno.infra.sink.holed=2018/11/27]

Add tag with a time interval (min / max):

<inet:fqdn> [+#cno.infra.sink.holed=(2014/11/06, 2016/11/06)]

Add tag with custom tag property:

<inet:fqdn> [+#rep.symantec:risk = 87]

Usage Notes:

• Tag Timestamps and Tag Properties are applied only to the tags to which they are explicitly added. For example,
adding a timestamp to the tag #foo.bar.baz does not add the timestamp to tags #foo.bar and #foo.

136 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

• Tag timestamps are interval (ival) types and exhibit behavior specific to that type. See the ival section of the
Storm Reference - Type-Specific Storm Behavior document for additional detail on working with interval types.

Modify Tags

Tags are “binary” in that they are either applied to a node or they are not. Tag names cannot be changed once set.

To “change” the tag applied to a node, you must add the new tag and delete the old one.

The Storm movetag command can be used to modify tags in bulk - that is, rename an entire set of tags, or move a tag
to a different tag tree.

Modify Tag Timestamps or Tag Properties

Tag timestamps or tag properties can be modified using the same syntax used to add the timestamp or property.

Modifications are constrained by the Type of the timestamp (i.e., ival) or property. For example:

• modifying an existing custom property of type integer (int) will simply overwrite the old tag property value
with the new one.

• modifying an existing timestamp will only change the timestamp if the new minimum is smaller than the current
minimum and / or the new maximum is larger than the current maximum, in accordance with type-specific
behavior for intervals (ival).

See Storm Reference - Type-Specific Storm Behavior for details.

Remove Tags

Operation to delete one or more tags from the specified node(s).

Removing a tag from a node differs from deleting the node representing a tag (a syn:tag node), which can be done
using the Storm delnode command.

Warning: Storm syntax to remove tags has the potential to be destructive if executed on an incorrect, badly formed,
or mistyped query. Users are strongly encouraged to validate their query by first executing it on its own to confirm
it returns the expected nodes before adding the tag deletion syntax.

In addition, it is essential to understand how removing a tag at a given position in a tag tree affects other tags within
that tree. Otherwise, tags may be improperly left in place (“orphaned”) or inadvertently removed.

Syntax:

<query> [-# <tag> . . .]

Examples:

Remove a leaf tag:

<inet:ipv4> [-#cno.infra.anon.tor]

Usage Notes:

• Tag deletions are performed on the output of a previous Storm query.

3.6. Storm Reference 137

Synapse Documentation, Release 2.141.0

• Storm will delete the specified tag(s) from all nodes in the current working set (i.e., all nodes resulting from
Storm syntax to the left of the -#<tag> statement), whether those nodes are within or outside of the brackets
unless Edit Parentheses are used to limit the scope of the modifications.

• Deleting a leaf tag deletes only the leaf tag from the node. For example, [-#foo.bar.baz] will delete the
tag #foo.bar.baz but leave the tags #foo.bar and #foo on the node.

• Deleting a non-leaf tag deletes that tag and all tags below it in the tag hierarchy from the node. For example, [
-#foo] used on a node with tags #foo.bar.baz and #foo.hurr.derp will remove all of the following tags:

– #foo.bar.baz

– #foo.hurr.derp

– #foo.bar

– #foo.hurr

– #foo

• See the Storm tag.prune command for recursive removal of tags (i.e., from a leaf tag up through parent tags that
do not have other children).

Remove Tag Timestamps or Tag Properties

Currently, it is not possible to remove a tag timestamp or tag property from a tag once it has been applied. Instead, the
entire tag must be removed and re-added without the timestamp or property.

Combining Data Modification Operations

The square brackets representing edit mode are used for a wide range of operations, meaning it is possible to combine
operations within a single set of brackets.

Simple Examples

Create a node and add secondary properties:

[inet:ipv4=94.75.194.194 :loc=nl :asn=60781]

Create a node and add a tag:

[inet:fqdn=blackcake.net +#aka.feye.thr.apt1]

Edit Brackets and Edit Parentheses Examples

The following examples illustrate the differences in Storm behavior when using Edit Brackets alone vs. with Edit
Parentheses.

When performing simple edit operations (i.e., Storm queries that add / modify a single node, or apply a tag to the
nodes retrieved by a Storm lift operation) users can typically use only edit brackets and not worry about delimiting edit
operations within additional edit parens.

138 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

That said, edit parens may be necessary when creating and modifying multiple nodes in a single query, or performing
edits within a longer or more complex Storm query. In these cases, understanding the difference between edit brack-
ets’ “operate on everything inbound” vs. edit parens’ “limit modifications to the specified nodes” is critical to avoid
unintended data modifications.

Example 1:

Consider the following Storm query that uses only edit brackets:

inet:fqdn#aka.feye.thr.apt1 [inet:fqdn=somedomain.com +#aka.eset.thr.sednit]

The query will perform the following:

• Lift all domains that FireEye associates with APT1 (i.e., tagged #aka.feye.thr.apt1).

• Create the new domain somedomain.com (if it does not already exist) or lift it (if it does).

• Apply the tag #aka.eset.thr.sednit to the domain somedomain.com and to all of the domains tagged
#aka.feye.thr.apt1 (because those FQDNs are inbound to the edit operation / edit brackets).

We can see the effects in the output of our example query:

storm> inet:fqdn#aka.feye.thr.apt1 [inet:fqdn=somedomain.com +#aka.eset.thr.sednit]
inet:fqdn=newsonet.net

:domain = net
:host = newsonet
:issuffix = false
:iszone = true
:zone = newsonet.net
.created = 2023/07/12 15:15:13.532
#aka.eset.thr.sednit
#aka.feye.thr.apt1
#cno.infra.sink.holed = (2014/11/06 00:00:00.000, 2018/11/27 00:00:00.001)

inet:fqdn=staycools.net
:domain = net
:host = staycools
:issuffix = false
:iszone = true
:zone = staycools.net
.created = 2023/07/12 15:15:13.541
#aka.eset.thr.sednit
#aka.feye.thr.apt1
#cno.infra.sink.holed = (2014/11/06 00:00:00.000, 2018/11/27 00:00:00.001)

inet:fqdn=blackcake.net
:domain = net
:host = blackcake
:issuffix = false
:iszone = true
:zone = blackcake.net
.created = 2023/07/12 15:15:13.680
#aka.eset.thr.sednit
#aka.feye.thr.apt1
#cno.infra.sink.holed = (2014/11/06 00:00:00.000, 2018/11/27 00:00:00.001)

inet:fqdn=purpledaily.com
:domain = com
:host = purpledaily
:issuffix = false

(continues on next page)

3.6. Storm Reference 139

Synapse Documentation, Release 2.141.0

(continued from previous page)

:iszone = true
:zone = purpledaily.com
.created = 2023/07/12 15:15:13.555
#aka.eset.thr.sednit
#aka.feye.thr.apt1
#cno.infra.sink.holed = (2014/11/06 00:00:00.000, 2018/11/27 00:00:00.001)

inet:fqdn=hugesoft.org
:domain = org
:host = hugesoft
:issuffix = false
:iszone = true
:zone = hugesoft.org
.created = 2023/07/12 15:15:13.548
#aka.eset.thr.sednit
#aka.feye.thr.apt1
#cno.infra.sink.holed = (2014/11/06 00:00:00.000, 2018/11/27 00:00:00.001)

inet:fqdn=somedomain.com
:domain = com
:host = somedomain
:issuffix = false
:iszone = true
:zone = somedomain.com
.created = 2023/07/12 15:15:13.888
#aka.eset.thr.sednit

Consider the same query using edit parens inside the brackets:

inet:fqdn#aka.feye.thr.apt1 [(inet:fqdn=somedomain.com +#aka.eset.thr.sednit)]

Because we used the edit parens, the query will now perform the following:

• Lift all domains that FireEye associates with APT1 (i.e., tagged #aka.feye.thr.apt1).

• Create the new domain somedomain.com (if it does not already exist) or lift it (if it does).

• Apply the tag aka.eset.thr.sednit only to the domain somedomain.com.

We can see the difference in the output of the example query:

storm> inet:fqdn#aka.feye.thr.apt1 [(inet:fqdn=somedomain.com +#aka.eset.thr.sednit)]
inet:fqdn=newsonet.net

:domain = net
:host = newsonet
:issuffix = false
:iszone = true
:zone = newsonet.net
.created = 2023/07/12 15:15:13.532
#aka.feye.thr.apt1
#cno.infra.sink.holed = (2014/11/06 00:00:00.000, 2018/11/27 00:00:00.001)

inet:fqdn=staycools.net
:domain = net
:host = staycools
:issuffix = false
:iszone = true

(continues on next page)

140 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

:zone = staycools.net
.created = 2023/07/12 15:15:13.541
#aka.feye.thr.apt1
#cno.infra.sink.holed = (2014/11/06 00:00:00.000, 2018/11/27 00:00:00.001)

inet:fqdn=blackcake.net
:domain = net
:host = blackcake
:issuffix = false
:iszone = true
:zone = blackcake.net
.created = 2023/07/12 15:15:13.680
#aka.feye.thr.apt1
#cno.infra.sink.holed = (2014/11/06 00:00:00.000, 2018/11/27 00:00:00.001)

inet:fqdn=purpledaily.com
:domain = com
:host = purpledaily
:issuffix = false
:iszone = true
:zone = purpledaily.com
.created = 2023/07/12 15:15:13.555
#aka.feye.thr.apt1
#cno.infra.sink.holed = (2014/11/06 00:00:00.000, 2018/11/27 00:00:00.001)

inet:fqdn=hugesoft.org
:domain = org
:host = hugesoft
:issuffix = false
:iszone = true
:zone = hugesoft.org
.created = 2023/07/12 15:15:13.548
#aka.feye.thr.apt1
#cno.infra.sink.holed = (2014/11/06 00:00:00.000, 2018/11/27 00:00:00.001)

inet:fqdn=somedomain.com
:domain = com
:host = somedomain
:issuffix = false
:iszone = true
:zone = somedomain.com
.created = 2023/07/12 15:15:13.888
#aka.eset.thr.sednit

Example 2:

Consider the following Storm query that uses only edit brackets:

[inet:ipv4=1.2.3.4 :asn=1111 inet:ipv4=5.6.7.8 :asn=2222]

The query will perform the following:

• Create (or lift) the IP address 1.2.3.4.

• Set the IP’s :asn property to 1111.

• Create (or lift) the IP address 5.6.7.8.

• Set the :asn property for both IP addresses to 2222.

3.6. Storm Reference 141

Synapse Documentation, Release 2.141.0

We can see the effects in the output of our example query:

storm> [inet:ipv4=1.2.3.4 :asn=1111 inet:ipv4=5.6.7.8 :asn=2222]
inet:ipv4=1.2.3.4

:asn = 2222
:type = unicast
.created = 2023/07/12 15:15:14.010

inet:ipv4=5.6.7.8
:asn = 2222
:type = unicast
.created = 2023/07/12 15:15:14.016

Consider the same query using edit parens inside the brackets:

[(inet:ipv4=1.2.3.4 :asn=1111) (inet:ipv4=5.6.7.8 :asn=2222)]

Because the brackets separate the two sets of modifications, IP 1.2.3.4 has its :asn property set to 1111 while IP
5.6.7.8 has its :asn property set to 2222:

storm> [(inet:ipv4=1.2.3.4 :asn=1111) (inet:ipv4=5.6.7.8 :asn=2222)]
inet:ipv4=1.2.3.4

:asn = 1111
:type = unicast
.created = 2023/07/12 15:15:14.010

inet:ipv4=5.6.7.8
:asn = 2222
:type = unicast
.created = 2023/07/12 15:15:14.016

3.6.7 Storm Reference - Subqueries

This section discusses the following topics:

• Subquery

• Subquery Filter

• Setting Properties with Subqueries

Subquery

A subquery is a Storm query that is executed inside of another Storm query. Curly braces ({ }) are used to enclose
the embedded query.

Note: Curly braces are a Storm syntax element that simply indicates “a Storm query is enclosed here”. They can be
used to denote a subquery, but have other uses as well.

Recall from Storm Operating Concepts that a Storm query can consist of multiple elements (lift, filter, pivot, pipe to
command, etc.). This sequence of Storm operations acts as a “pipeline” through which the nodes in the query pass.
Regardless of the number of nodes you start with (i.e., the number of nodes in your initial lift), each node is processed
individually by each element in the query, from left to right.

The elements in the query can be thought of as “gates”. The nodes “inbound” to each gate are processed by that gate in
some way. For example, if the “gate” is a filter operation, some nodes may be allowed to pass, while others are dropped

142 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(“consumed”), based on the filter. If the gate is a pivot, the inbound node is dropped while the node that is the “target”
of the pivot is picked up and added to the pipeline.

Note that in a standard Storm query (as described above) the set of nodes at any given point in the query is constantly
changing - the “working set” of nodes is transformed by the various operations. The nodes that “go in” to a particular
operation in the query are generally not the same ones that “come out”. Note also that as described, this process is
linear (hence “pipeline”).

A subquery is another element that can be used as part of a longer Storm query, only in this case the “element” is itself
an entire Storm query (as opposed to a filter, pivot, or Storm command).

One advantage of a subquery is that the actions that occur inside the subquery do not affect the “main” Storm execution
pipeline - the nodes that “go in” to a subquery are the same nodes that “come out”, regardless of what operations occur
within the subquery itself. (In terms of the Storm Operating Concepts, subqueries do not consume nodes by default.)
In this way, a subquery can allow you to “branch off” the main Storm execution pipeline, “do a thing” off to the side,
and then return to the main execution pipeline as though nothing happened; you resume at the point you left off, with
the same set of nodes in the pipeline as when you left.

If you want the nodes that result from the subquery operations to be returned, the yield option can be used to do so.
Note that yielding the subquery nodes is in addition to the set of nodes that passed in to the subquery (not “instead of”
the inbound nodes). If you only want the nodes resulting from the subquery, you probably don’t need a subquery and
can just use a standard Storm query instead.

Note: Any actions performed inside of a subquery will persist. For example, any modifications made to nodes inside
a subquery (setting or modifying properties, applying tags, even creating new nodes) will remain; those changes will
be present in the Cortex.

In addition, when setting or updating a Variable inside a subquery, the variable can pass back “out” of the subquery
and be available to the main Storm query.

What remains unchanged is that the set of nodes inbound to the subquery will be the same set of nodes available
(inbound) to the next element in the main Storm query - whatever happens inside the subquery does not affect the set
of nodes in the pipeline (barring the use of yield of course).

This ability to “do a thing off to the side” inside of a Storm query pipeline can add efficiencies to certain queries,
allowing you to perform some action inline that would otherwise require a second, separate query to perform. While
subqueries have their uses in “standard” Storm, they are particularly useful for more advanced Storm use cases involving
variables and control flow.

Note: A subquery is typically used to perform some action related to the Storm query in which it is embedded. But
there is no requirement for this to be the case. The subquery can contain any valid Storm, so you could (for example)
write a subquery that lifts ten arbitrary email addresses ({ inet:email | limit 10 }) in the middle of a longer
query. There’s not much point to this, but Storm will dutifully lift the nodes, discard them (unless the yield option is
used), and continue on.

Finally, one important characteristic of a subquery is that it requires inbound nodes in order to execute. That is,
the subquery is meant to be an element in a larger Storm pipeline, not a stand-alone query, and not the first element
in a longer query. Even though the subquery does not affect the inbound nodes (that is, the nodes “pass through”
the subquery and are still available as inbound nodes to the next query element), nodes must still be “fired into” the
subquery for the subquery action(s) to take place.

For example, the following query will return zero nodes, even though the yield directive is present. Because no nodes
are “inbound” to cause the subquery to execute, the embedded Storm is never run:

3.6. Storm Reference 143

Synapse Documentation, Release 2.141.0

storm> yield { inet:email | limit 10 }

Syntax:

<query> [yield] { <query> } [<query>]

<query> [yield] { <query> [{ <query> }] } [<query>]

Examples:

• Pivot from a set of DNS A records to their associated IPs and then to additional DNS A records associated with
those IPs. Use a subquery to check whether any of the IPs are RFC1918 addresses (i.e., have :type=private)
and if so, tag the IP as non-routable.

<inet:dns:a> -> inet:ipv4 { +:type=private [+#nonroutable] } -> inet:dns:a

• Pivot from a set of IP addresses to any servers associated with those IPs. Use a subquery to check whether
the IP has a location (:loc) property, and if not, call a third-party geolocation service to attempt to identify a
location and set the property. (Note: Synapse does not include a geolocation service in its public distribution;
this example assumes such a service has been implemented and is called using an extended Storm command
named ipgeoloc.)

<inet:ipv4> { -:loc | ipgeoloc } -> inet:server

• Pivot from a set of FQDNs to any files (binaries) that query those FQDNs. Use a subquery with the yield option
to return the file nodes as well as the original FQDNs.

<inet:fqdn> yield { -> inet:dns:request:query:name +:exe -> file:bytes }

Note: The “pivot and join” operator (-+>) allows you to combine a set of inbound nodes with the set of nodes reached
by the pivot into a single result set. However, the operator only allows you to join sets of nodes that are “one degree”
(one pivot) apart. The subquery syntax above effectively allows you to join two sets of nodes that are more than one
pivot apart.

Usage Notes:

• Subqueries can be nested; you can place subqueries inside of subqueries.

• When the yield option is used, Storm will return the nodes from the subquery first, followed by the nodes from
the original working set.

Subquery Filter

A subquery filter is a filter where the filter itself is a Storm expression.

Standard Storm filter operations are designed to operate on the nodes in the current working set, that is, the nodes
actively passing through the Storm pipeline. Regardless of whether the filter uses a Standard Comparison Operator
or Extended Comparison Operator, the filter evaluates some aspect of the node itself such as its primary or secondary
property(ies), or whether or not the node has a particular tag.

A subquery filter allows you to use a subquery to filter the current set of nodes based on their relationship to other nodes,
or on the properties or tags of “nearby” nodes. The subquery content is still evaluated “off to the side”; any pivots,
filters, or other operations performed inside the subquery are still “contained within” the subquery. But the nodes
passing through the main Storm pipeline are evaluated against the contents of the subquery, and are then filtered -
passed or dropped - based on that evaluation.

144 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

For additional detail on subquery filters and examples of their use, refer to the Subquery Filters section of the Storm
Reference - Filtering guide.

Setting Properties with Subqueries

A subquery can be used in data modification (i.e., edit) operations to specify the value that should be assigned to a
node’s secondary property. This is useful when the value to be assigned is a GUID that would be inconvenient to
type or copy and paste. See the Add or Modify Properties Using Subqueries section of the Storm Reference - Data
Modification document for examples and additional detail.

3.6.8 Storm Reference - Model Introspection

This section provides a brief overview / tutorial of some basic Storm queries to allow introspection / navigation of
Synapse’s:

• Data Model

• Analytical Model

The sample queries below are meant to help users new to Synapse and Storm get started examining forms and tags
within a Cortex. The queries all use standard Storm syntax and operations (such as pivots). For more detail on using
Storm, see Storm Reference - Introduction and related Storm topics.

Data Model

Analysts working with the data in the Synapse hypergraph will quickly become familiar with the forms they work with
most often. However, as the model expands - or when first learning Synapse - it is helpful to be able to easily reference
forms that may be less familiar, as well as how different forms relate to each other.

While the data model can be referenced within the Synapse source code or via the auto-generated Synapse Data Model
documentation, it can be inconvenient to stop in the middle of an analytical workflow to search for the correct docu-
mentation. It is even more challenging to stop and browse through extensive documentation when you’re not sure what
you’re looking for (or whether an appropriate form exists for your needs).

For these reasons Synapse supports data model introspection within the Synapse hypergraph itself - that is, the
Synapse data model is itself data stored within the Cortex. Introspection allows users to obtain the model defini-
tion for a given Cortex at run-time. The model definition contains a list of all native and custom types, forms, and
properties supported by the current Cortex.

These model elements are generated as nodes in the Cortex from the current Synapse data model when a Cortex is
initialized or when a new module is loaded. As nodes, they can be lifted, filtered, and pivoted across just like other
nodes. However, the model-specific nodes do not persist permanently in storage and they cannot be modified (edited)
or tagged. Because they are generated at run-time they are known as run-time nodes or runt nodes.

The following runt node forms are used to represent the Synapse data model for types, forms, and properties, respec-
tively.

• syn:type

• syn:form

• syn:prop

As nodes within the Cortex, these forms can be lifted, filtered, and pivoted across using the Storm query language,
just like any other nodes (with the exception of editing or tagging). Refer to the various Storm documents for details
on Storm syntax. A few simple example queries are provided below to illustrate some common operations for model
introspection.

3.6. Storm Reference 145

https://github.com/vertexproject/synapse

Synapse Documentation, Release 2.141.0

Example Queries

• Display all current types / forms / properties:

storm> syn:type | limit 2
syn:type=int

:ctor = synapse.lib.types.Int
:doc = The base 64 bit signed integer type.
:opts = {'size': 8, 'signed': True, 'fmt': '%d', 'min': None, 'max': None, 'ismin

→˓': False, 'ismax': False}
syn:type=float

:ctor = synapse.lib.types.Float
:doc = The base floating point type.
:opts = {'fmt': '%f', 'min': None, 'minisvalid': True, 'max': None, 'maxisvalid

→˓': True}

storm> syn:form | limit 2
syn:form=inet:dns:a

:doc = The result of a DNS A record lookup.
:runt = false
:type = inet:dns:a

syn:form=inet:dns:aaaa
:doc = The result of a DNS AAAA record lookup.
:runt = false
:type = inet:dns:aaaa

storm> syn:prop | limit 2
syn:prop=.seen

:base = .seen
:doc = The time interval for first/last observation of the node.
:extmodel = false
:relname = .seen
:ro = false
:type = ival
:univ = true

syn:prop=.created
:base = .created
:doc = The time the node was created in the cortex.
:extmodel = false
:relname = .created
:ro = true
:type = time
:univ = true

• Display all types that are sub-types of ‘string’:

storm> syn:type:subof = str | limit 2
syn:type=ou:sic

:ctor = synapse.lib.types.Str
:doc = The four digit Standard Industrial Classification Code.
:opts = {'enums': None, 'regex': '^[0-9]{4}$', 'lower': False, 'strip': False,

→˓'replace': (), 'onespace': False, 'globsuffix': False}
:subof = str

(continues on next page)

146 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

syn:type=ou:naics
:ctor = synapse.lib.types.Str
:doc = North American Industry Classification System codes and prefixes.
:opts = {'enums': None, 'regex': '^[1-9][0-9]{1,5}?$', 'lower': False, 'strip':␣

→˓True, 'replace': (), 'onespace': False, 'globsuffix': False}
:subof = str

• Display a specific type:

storm> syn:type = inet:fqdn
syn:type=inet:fqdn

:ctor = synapse.models.inet.Fqdn
:doc = A Fully Qualified Domain Name (FQDN).

• Display a specific form:

storm> syn:form = inet:fqdn
syn:form=inet:fqdn

:doc = A Fully Qualified Domain Name (FQDN).
:runt = false
:type = inet:fqdn

• Display a specific property of a specific form:

storm> syn:prop = inet:ipv4:loc
syn:prop=inet:ipv4:loc

:base = loc
:doc = The geo-political location string for the IPv4.
:extmodel = false
:form = inet:ipv4
:relname = loc
:ro = false
:type = loc
:univ = false

• Display a specific form and all its secondary properties (including universal properties):

storm> syn:prop:form = inet:fqdn | limit 2
syn:prop=inet:fqdn

:doc = A Fully Qualified Domain Name (FQDN).
:extmodel = false
:form = inet:fqdn
:type = inet:fqdn
:univ = false

syn:prop=inet:fqdn.seen
:base = .seen
:doc = The time interval for first/last observation of the node.
:extmodel = false
:form = inet:fqdn
:relname = .seen
:ro = false
:type = ival
:univ = false

3.6. Storm Reference 147

Synapse Documentation, Release 2.141.0

• Display all properties whose type is inet:fqdn:

storm> syn:prop:type = inet:fqdn | limit 2
syn:prop=inet:dns:a:fqdn

:base = fqdn
:doc = The domain queried for its DNS A record.
:extmodel = false
:form = inet:dns:a
:relname = fqdn
:ro = true
:type = inet:fqdn
:univ = false

syn:prop=inet:dns:aaaa:fqdn
:base = fqdn
:doc = The domain queried for its DNS AAAA record.
:extmodel = false
:form = inet:dns:aaaa
:relname = fqdn
:ro = true
:type = inet:fqdn
:univ = false

• Display all forms referenced by a specific form (i.e., the specified form contains secondary properties that are
themselves forms):

storm> syn:prop:form = inet:whois:rec :type -> syn:form
syn:form=inet:whois:rec

:doc = A domain whois record.
:runt = false
:type = inet:whois:rec

syn:form=inet:fqdn
:doc = A Fully Qualified Domain Name (FQDN).
:runt = false
:type = inet:fqdn

syn:form=inet:whois:rar
:doc = A domain registrar.
:runt = false
:type = inet:whois:rar

syn:form=inet:whois:reg
:doc = A domain registrant.
:runt = false
:type = inet:whois:reg

• Display all forms that reference a specific form (i.e., the specified form is a secondary property of another form):

storm> syn:form = inet:whois:rec -> syn:prop:type :form -> syn:form
syn:form=inet:whois:contact

:doc = An individual contact from a domain whois record.
:runt = false
:type = inet:whois:contact

syn:form=inet:whois:rec
:doc = A domain whois record.
:runt = false
:type = inet:whois:rec

(continues on next page)

148 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

syn:form=inet:whois:recns
:doc = A nameserver associated with a domain whois record.
:runt = false
:type = inet:whois:recns

Analytical Model

As the number of tags used in the hypergraph increases, analysts must be able to readily identify tags, tag hierarchies,
and the precise meaning of individual tags so they can be applied and interpreted correctly.

Unlike the runt nodes used for the Synapse data model, the syn:tag nodes that represent tags are regular objects in the
Cortex that can be lifted, filtered, and pivoted across (as well as edited, tagged, and deleted) just like any other nodes.
In a sense it is possible to perform “analytical model introspection” by examining the nodes representing a Cortex’s
analytical model (i.e., tags).

Lifting, filtering, and pivoting across syn:tag nodes is performed using the standard Storm query syntax; refer to the
various Storm documents for details on using Storm. See also the syn:tag section of Storm Reference - Type-Specific
Storm Behavior for additional details on working with syn:tag nodes.

A few simple example queries are provided below to illustrate some common operations for working with tags. As
Synapse does not include any pre-populated syn:tag nodes, these examples assume you have a Cortex where some
number of tags have been created.

Example Queries

• Lift a single tag:

storm> syn:tag = cno.infra.anon.tor
syn:tag=cno.infra.anon.tor

:base = tor
:depth = 3
:doc = Various types of Tor infrastructure, including: a server representing a␣

→˓Tor service or the associated IP address; a host known to be a Tor node / hosting a␣
→˓Tor service; contact information associated with an entity responsible for a given Tor␣
→˓node.

:title = Tor Infrastructure
:up = cno.infra.anon
.created = 2023/07/12 15:16:04.419

• Lift all root tags:

storm> syn:tag:depth = 0
syn:tag=cno

:base = cno
:depth = 0
.created = 2023/07/12 15:16:04.405

• Lift all tags one level “down” from the specified tag:

storm> syn:tag:up = cno.infra.anon
syn:tag=cno.infra.anon.vpn

:base = vpn
(continues on next page)

3.6. Storm Reference 149

Synapse Documentation, Release 2.141.0

(continued from previous page)

:depth = 3
:doc = A server representing an anonymous VPN service, or the associated IP␣

→˓address. Alternately, an FQDN explicilty denoting an anonymous VPN that resolves to␣
→˓the associated IP.

:title = Anonymous VPN
:up = cno.infra.anon
.created = 2023/07/12 15:16:04.425

syn:tag=cno.infra.anon.tor
:base = tor
:depth = 3
:doc = Various types of Tor infrastructure, including: a server representing a␣

→˓Tor service or the associated IP address; a host known to be a Tor node / hosting a␣
→˓Tor service; contact information associated with an entity responsible for a given Tor␣
→˓node.

:title = Tor Infrastructure
:up = cno.infra.anon
.created = 2023/07/12 15:16:04.419

• Lift all tags that start with a given prefix, regardless of depth:

storm> syn:tag ^= cno.infra
syn:tag=cno.infra

:base = infra
:depth = 1
:doc = Top-level tag for infrastructre.
:title = Infrastructure
:up = cno
.created = 2023/07/12 15:16:04.405

syn:tag=cno.infra.anon
:base = anon
:depth = 2
:doc = Top-level tag for anonymization services.
:title = Anonymization services
:up = cno.infra
.created = 2023/07/12 15:16:04.412

syn:tag=cno.infra.anon.tor
:base = tor
:depth = 3
:doc = Various types of Tor infrastructure, including: a server representing a␣

→˓Tor service or the associated IP address; a host known to be a Tor node / hosting a␣
→˓Tor service; contact information associated with an entity responsible for a given Tor␣
→˓node.

:title = Tor Infrastructure
:up = cno.infra.anon
.created = 2023/07/12 15:16:04.419

syn:tag=cno.infra.anon.vpn
:base = vpn
:depth = 3
:doc = A server representing an anonymous VPN service, or the associated IP␣

→˓address. Alternately, an FQDN explicilty denoting an anonymous VPN that resolves to␣
→˓the associated IP.

:title = Anonymous VPN
(continues on next page)

150 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

:up = cno.infra.anon
.created = 2023/07/12 15:16:04.425

• Lift all tags that share the same base (rightmost) element:

storm> syn:tag:base = sofacy
syn:tag=rep.talos.sofacy

:base = sofacy
:depth = 2
:doc = Indicator or activity talos calls (or associates with) sofacy.
:title = sofacy(talos)
:up = rep.talos
.created = 2023/07/12 15:16:04.542

syn:tag=rep.uscert.sofacy
:base = sofacy
:depth = 2
:doc = Indicator or activity uscert calls (or associates with) sofacy.
:title = sofacy(uscert)
:up = rep.uscert
.created = 2023/07/12 15:16:04.535

3.6.9 Storm Reference - Type-Specific Storm Behavior

Some data types (Type) within Synapse have additional optimizations. These include optimizations for:

• indexing (how the type is stored for retrieval);

• parsing (how the type can be specified for input);

• insertion (how the type can be used to create or modify nodes);

• operations (how the type can be lifted, filtered, or otherwise compared).

Types that have been optimized in various ways are documented below along with any specialized operations that may
be available for those types.

This section is not a complete reference of all available types. In addition, this section does not address the full
range of type enforcement constraints that may restrict the values that can be specified for a given type (such as via a
constructor (ctor)). For details on available types and type constraints or enforcement, see the online documentation
or the Synapse source code.

• array (array)

• file:bytes (file)

• guid (globally unique identifier)

• inet:fqdn (FQDN)

• inet:ipv4 (IPv4)

• ival (time interval)

• loc (location)

• str (string)

• syn:tag (tag)

• time (date/time)

3.6. Storm Reference 151

../autodocs/datamodel_types.html
https://github.com/vertexproject/synapse

Synapse Documentation, Release 2.141.0

array

An array is a specialized type that consists of either a list or a set of typed values. That is, an array is a type that
consists of one or more values that are themselves all of a single, defined type.

Tip: An array that is a list can have duplicate entries in the list. An array that is a set consists of a unique group of
entries.

Array types can be used for properties where that property is likely to have multiple values, but it is undesir-
able to represent those values using multiple Relationship nodes. Examples of array secondary properties include
media:news:authors, inet:email:message:headers, and ps:person:names. You can view all secondary
properties that are array types using the following Storm query:

syn:prop:type=array

Indexing

N/A

Parsing

Because an array is a list or set of typed values, array elements can be input in any format supported by the type
of the elements themselves. For example, if an array consists of inet:ipv4 values, the values can be input in any
supported inet:ipv4 format (e.g., integer, hex, dotted-decimal string, etc.).

Insertion

Because it may contain multiple values, an array property must be set using comma-separated values enclosed in
parentheses (this is true even if the array contains only a single element; you must still use parentheses, and the single
element must still be followed by a trailing comma). Single or double quotes are required in accordance with the
standard rules for using Whitespace and Literals in Storm.

Example:

Set the :names property of an organization (ou:org) node to a single value:

storm> ou:org:name=vertex [:names=('The Vertex Project',)]
ou:org=29b6e7bad25fc3538503ba94bd89365a

:name = vertex
:names = ['the vertex project']
:url = https://vertex.link/
.created = 2023/07/12 15:15:04.016

Example:

Set the :names property of an organization (ou:org) node to contain multiple variations of the organization name:

storm> ou:org:name=vertex [:names=('The Vertex Project', 'The Vertex Project, LLC',␣
→˓Vertex)]
ou:org=29b6e7bad25fc3538503ba94bd89365a

:name = vertex
(continues on next page)

152 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

:names = ['the vertex project', 'the vertex project, llc', 'vertex']
:url = https://vertex.link/
.created = 2023/07/12 15:15:04.016

Warning: Using the equals (=) operator to set an array property value will set or update (overwrite) the entire
property value. To add or remove individual elements from an array, use the += or -= operators.

Example:

Add a name to the array of names associated with an organization:

storm> ou:org:name='Monty Python' [:names+='The Spanish Inquisition']
ou:org=9c7ff324f28c6dd145133a51fcb0fba4

:name = monty python
:names = ['monty python', 'the spanish inquisition']
.created = 2023/07/12 15:15:04.114

Remove a name from the array of names associated with an organization:

storm> ou:org:name='Monty Python' [:names-='The Spanish Inquisition']
ou:org=9c7ff324f28c6dd145133a51fcb0fba4

:name = monty python
:names = ['monty python']
.created = 2023/07/12 15:15:04.114

Tip: The standard “edit try” operator (?=) (see Edit “Try” Operator (?=) in the Storm Reference - Data Modification)
can be used to attempt to set a full array property value where you are unsure whether the value will succeed. The
specialized ?+= or ?-= operators can be used to attempt to add or remove a single array value in a similar manner.

Example:

Use the specialized “edit try” operator to attempt to add a single value to the :authors array property of an article
(media:news node). (Note: a type-inappropriate value (a name) is used below to show the “fail silently” behavior
for the “edit try” operator. The :authors property is an array of ps:contact nodes and requires ps:contact guid
values.)

storm> media:news:org=kaspersky [:authors?+='john smith']
media:news=0531160afc90305ae909e46845d30614

:org = kaspersky
:title = new report on really bad threat
.created = 2023/07/12 15:15:04.181

Usage Notes:

• When using the standard “edit try” operator (?=) to attempt to set the full value of an array property (vs. adding
or removing an element from an array), the entire attempt will fail if any value in the list of values fails. For
example, if you try to set [:identities:emails?=(alice@vertex.link, bob)] on an X509 certificate
(crypto:x509:cert), Synapse will fail to set the property altogether because bob is not a valid email address
type (even though alice@vertex.link is).

• The “edit try” operator for removing individual elements from an array (?-=) is unique to arrays as they are the
only type that allows removal of a single element from a property. (Properties with a single value are either set,

3.6. Storm Reference 153

Synapse Documentation, Release 2.141.0

modified (updated), or the property is deleted altogether.) As with other uses of “edit try”, use of the operator
allows the operation to silently fail (vs. error and halt) if the operation attempts to remove a value from an array
that does not match the array’s defined type. For example, attempting to remove an IPv4 from an array of email
addresses will halt with a BadTypeValu error if the standard remove operator (-=) is used, but silently fail (do
nothing and continue) if the “edit try” version (?-=) is used.

Operations

Lifting and Filtering

Lifting or filtering array properties using the equals (=) operator requires an exact match of the full array property
value. This makes sense for forms with simple values like inet:ipv4=1.2.3.4, but is often infeasible for arrays
because lifting by the full array value requires you to know the exact values of each of the array elements as well as
their exact order:

storm> ou:org:names=("The Vertex Project", "The Vertex Project, LLC", Vertex)
ou:org=29b6e7bad25fc3538503ba94bd89365a

:name = vertex
:names = ['the vertex project', 'the vertex project, llc', 'vertex']
:url = https://vertex.link/
.created = 2023/07/12 15:15:04.016

For this reason, Storm offers a special “by” syntax for lifting and filtering with array types. The syntax consists of an
asterisk (*) preceding a set of square brackets ([]), where the square brackets contain a comparison operator and a
value that can match one or more elements in the array. This allows users to match one or more elements in the array
similarly to how they would match individual property values.

Note: The square brackets used to lift or filter based on values in an array should not be confused with square brackets
used to add or modify nodes or properties in Edit Mode.

Examples:

Lift the ou:org node(s) whose :names property contains a name that exactly matches vertex:

storm> ou:org:names*[=vertex]
ou:org=29b6e7bad25fc3538503ba94bd89365a

:name = vertex
:names = ['the vertex project', 'the vertex project, llc', 'vertex']
:url = https://vertex.link/
.created = 2023/07/12 15:15:04.016

Lift the ou:org node(s) whose :names property contains a name that includes the string vertex:

storm> ou:org:names*[~=vertex]
ou:org=29b6e7bad25fc3538503ba94bd89365a

:name = vertex
:names = ['the vertex project', 'the vertex project, llc', 'vertex']
:url = https://vertex.link/
.created = 2023/07/12 15:15:04.016

ou:org=29b6e7bad25fc3538503ba94bd89365a
:name = vertex
:names = ['the vertex project', 'the vertex project, llc', 'vertex']

(continues on next page)

154 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

:url = https://vertex.link/
.created = 2023/07/12 15:15:04.016

ou:org=29b6e7bad25fc3538503ba94bd89365a
:name = vertex
:names = ['the vertex project', 'the vertex project, llc', 'vertex']
:url = https://vertex.link/
.created = 2023/07/12 15:15:04.016

Lift the x509 certificate nodes that reference the domain microsoft.com:

storm> crypto:x509:cert:identities:fqdns*[=microsoft.com]
crypto:x509:cert=a4e2461cd3b72962f454a49d3519a577

:identities:fqdns = ['microsoft.com', 'verisign.com']
.created = 2023/07/12 15:15:04.294

Downselect a set of ou:org nodes to include only those with a name that starts with “acme”:

storm> ou:org +:names*[^=acme]
ou:org=affb950ff2eef793dd29e5b50b072418

:name = acme construction
:names = ['acme construction']
.created = 2023/07/12 15:15:04.357

ou:org=ec8a6a72e149bda5c16d6bf95c265387
:name = acme consulting
:names = ['acme consulting']
.created = 2023/07/12 15:15:04.351

See Lift by (Arrays) (*[]) and Filter by (Arrays) (*[]) for additional details.

Pivoting

Synapse and Storm are type-aware and will facilitate pivoting between properties of the same type. This includes
pivoting between individual typed properties and array properties consisting of those same types. Type awareness for
arrays includes both standard form and property pivots as well as wildcard pivots.

Examples:

Pivot from a set of x509 certificate nodes to the set of domains referenced by the certificates (such as in the
:identities:fqdns array property):

storm> crypto:x509:cert -> inet:fqdn
inet:fqdn=microsoft.com

:domain = com
:host = microsoft
:issuffix = false
:iszone = true
:zone = microsoft.com
.created = 2023/07/12 15:15:04.298

inet:fqdn=verisign.com
:domain = com
:host = verisign
:issuffix = false
:iszone = true

(continues on next page)

3.6. Storm Reference 155

Synapse Documentation, Release 2.141.0

(continued from previous page)

:zone = verisign.com
.created = 2023/07/12 15:15:04.298

Pivot from a set of ou:name nodes to any nodes that reference those names (this would include ou:org nodes where
the ou:name is present in the :name property or as an element in the :names array):

storm> ou:name^=acme <- *
ou:org=affb950ff2eef793dd29e5b50b072418

:name = acme construction
:names = ['acme construction']
.created = 2023/07/12 15:15:04.357

ou:org=affb950ff2eef793dd29e5b50b072418
:name = acme construction
:names = ['acme construction']
.created = 2023/07/12 15:15:04.357

ou:org=ec8a6a72e149bda5c16d6bf95c265387
:name = acme consulting
:names = ['acme consulting']
.created = 2023/07/12 15:15:04.351

ou:org=ec8a6a72e149bda5c16d6bf95c265387
:name = acme consulting
:names = ['acme consulting']
.created = 2023/07/12 15:15:04.351

file:bytes

file:bytes is a special type used to represent any file (i.e., any arbitrary set of bytes). Note that a file can be repre-
sented as a node within a Cortex regardless of whether the file itself (the specific set of bytes) is available (i.e., stored
in an Axon). This is essential as many other data model elements allow (or depend on) the concept of a file (as opposed
to a hash).

The file:bytes type is a specialized guid type. A file can be uniquely represented by the specific contents of the
file itself. As it is impractical to use “all the bytes” as a primary property value, it makes sense to use a shortened
representation of those bytes - that is, a hash. MD5 collisions can now be generated with ease, and SHA1 collisions
were demonstrated in 2017. For this reason, Synapse uses the SHA256 hash of a file (considered sufficiently immune
from collision attacks for the time being) as “unique enough” to act as the primary property of a file:bytes node if
available. Otherwise, a guid is generated and used.

156 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Indexing

N/A

Parsing

file:bytes must be input using their complete primary property. It is impractical to manually type a SHA256 hash
or 128-bit guid value. For this reason file:bytes forms are most often specified by referencing the node via a more
human-friendly secondary property or by pivoting to the node. Alternately, the file:bytes value can be copied and
pasted for use in a query.

The primary property of a file:bytes node indicates how the node was created (i.e., via the SHA256 hash or via a
guid):

• A node created using the SHA256 hash will have a primary property value consisting of sha256: prepended

to the SHA256 hash:

file:bytes=sha256:e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

• A node created using a guid will have a primary property value consisting of guid: prepended to the

guid value:

file:bytes=guid:22d4ed1b75c9eb5ff8070e0df1e8ed6b

Note: When specifying a SHA256-based file:bytes node, entering the sha256: prefix is optional. The following
are equivalent representations of the same file:

file:bytes=sha256:e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

file:bytes=e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

Insertion

A file:bytes node can be created in one of three ways:

SHA256 Hash

A SHA256 hash can be specified as the node’s primary property. The sha256: prefix can optionally be specified, but
is not required (it will be added automatically on node creation). Storm will recognize the primary property value as a
SHA256 hash and also set the :sha256 secondary property. Any other secondary properties must be set manually.

storm> [file:bytes = 44daad9dbd84c92fa9ec52649b028b4c0f7d285407685778d09bad4b397747d0]
file:bytes=sha256:44daad9dbd84c92fa9ec52649b028b4c0f7d285407685778d09bad4b397747d0

:sha256 = 44daad9dbd84c92fa9ec52649b028b4c0f7d285407685778d09bad4b397747d0
.created = 2023/07/12 15:15:04.459

Because the SHA256 is considered unique (for now) for our purposes, the node is fully deconflictable. If additional
secondary properties such as :size or other hashes are obtained later, or if the actual file is obtained, the node can be
updated with the additional properties based on deconfliction with the SHA256 hash.

3.6. Storm Reference 157

Synapse Documentation, Release 2.141.0

GUID Value

The asterisk can be used to generate a file:bytes node with an arbitrary guid value:

storm> [file:bytes = *]
file:bytes=guid:df047617b109f8076c666c0546a458ab

.created = 2023/07/12 15:15:04.486

Alternately, a potentially deconflictable guid can be generated by specifying a list of one or more values to the guid
generator (for example, an MD5 and / or SHA1 hash). This will generate a predictable guid:

storm> [file:bytes = (63fcc49b2ac6cbd686f4d9704446c673,)␣
→˓:md5=63fcc49b2ac6cbd686f4d9704446c673]
file:bytes=guid:34f71d05b9e06558b184aac6f4010a12

:md5 = 63fcc49b2ac6cbd686f4d9704446c673
.created = 2023/07/12 15:15:04.513

Synapse does not recognize any strings passed to the guid generator as specific types or properties and will not use
values used to generate the guid to set any secondary property values; those properties must be explicitly set (e.g., the
:md5 property in the example above).

See the section on type-specific behavior for guid types for additional discussion of arbitrary (non-deconflictable) vs.
deconflictable guids.

Note: “Deconflicting” file:bytes nodes based on an MD5 or SHA1 hash alone is potentially risky because both of
those hashes are subject to collision attacks. In other words, two files that have the same MD5 hash or the same SHA1
hash are not guaranteed to be the same file based on that single hash alone.

In short, creating file:bytes nodes using the MD5 and / or SHA1 hash can allow the creation of “potentially”
deconflictable nodes when no other data is available. However, this deconfliction is subject to some limitations, as
noted above. In addition, if the actual file (full bytes) or corresponding SHA256 hash is obtained later, it is not possible
to “convert” a guid-based file:bytes node to one whose primary property is based on the SHA256 hash.

Actual Bytes

You can also create a file:bytes node by adding the actual file (set of bytes) to Synapse (specifically, to Synapse’s
Axon storage). Adding the file will create the file:bytes node in the Cortex based on the file’s SHA256 value.
Synapse will also calculate and set additional properties for the file:bytes node’s size and other hashes (e.g., MD5,
SHA1, etc.).

Creating file:bytes nodes in this manner is often done programmatically (such as via a Synapse Power-Up) that can
download or ingest files. Other options include:

• the built-in Synapse wget command;

• the Upload File menu option available from the Synapse UI (Optic), which allows you to either upload a file
from local disk, or download a file from a specified URL; or

• the pushfile tool, available from the CLI in the community version of Synapse (see pushfile).

Tip: Like other external (to Storm) commands, the pushfile tool is accessible from the Storm CLI (see storm) as
!pushfile.

158 Chapter 3. Synapse User Guide

https://synapse.docs.vertex.link/projects/optic/en/latest/index.html

Synapse Documentation, Release 2.141.0

Similarly, Storm’s HTTP library ($lib.inet.http) could be leveraged to retrieve a web-based file and use the returned
bytes as input (potentially using Storm variables - see Storm Reference - Advanced - Variables) to the guid generator. A
detailed discussion of this method is beyond the scope of this section; see the Storm Libraries technical documentation
for additional detail.

Operations

For some lift and filter operations, you may optionally specify file:bytes nodes using a “sufficiently unique” partial
match of the node’s primary property. For example, the prefix operator (^=) may be used to specify a unique prefix
for the file:bytes node’s SHA256 or guid value:

storm> file:bytes^=sha256:021b4ce5
file:bytes=sha256:021b4ce5c4d9eb45ed016fe7d87abe745ea961b712a08ea4c6b1b81d791f1eca

:md5 = 8934aeed5d213fe29e858eee616a6ec7
:name = adobeupdater.exe
:sha1 = a7e576f41f7f100c1d03f478b05c7812c1db48ad
:sha256 = 021b4ce5c4d9eb45ed016fe7d87abe745ea961b712a08ea4c6b1b81d791f1eca
:size = 182820
.created = 2023/07/12 15:15:04.539

Usage Notes:

• When using the prefix operator, the sha256: or guid: prefix string must be included.

• The length of the value that is “sufficiently unique” to select a single file:bytes will vary depending on the
data in your instance of Synapse. If your selection criteria matches more than one file:bytes node, Synapse
will return all matches.

• Alternatively, the regular expression operator (~=) may be used to specify a partial string match anywhere in the
file:bytes node’s primary property value (though this is an inefficient way to specify a file:bytes node).

guid

Within Synapse, a Globally Unique Identifier (guid) as a Type explicitly refers to a 128-bit value used as a form’s
primary property.

The term should not be confused with the definition of GUID used by Microsoft, or with other types of identifiers (node
ID, task ID) used within Synapse.

The guid type is used as the primary property for forms that cannot be uniquely defined by any set of specific properties.
See the background documents on the Synapse data model for additional details on the Guid Form.

A guid value may be generated arbitrarily or in a predictable (i.e., repeatable) manner based on a defined set of inputs.

See the section on file:bytes types for discussion of file:bytes as a specialized instance of a guid type.

3.6. Storm Reference 159

https://learn.microsoft.com/en-us/windows/win32/api/guiddef/ns-guiddef-guid

Synapse Documentation, Release 2.141.0

Indexing

N/A

Parsing

Guids must be input using their complete 128-bit value. It is generally impractical to manually type a guid. Guid forms
are most often specified by referencing the node via a more human-friendly secondary property. Alternately, the guid
value can be copied and pasted.

Insertion

Guids can be generated arbitrarily or as predictable values. When choosing a method, you should consider how you
will deconflict guid-based nodes. See Guid Best Practices below for additional discussion.

Arbitrary Values

When creating a new guid node, you can specify the asterisk (*) as the primary property value of the new node. This
tells Synapse to generate a unique, arbitrary guid for the node. For example:

storm> [ou:org=* :alias=vertex :name="The Vertex Project" :url=https://vertex.link/]
ou:org=333256989f15df7f99d0facdce3752ad

:alias = vertex
:name = the vertex project
:url = https://vertex.link/
.created = 2023/07/12 15:15:04.590

The above query creates a new organization node with a unique arbitrary guid for its primary property, and sets the
specified secondary properties.

Warning: Because the guid generated by the asterisk is arbitrary, running the above query a second time will
create a second ou:org node with a new unique guid (potentially resulting in two nodes representing the same
organization within the same Cortex).

The advantage of arbitrary values is that they are simple to generate. This is particularly useful for analysts who need
to manually create guid nodes (organizations, contacts, threats) on a regular basis as part of their workflow.

The disadvantage is that arbitrary values are truly arbitrary; there is no easy way to deconflict the nodes.

• Users may inadvertently create duplicate nodes. That is, two users can independently create nodes with different
guids to represent the same object. The only way to prevent this is by convention - for example, establishing inter-
nal processes where users “check first” before creating certain nodes. Note that while this may limit duplication,
it is unlikely to eliminate it entirely.

• Bulk data that is ingested using arbitraty guids cannot be reingested, at least not in the same way. Reingesting
the same data will create a second set of nodes for the same data but with different arbitrary guids.

160 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Predictable Values

You can generate a guid value in a predictable manner based on a defined set of inputs. The inputs are specified as
a comma-separated list within a set of parentheses. The guid generator uses these values as “seed” data to create a
predictable guid value; the same set of seed data always generates the same guid.

For example:

storm> [ou:org=('the vertex project',https://vertex.link) :name='the vertex project'␣
→˓:url=https://vertex.link]
ou:org=6f08c79ef95d73102af8b4ebca9c22f9

:name = the vertex project
:url = https://vertex.link
.created = 2023/07/12 15:15:04.619

The query above creates a new organization node whose guid is generated using the company name and web site as a
set of (presumably) unique inputs that will result in a unique (but predictable / deterministic) guid.

The advantage of predictable guids is that they are re-encounterable and therefore deconflictable: if you ingest data
using a predictable guid, the same data can be reingested without creating duplicate nodes. This is helpful in cases
where a preliminary data set is loaded into Synapse for analysis, and subsequent changes (improvements to the ingest
logic, additions to the Synapse data model) allow you to capture additional detail from the original data set.

The disadvantage is that this method is more complicated for users who need to manually create guid nodes. Expecting
a group of users to all remember to specify the same set of inputs in the same order (and without typos) each time they
create a guid node is unrealistic.

In addition, predictable guids may not fully address challenges associated with ingesting similar data from different
sources. Multiple vendors may provide similar information on the same entity. If you obtain data for the same object (an
organization, a person, a certificate) from different sources, you may end up with two different nodes if the “predictable”
guids are generated with different seed data from each source.

Guid Best Practices

When selecting a method to create guids, a key consideration is how you will deconflict data represented by guid forms.
Guid forms are unique in that their primary property has no direct or obvious relationship to the object it represents.
The primary property ou:org=44db774d29f27684add0d892931c6e86 tells me this is an organization node, but
provides no clue as to whether the organization is The Vertex Project, the World Bank, or the University of Michigan
marching band.

The important information about “what” a guid form represents is stored in the form’s secondary properties. So from a
deconfliction standpoint, the best way to see if a guid node already exists is to use secondary property deconfliction:

• Query for an existing node based on one or more meaningful secondary properties.

• The query will lift (return) the selected node(s), if found; otherwise

• Create a new guid node using an arbitrary guid (*).

Example

SSL/TLS certificate data is available from various data sources / APIs; different sites or vendors may
provide similar information about the same certificate. Certificate metadata (i.e., information such as
fingerprints, validity dates, etc.) is represented as a crypto:x509:cert node, which is a guid form. If
you obtain data about the same certificate from different data sources, you risk the creation of duplicate
nodes.

3.6. Storm Reference 161

Synapse Documentation, Release 2.141.0

Instead, when ingesting data about a specific certificate, a user (or process) can first check for
a crypto:x509:cert node based on a unique property, such as a certificate fingerprint (e.g.,
crypto:x509:cert:sha1, or ideally crypto:x509:cert:sha256 to avoid hash collisions). If an exist-
ing node is found, that node can be selected and updated (or otherwise operated on); otherwise a new node
for that certificate can be created using an arbitrary guid (*) with the appropriate secondary properties
set.

Using secondary property deconfliction for guid nodes has the advantage of deconflicting on meaningful properties
(those likely to uniquely identify an object), without relying on knowledge of any specific method used to create pre-
dictable guids. (Note that “predictable guids” are often generated using these same secondary properties; so decon-
flicting on the properties directly is both more straightforward and more transparent.)

Tip: When choosing a secondary property (or properties) to deconflict on, you should select ones that can sufficiently
deconflict the form and are likely to be present in the data source(s) you may use to obtain information about the form.

Secondary property deconfliction is not guaranteed to eliminate all duplications, but is highly effective in many cases.
This method can be used both programmatically (i.e., in any ingest scripts or Power-Ups (Power-Up)) and by users who
can “spot check” for the existence of a node before manually creating one.

Tip: Synapse implements several Storm commands known as generator (“gen”) commands. These commands sim-
plify secondary property deconfliction and node creation for several common guid nodes.

For example, the gen.ou.org command takes an organization name as input (e.g, “vertex”), checks for any ou:org
nodes with that name (i.e., in the :name or :names properties) and either lifts the existing node, or creates a new one.

See the gen section in the Storm Reference - Storm Commands for available generator commands (or run help from
your Synapse CLI).

Arbitrary Guids

For some use cases, the use of arbitrary guids (without secondary property deconfliction) may be reasonable. This
approach may be suitable when:

• The data you are ingesting is truly unique (i.e., the same or similar data is not available from another source).
For example, log or alert data that is specific to a unique sensor or host.

• You need to perform a one-time ingest of the data (i.e., you do not plan to reingest the same data in the future).

If the data is unique, but you may need to reingest it at some point, secondary property deconfliction or predictable
guids are more appropriate.

Predictable Guids

For some use cases, the use of predictable guids (without secondary property deconfliction) may be reasonable. This
approach may be suitable when:

• You have a unique set of data (not available from another data source) to ingest and want the option to reingest
it in the future without creating duplicate nodes.

• The data is sufficiently unique that nodes representing the data will not already exist in Synapse.

• You cannot use secondary property deconfliction given the nature of the data. In this case, deconfliction based
on predictable guids may be the “next best” option.

162 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

When using predictable guids, the “seed” data to generate the guid should be unique to both the node being created
and the specific data source. For example, your inputs could include:

• A string representing the data source.

• The timestamp associated with the data, if one exists.

• The values of one or more secondary properties for the node you are creating. Be sure to choose properties
where:

– the property / properties will always be present for the given data source; and

– the set of properties is sufficient to create a unique node.

For example, a media:news node might be created using:

• A data source string (e.g., my_data_source).

• The publication date of the article (e.g., 2022/09/12)

• The URL where the article was published (e.g., https://www.example.com/my_article.html)

Predictable guid values can be generated directly (as part of Storm Edit Mode syntax):

storm> [media:news=(my_data_source,2022/09/12,https://www.example.com/my_article.html)]
media:news=f9515b24f615448ed44601645d547f6a

.created = 2023/07/12 15:15:04.647

Alternately, guid values can be generated and assigned to a variable using the Storm $lib.guid() library (see
$lib.guid(*args)). The values provided as arguments to $lib.guid() can be either specific values or variables:

storm> $guid=$lib.guid(my_data_source,2022/09/12,https://www.example.com/my_article.
→˓html) [media:news=$guid]
media:news=f9515b24f615448ed44601645d547f6a

.created = 2023/07/12 15:15:04.647

storm> $source=my_data_source $published=2022/09/12 $url=https://www.example.com/my_
→˓article.html $guid=$lib.guid($source,$published,$url) [media:news=$guid]
media:news=f9515b24f615448ed44601645d547f6a

.created = 2023/07/12 15:15:04.647

Note that the same guid value is generated in each of the three examples above.

Note: The input to the guid generator is interpreted as a structured list, specifically, a list of string values (i.e.,
(str_0, str_1, str_2...str_n)). Deconfliction depends on the same list being submitted to the generator in the
same order each time.

The guid generator is not “model aware” and will not recognize items in the list as having a particular data type or
representing a particular property value. That is, Synapse will not set any secondary property values based on data
provided to the guid generator. Any property values must be set as part of the node creation process.

A full discussion of writing ingest code (particulary for Storm packages, services, or Power-Ups) is beyond the scope
of this User Guide. For more information, see the Synapse Developer Guide.

3.6. Storm Reference 163

Synapse Documentation, Release 2.141.0

Operations

Because guid values are unwieldy to use on the command line (outside of copy and paste operations), guid nodes may
be more easily lifted by a unique secondary property.

Examples:

Lift an org node by its alias:

storm> ou:org:alias=choam
ou:org=4a5482dce2423c6b745a6638f7ed1bc4

:alias = choam
:name = combine honnete ober advancer mercantiles
.created = 2023/07/12 15:15:04.753

Lift a DNS request node by the name used in the DNS query:

storm> inet:dns:request:query:name=pop.seznam.cz
inet:dns:request=a08ff3364325d339e6db5fcb2bc85627

:query:name = pop.seznam.cz
:query:name:fqdn = pop.seznam.cz
:time = 2020/04/30 09:30:33.000
.created = 2023/07/12 15:15:04.797

It is also possible to lift and filter guid nodes using a “sufficiently unique” prefix match of the guid value.

Example:

Lift a ps:contact node by a partial prefix match:

storm> ps:contact^=13c9663e
ps:contact=13c9663e5f553014eb50d00bb7c6945a

:name = seongsu park
:orgname = kaspersky lab
.created = 2023/07/12 15:15:04.846

The length of the value that is “sufficiently unique” will vary depending on the data in your instance of Synapse. If
your selection criteria matches more than one node, Synapse will return all matches.

When setting or updating a secondary property that is a guid value, you may use a “human friendly” Storm query
(specifically a subquery) to reference the node whose primary property (guid value) you wish to set for the secondary
property.

Example:

Set the :org property for a ps:contact node to the guid value of the associated ou:org node using a Storm query:

storm> ps:contact:name='ron the cat' [:org={ ou:org:name=vertex }]
ps:contact=a26423c169770d2bdbda2cf0e7bb6a50

:name = ron the cat
:org = 29b6e7bad25fc3538503ba94bd89365a
:title = cattribution analyst
.created = 2023/07/12 15:15:04.890

Note: The Storm query used to specify the guid node must return exactly one node. If the query returns more than
one node, or does not return any nodes, Synapse will generate an error.

164 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

See Add or Modify Properties Using Subqueries for additional details.

inet:fqdn

Fully qualified domain names (FQDNs) are structured as a set of string elements separated by the dot (.) character.
The Domain Name System acts as a “reverse hierarchy” (operating from right to left instead of from left to right)
separated along the dot boundaries - i.e., com is the hierarchical root for domains such as google.com or microsoft.
com.

Because of this logical structure, Synapse includes certain optimizations for working with inet:fqdn types:

• Reverse string indexing on inet:fqdn types.

• Default values for the secondary properties :issuffix and :iszone of a given inet:fqdn node based on the
values of those properties for the node’s parent domain.

Indexing

Synapse performs reverse string indexing on inet:fqdn types. Domains are indexed in full reverse order - that is,
the domain this.is.my.domain.com is indexed as moc.niamod.ym.si.siht to account for the “reverse hierarchy”
implicit in the DNS structure.

Parsing

N/A

Insertion

When inet:fqdn nodes are created (or modifications to certain properties are made), Synapse uses some built-in logic
to set certain secondary properties related to zones of control (specifically, :issuffix, :iszone, and :zone).

The reverse hierarchy implicit in dotted FQDNs represents elements such as <host>.<domain>.<suffix>, but can also
represent implicit or explicit zones of control. The term “zone of control” is loosely defined, and is not meant to
represent control or authority by any specific organization or entity. Instead, “zone of control” can be thought of as a
boundary within an individual FQDN hierarchy where control of a portion of the domain namespace shifts from one
entity or owner to another.

A simple example is the com top-level domain (managed by Verisign) vs. the domain microsoft.com (controlled by
Microsoft Corporation). Com represents one zone of control where microsoft.com represents another.

The inet:fqdn form in the Synapse data model uses several secondary properties that relate to zones of control:

• :issuffix = primary zone of control

• :iszone = secondary zone of control

• :zone = authoritative zone for a given domain or subdomain

(Note: contrast :zone with :domain which simply represents the next level “up” in the hierarchy from the current
domain).

Synapse uses the following logic for suffixes and zones upon inet:fqdn creation:

1. All domains consisting of a single element (such as com, museum, us, br, etc.) are considered suffixes and
receive the following default values:

• :issuffix = 1

3.6. Storm Reference 165

Synapse Documentation, Release 2.141.0

• :iszone = 0

• :zone = <none / property not created>

• :domain = <none / property not created>

2. Any domain whose parent domain is a suffix is considered a zone and receives the following default values:

• :issuffix = 0

• :iszone = 1

• :zone = <set to self>

• :domain = <set to parent domain>

3. Any domain whose parent domain is a zone is considered a “normal” subdomain and receives the following
default values:

• :issuffix = 0

• :iszone = 0

• :zone = <set to parent domain>

• :domain = <set to parent domain>

4. Any domain whose parent domain is a “normal” subdomain receives the following default values:

• :issuffix = 0

• :iszone = 0

• :zone = <set to first fqdn “up” the domain hierarchy with :iszone = 1>

• :domain = <set to parent domain>

Note: The above logic is recursive over all nodes in a Cortex. Changing an :issuffix or :iszone property on
an existing inet:fqdn node will not only modify that node, but also propagate any changes associated with those
properties to any existing subdomains.

Potential Limitations

This logic works well for single-element top-level domains (TLDs) (such as com vs microsoft.com). However, it
does not address cases that may be relevant for certain types of analysis, such as:

• Top-level country code domains and their subdomains. Under Synapse’s default logic uk is a suffix and co.
uk is a zone. However, co.uk could also be considered a suffix in its own right, because subdomains such as
somecompany.co.uk are under the control of the organization that registers them. In this case, uk would be a
suffix, com.uk could be considered both a suffix and a zone, and somecompany.co.uk could be considered a
zone.

• Special-case zones of control. Some domains (such as those used to host web-based services) can be consid-
ered specialized zones of control. In these cases, the service provider typically owns the “main” domain (such
as wordpress.com) but individual customers can register personal subdomains for their hosted services (such
as joesblog.wordpress.com). The division between wordpress.com and individual customer subdomains
could represent different zones of control. In this case, com would be a suffix, wordpress.com could be consid-
ered both a suffix and a zone, and joesblog.wordpress.com could be considered a zone.

166 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Examples such as these are not accounted for by Synapse’s suffix / zone logic. The definition of additional domains
as suffixes and / or zones is an implementation decision (though once the relevant properties are set, the changes are
propagated recursively as noted above).

Operations

Because of Synapse’s reverse string indexing for inet:fqdn types, domains can be lifted or filtered based on matching
any partial domain suffix string. The asterisk (*) is the extended operator used to perform this operation. The asterisk
does not have to be used along dot boundaries but can match anywhere in any FQDN element.

Examples

Lift all domains that end with yahooapis.com:

storm> inet:fqdn='*yahooapis.com'
inet:fqdn=ayuisyahooapis.com

:domain = com
:host = ayuisyahooapis
:issuffix = false
:iszone = true
:zone = ayuisyahooapis.com
.created = 2023/07/12 15:15:05.017

inet:fqdn=micyuisyahooapis.com
:domain = com
:host = micyuisyahooapis
:issuffix = false
:iszone = true
:zone = micyuisyahooapis.com
.created = 2023/07/12 15:15:05.023

inet:fqdn=usyahooapis.com
:domain = com
:host = usyahooapis
:issuffix = false
:iszone = true
:zone = usyahooapis.com
.created = 2023/07/12 15:15:05.030

Lift all domains ending with s.wordpress.com:

storm> inet:fqdn="*s.wordpress.com"
inet:fqdn=s.wordpress.com

:domain = wordpress.com
:host = s
:issuffix = false
:iszone = false
:zone = wordpress.com
.created = 2023/07/12 15:15:05.091

inet:fqdn=dogs.wordpress.com
:domain = wordpress.com
:host = dogs
:issuffix = false
:iszone = false
:zone = wordpress.com
.created = 2023/07/12 15:15:05.084

(continues on next page)

3.6. Storm Reference 167

Synapse Documentation, Release 2.141.0

(continued from previous page)

inet:fqdn=sss.wordpress.com
:domain = wordpress.com
:host = sss
:issuffix = false
:iszone = false
:zone = wordpress.com
.created = 2023/07/12 15:15:05.099

inet:fqdn=www.sss.wordpress.com
:domain = sss.wordpress.com
:host = www
:issuffix = false
:iszone = false
:zone = wordpress.com
.created = 2023/07/12 15:15:05.099

inet:fqdn=cats.wordpress.com
:domain = wordpress.com
:host = cats
:issuffix = false
:iszone = false
:zone = wordpress.com
.created = 2023/07/12 15:15:05.076

Downselect a set of DNS A records to those with domains ending with .museum:

storm> inet:dns:a +:fqdn="*.museum"
inet:dns:a=('woot.museum', '5.6.7.8')

:fqdn = woot.museum
:ipv4 = 5.6.7.8
.created = 2023/07/12 15:15:05.158

Usage Notes

• Because the asterisk is a non-alphanumeric character, the string to be matched must be enclosed in single or
double quotes (see Whitespace and Literals in Storm).

• Because domains are reverse-indexed instead of prefix indexed, for lift operations, partial string matching can
only occur based on the end (suffix) of a domain. It is not possible to lift FQDNs by prefix. For example,
inet:fqdn^=yahoo is invalid.

• Domains can be filtered by prefix (^=). For example, inet:fqdn="*.biz" +inet:fqdn^=smtp is valid.

• Domains cannot be filtered based on suffix matching (note that a “lift by suffix” is effectively a combined “lift
and filter” operation).

• Domains can be lifted or filtered using the regular expression (regex) extended operator (~=). For example
inet:fqdn~=google is valid (see Lift by Regular Expression (~=) and Filter by Regular Expression (~=)).

168 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

inet:ipv4

IPv4 addresses are stored as integers and represented (displayed) to users as dotted-decimal strings.

Indexing

IPv4 addresses are indexed as integers. This optimizes various comparison operations, including greater than / less
than, range, etc.

Parsing

While IPv4 addresses are stored and indexed as integers, they can be input into Storm (and used within Storm operations)
as any of the following.

• integer: inet:ipv4 = 3232235521

• hex: inet:ipv4 = 0xC0A80001

• dotted-decimal string: inet:ipv4 = 192.168.0.1

• range: inet:ipv4 = 192.168.0.1-192.167.0.10

• CIDR: inet:ipv4 = 192.168.0.0/24

Insertion

The ability to specify IPv4 values using either range or CIDR format allows you to “bulk create” sets of inet:ipv4
nodes without the need to specify each address individually.

Examples

Note: results (output) not shown below due to length.

Create ten inet:ipv4 nodes:

[inet:ipv4 = 192.168.0.1-192.168.0.10]

Create the 256 addresses in the range 192.168.0.0/24:

[inet:ipv4 = 192.168.0.0/24]

Operations

Similar to node insertion, lifting or filtering IPV4 addresses by range or by CIDR notation will operate on every
inet:ipv4 node that exists within the Cortex and falls within the specified range or CIDR block. This allows op-
erating on multiple contiguous IP addresses without the need to specify them individually.

Examples

Lift all inet:ipv4 nodes within the specified range that exist within the Cortex:

3.6. Storm Reference 169

Synapse Documentation, Release 2.141.0

storm> inet:ipv4 = 169.254.18.24-169.254.18.64
inet:ipv4=169.254.18.30

:type = linklocal
.created = 2023/07/12 15:15:05.346

inet:ipv4=169.254.18.36
:type = linklocal
.created = 2023/07/12 15:15:05.351

inet:ipv4=169.254.18.53
:type = linklocal
.created = 2023/07/12 15:15:05.362

Filter a set of DNS A records to only include those whose IPv4 value is within the 172.16.* RFC1918 range:

storm> inet:dns:a:fqdn=woot.com +:ipv4=172.16.0.0/12
inet:dns:a=('woot.com', '172.16.47.12')

:fqdn = woot.com
:ipv4 = 172.16.47.12
.created = 2023/07/12 15:15:05.417

ival

ival is a specialized type consisting of two time types in a paired (<min>, <max>) relationship. As such, the
individual values in an ival are subject to the same specialized handling as individual time values.

ival types have their own optimizations in addition to those related to time types.

Indexing

N/A

Parsing

An ival type is typically specified as two comma-separated time values enclosed in parentheses. Alternately, an ival
can be specified as a single time value with no parentheses (see Insertion below for ival behavior when specifying a
single time value).

Single or double quotes are required in accordance with the standard rules for using Whitespace and Literals in Storm.
For example:

• .seen=("2017/03/24 12:13:27", "2017/08/05 17:23:46")

• +#sometag=(2018/09/15, "+24 hours")

• .seen=2019/03/24

As ival types are a pair of values (i.e., an explicit minimum and maximum), the values must be placed in parentheses
and separated by a comma: (<min>, <max>). The parser expects two explicit values.

An ival can also be specified as a single time value, in which case the value must be specified without parentheses:
<time>. See Insertion below for ival behavior when adding vs. modifying using a single time value vs. a (<min>,
<max>) pair.

When entering an ival type, each time value can be input using most of the acceptable formats for time types, including
explicit times (including lower resolution times and wildcard times), relative times, and the special values now and ?.

170 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

ival types also support relative times using +- format to represent both a positive and negative offset from a given
point (i.e., "+-1 hour").

When entering relative times in an ival type:

• A relative time in the first (<min>) position is calculated relative to the current time (now).

• A relative time in the second (<max>) position is calculated relative to the first (<min>) time.

For example:

• .seen="+1 hour" means from the current time (now) to one hour after the current time.

• .seen=(2018/12/01, "+1 day") means from 12:00 AM December 1, 2018 to 12:00 AM December 2, 2018.

• .seen=(2018/12/01, "-1 day") means from 12:00 AM November 30, 2018 to 12:00 AM December 1,
2018.

• .seen=(now, "+-5 minutes") means from 5 minutes ago to 5 minutes from now.

• .seen=("-30 minutes", "+1 hour") means from 30 minutes ago to 30 minutes from now.

When specifying minimum and maximum times for an ival type (or when specifying minimum and maximum time
values to the *range= comparator), the following restrictions should be kept in mind:

• Minimums and maximums that use explicit times and / or special terms (now, ?) should be specified in <min>,
<max> order.

– Specifying a <max>, <min> order will not result in an error message, but because it results in an exclu-
sionary time window, it will not return any nodes (i.e., no time / interval can be both greater than a max
value and less than a min value).

– Similarly, combinations of relative times that result in an effective <max>, <min> after relative offsets are
calculated are allowed (will not generate an error), but will result in an exclusionary time window that does
not return any nodes.

• Values that result in a nonsensical <min>, <max> are not allowed and will generate an error. For example:

– The special value ? cannot be used as a minimum value in a (<min>, <max>) pair.

– A +- relative time cannot be used as a minimum value in a (<min>, <max>) pair.

– When specifying a +- relative time as the maximum value in a (<min>, <max>) pair, an explicit <min>
value is also required (i.e., either an explicit time or now).

Insertion

• When adding an ival as a (<min>, <max>) pair, the ival can be specified as described above.

– If the values for <min> and <max> are identical, then <min> will be set to the specified value and <max>
will be set to <min> plus 1 ms.

• When adding an ival as a single time value, it must be specified without parentheses.

– When a single time value is used, the <min> value will be set to the specified time and the <max> will be
set to the <min> time plus 1 ms.

• When modifying an existing ival property (including tag timestamps) with either a (<min>, <max>) pair or
a single time value, the existing ival is not simply overwritten (as is the norm for modifying properties - see
Storm Reference - Data Modification). Instead, the <min> and / or <max> are only updated if the new value(s)
are:

– Less than the current <min>, and / or

3.6. Storm Reference 171

Synapse Documentation, Release 2.141.0

– Greater than the current <max>.

This means that once set, <min> and <max> can only be “pushed out” to a lower minimum and / or a higher
maximum. Specifying a time or times that fall within the current minimum and maximum will have no effect
(i.e., the current values will be retained).

This means that it is not possible to “shrink” an ival directly; to specify a higher minimum or a lower maximum
(or to remove the timestamps altogether), you must delete the ival property (or remove the timestamped tag)
and re-add it with the updated values.

Operations

ival types can be lifted and filtered (see Storm Reference - Lifting and Storm Reference - Filtering) with the standard
equivalent (=) operator, which will match the exact <min> and <max> values specified.

Example:

Lift the DNS A nodes whose observation window is exactly from 2018/12/13 01:05 to 2018/12/16 12:57:

storm> inet:dns:a.seen=("2018/12/13 01:05", "2018/12/16 12:57")
inet:dns:a=('yoyodyne.com', '16.16.16.16')

:fqdn = yoyodyne.com
:ipv4 = 16.16.16.16
.created = 2023/07/12 15:15:05.472
.seen = ('2018/12/13 01:05:00.000', '2018/12/16 12:57:00.000')

ival types cannot be used with comparison operators such as “less than” or “greater than or equal to”.

ival types are most often lifted or filtered using the custom interval comparator (@=) (see Lift by Time or Interval
(@=) and Filter by Time or Interval (@=)). @= is intended for time-based comparisons (including comparing ival
types with time types).

Example:

Lift all the DNS A nodes whose observation window overlaps with the interval of March 1, 2019 through April 1, 2019:

storm> inet:dns:a.seen@=(2019/03/01, 2019/04/01)
inet:dns:a=('hurr.com', '4.4.4.4')

:fqdn = hurr.com
:ipv4 = 4.4.4.4
.created = 2023/07/12 15:15:05.521
.seen = ('2019/01/05 09:38:00.000', '2019/03/12 18:17:00.000')

inet:dns:a=('derp.net', '8.8.8.8')
:fqdn = derp.net
:ipv4 = 8.8.8.8
.created = 2023/07/12 15:15:05.529
.seen = ('2019/03/08 07:26:00.000', '2019/03/22 10:14:00.000')

inet:dns:a=('blergh.org', '2.2.2.2')
:fqdn = blergh.org
:ipv4 = 2.2.2.2
.created = 2023/07/12 15:15:05.537
.seen = ('2019/03/28 22:22:00.000', '2019/04/27 00:03:00.000')

ival types cannot be used with the *range= custom comparator. *range= can only be used to specify a range of
individual values (such as time or int).

172 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

loc

Loc is a specialized type used to represent geopolitical locations (i.e., locations within geopolitical boundaries) as a
series of user-defined dot-separated hierarchical strings - for example, <country>.<state / province>.<city>. This
allows specifying locations such as us.fl.miami, gb.london, and ca.on.toronto.

Loc is an extension of the str type. However, because loc types use strings that comprise a dot-separated hierarchy,
they exhibit slightly modified behavior from standard string types for certain operations.

Indexing

The loc type is an extension of the str type and so is prefix-indexed like other strings. However, the use of dot-separated
boundaries impacts operations using loc values.

loc values are normalized to lowercase.

Parsing

loc values can be input using any case (uppercase, lowercase, mixed case) but will normalized to lowercase.

Components of a loc value must be separated by the dot (.) character. The dot is a reserved character for the loc
type and is used to separate string elements along hierarchical boundaries. The use of the dot as a reserved boundary
marker impacts operations using the loc type. Note that this means the dot cannot be used as part of a location string.
For example, the following location value would be interpreted as a hierarchical location with four elements (us, fl,
st, and petersburg):

• :loc = us.fl.st.petersburg

To appropriately represent the “city” element of the above location, an alternate syntax must be used. For example:

• :loc = us.fl.stpetersburg

• :loc = "us.fl.saint petersburg"

• . . . etc.

As an extension of the str type, loc types are subject to Synapse’s restrictions regarding using Whitespace and Literals
in Storm.

Insertion

Same as for parsing.

As loc values are simply dot-separated strings, the use or enforcement of any specific convention for geolocation values
and hierarchies is an implementation decision.

3.6. Storm Reference 173

Synapse Documentation, Release 2.141.0

Operations

The use of the dot character (.) as a reserved boundary marker impacts prefix (^=) and equivalent (=) operations using
the loc type.

String and string-derived types are prefix-indexed to optimize lifting or filtering strings that start with a given substring
using the prefix (^=) extended comparator. For standard strings, the prefix comparator can be used with strings of
arbitrary length. However, for string-derived types (including loc) that use dotted hierarchical notation, the prefix
comparator operates along dot boundaries.

This is because the analytical significance of a location string is likely to fall on these hierarchical boundaries as opposed
to an arbitrary substring prefix match. That is, it is more likely to be analytically meaningful to lift all locations within
the US (^=us) or within Florida (^=us.fl) than it is to lift all locations in the US within states that start with “V”
(^=us.v).

Prefix comparison for loc types is useful because it easily allows lifting or filtering at any appropriate level of resolution
within the dotted hierarchy:

Examples:

Lift all organizations with locations in Turkey:

storm> ou:org:loc^=tr
ou:org=dbbaa304c58e0e1275e121ee15602f94

:loc = tr.ankara
:name = republic of turkey ministry of foreign affairs
.created = 2023/07/12 15:15:05.586

ou:org=9458ef606e0048459c0d2bae2c477c84
:loc = tr.istanbul
:name = adeo it consulting services
.created = 2023/07/12 15:15:05.592

Lift all IP addresses geolocated in the the province of Ontario, Canada:

storm> inet:ipv4:loc^=ca.on
inet:ipv4=149.248.52.240

:loc = ca.on
:type = unicast
.created = 2023/07/12 15:15:05.637

inet:ipv4=49.51.12.195
:loc = ca.on.barrie
:type = unicast
.created = 2023/07/12 15:15:05.643

inet:ipv4=199.201.123.200
:loc = ca.on.keswick
:type = unicast
.created = 2023/07/12 15:15:05.649

Note: Specifying a more granular prefix value will not match values that are less granular. That is :loc^=ca.on will
fail to match :loc=ca.

Lift all places in the city of Seattle:

174 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

storm> geo:place:loc=us.wa.seattle
geo:place=048daeddec97f56e612e875babdc750f

:latlong = 47.6205099,-122.3514714
:loc = us.wa.seattle
:name = space needle
.created = 2023/07/12 15:15:05.695

geo:place=579368f235745b60514bb479cf78bfa4
:latlong = 47.4502535,-122.3110105
:loc = us.wa.seattle
:name = seattle-tacoma international airport
.created = 2023/07/12 15:15:05.701

Usage Notes

• Use of the equals comparator (=) with loc types will match the exact value only. So :loc = us will match
only :loc = us but not :loc = us.ca or :loc = us.il.chicago.

• Because the prefix match operates on the dot boundary, attempting to lift or filter by a prefix string match that
does not fall on a dot boundary will not return any nodes. For example, the filter syntax +:loc^=us.v will fail
to return any nodes even if nodes with :loc = us.vt or :loc = us.va exist. (However, it would return nodes
with :loc = us.v or :loc = us.v.foo if such nodes exist.)

str

Indexing

String (and string-derived) types are indexed by prefix (character-by-character from the beginning of the string). This
allows matching on any initial substring.

Parsing

Some string types and string-derived types are normalized to all lowercase to facilitate pivoting across like values
without case-sensitivity. For types that are normalized in this fashion, the string can be entered in mixed-case and will
be automatically converted to lowercase.

Strings are subject to Synapse’s restrictions regarding using Whitespace and Literals in Storm.

Insertion

Same as for parsing.

Operations

Because of Synapse’s use of prefix indexing, string and string-derived types can be lifted or filtered based on matching
an initial substring of any string using the prefix extended comparator (^=) (see Lift by Prefix (^=) and Filter by Prefix
(^=)).

Prefix matching is case-sensitive based on the specific type being matched. If the target property’s type is case-sensitive,
the string to match must be entered in case-sensitive form. If the target property is case-insensitive (i.e., normalized to
lowercase) the string to match can be entered in any case (upper, lower, or mixed) and will be automatically normalized
by Synapse.

3.6. Storm Reference 175

Synapse Documentation, Release 2.141.0

Examples

Lift all organizations whose name starts with the word “Acme “:

storm> ou:org:name^='acme '
ou:org=affb950ff2eef793dd29e5b50b072418

:name = acme construction
:names = ['acme construction']
.created = 2023/07/12 15:15:04.357

ou:org=ec8a6a72e149bda5c16d6bf95c265387
:name = acme consulting
:names = ['acme consulting']
.created = 2023/07/12 15:15:04.351

Filter a set of Internet accounts to those with usernames starting with ‘matrix’:

storm> inet:web:acct:site=twitter.com +:user^=matrix
inet:web:acct=twitter.com/matrixneo

:site = twitter.com
:user = matrixneo
.created = 2023/07/12 15:15:05.773

inet:web:acct=twitter.com/matrixmaster
:site = twitter.com
:user = matrixmaster
.created = 2023/07/12 15:15:05.766

Strings and string-derived types can also be lifted or filtered using the regular expression extended comparator (~=)
(see Lift by Regular Expression (~=) and Filter by Regular Expression (~=)).

syn:tag

syn:tag is a specialized type used for Tag nodes within Synapse. Tags represent domain-specific, analytically rele-
vant observations or assessments. They support a hierarchical namespace based on user-defined dot-separated strings.
This hierarchy allows recording classes or categories of analytical observations that can be defined with increasing
specificity. (See Analytical Model - Tag Concepts for more information.)

syn:tag is an extension of the str type. However, because syn:tag types use strings that comprise a dot-separated
hierarchy, they exhibit slightly modified behavior from standard string types for certain operations.

Indexing

The syn:tag type is an extension of the str type and so is prefix-indexed like other strings. However, the use of
dot-separated boundaries impacts some operations using syn:tag values.

syn:tag values are normalized to lowercase.

176 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Parsing

syn:tag values can contain lowercase characters, numerals, and underscores. Spaces and ASCII symbols (other than
the underscore) are not allowed. If you attempt to create a tag name that includes a dash character (-) it will automat-
ically be converted to an underscore (_).

Note: Synapse includes support for Unicode words in tag strings; this includes most characters that can be part of a
word in any language.

Components of a syn:tag value must be separated by the dot (.) character. The dot is a reserved character for the
syn:tag type and is used to separate string elements along hierarchical boundaries. The use of the dot as a reserved
boundary marker impacts some operations using the syn:tag type.

syn:tag values can be input using any case (uppercase, lowercase, mixed case) but will be normalized to lowercase.
As noted above, dashes are automatically converted to underscores.

As syn:tag values cannot contain whitespace (spaces) or escaped characters, the Synapse restrictions regarding using
Whitespace and Literals in Storm do not apply.

Examples

The following are all allowed syn:tag values:

• syn:tag = rep.vt.exploit

• syn:tag = aka.kaspersky.mal.shamoon.2

• syn:tag = cno.tgt.cn_mil_pla

The following syn:tag values are not allowed and will generate BadTypeValu errors:

• syn:tag = this.is.my.@#$*(.tag (contains disallowed characters)

• syn:tag = "some.threat group.tag" (contains whitespace)

Insertion

A syn:tag node does not have to be created before the equivalent tag can be applied to another node. That is, apply-
ing a tag to a node will result in the automatic creation of the corresponding syn:tag node or nodes (assuming the
appropriate user permissions). For example:

storm> [inet:fqdn=woot.com +#some.new.tag]
inet:fqdn=woot.com

:domain = com
:host = woot
:issuffix = false
:iszone = true
:zone = woot.com
.created = 2023/07/12 15:15:05.148
#some.new.tag

The above Storm syntax will both apply the tag #some.new.tag to the node inet:fqdn = woot.com and auto-
matically create the node syn:tag = some.new.tag if it does not already exist (as well as syn:tag = some and
syn:tag = some.new). This behavior (based on creating the FQDN woot.com and applying the tag #some.new.tag
in the previous example) is shown below by lifting tags that begin with ‘some’:

3.6. Storm Reference 177

Synapse Documentation, Release 2.141.0

storm> syn:tag^=some
syn:tag=some

:base = some
:depth = 0
.created = 2023/07/12 15:15:05.837

syn:tag=some.new
:base = new
:depth = 1
:up = some
.created = 2023/07/12 15:15:05.837

syn:tag=some.new.tag
:base = tag
:depth = 2
:up = some.new
.created = 2023/07/12 15:15:05.837

Operations

The use of the dot character (.) as a reserved boundary marker impacts prefix (^=) and equivalent (=) operations using
the syn:tag type.

String and string-derived types are prefix-indexed to optimize lifting or filtering strings that start with a given substring
using the prefix (^=) extended comparator. For standard strings, the prefix comparator can be used with strings of
arbitrary length. However, for string-derived types (including syn:tag) that use dotted hierarchical notation, the
prefix comparator operates along dot boundaries.

This is because the analytical significance of a tag is likely to fall on these hierarchical boundaries as opposed to an
arbitrary substring prefix match. That is, it is more likely to be analytically meaningful to lift all nodes with that are
related to sinkhole infrastructure (syn:tag^=cno.infra.anon.sink) than it is to lift all nodes with infrastructure
tags that begin with “s” (syn:tag^=cno.infra.anon.s).

Prefix comparison for syn:tag types is useful because it easily allows lifting or filtering at any appropriate level of
resolution within a tag hierarchy:

Lift all tags in the computer network operations (cno)tree:

storm> syn:tag^=cno
syn:tag=cno

:base = cno
:depth = 0
.created = 2023/07/12 15:15:05.882

syn:tag=cno.mal
:base = mal
:depth = 1
:up = cno
.created = 2023/07/12 15:15:05.888

syn:tag=cno.mal.redtree
:base = redtree
:depth = 2
:up = cno.mal
.created = 2023/07/12 15:15:05.888

syn:tag=cno.threat
:base = threat

(continues on next page)

178 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

:depth = 1
:up = cno
.created = 2023/07/12 15:15:05.882

syn:tag=cno.threat.t27
:base = t27
:depth = 2
:up = cno.threat
.created = 2023/07/12 15:15:05.882

Lift all tags representing aliases (e.g., names of malware, threat groups, etc.) reported by Symantec:

storm> syn:tag^=aka.symantec
syn:tag=aka.symantec

:base = symantec
:depth = 1
:up = aka
.created = 2023/07/12 15:15:05.931

syn:tag=aka.symantec.mal
:base = mal
:depth = 2
:up = aka.symantec
.created = 2023/07/12 15:15:05.931

syn:tag=aka.symantec.mal.bifrose
:base = bifrose
:depth = 3
:up = aka.symantec.mal
.created = 2023/07/12 15:15:05.931

syn:tag=aka.symantec.thr
:base = thr
:depth = 2
:up = aka.symantec
.created = 2023/07/12 15:15:05.937

syn:tag=aka.symantec.thr.cadelle
:base = cadelle
:depth = 3
:up = aka.symantec.thr
.created = 2023/07/12 15:15:05.937

Lift all tags representing anonymous VPN infrastructure:

storm> syn:tag^=cno.infra.anon.vpn
syn:tag=cno.infra.anon.vpn

:base = vpn
:depth = 3
:up = cno.infra.anon
.created = 2023/07/12 15:15:05.982

syn:tag=cno.infra.anon.vpn.airvpn
:base = airvpn
:depth = 4
:up = cno.infra.anon.vpn
.created = 2023/07/12 15:15:05.982

syn:tag=cno.infra.anon.vpn.nordvpn
(continues on next page)

3.6. Storm Reference 179

Synapse Documentation, Release 2.141.0

(continued from previous page)

:base = nordvpn
:depth = 4
:up = cno.infra.anon.vpn
.created = 2023/07/12 15:15:05.988

Note that specifying a more granular prefix value will not match values that are less granular. That is, syn:tag^=cno.
infra will fail to match syn:tag = cno.

Similarly, use of the equals comparator (=) with syn:tag types will match the exact value only. So syn:tag = aka
will match only that tag but not syn:tag = aka.symantec or syn:tag = aka.trend.thr.pawnstorm.

Because the prefix match operates on the dot boundary, attempting to lift or filter by a prefix string match that does
not fall on a dot boundary will not return any nodes. For example, the syntax syn:tag^=aka.t will fail to return
any nodes even if nodes syn:tag = aka.talos or syn:tag = aka.trend exist. (However, it would return nodes
syn:tag = aka.t or syn:tag = aka.t.foo if such nodes exist.)

time

Synapse stores time types in Epoch milliseconds (millis) - that is, the number of milliseconds since January 1, 1970.
The time type is technically a date/time because it encompasses both a date and a time. A time value alone, such as
12:37 PM (12:37:00.000), is invalid.

See also the section on ival (interval) types for details on how time types are used as minimum / maximum pairs.

Indexing

N/A

Parsing

time values can be input into Storm as any of the following:

• Explicit times:

– Human-readable (YYYY/MM/DD hh:mm:ss.mmm):

"2018/12/16 09:37:52.324"

– Human-readable “Zulu” (YYYY/MM/DDThh:mm:ss.mmmZ):

2018/12/16T09:37:52.324Z

– Human-readable with time zone (YYYY-MM-DD hh:mm:ss.mmm+/-hh:mm). No spaces are allowed be-
tween the time value and the time zone offset:

2018-12-16 09:37:52.324-04:00

Note: Synapse does not support the storage of an explicit time zone with a time value (i.e., +0800).
Synapse stores time values in UTC for consistency. If a time zone is specified using an acceptable time
zone offset format on input, Synapse will automatically convert the value to UTC for storage. If no time
zone is specified, Synapse will assume the value is in UTC.

– No formatting (YYYYMMDDhhmmssmmm):

20181216093752324

180 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

– Epoch millis:

(1544953072324)

Note: Synapse expects time values to be entered as parseable time strings (such as 2018/12/16
09:37:52.324, which Synapse internally converts to a millis integer for storage). To enter a time in raw
epoch millis format, you must enclose it in parentheses so that Synapse interprets the value as a raw in-
teger. (Otherwise, Synapse will attempt to interpret the value as a “no formatting” string, and throw an
error.)

• Relative (offset) time values in the format:

+ | - | +- <count> <unit>

where <count> is a numeric value and <unit> is one of the following:

– minute(s)

– hour(s)

– day(s)

Examples:

– "+7 days"

– "-15 minutes"

– "+-1 hour"

• “Special” time values:

– the keyword now is used to represent the current date/time.

– a question mark (?) is used to effectively represent an unspecified / indefinite time in the future (technically
equivalent to 9223372036854775807 millis, i.e., “some really high value that is probably the heat death of
the universe”. Note that technically the largest valid millis value is 9999999999999 (thirteen 9’s), which
represents 2286/11/20 09:46:39.999).

The question mark can be used as the maximum value of an interval (ival) type to specify that the data or
assessment associated with the ival should be considered valid indefinitely. (Contrast that with a maximum
interval value set to the equivalent of now that would need to be continually updated over time in order to
remain current.)

Standard rules regarding using Whitespace and Literals in Storm apply. For example, "2018/12/16 09:37:52.324"
needs to be entered in single or double quotes, but 2018/12/16 does not. Similarly, relative times starting with + or -
and the special time value ? need to be placed in single or double quotes.

Lower Resolution Time Values and Wildcard Time Values

time values (including tag timestamps) must be entered at a minimum resolution of year (YYYY) and can be entered up
to a maximum resolution of milliseconds (YYYY/MM/DD hh:mm:ss.mmm).

Where lower resolution values are entered, Synapse will make logical assumptions about the intended date / time value
and zero-fill the remainder of the equivalent epoch mills date / time. For example:

• A value of 2016 will be interpreted as 12:00 AM on January 1, 2016 (2016/01/01 00:00:00.000).

• A value of 2018/10/27 will be interpreted as 12:00 AM on that date (2018/10/27 00:00:00.000).

• A value of "2020/03/16 05" will be interpreted as 05:00 AM on that date (2020/03/16 05:00:00.000).

3.6. Storm Reference 181

Synapse Documentation, Release 2.141.0

• A value of "2018/10/27 14:00-04:00" will be interpreted as 14:00 (2:00 PM) on that date with a 4 hour
offset from UTC (2018/10/27 14:00:00.000-04:00, stored in UTC as 2018/10/27 18:00:00.000).

Synapse also supports the use of the wildcard (*) character to specify a partial time value match:

• A value of 2016* will be interpreted as “any date / time within the year 2016”.

• A value of 2018/10/27* will be interpreted as “any time on October 27, 2018”.

• A value of "2020/03/16 05*" will be interpreted as “any time within the hour of 05:00 on March 16, 2020”.

Note: When using wildcard syntax, the wildcard must be used on a sensible time value boundary, such as YYYYMM*.
You cannot us a wildcard to “split” values (i.e., YYMMD* is invaild syntax).

Examples:

Set the time of a DNS request to the current time:

storm> [inet:dns:request="*" :query:name=woot.com :time=now]
inet:dns:request=ddb9eabeeb1a2128d214d6ea3ac03776

:query:name = woot.com
:query:name:fqdn = woot.com
:time = 2023/07/12 15:15:06.040
.created = 2023/07/12 15:15:06.039

Set the observed time window (technically an ival type) for when an IP address was a known sinkhole (via the #cno.
infra.dns.sink.hole tag) from its known start date to an indefinite future time (i.e., the sinkhole is presumed to
remain a sinkhole indefinitely / until the values are manually updated with an explicit end date):

storm> [inet:ipv4=1.2.3.4 +#cno.infra.dns.sink.hole=(2017/06/13, "?")]
inet:ipv4=1.2.3.4

:type = unicast
.created = 2023/07/12 15:15:05.148
#cno.infra.dns.sink.hole = (2017/06/13 00:00:00.000, ?)

• Set the observed time window using a time zone offset:

storm> [inet:ipv4=5.6.7.8 +#cno.infra.dns.sink.hole=(2017/06/13 09:46+04:00, "?")]
inet:ipv4=5.6.7.8

:type = unicast
.created = 2023/07/12 15:15:05.158
#cno.infra.dns.sink.hole = (2017/06/13 05:46:00.000, ?)

Insertion

When adding or modifying time types, any of the above formats (explicit / relative / special terms) can be specified.

In addition, when adding or modifying time types, a lower resolution time and a wildcard time behave identically.
In other words, the following are equivalent Storm queries (both will set the :time value of the newly created DNS
request node to 2021/01/23 00:00:00.000):

[inet:dns:request="*" :time=2021/01/23]

[inet:dns:request="*" :time=2021/01/23*]

182 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

When specifying a relative time for a time value, the offset will be calculated from the current time (now):

storm> [inet:dns:request="*" :query:name=woot.com :time="-5 minutes"]
inet:dns:request=8d00cba68474118d07f1cf156d8181ff

:query:name = woot.com
:query:name:fqdn = woot.com
:time = 2023/07/12 15:10:06.170
.created = 2023/07/12 15:15:06.169

Plus / minus (+-) relative times cannot be specified for time types, as the type requires a single value. See the section
on ival (interval) types for details on using +- times with ival types.

Operations

time types can be lifted and filtered using:

• Standard logical and mathematical comparison operators (comparators).

• The extended range (*range=) custom comparator.

• The extended interval (@=) custom comparator.

Standard Operators

time types can be lifted and filtered with the standard logical and mathematical comparators (see Storm Reference -
Lifting and Storm Reference - Filtering). This includes the use of lower resolution time values and wildcard time values.

Example:

Downselect a set of DNS request nodes to those that occurred prior to June 1, 2019:

storm> inet:dns:request +:time<2019/06/01
inet:dns:request=af9c09872abbb87774190453a7806852

:query:name = derp.net
:query:name:fqdn = derp.net
:time = 2015/12/14 19:22:00.000
.created = 2023/07/12 15:15:06.199

inet:dns:request=d2b4484d346f8cc388b0818ab5ee82ff
:query:name = hurr.com
:query:name:fqdn = hurr.com
:time = 2018/06/28 17:43:00.000
.created = 2023/07/12 15:15:06.193

Note: It is important to understand the differences in behavior when lifting and filtering time types using lower
resolution time values (which Synpase zero-fills) or wildcard time values (which Synpase wildcard-matches). These
behaviors vary based on the specific operator used.

• When lifting or filtering using the equivalent (=) operator, behavior is different:

– :time=2021/05/13 means equal to the exact date/time value 2021/05/13 00:00:00.000.

– :time=2021/05/13* means equal to any time on that date (2021/05/13 00:00:00.000 through 2021/
05/13 23:59:59.999).

3.6. Storm Reference 183

Synapse Documentation, Release 2.141.0

• When lifting or filtering using the greater than (>) / greater than or equal to (>=) operators, behavior is equiva-
lent:

– :time>2021/05/13 and :time>2021/05/13* both mean any date / time greater than 2021/05/13
00:00:00.000.

– :time>=2021/05/13 and :time>=2021/05/13* both mean any date / time greater than or equal to
2021/05/13 00:00:00.000.

Both are equivalent because in this case Synapse interprets the wildcard syntax as “greater than or equal to the
lowest possible wildcard match”, which in this case is 2021/05/13 00:00:00.000.

• When lifting or filtering using the less than (<) / less than or equal to (<=) operators, behavior is different:

– :time<2021/05/13 / :time<=2021/05/13mean any date / time less than (or less than or equal to) 2021/
05/13 00:00:00.000.

– :time<2021/05/13* / :time<=2021/05/13* both mean any date / time less than (or less than or equal
to) 2021/05/13 23:59:59.999.

The behavior differs because in this case Synapse interprets the wildcard syntax as “less than or equal to the
highest possible wildcard match”, which in this case is 2021/05/13 23:59:59.999.

Tip: The wildcard syntax is useful because it can provide a simplified, more intuitive means to specify certain time
ranges / time intervals without needing to use the range (*range=) or interval (@=) operators. For example, the
following three Storm queries are equivalent and will return all files compiled at any time within the year 2019:

file:bytes:mime:pe:compiled=2019*

file:bytes:mime:pe:compiled*range=('2019/01/01 00:00:00.000', '2019/12/31 23:59:59.999')

file:bytes:mime:pe:compiled@=('2019/01/01', '2020/01/01')

(A range maximum value represents “less than or equal to” that value, while an interval maximum value represents
“less than” that value.)

Range Custom Operator

time types can lifted and filtered using the *range= custom comparator (see Lift by Range (*range=) and Filter by
Range (*range=)).

Example:

Lift a set of file:bytes nodes whose PE compiled time is between January 1, 2019 and today:

storm> file:bytes:mime:pe:compiled*range=(2019/01/01, now)
file:bytes=sha256:9f9d96e99cef99cbfe8d02899919a7f7220f2273bb36a084642f492dd3e473da

:mime:pe:compiled = 2019/10/07 12:42:45.000
:sha256 = 9f9d96e99cef99cbfe8d02899919a7f7220f2273bb36a084642f492dd3e473da
.created = 2023/07/12 15:15:06.244

file:bytes=sha256:bd422f912affcf6d0830c13834251634c8b55b5a161c1084deae1f9b5d6830ce
:mime:pe:compiled = 2021/04/13 00:23:14.000
:sha256 = bd422f912affcf6d0830c13834251634c8b55b5a161c1084deae1f9b5d6830ce
.created = 2023/07/12 15:15:06.254

184 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Note: Both lower resolution times and wildcard times can be used for values specified within the *range= operator.
Because the range operator is a shorthand syntax for “greater than or equal to <range_min> and less than or equal to
<range_max>”, users should be aware of differences in behavior between each kind of time value with greater than /
less than operators.

See the Storm documents referenced above for additional examples using the range (*range=) comparator.

Interval Custom Operator

time types can be lifted and filtered using the interval (@=) custom comparator (see Lift by Time or Interval (@=)
and Filter by Time or Interval (@=)). The comparator is specifically designed to compare time types and ival types,
which can be useful (for example) for filtering to a set of nodes whose time properties fall within a specified interval.

Example:

Lift a set of DNS A records whose window of observation includes March 16, 2019 at 13:00 UTC:

storm> inet:dns:a.seen@='2019/03/16 13:00'
inet:dns:a=('aaaa.org', '1.2.3.4')

:fqdn = aaaa.org
:ipv4 = 1.2.3.4
.created = 2023/07/12 15:15:06.299
.seen = ('2018/12/29 12:36:27.000', '2019/06/03 18:14:33.000')

inet:dns:a=('derp.net', '8.8.8.8')
:fqdn = derp.net
:ipv4 = 8.8.8.8
.created = 2023/07/12 15:15:05.529
.seen = ('2019/03/08 07:26:00.000', '2019/03/22 10:14:00.000')

inet:dns:a=('bbbb.edu', '5.6.7.8')
:fqdn = bbbb.edu
:ipv4 = 5.6.7.8
.created = 2023/07/12 15:15:06.306
.seen = ('2019/03/16 12:59:59.000', '2019/03/16 13:01:01.000')

Note: Both lower resolution times and wildcard time can be used for values specified within the @= operator. Because
the interval operator is a shorthand syntax for “greater than or equal to <ival_min> and less than <ival_max>”, users
should be aware of differences in behavior between each kind of time value with greater than / less than operators.

See the Storm documents referenced above for additional examples using the interval (@=) comparator.

3.6.10 Storm Reference - Storm Commands

Storm commands are built-in or custom commands that can be used natively within the Synapse Storm tool / Storm
CLI (see storm).

Note: The Storm tool / Storm CLI provides a native Storm interpreter and is the preferred tool for interacting with a
Synapse Cortex from the CLI.

The pipe symbol (|) is used with Storm commands to:

3.6. Storm Reference 185

Synapse Documentation, Release 2.141.0

• Return to Storm query syntax after running a Storm command.

• Separate individual Storm commands and their parameters (i.e., if you are “chaining” multiple commands to-
gether).

For example:

inet:fqdn=woot.com nettools.whois | nettools.dns --type A AAAA NS | -> inet:dns:a

The query above:

• lifts the FQDN woot.com,

• performs a live “whois” lookup using the Synapse-Nettools Power-Up,

• performs a live DNS query for the FQDN’s A, AAAA, and NS records, and

• pivots from the FQDN to any associated DNS A records.

The pipe is used to separate the two nettools.* commands, and to separate the nettools.dns command and its
switches from the subsequent query operation (the pivot).

An additional pipe character can optionally be placed between the initial lift (inet:fqdn=woot.com) and the
nettools.whois command, but is not required.

Built-in commands are native to the Storm library and loaded by default within a given Cortex. Built-in commands
comprise a set of helper commands that perform a variety of specialized tasks that are useful regardless of the types of
data stored in Synapse or the types of analysis performed.

Custom commands are Storm commands that have been added to a Cortex to invoke the execution of dynamically
loaded modules. Synapse Power-Ups (Power-Up) are examples of modules that may install additional Storm com-
mands to implement additional functionality specific to that Power-Up (such as querying a third-party data source to
automatically ingest and model the data in Synapse).

The full list of Storm commands (built-in and custom) available in a given instance of Synapse can be displayed with
the help command.

Help for a specific Storm command can be displayed with <command> --help.

Tip: This section details the usage and syntax for built-in Storm commands. Many of the commands below - such
as count, intersect, limit, max / min, uniq, or the various gen (generate) commands - directly support analysis
tasks.

Other commands, such as those used to manage daemons, queues, packages, or services, are likely of greater interest
to Synapse administrators or developers.

• help

• auth

• background

• batch

• count

• cron

• delnode

• diff

• divert

186 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

• dmon

• edges

• feed

• gen

• graph

• iden

• intersect

• layer

• lift

• limit

• macro

• max

• merge

• min

• model

• movetag

• nodes

• note

• once

• parallel

• pkg

• ps

• queue

• reindex

• runas

• scrape

• service

• sleep

• spin

• splice

• tag

• tee

• tree

• trigger

• uniq

• uptime

3.6. Storm Reference 187

Synapse Documentation, Release 2.141.0

• version

• view

• wget

See Storm Reference - Document Syntax Conventions for an explanation of the syntax format used below.

The Storm query language is covered in detail starting with the Storm Reference - Introduction section of the Synapse
User Guide.

Tip: Storm commands, including custom commands, are added to Synapse as runtime nodes (“runt nodes” - see
Node, Runt) of the form syn:cmd. With a few restrictions, these runt nodes can be lifted, filtered, and operated on
similar to the way you work with other nodes.

Example

Lift the syn:cmd node for the Storm movetag command:

storm> syn:cmd=movetag
syn:cmd=movetag

:doc = Rename an entire tag tree and preserve time intervals.

help

The help command displays the list of available commands within the current instance of Synapse and a brief message
describing each command. Help for individual commands is available via <command> --help.

Syntax:

storm> help --help

List available commands and a brief description for each.

Examples:

// Get all available commands and their brief descriptions.

help

// Only get commands which have "model" in the name.

help model

Usage: help [options] <command>

Options:

--help : Display the command usage.

Arguments:

(continues on next page)

188 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

[command] : Only list commands and their brief description whose␣
→˓name contains the argument.

auth

Storm includes auth.* commands that allow you create and manage users and roles, and manage their associated
permissions (rules).

• auth.gate.show

• auth.role.add

• auth.role.addrule

• auth.role.del

• auth.role.delrule

• auth.role.list

• auth.role.mod

• auth.role.show

• auth.user.add

• auth.user.addrule

• auth.user.delrule

• auth.user.grant

• auth.user.list

• auth.user.mod

• auth.user.revoke

• auth.user.show

• auth.user.allowed

Help for individual auth.* commands can be displayed using:

<command> --help

auth.gate.show

The auth.gate.show command displays the user, roles, and permissions associated with the specified Auth Gate.

Syntax

storm> auth.gate.show --help

Display users, roles, and permissions for an auth gate.

Examples:
// Display the users and roles with permissions to the top layer of the␣

(continues on next page)

3.6. Storm Reference 189

Synapse Documentation, Release 2.141.0

(continued from previous page)

→˓current view.
auth.gate.show $lib.layer.get().iden

// Display the users and roles with permissions to the current view.
auth.gate.show $lib.view.get().iden

Usage: auth.gate.show [options] <gateiden>

Options:

--help : Display the command usage.

Arguments:

<gateiden> : The GUID of the auth gate.

auth.role.add

The auth.role.add command creates a role.

Syntax:

storm> auth.role.add --help

Add a role.

Examples:

// Add a role named "ninjas"
auth.role.add ninjas

Usage: auth.role.add [options] <name>

Options:

--help : Display the command usage.

Arguments:

<name> : The name of the role.

190 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

auth.role.addrule

The auth.role.addrule command adds a rule (permission) to a role.

Syntax:

storm> auth.role.addrule --help

Add a rule to a role.

Examples:

// add an allow rule to the role "ninjas" for permission "foo.bar.baz"
auth.role.addrule ninjas foo.bar.baz

// add a deny rule to the role "ninjas" for permission "foo.bar.baz"
auth.role.addrule ninjas "!foo.bar.baz"

// add an allow rule to the role "ninjas" for permission "baz" at the␣
→˓first index.

auth.role.addrule ninjas baz --index 0

Usage: auth.role.addrule [options] <name> <rule>

Options:

--help : Display the command usage.
--gate <gate> : The auth gate id to add the rule to. (default: None)
--index <index> : Specify the rule location as a 0 based index. (default:␣

→˓None)

Arguments:

<name> : The name of the role.
<rule> : The rule string.

auth.role.del

The auth.role.del command deletes a role.

Syntax:

storm> auth.role.del --help

Delete a role.

Examples:

// Delete a role named "ninjas"
auth.role.del ninjas

(continues on next page)

3.6. Storm Reference 191

Synapse Documentation, Release 2.141.0

(continued from previous page)

Usage: auth.role.del [options] <name>

Options:

--help : Display the command usage.

Arguments:

<name> : The name of the role.

auth.role.delrule

The auth.role.delrule command removes a rule (permission) from a role.

Syntax:

storm> auth.role.delrule --help

Remove a rule from a role.

Examples:

// Delete the allow rule from the role "ninjas" for permission "foo.bar.
→˓baz"

auth.role.delrule ninjas foo.bar.baz

// Delete the deny rule from the role "ninjas" for permission "foo.bar.
→˓baz"

auth.role.delrule ninjas "!foo.bar.baz"

// Delete the rule at index 5 from the role "ninjas"
auth.role.delrule ninjas --index 5

Usage: auth.role.delrule [options] <name> <rule>

Options:

--help : Display the command usage.
--gate <gate> : The auth gate id to remove the rule from. (default: None)
--index : Specify the rule as a 0 based index into the list of␣

→˓rules.

Arguments:

<name> : The name of the role.
<rule> : The rule string.

192 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

auth.role.list

The auth.role.list lists all roles in the Cortex.

Syntax:

storm> auth.role.list --help

List all roles.

Examples:

// Display the list of all roles
auth.role.list

Usage: auth.role.list [options]

Options:

--help : Display the command usage.

auth.role.mod

The auth.role.mod modifies an existing role.

Syntax:

storm> auth.role.mod --help

Modify properties of a role.

Examples:

// Rename the "ninjas" role to "admins"
auth.role.mod ninjas --name admins

Usage: auth.role.mod [options] <rolename>

Options:

--help : Display the command usage.
--name <name> : The new name for the role.

Arguments:

<rolename> : The name of the role.

3.6. Storm Reference 193

Synapse Documentation, Release 2.141.0

auth.role.show

The auth.role.show displays the details for a given role.

Syntax:

storm> auth.role.show --help

Display details for a given role by name.

Examples:

// Display details about the role "ninjas"
auth.role.show ninjas

Usage: auth.role.show [options] <rolename>

Options:

--help : Display the command usage.

Arguments:

<rolename> : The name of the role.

auth.user.add

The auth.user.add command creates a user.

Syntax:

storm> auth.user.add --help

Add a user.

Examples:

// Add a user named "visi" with the email address "visi@vertex.link"
auth.user.add visi --email visi@vertex.link

Usage: auth.user.add [options] <name>

Options:

--help : Display the command usage.
--email <email> : The user's email address. (default: None)

Arguments:
(continues on next page)

194 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

<name> : The name of the user.

auth.user.addrule

The auth.user.addrule command adds a rule (permission) to a user.

Syntax:

storm> auth.user.addrule --help

Add a rule to a user.

Examples:

// add an allow rule to the user "visi" for permission "foo.bar.baz"
auth.user.addrule visi foo.bar.baz

// add a deny rule to the user "visi" for permission "foo.bar.baz"
auth.user.addrule visi "!foo.bar.baz"

// add an allow rule to the user "visi" for permission "baz" at the␣
→˓first index.

auth.user.addrule visi baz --index 0

Usage: auth.user.addrule [options] <name> <rule>

Options:

--help : Display the command usage.
--gate <gate> : The auth gate id to grant permission on. (default: None)
--index <index> : Specify the rule location as a 0 based index. (default:␣

→˓None)

Arguments:

<name> : The name of the user.
<rule> : The rule string.

auth.user.delrule

The auth.user.delrule command removes a rule (permission) from a user.

Syntax:

storm> auth.user.delrule --help

(continues on next page)

3.6. Storm Reference 195

Synapse Documentation, Release 2.141.0

(continued from previous page)

Remove a rule from a user.

Examples:

// Delete the allow rule from the user "visi" for permission "foo.bar.baz
→˓"

auth.user.delrule visi foo.bar.baz

// Delete the deny rule from the user "visi" for permission "foo.bar.baz"
auth.user.delrule visi "!foo.bar.baz"

// Delete the rule at index 5 from the user "visi"
auth.user.delrule visi --index 5

Usage: auth.user.delrule [options] <name> <rule>

Options:

--help : Display the command usage.
--gate <gate> : The auth gate id to grant permission on. (default: None)
--index : Specify the rule as a 0 based index into the list of␣

→˓rules.

Arguments:

<name> : The name of the user.
<rule> : The rule string.

auth.user.grant

The auth.user.grant command grants a role (and its associated permissions) to a user.

Syntax:

storm> auth.user.grant --help

Grant a role to a user.

Examples:

// Grant the role "ninjas" to the user "visi"
auth.user.grant visi ninjas

// Grant the role "ninjas" to the user "visi" at the first index.
auth.user.grant visi ninjas --index 0

Usage: auth.user.grant [options] <username> <rolename>
(continues on next page)

196 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

Options:

--help : Display the command usage.
--index <index> : Specify the role location as a 0 based index. (default:␣

→˓None)

Arguments:

<username> : The name of the user.
<rolename> : The name of the role.

auth.user.list

The auth.user.list command displays all users in the Cortex.

Syntax:

storm> auth.user.list --help

List all users.

Examples:

// Display the list of all users
auth.user.list

Usage: auth.user.list [options]

Options:

--help : Display the command usage.

auth.user.mod

The auth.user.mod command modifies a user account.

Syntax:

storm> auth.user.mod --help

Modify properties of a user.

Examples:

// Rename the user "foo" to "bar"
auth.user.mod foo --name bar

(continues on next page)

3.6. Storm Reference 197

Synapse Documentation, Release 2.141.0

(continued from previous page)

// Make the user "visi" an admin
auth.user.mod visi --admin $lib.true

// Unlock the user "visi" and set their email to "visi@vertex.link"
auth.user.mod visi --locked $lib.false --email visi@vertex.link

Usage: auth.user.mod [options] <username>

Options:

--help : Display the command usage.
--name <name> : The new name for the user.
--email <email> : The email address to set for the user.
--passwd <passwd> : The new password for the user. This is best passed into␣

→˓the runtime as a variable.
--admin <admin> : True to make the user and admin, false to remove their␣

→˓remove their admin status.
--locked <locked> : True to lock the user, false to unlock them.

Arguments:

<username> : The name of the user.

auth.user.revoke

The auth.user.revoke command revokes a role (and its associated permissions) from a user.

Syntax:

storm> auth.user.revoke --help

Revoke a role from a user.

Examples:

// Revoke the role "ninjas" from the user "visi"
auth.user.revoke visi ninjas

Usage: auth.user.revoke [options] <username> <rolename>

Options:

--help : Display the command usage.

Arguments:

(continues on next page)

198 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

<username> : The name of the user.
<rolename> : The name of the role.

auth.user.show

The auth.user.show command displays information for a specific user.

Syntax:

storm> auth.user.show --help

Display details for a given user by name.

Examples:

// Display details about the user "visi"
auth.user.show visi

Usage: auth.user.show [options] <username>

Options:

--help : Display the command usage.

Arguments:

<username> : The name of the user.

auth.user.allowed

The auth.user.allowed command checks whether a user has a permission for the specified scope (view or layer; if
no scope is specified with the --gate option, the permission is checked globally).

The command retuns whether the permission is allowed (true) the source of the permission (e.g., if the permission is
due to having a particular role).

Syntax:

storm> auth.user.allowed --help

Show whether the user is allowed the given permission and why.

Examples:

auth.user.allowed visi foo.bar

Usage: auth.user.allowed [options] <username> <permname>
(continues on next page)

3.6. Storm Reference 199

Synapse Documentation, Release 2.141.0

(continued from previous page)

Options:

--help : Display the command usage.
--gate <gate> : An auth gate to test the perms against.

Arguments:

<username> : The name of the user.
<permname> : The permission string.

background

The background command allows you to execute a Storm query as a background task (e.g., to free up the CLI / Storm
runtime for additional queries).

Note: Use of background is a “fire-and-forget” process - any status messages (warnings or errors) are not returned
to the console, and if the query is interrupted for any reason, it will not resume.

See also parallel.

Syntax:

storm> background --help

Execute a query pipeline as a background task.
NOTE: Variables are passed through but nodes are not

Usage: background [options] <query>

Options:

--help : Display the command usage.

Arguments:

<query> : The query to execute in the background.

batch

The batch command allows you to run a Storm query with batched sets of nodes.

Note that in most cases, Storm queries are meant to operate in a “streaming” manner on individual nodes. This command
is intended to be used in cases such as querying external APIs that support aggregate queries (i.e., an API that allows
you to query 100 objects in a single API call as part of the API’s quota system).

Syntax:

200 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

storm> batch --help

Run a query with batched sets of nodes.

The batched query will have the set of inbound nodes available in the
variable $nodes.

This command also takes a conditional as an argument. If the conditional
evaluates to true, the nodes returned by the batched query will be yielded,
if it evaluates to false, the inbound nodes will be yielded after executing the
batched query.

NOTE: This command is intended to facilitate use cases such as queries to external
APIs with aggregate node values to reduce quota consumption. As this command
interrupts the node stream, it should be used carefully to avoid unintended
slowdowns in the pipeline.

Example:

// Execute a query with batches of 5 nodes, then yield the inbound nodes
batch $lib.false --size 5 { $lib.print($nodes) }

Usage: batch [options] <cond> <query>

Options:

--help : Display the command usage.
--size <size> : The number of nodes to collect before running the␣

→˓batched query (max 10000). (default: 10)

Arguments:

<cond> : The conditional value for the yield option.
<query> : The query to execute with batched nodes.

count

The count command enumerates the number of nodes returned from a given Storm query and displays the final tally.
The associated nodes can optionally be displayed with the --yield switch.

Syntax:

storm> count --help

Iterate through query results, and print the resulting number of nodes
which were lifted. This does not yield the nodes counted, unless the
--yield switch is provided.

Example:
(continues on next page)

3.6. Storm Reference 201

Synapse Documentation, Release 2.141.0

(continued from previous page)

Count the number of IPV4 nodes with a given ASN.
inet:ipv4:asn=20 | count

Count the number of IPV4 nodes with a given ASN and yield them.
inet:ipv4:asn=20 | count --yield

Usage: count [options]

Options:

--help : Display the command usage.
--yield : Yield inbound nodes.

Examples:

• Count the number of IP address nodes that Trend Micro reports are associated with the threat group Earth Preta:

storm> inet:ipv4#rep.trend.earthpreta | count
Counted 5 nodes.

• Count nodes from a lift and yield the output:

storm> inet:ipv4#rep.trend.earthpreta | count --yield
inet:ipv4=66.129.222.1

:type = unicast
.created = 2023/07/12 15:16:11.570
#rep.trend.earthpreta

inet:ipv4=184.82.164.104
:type = unicast
.created = 2023/07/12 15:16:11.578
#rep.trend.earthpreta

inet:ipv4=209.161.249.125
:type = unicast
.created = 2023/07/12 15:16:11.585
#rep.trend.earthpreta

inet:ipv4=69.90.65.240
:type = unicast
.created = 2023/07/12 15:16:11.594
#rep.trend.earthpreta

inet:ipv4=70.62.232.98
:type = unicast
.created = 2023/07/12 15:16:11.600
#rep.trend.earthpreta

Counted 5 nodes.

• Count the number of DNS A records for the domain woot.com where the lift produces no results:

storm> inet:dns:a:fqdn=woot.com | count
Counted 0 nodes.

202 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

cron

Note: See the Storm Reference - Automation guide for additional background on cron jobs (as well as triggers and
macros), including examples.

Storm includes cron.* commands that allow you to create and manage scheduled Cron jobs. Within Synapse, jobs
are Storm queries that execute on a recurring or one-time (cron.at) basis.

• cron.add

• cron.at

• cron.cleanup

• cron.list

• cron.stat

• cron.mod

• cron.move

• cron.disable

• cron.enable

• cron.del

Help for individual cron.* commands can be displayed using:

<command> --help

Tip: Cron jobs (including jobs created with cron.at) are added to Synapse as runtime nodes (“runt nodes” - see
Node, Runt) of the form syn:cron. With a few restrictions, these runt nodes can be lifted, filtered, and operated on
similar to the way you work with other nodes.

cron.add

The cron.add command creates an individual cron job within a Cortex.

Syntax:

storm> cron.add --help

Add a recurring cron job to a cortex.

Notes:
All times are interpreted as UTC.

All arguments are interpreted as the job period, unless the value ends in
an equals sign, in which case the argument is interpreted as the recurrence
period. Only one recurrence period parameter may be specified.

Currently, a fixed unit must not be larger than a specified recurrence
period. i.e. '--hour 7 --minute +15' (every 15 minutes from 7-8am?) is not

(continues on next page)

3.6. Storm Reference 203

Synapse Documentation, Release 2.141.0

(continued from previous page)

supported.

Value values for fixed hours are 0-23 on a 24-hour clock where midnight is 0.

If the --day parameter value does not start with a '+' and is an integer, it is
interpreted as a fixed day of the month. A negative integer may be
specified to count from the end of the month with -1 meaning the last day
of the month. All fixed day values are clamped to valid days, so for
example '-d 31' will run on February 28.
If the fixed day parameter is a value in ([Mon, Tue, Wed, Thu, Fri, Sat,
Sun] if locale is set to English) it is interpreted as a fixed day of the
week.

Otherwise, if the parameter value starts with a '+', then it is interpreted
as a recurrence interval of that many days.

If no plus-sign-starting parameter is specified, the recurrence period
defaults to the unit larger than all the fixed parameters. e.g. '--minute 5'
means every hour at 5 minutes past, and --hour 3, --minute 1 means 3:01 every day.

At least one optional parameter must be provided.

All parameters accept multiple comma-separated values. If multiple
parameters have multiple values, all combinations of those values are used.

All fixed units not specified lower than the recurrence period default to
the lowest valid value, e.g. --month +2 will be scheduled at 12:00am the first of
every other month. One exception is if the largest fixed value is day of the
week, then the default period is set to be a week.

A month period with a day of week fixed value is not currently supported.

Fixed-value year (i.e. --year 2019) is not supported. See the 'at'
command for one-time cron jobs.

As an alternative to the above options, one may use exactly one of
--hourly, --daily, --monthly, --yearly with a colon-separated list of
fixed parameters for the value. It is an error to use both the individual
options and these aliases at the same time.

Examples:
Run a query every last day of the month at 3 am
cron.add --hour 3 --day -1 {#foo}

Run a query every 8 hours
cron.add --hour +8 {#foo}

Run a query every Wednesday and Sunday at midnight and noon
cron.add --hour 0,12 --day Wed,Sun {#foo}

Run a query every other day at 3:57pm
cron.add --day +2 --minute 57 --hour 15 {#foo}

(continues on next page)

204 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

Usage: cron.add [options] <query>

Options:

--help : Display the command usage.
--minute <minute> : Minute value for job or recurrence period.
--name <name> : An optional name for the cron job.
--doc <doc> : An optional doc string for the cron job.
--hour <hour> : Hour value for job or recurrence period.
--day <day> : Day value for job or recurrence period.
--month <month> : Month value for job or recurrence period.
--year <year> : Year value for recurrence period.
--hourly <hourly> : Fixed parameters for an hourly job.
--daily <daily> : Fixed parameters for a daily job.
--monthly <monthly> : Fixed parameters for a monthly job.
--yearly <yearly> : Fixed parameters for a yearly job.
--iden <iden> : Fixed iden to assign to the cron job
--view <view> : View to run the cron job against

Arguments:

<query> : Query for the cron job to execute.

cron.at

The cron.at command creates a non-recurring (one-time) cron job within a Cortex. Just like standard (recurring)
cron jobs, jobs created with cron.at will persist (remain in the list of cron jobs and as syn:cron runt nodes) until
they are explicitly removed using cron.del.

Syntax:

storm> cron.at --help

Adds a non-recurring cron job.

Notes:
This command accepts one or more time specifications followed by exactly
one storm query in curly braces. Each time specification may be in synapse
time delta format (e.g --day +1) or synapse time format (e.g.
20501217030432101). Seconds will be ignored, as cron jobs' granularity is
limited to minutes.

All times are interpreted as UTC.

The other option for time specification is a relative time from now. This
consists of a plus sign, a positive integer, then one of 'minutes, hours,
days'.

(continues on next page)

3.6. Storm Reference 205

Synapse Documentation, Release 2.141.0

(continued from previous page)

Note that the record for a cron job is stored until explicitly deleted via
"cron.del".

Examples:
Run a storm query in 5 minutes
cron.at --minute +5 {[inet:ipv4=1]}

Run a storm query tomorrow and in a week
cron.at --day +1,+7 {[inet:ipv4=1]}

Run a query at the end of the year Zulu
cron.at --dt 20181231Z2359 {[inet:ipv4=1]}

Usage: cron.at [options] <query>

Options:

--help : Display the command usage.
--minute <minute> : Minute(s) to execute at.
--hour <hour> : Hour(s) to execute at.
--day <day> : Day(s) to execute at.
--dt <dt> : Datetime(s) to execute at.
--now : Execute immediately.
--iden <iden> : A set iden to assign to the new cron job
--view <view> : View to run the cron job against

Arguments:

<query> : Query for the cron job to execute.

cron.cleanup

The cron.cleanup command can be used to remove any one-time cron jobs (“at” jobs) that have completed.

Syntax:

storm> cron.cleanup --help

Delete all completed at jobs

Usage: cron.cleanup [options]

Options:

--help : Display the command usage.

206 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

cron.list

The cron.list command displays the set of cron jobs in the Cortex that the current user can view / modify based on
their permissions.

Cron jobs are displayed in alphanumeric order by job Iden. Jobs are sorted upon Cortex initialization, so newly-created
jobs will be displayed at the bottom of the list until the list is re-sorted the next time the Cortex is restarted.

Syntax:

storm> cron.list --help

List existing cron jobs in the cortex.

Usage: cron.list [options]

Options:

--help : Display the command usage.

cron.stat

The cron.stat command displays statistics for an individual cron job and provides more detail on an individual job
vs. cron.list, including any errors and the interval at which the job executes. To view the stats for a job, you must
provide the first portion of the job’s iden (i.e., enough of the iden that the job can be uniquely identified), which can be
obtained using cron.list or by lifting the appropriate syn:cron node.

Syntax:

storm> cron.stat --help

Gives detailed information about a cron job.

Usage: cron.stat [options] <iden>

Options:

--help : Display the command usage.

Arguments:

<iden> : Any prefix that matches exactly one valid cron job iden␣
→˓is accepted.

3.6. Storm Reference 207

Synapse Documentation, Release 2.141.0

cron.mod

The cron.mod command modifies the Storm query associated with a specific cron job. To modify a job, you must
provide the first portion of the job’s iden (i.e., enough of the iden that the job can be uniquely identified), which can be
obtained using cron.list or by lifting the appropriate syn:cron node.

Note: Other aspects of the cron job, such as its schedule for execution, cannot be modified once the job has been
created. To change these aspects you must delete and re-add the job.

Syntax:

storm> cron.mod --help

Modify an existing cron job's query.

Usage: cron.mod [options] <iden> <query>

Options:

--help : Display the command usage.

Arguments:

<iden> : Any prefix that matches exactly one valid cron job iden␣
→˓is accepted.
<query> : New storm query for the cron job.

cron.move

The cron.move command moves a cron job from one View to another.

Syntax:

storm> cron.move --help

Move a cron job from one view to another

Usage: cron.move [options] <iden> <view>

Options:

--help : Display the command usage.

Arguments:

<iden> : Any prefix that matches exactly one valid cron job iden␣
→˓is accepted.
<view> : View to move the cron job to.

208 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

cron.disable

The cron.disable command disables a job and prevents it from executing without removing it from the Cortex. To
disable a job, you must provide the first portion of the job’s iden (i.e., enough of the iden that the job can be uniquely
identified), which can be obtained using cron.list or by lifting the appropriate syn:cron node.

Syntax:

storm> cron.disable --help

Disable a cron job in the cortex.

Usage: cron.disable [options] <iden>

Options:

--help : Display the command usage.

Arguments:

<iden> : Any prefix that matches exactly one valid cron job iden␣
→˓is accepted.

cron.enable

The cron.enable command enables a disabled cron job. To enable a job, you must provide the first portion of the
job’s iden (i.e., enough of the iden that the job can be uniquely identified), which can be obtained using cron.list or
by lifting the appropriate syn:cron node.

Note: Cron jobs, including non-recurring jobs added with cron.at, are enabled by default upon creation.

Syntax:

storm> cron.enable --help

Enable a cron job in the cortex.

Usage: cron.enable [options] <iden>

Options:

--help : Display the command usage.

Arguments:

<iden> : Any prefix that matches exactly one valid cron job iden␣
→˓is accepted.

3.6. Storm Reference 209

Synapse Documentation, Release 2.141.0

cron.del

The cron.del command permanently removes a cron job from the Cortex. To delete a job, you must provide the first
portion of the job’s iden (i.e., enough of the iden that the job can be uniquely identified), which can be obtained using
cron.list or by lifting the appropriate syn:cron node.

Syntax:

storm> cron.del --help

Delete a cron job from the cortex.

Usage: cron.del [options] <iden>

Options:

--help : Display the command usage.

Arguments:

<iden> : Any prefix that matches exactly one valid cron job iden␣
→˓is accepted.

delnode

The delnode command deletes a node or set of nodes from a Cortex.

Warning: The Storm delnode command includes some limited checks (see below) to try and prevent the acciden-
tal deletion of nodes that are still connected to other nodes in the knowledge graph. However, these checks are not
foolproof, and delnode has the potential to be destructive if executed on an incorrect, badly formed, or mistyped
query.

Users are strongly encouraged to validate their query by first executing it on its own to confirm it returns the
expected nodes before piping the query to the delnode command.

In addition, use of the --force switch with delnode will override all safety checks and forcibly delete ALL nodes
input to the command.

This parameter should be used with extreme caution as it may result in broken references (e.g., “holes” in
the graph) within Synapse.

Syntax:

storm> delnode --help

Delete nodes produced by the previous query logic.

(no nodes are returned)

Example

inet:fqdn=vertex.link | delnode
(continues on next page)

210 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

Usage: delnode [options]

Options:

--help : Display the command usage.
--force : Force delete even if it causes broken references␣

→˓(requires admin).
--delbytes : For file:bytes nodes, remove the bytes associated with␣

→˓the sha256 property from the axon as well if present.

Examples:

• Delete the node for the domain woowoo.com:

storm> inet:fqdn=woowoo.com | delnode

• Forcibly delete all nodes with the #testing tag:

storm> #testing | delnode --force

Usage Notes:

• delnode operates on the output of a previous Storm query.

• delnode performs some basic sanity-checking to help prevent egregious mistakes, and will generate an error in
cases such as:

– attempting to delete a node (such as inet:fqdn=woot.com) that is still referenced by (i.e., is a secondary
property of) another node (such as inet:dns:a=(woot.com, 1.1.1.1).

– attmpting to delete a syn:tag node where that tag still exists on other nodes.

However, it is important to keep in mind that delnode cannot prevent all mistakes.

diff

The diff command generates a list of nodes with changes (i.e., newly created or modified nodes) present in the top
Layer of the current View. The diff command may be useful before performing a merge operation.

Syntax:

storm> diff --help

Generate a list of nodes with changes in the top layer of the current view.

Examples:

// Lift all nodes with any changes

diff

// Lift ou:org nodes that were added in the top layer.
(continues on next page)

3.6. Storm Reference 211

Synapse Documentation, Release 2.141.0

(continued from previous page)

diff --prop ou:org

// Lift inet:ipv4 nodes with the :asn property modified in the top layer.

diff --prop inet:ipv4:asn

// Lift the nodes with the tag #cno.mal.redtree added in the top layer.

diff --tag cno.mal.redtree

Usage: diff [options]

Options:

--help : Display the command usage.
--tag <tag> : Lift only nodes with the given tag in the top layer.␣

→˓(default: None)
--prop <prop> : Lift nodes with changes to the given property the top␣

→˓layer. (default: None)

divert

The divert command allows Storm to either consume a generator or yield its results based on a conditional.

Syntax:

storm> divert --help

Either consume a generator or yield it's results based on a conditional.

NOTE: This command is purpose built to facilitate the --yield convention
common to storm commands.

NOTE: The genr argument must not be a function that returns, else it will
be invoked for each inbound node.

Example:
divert $cmdopts.yield $fooBarBaz()

Usage: divert [options] <cond> <genr>

Options:

--help : Display the command usage.
--size <size> : The max number of times to iterate the generator.␣

→˓(default: None)

(continues on next page)

212 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

Arguments:

<cond> : The conditional value for the yield option.
<genr> : The generator function value that yields nodes.

dmon

Storm includes dmon.* commands that allow you to work with daemons (see Daemon).

• dmon.list

Help for individual dmon.* commands can be displayed using:

<command> --help

dmon.list

The dmon.list command displays the set of running dmon queries in the Cortex.

Syntax:

storm> dmon.list --help

List the storm daemon queries running in the cortex.

Usage: dmon.list [options]

Options:

--help : Display the command usage.

edges

Storm includes edges.* commands that allow you to work with lightweight (light) edges. Also see the lift.byverb
and model.edge.* commands under lift and model below.

• edges.del

Help for individual edge.* commands can be displayed using:

<command> --help

edges.del

The edges.del command is designed to delete multiple light edges to (or from) a set of nodes (contrast with using
Storm edit syntax - see Delete Light Edges).

Syntax:

storm> edges.del --help

(continues on next page)

3.6. Storm Reference 213

Synapse Documentation, Release 2.141.0

(continued from previous page)

Bulk delete light edges from input nodes.

Examples:

Delete all "foo" light edges from an inet:ipv4
inet:ipv4=1.2.3.4 | edges.del foo

Delete light edges with any verb from a node
inet:ipv4=1.2.3.4 | edges.del *

Delete all "foo" light edges to an inet:ipv4
inet:ipv4=1.2.3.4 | edges.del foo --n2

Usage: edges.del [options] <verb>

Options:

--help : Display the command usage.
--n2 : Delete light edges where input node is N2 instead of N1.

Arguments:

<verb> : The verb of light edges to delete.

feed

Storm includes feed.* commands that allow you to work with feeds (see Feed).

• feed.list

Help for individual feed.* commands can be displayed using:

<command> --help

feed.list

The feed.list command displays available feed functions in the Cortex.

Syntax:

storm> feed.list --help

List the feed functions available in the Cortex

Usage: feed.list [options]

Options:

--help : Display the command usage.

214 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

gen

Storm includes various gen.* (“generate”) commands that allow you to easily query for common guid-based nodes
(see Form, GUID) based on one or more “human friendly” secondary properties, and create (generate) the specified
node if it does not already exist.

Because guid nodes have a primary property that may be arbitrary, gen.* commands simplify the process of decon-
flicting on secondary properties before creating certain guid nodes.

Note: See the guid section of the Storm Reference - Type-Specific Storm Behavior for a detailed discussion of guids,
guid behavior, and deconfliction considerations for guid forms.

Nodes created using generate commands will have a limited subset of properties set (e.g., an organization node decon-
flicted and created based on a name will only have its ou:org:name property set). Users can set additional property
values as they see fit.

Help for individual gen.* commands can be displayed using:

<command> --help

Note: New gen.* commands are added to Synapse on an ongoing basis as we identify new cases where such com-
mands are helpful. Use the help command for the current list of gen.* commands available in your instance of
Synapse.

gen.it.prod.soft

The gen.it.prod.soft command locates (lifts) or creates an it:prod:soft node based on the software name
(it:prod:soft:name and / or it:prod:soft:names).

storm> gen.it.prod.soft --help

Lift (or create) an it:prod:soft node based on the software name.

Usage: gen.it.prod.soft [options] <name>

Options:

--help : Display the command usage.

Arguments:

<name> : The name of the software.

3.6. Storm Reference 215

Synapse Documentation, Release 2.141.0

gen.lang.language

The gen.lang.language command locates (lifts) or creates a lang:language node based on the language name
(lang:language:name and / or lang:language:names).

storm> gen.lang.language --help

Lift (or create) a lang:language node based on the name.

Usage: gen.lang.language [options] <name>

Options:

--help : Display the command usage.

Arguments:

<name> : The name of the language.

gen.ou.industry

The gen.ou.industry commands locates (lifts) or creates an ou:industry node based on the industry name
(ou:industry:name and / or ou:industry:names).

storm> gen.ou.industry --help

Lift (or create) an ou:industry node based on the industry name.

Usage: gen.ou.industry [options] <name>

Options:

--help : Display the command usage.

Arguments:

<name> : The industry name.

gen.ou.org

The gen.ou.org command locates (lifts) or creates an ou:org node based on the organization name (ou:org:name
and / or ou:org:names).

storm> gen.ou.org --help

Lift (or create) an ou:org node based on the organization name.

Usage: gen.ou.org [options] <name>
(continues on next page)

216 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

Options:

--help : Display the command usage.

Arguments:

<name> : The name of the organization.

gen.ou.org.hq

The gen.ou.org.hq command locates (lifts) the primary ps:contact node for an organization (i.e., the contact set
for the ou:org:hq property) or creates the contact node (and sets the ou:org:hq property) if it does not exist, based
on the organization name (ou:org:name and / or ou:org:names).

storm> gen.ou.org.hq --help

Lift (or create) the primary ps:contact node for the ou:org based on the organization␣
→˓name.

Usage: gen.ou.org.hq [options] <name>

Options:

--help : Display the command usage.

Arguments:

<name> : The name of the organization.

gen.pol.country

The gen.pol.country command locates (lifts) or creates a pol:country node based on the two-letter ISO-3166
country code (pol:country:iso2) .

storm> gen.pol.country --help

Lift (or create) a pol:country node based on the 2 letter ISO-3166 country␣
→˓code.

Examples:

// Yield the pol:country node which represents the country of Ukraine.
gen.pol.country ua

Usage: gen.pol.country [options] <iso2>

(continues on next page)

3.6. Storm Reference 217

Synapse Documentation, Release 2.141.0

(continued from previous page)

Options:

--help : Display the command usage.
--try : Type normalization will fail silently instead of raising␣

→˓an exception.

Arguments:

<iso2> : The 2 letter ISO-3166 country code.

gen.pol.country.government

The gen.pol.country.government command locates (lifts) the ou:org node representing a country’s gov-
ernment (i.e., the organization set for the pol:country:government property) or creates the node (and sets
the pol:country:government property) if it does not exist, based on the two-letter ISO-3166 country code
(pol:country:iso2).

storm> gen.pol.country.government --help

Lift (or create) the ou:org node representing a country's
government based on the 2 letter ISO-3166 country code.

Examples:

// Yield the ou:org node which represents the Government of Ukraine.
gen.pol.country.government ua

Usage: gen.pol.country.government [options] <iso2>

Options:

--help : Display the command usage.
--try : Type normalization will fail silently instead of raising␣

→˓an exception.

Arguments:

<iso2> : The 2 letter ISO-3166 country code.

218 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

gen.ps.contact.email

The gen.ps.contact.email command locates (lifts) or creates a ps:contact node using the contact’s primary
email address (ps:contact:email) and type (ps:contact:type).

storm> gen.ps.contact.email --help

Lift (or create) the ps:contact node by deconflicting the email and type.

Examples:

// Yield the ps:contact node for the type and email
gen.ps.contact.email vertex.employee visi@vertex.link

Usage: gen.ps.contact.email [options] <type> <email>

Options:

--help : Display the command usage.
--try : Type normalization will fail silently instead of raising␣

→˓an exception.

Arguments:

<type> : The contact type.
<email> : The contact email address.

gen.risk.threat

The gen.risk.threat command locates (lifts) or creates a risk:threat node using the name of the threat group
(risk:threat:org:name) and the name of the entity reporting on the threat (risk:threat:reporter:name).

storm> gen.risk.threat --help

Lift (or create) a risk:threat node based on the threat name and reporter␣
→˓name.

Examples:

// Yield a risk:threat node for the threat cluster "APT1" reported by
→˓"Mandiant".

gen.risk.threat apt1 mandiant

Usage: gen.risk.threat [options] <name> <reporter>

Options:

--help : Display the command usage.
(continues on next page)

3.6. Storm Reference 219

Synapse Documentation, Release 2.141.0

(continued from previous page)

Arguments:

<name> : The name of the threat cluster. For example: APT1
<reporter> : The name of the reporting organization. For example:␣

→˓Mandiant

gen.risk.tool.software

The gen.risk.tool.software command locates (lifts) or creates a risk:tool:software node using the name of
the software / malware (risk:tool:software:soft:name) and the name of the entity reporting on the software /
malware (risk:tool:software:reporter:name).

storm> gen.risk.tool.software --help

Lift (or create) a risk:tool:software node based on the tool name and␣
→˓reporter name.

Examples:

// Yield a risk:tool:software node for the "redtree" tool reported by
→˓"vertex".

gen.risk.tool.software redtree vertex

Usage: gen.risk.tool.software [options] <name> <reporter>

Options:

--help : Display the command usage.

Arguments:

<name> : The tool name.
<reporter> : The name of the reporting organization. For example:

→˓"recorded future"

gen.risk.vuln

The gen.risk.vuln command locates (lifts) or creates a risk:tool:vuln node using the Common Vulnerabilities
and Exposures (CVE) number associated with the vulnerability (risk:vuln:cve).

storm> gen.risk.vuln --help

Lift (or create) a risk:vuln node based on the CVE.

(continues on next page)

220 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

Usage: gen.risk.vuln [options] <cve>

Options:

--help : Display the command usage.
--try : Type normalization will fail silently instead of raising␣

→˓an exception.

Arguments:

<cve> : The CVE identifier.

graph

The graph command generates a subgraph based on a specified set of nodes and parameters.

Syntax:

storm> graph --help

Generate a subgraph from the given input nodes and command line options.

Example:

Using the graph command::

inet:fqdn | graph
--degrees 2
--filter { -#nope }
--pivot { <- meta:seen <- meta:source }
--form-pivot inet:fqdn {<- * | limit 20}
--form-pivot inet:fqdn {-> * | limit 20}
--form-filter inet:fqdn {-inet:fqdn:issuffix=1}
--form-pivot syn:tag {-> *}
--form-pivot * {-> #}

Usage: graph [options]

Options:

--help : Display the command usage.
--degrees <degrees> : How many degrees to graph out. (default: 1)
--pivot <pivot> : Specify a storm pivot for all nodes. (must quote)␣

→˓(default: [])
--filter <filter> : Specify a storm filter for all nodes. (must quote)␣

→˓(default: [])
--no-edges : Do not include light weight edges in the per-node output.
--form-pivot <form_pivot> : Specify a <form> <pivot> form specific pivot. (default:␣

(continues on next page)

3.6. Storm Reference 221

Synapse Documentation, Release 2.141.0

(continued from previous page)

→˓[])
--form-filter <form_filter> : Specify a <form> <filter> form specific filter.␣

→˓(default: [])
--refs : Do automatic in-model pivoting with node.getNodeRefs().
--yield-filtered : Yield nodes which would be filtered. This still performs␣

→˓pivots to collect edge data,but does not yield pivoted nodes.
--no-filter-input : Do not drop input nodes if they would match a filter.

iden

The iden command lifts one or more nodes by their node identifier (node ID / iden).

Syntax:

storm> iden --help

Lift nodes by iden.

Example:

iden b25bc9eec7e159dce879f9ec85fb791f83b505ac55b346fcb64c3c51e98d1175 | count

Usage: iden [options] <iden>

Options:

--help : Display the command usage.

Arguments:

[<iden> ...] : Iden to lift nodes by. May be specified multiple times.

Example:

• Lift the node with node ID 20153b758f9d5eaaa38e4f4a65c36da797c3e59e549620fa7c4895e1a920991f:

storm> iden 20153b758f9d5eaaa38e4f4a65c36da797c3e59e549620fa7c4895e1a920991f
inet:ipv4=1.2.3.4

:type = unicast
.created = 2023/07/12 15:16:12.414

222 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

intersect

The intersect command returns the intersection of the results from performing a pivot operation on multiple inbound
nodes. In other words, intersectwill return the subset of pivot results that are common to each of the inbound nodes.

Syntax:

storm> intersect --help

Yield an intersection of the results of running inbound nodes through a pivot.

NOTE:
This command must consume the entire inbound stream to produce the intersection.
This type of stream consuming before yielding results can cause the query to␣

→˓appear
laggy in comparison with normal incremental stream operations.

Examples:

// Show the it:mitre:attack:technique nodes common to several groups

it:mitre:attack:group*in=(G0006, G0007) | intersect { ->␣
→˓it:mitre:attack:technique }

Usage: intersect [options] <query>

Options:

--help : Display the command usage.

Arguments:

<query> : The pivot query to run each inbound node through.

layer

Storm includes layer.* commands that allow you to work with layers (see Layer).

• layer.add

• layer.set

• layer.get

• layer.list

• layer.del

• layer.pull.add

• layer.pull.list

• layer.pull.del

• layer.push.add

3.6. Storm Reference 223

Synapse Documentation, Release 2.141.0

• layer.push.list

• layer.push.del

Help for individual layer.* commands can be displayed using:

<command> --help

layer.add

The layer.add command adds a layer to the Cortex.

Syntax

storm> layer.add --help

Add a layer to the cortex.

Usage: layer.add [options]

Options:

--help : Display the command usage.
--lockmemory : Should the layer lock memory for performance.
--readonly : Should the layer be readonly.
--mirror <mirror> : A telepath URL of an upstream layer/view to mirror.
--growsize <growsize> : Amount to grow the map size when necessary.
--upstream <upstream> : One or more telepath urls to receive updates from.
--name <name> : The name of the layer.

layer.set

The layer.set command sets an option for the specified layer.

Syntax

storm> layer.set --help

Set a layer option.

Usage: layer.set [options] <iden> <name> <valu>

Options:

--help : Display the command usage.

Arguments:

<iden> : Iden of the layer to modify.
<name> : The name of the layer property to set.
<valu> : The value to set the layer property to.

224 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

layer.get

The layer.get command retrieves the specified layer from a Cortex.

Syntax

storm> layer.get --help

Get a layer from the cortex.

Usage: layer.get [options] <iden>

Options:

--help : Display the command usage.

Arguments:

[iden] : Iden of the layer to get. If no iden is provided, the␣
→˓main layer will be returned.

layer.list

The layer.list command lists the available layers in a Cortex.

Syntax

storm> layer.list --help

List the layers in the cortex.

Usage: layer.list [options]

Options:

--help : Display the command usage.

layer.del

The layer.del command deletes a layer from a Cortex.

Syntax

storm> layer.del --help

Delete a layer from the cortex.

Usage: layer.del [options] <iden>

Options:

--help : Display the command usage.
(continues on next page)

3.6. Storm Reference 225

Synapse Documentation, Release 2.141.0

(continued from previous page)

Arguments:

<iden> : Iden of the layer to delete.

layer.pull.add

The layer.pull.add command adds a pull configuration to a layer.

Syntax

storm> layer.pull.add --help

Add a pull configuration to a layer.

Usage: layer.pull.add [options] <layr> <src>

Options:

--help : Display the command usage.
--offset <offset> : Layer offset to begin pulling from (default: 0)

Arguments:

<layr> : Iden of the layer to pull to.
<src> : Telepath url of the source layer to pull from.

layer.pull.list

The layer.pull.list command lists the pull configurations for a layer.

Syntax

storm> layer.pull.list --help

Get a list of the pull configurations for a layer.

Usage: layer.pull.list [options] <layr>

Options:

--help : Display the command usage.

Arguments:

<layr> : Iden of the layer to retrieve pull configurations for.

226 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

layer.pull.del

The layer.pull.del command deletes a pull configuration from a layer.

Syntax

storm> layer.pull.del --help

Delete a pull configuration from a layer.

Usage: layer.pull.del [options] <layr> <iden>

Options:

--help : Display the command usage.

Arguments:

<layr> : Iden of the layer to modify.
<iden> : Iden of the pull configuration to delete.

layer.push.add

The layer.push.add command adds a push configuration to a layer.

Syntax

storm> layer.push.add --help

Add a push configuration to a layer.

Usage: layer.push.add [options] <layr> <dest>

Options:

--help : Display the command usage.
--offset <offset> : Layer offset to begin pushing from. (default: 0)

Arguments:

<layr> : Iden of the layer to push from.
<dest> : Telepath url of the layer to push to.

3.6. Storm Reference 227

Synapse Documentation, Release 2.141.0

layer.push.list

The layer.push.list command lists the push configurations for a layer.

Syntax

storm> layer.push.list --help

Get a list of the push configurations for a layer.

Usage: layer.push.list [options] <layr>

Options:

--help : Display the command usage.

Arguments:

<layr> : Iden of the layer to retrieve push configurations for.

layer.push.del

The layer.push.del command deletes a push configuration from a layer.

Syntax

storm> layer.push.del --help

Delete a push configuration from a layer.

Usage: layer.push.del [options] <layr> <iden>

Options:

--help : Display the command usage.

Arguments:

<layr> : Iden of the layer to modify.
<iden> : Iden of the push configuration to delete.

lift

Storm includes lift.* commands that allow you to perform specialized lift operations.

• lift.byverb

Help for individual lift.* commands can be displayed using:

<command> --help

228 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

lift.byverb

The lift.byverb command lifts nodes that are connected by the specified lightweight (light) edge. By default, the
command lifts the N1 nodes (i.e., the nodes on the left side of the directional light edge relationship: n1 -(<verb>)>
n2)

Note: For other commands associated with light edges, see edges.del and model.edge.* under edges and model
respectively.

Syntax:

storm> lift.byverb --help

Lift nodes from the current view by an light edge verb.

Examples:

Lift all the n1 nodes for the light edge "foo"
lift.byverb "foo"

Lift all the n2 nodes for the light edge "foo"
lift.byverb --n2 "foo"

Notes:

Only a single instance of a node will be yielded from this command
when that node is lifted via the light edge membership.

Usage: lift.byverb [options] <verb>

Options:

--help : Display the command usage.
--n2 : Lift by the N2 value instead of N1 value.

Arguments:

<verb> : The edge verb to lift nodes by.

limit

The limit command restricts the number of nodes returned from a given Storm query to the specified number of
nodes.

Syntax:

storm> limit --help

Limit the number of nodes generated by the query in the given position.
(continues on next page)

3.6. Storm Reference 229

Synapse Documentation, Release 2.141.0

(continued from previous page)

Example:

inet:ipv4 | limit 10

Usage: limit [options] <count>

Options:

--help : Display the command usage.

Arguments:

<count> : The maximum number of nodes to yield.

Example:

• Lift a single IP address that FireEye associates with the threat group APT1:

storm> inet:ipv4#aka.feye.thr.apt1 | limit 1

Usage Notes:

• If the limit number specified (i.e., limit 100) is greater than the total number of nodes returned from the Storm
query, no limit will be applied to the resultant nodes (i.e., all nodes will be returned).

• By design, limit imposes an artificial limit on the nodes returned by a query, which may impair effective
analysis of data by restricting results. As such, limit is most useful for viewing a subset of a large result set or
an exemplar node for a given form.

• While limit returns a sampling of nodes, it is not statistically random for the purposes of population sampling
for algorithmic use.

macro

Note: See the Storm Reference - Automation guide for additional background on macros (as well as triggers and cron
jobs), including examples.

Storm includes macro.* commands that allow you to work with macros (see Macro).

• macro.list

• macro.set

• macro.get

• macro.exec

• macro.del

Help for individual macro.* commands can be displayed using:

<command> --help

230 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

macro.list

The macro.list command lists the macros in a Cortex.

Syntax:

storm> macro.list --help

List the macros set on the cortex.

Usage: macro.list [options]

Options:

--help : Display the command usage.

macro.set

The macro.set command creates (or modifies) a macro in a Cortex.

Syntax:

storm> macro.set --help

Set a macro definition in the cortex.

Variables can also be used that are defined outside the definition.

Examples:
macro.set foobar ${ [+#foo] }

Use variable from parent scope
macro.set bam ${ [inet:ipv4=$val] }
$val=1.2.3.4 macro.exec bam

Usage: macro.set [options] <name> <storm>

Options:

--help : Display the command usage.

Arguments:

<name> : The name of the macro to set.
<storm> : The storm command string or embedded query to set.

3.6. Storm Reference 231

Synapse Documentation, Release 2.141.0

macro.get

The macro.get command retrieves and displays the specified macro.

Syntax:

storm> macro.get --help

Display the storm query for a macro in the cortex.

Usage: macro.get [options] <name>

Options:

--help : Display the command usage.

Arguments:

<name> : The name of the macro to display.

macro.exec

The macro.exec command executes the specified macro.

Syntax:

storm> macro.exec --help

Execute a named macro.

Example:

inet:ipv4#cno.threat.t80 | macro.exec enrich_foo

Usage: macro.exec [options] <name>

Options:

--help : Display the command usage.

Arguments:

<name> : The name of the macro to execute

232 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

macro.del

The macro.del command deletes the specified macro from a Cortex.

Syntax:

storm> macro.del --help

Remove a macro definition from the cortex.

Usage: macro.del [options] <name>

Options:

--help : Display the command usage.

Arguments:

<name> : The name of the macro to delete.

max

The max command returns the node from a given set that contains the highest value for a specified secondary property,
tag interval, or variable.

Syntax:

storm> max --help

Consume nodes and yield only the one node with the highest value for an expression.

Examples:

// Yield the file:bytes node with the highest :size property
file:bytes#foo.bar | max :size

// Yield the file:bytes node with the highest value for $tick
file:bytes#foo.bar +.seen ($tick, $tock) = .seen | max $tick

// Yield the it:dev:str node with the longest length
it:dev:str | max $lib.len($node.value())

Usage: max [options] <valu>

Options:

--help : Display the command usage.

(continues on next page)

3.6. Storm Reference 233

Synapse Documentation, Release 2.141.0

(continued from previous page)

Arguments:

<valu> : The property or variable to use for comparison.

Examples:

• Return the DNS A record for woot.com with the most recent .seen value:

storm> inet:dns:a:fqdn=woot.com | max .seen
inet:dns:a=('woot.com', '107.21.53.159')

:fqdn = woot.com
:ipv4 = 107.21.53.159
.created = 2023/07/12 15:16:12.943
.seen = ('2014/08/13 00:00:00.000', '2014/08/14 00:00:00.000')

• Return the most recent WHOIS record for domain woot.com:

storm> inet:whois:rec:fqdn=woot.com | max :asof
inet:whois:rec=('woot.com', '2018/05/22 00:00:00.000')

:asof = 2018/05/22 00:00:00.000
:fqdn = woot.com
:text = domain name: woot.com
.created = 2023/07/12 15:16:13.015

merge

The merge command takes a subset of nodes from a forked view and merges them down to the next layer. The nodes
can optionally be reviewed without actually merging them.

Contrast with view.merge for merging the entire contents of a forked view.

See the view and layer commands for working with views and layers.

Syntax:

storm> merge --help

Merge edits from the incoming nodes down to the next layer.

NOTE: This command requires the current view to be a fork.

NOTE: The arguments for including/excluding tags can accept tag glob
expressions for specifying tags. For more information on tag glob
expressions, check the Synapse documentation for $node.globtags().

Examples:

// Having tagged a new #cno.mal.redtree subgraph in a forked view...

#cno.mal.redtree | merge --apply

// Print out what the merge command *would* do but dont.
(continues on next page)

234 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

#cno.mal.redtree | merge

// Merge any org nodes with changes in the top layer.

diff | +ou:org | merge --apply

// Merge all tags other than cno.* from ou:org nodes with edits in the
// top layer.

diff | +ou:org | merge --only-tags --exclude-tags cno.** --apply

// Merge only tags rep.vt.* and rep.whoxy.* from ou:org nodes with edits
// in the top layer.

diff | +ou:org | merge --include-tags rep.vt.* rep.whoxy.* --apply

// Lift only inet:ipv4 nodes with a changed :asn property in top layer
// and merge all changes.

diff --prop inet:ipv4:asn | merge --apply

// Lift only nodes with an added #cno.mal.redtree tag in the top layer and merge␣
→˓them.

diff --tag cno.mal.redtree | merge --apply

Usage: merge [options]

Options:

--help : Display the command usage.
--apply : Execute the merge changes.
--no-tags : Do not merge tags/tagprops or syn:tag nodes.
--only-tags : Only merge tags/tagprops or syn:tag nodes.
--include-tags [<include_tags> ...]: Include specific tags/tagprops or syn:tag nodes␣

→˓when merging, others are ignored. Tag glob expressions may be used to specify the tags.
→˓ (default: [])
--exclude-tags [<exclude_tags> ...]: Exclude specific tags/tagprops or syn:tag nodes␣

→˓from merge.Tag glob expressions may be used to specify the tags. (default: [])
--include-props [<include_props> ...]: Include specific props when merging, others are␣

→˓ignored. (default: [])
--exclude-props [<exclude_props> ...]: Exclude specific props from merge. (default: [])
--diff : Enumerate all changes in the current layer.

3.6. Storm Reference 235

Synapse Documentation, Release 2.141.0

min

The min command returns the node from a given set that contains the lowest value for a specified secondary property,
tag interval, or variable.

Syntax:

storm> min --help

Consume nodes and yield only the one node with the lowest value for an expression.

Examples:

// Yield the file:bytes node with the lowest :size property
file:bytes#foo.bar | min :size

// Yield the file:bytes node with the lowest value for $tick
file:bytes#foo.bar +.seen ($tick, $tock) = .seen | min $tick

// Yield the it:dev:str node with the shortest length
it:dev:str | min $lib.len($node.value())

Usage: min [options] <valu>

Options:

--help : Display the command usage.

Arguments:

<valu> : The property or variable to use for comparison.

Examples:

• Return the DNS A record for woot.com with the oldest .seen value:

storm> inet:dns:a:fqdn=woot.com | min .seen
inet:dns:a=('woot.com', '75.101.146.4')

:fqdn = woot.com
:ipv4 = 75.101.146.4
.created = 2023/07/12 15:16:12.952
.seen = ('2013/09/21 00:00:00.000', '2013/09/22 00:00:00.000')

• Return the oldest WHOIS record for domain woot.com:

storm> inet:whois:rec:fqdn=woot.com | min :asof
inet:whois:rec=('woot.com', '2018/05/22 00:00:00.000')

:asof = 2018/05/22 00:00:00.000
:fqdn = woot.com
:text = domain name: woot.com
.created = 2023/07/12 15:16:13.015

236 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

model

Storm includes model.* commands that allow you to work with model elements.

model.deprecated.* commands allow you to view model elements (forms or properties) that have been marked
as “deprecated”, determine whether your Cortex contains deprecated nodes / nodes with deprecated properties, and
optionally lock / unlock those properties to prevent (or allow) continued creation of deprecated model elements.

model.edge.* commands allow you to work with lightweight (light) edges. (See also the edges.del and lift.
byverb commands under edges and lift, respectively.)

• model.deprecated.check

• model.deprecated.lock

• model.deprecated.locks

• model.edge.list

• model.edge.set

• model.edge.get

• model.edge.del

Help for individual model.* commands can be displayed using:

<command> --help

model.deprecated.check

The model.deprecated.check command lists deprecated elements, their lock status, and whether deprecated ele-
ments exist in the Cortex.

Syntax:

storm> model.deprecated.check --help

Check for lock status and the existence of deprecated model elements

Usage: model.deprecated.check [options]

Options:

--help : Display the command usage.

model.deprecated.lock

The model.deprecated.lock command allows you to lock or unlock (e.g., disallow or allow the use of) deprecated
model elements in a Cortex.

Syntax:

storm> model.deprecated.lock --help

Edit lock status of deprecated model elements.

(continues on next page)

3.6. Storm Reference 237

Synapse Documentation, Release 2.141.0

(continued from previous page)

Usage: model.deprecated.lock [options] <name>

Options:

--help : Display the command usage.
--unlock : Unlock rather than lock the deprecated property.

Arguments:

<name> : The deprecated form or property name to lock or * to␣
→˓lock all.

model.deprecated.locks

The model.deprecated.locks command displays the lock status of all deprecated model elements.

Syntax:

storm> model.deprecated.locks --help

Display lock status of deprecated model elements.

Usage: model.deprecated.locks [options]

Options:

--help : Display the command usage.

model.edge.list

The model.edge.list command displays the set of light edges currently defined in the Cortex and any doc values
set on them.

Syntax:

storm> model.edge.list --help

List all edge verbs in the current view and their doc key (if set).

Usage: model.edge.list [options]

Options:

--help : Display the command usage.

238 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

model.edge.set

The model.edge.set command allows you to set the value of a given key on a light edge (such as a doc value to
specify a definition for the light edge). The current list of valid keys include the following:

• doc

Syntax:

storm> model.edge.set --help

Set a key-value for an edge verb that exists in the current view.

Usage: model.edge.set [options] <verb> <key> <valu>

Options:

--help : Display the command usage.

Arguments:

<verb> : The edge verb to add a key to.
<key> : The key name (e.g. doc).
<valu> : The string value to set.

model.edge.get

The model.edge.get command allows you to retrieve all of the keys that have been set on a light edge.

Syntax:

storm> model.edge.get --help

Retrieve key-value pairs for an edge verb in the current view.

Usage: model.edge.get [options] <verb>

Options:

--help : Display the command usage.

Arguments:

<verb> : The edge verb to retrieve.

3.6. Storm Reference 239

Synapse Documentation, Release 2.141.0

model.edge.del

The model.edge.del command allows you to delete the key from a light edge (such as a doc property to specify a
definition for the light edge). Deleting a key from a specific light edge does not delete the key from Synapse (e.g., the
property can be re-added to the light edge or to other light edges).

Syntax:

storm> model.edge.del --help

Delete a global key-value pair for an edge verb in the current view.

Usage: model.edge.del [options] <verb> <key>

Options:

--help : Display the command usage.

Arguments:

<verb> : The edge verb to delete documentation for.
<key> : The key name (e.g. doc).

movenodes

The movenodes command allows you to move nodes between layers (Layer) in a Cortex.

The command will move the specified storage nodes (see Node, Storage) - “sodes” for short - to the target layer. If a
sode is the “left hand” (n1) of two nodes joined by a light edge (n1 -(*)> n2), then the edge is also moved.

Sodes are fully removed from the source layer(s) and added to (or merged with existing nodes in) the target layer.

By default (i.e., if you do not specify a source and / or target layer), movenodes will migrate sodes from the bottom
layer in the view, through each intervening layer (if any), and finally into the top layer. If you explicitly specify a source
and target layer, movenodes migrates the sodes directly from the source to the target, skipping any intervening layers
(if any).

Similarly, by default as the node is moved “up”, any data for that node (property values, tags) in the higher layer will take
precedence over (overwrite) data from a lower layer. This precedence behavior can be modified with the appropriate
command switch.

Note: The merge command specifically moves (merges) nodes from the top layer in a View to the underlying layer.
Merging is a common user action performed in a standard “fork and merge” workflow. The merge command should
be used to move/merge nodes down from a higher layer/view to a lower/underlying one.

The movenodes command allows you to move nodes between arbitrary layers and is meant to be used by Synapse
administrators in very specific use cases (e.g., data that was accidentally merged into a lower layer that should not be
there). It can be used to move nodes “up” from a lower layer to a higher one.

Syntax:

storm> movenodes --help

(continues on next page)

240 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

Move storage nodes between layers.

Storage nodes will be removed from the source layers and the resulting
storage node in the destination layer will contain the merged values (merged
in bottom up layer order by default).

Examples:

// Move storage nodes for ou:org nodes to the top layer

ou:org | movenodes --apply

// Print out what the movenodes command *would* do but dont.

ou:org | movenodes

// In a view with many layers, only move storage nodes from the bottom layer
// to the top layer.

$layers = $lib.view.get().layers
$top = $layers.0.iden
$bot = $layers."-1".iden

ou:org | movenodes --srclayers $bot --destlayer $top

// In a view with many layers, move storage nodes to the top layer and
// prioritize values from the bottom layer over the other layers.

$layers = $lib.view.get().layers
$top = $layers.0.iden
$mid = $layers.1.iden
$bot = $layers.2.iden

ou:org | movenodes --precedence $bot $top $mid

Usage: movenodes [options]

Options:

--help : Display the command usage.
--apply : Execute the move changes.
--srclayers [<srclayers> ...]: Specify layers to move storage nodes from (defaults to␣

→˓all below the top layer) (default: None)
--destlayer <destlayer> : Layer to move storage nodes to (defaults to the top␣

→˓layer) (default: None)
--precedence [<precedence> ...]: Layer precedence for resolving conflicts (defaults to␣

→˓bottom up) (default: None)

3.6. Storm Reference 241

Synapse Documentation, Release 2.141.0

movetag

The movetag command moves a Synapse tag and its associated tag tree from one location in a tag hierarchy to another
location. It is equivalent to “renaming” a given tag and all of its subtags. Moving a tag consists of:

• Creating the new syn:tag node(s).

• Copying the definitions (:title and :doc properties) from the old syn:tag node to the new syn:tag node.

• Applying the new tag(s) to the nodes with the old tag(s).

– If the old tag(s) have associated timestamps / time intervals, they will be applied to the new tag(s).

• Deleting the old tag(s) from the nodes.

• Setting the :isnow property of the old syn:tag node(s) to reference the new syn:tag node.

– The old syn:tag nodes are not deleted.

– Once the :isnow property is set, attempts to apply the old tag will automatically result in the new tag being
applied.

See also the tag command.

Syntax:

storm> movetag --help

Rename an entire tag tree and preserve time intervals.

Example:

movetag foo.bar baz.faz.bar

Usage: movetag [options] <oldtag> <newtag>

Options:

--help : Display the command usage.

Arguments:

<oldtag> : The tag tree to rename.
<newtag> : The new tag tree name.

Examples:

• Move the tag named #research to #internal.research:

storm> movetag research internal.research
moved tags on 1 nodes.

• Move the tag tree #aka.fireeye.malware to #rep.feye.mal:

storm> movetag aka.fireeye.malware rep.feye.mal
moved tags on 1 nodes.

242 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Usage Notes:

Warning: movetag should be used with caution as when used incorrectly it can result in “deleted” (inadvertently
moved / removed) or orphaned (inadvertently retained) tags. For example, in the second example query above, all
aka.fireeye.malware tags are renamed rep.feye.mal, but the tag aka.fireeye still exists and is still applied
to all of the original nodes. In other words, the result of the above command will be that nodes previously tagged
aka.fireeye.malware will now be tagged both rep.feye.mal and aka.fireeye. Users may wish to test the
command on sample data first to understand its effects before applying it in a production Cortex.

nodes

Storm includes nodes.* commands that allow you to work with nodes and .nodes files.

• nodes.import

Help for individual nodes.* commands can be displayed using:

<command> --help

nodes.import

The nodes.import command will import a Synapse .nodes file (i.e., a file containing a set / subgraph of nodes, light
edges, and / or tags exported from a Cortex) from a specified URL.

Syntax:

storm> nodes.import --help

Import a nodes file hosted at a URL into the cortex. Yields created nodes.

Usage: nodes.import [options] <urls>

Options:

--help : Display the command usage.
--no-ssl-verify : Ignore SSL certificate validation errors.

Arguments:

[<urls> ...] : URL(s) to fetch nodes file from

note

Storm includes note.* commands that allow you to work with free form text notes (meta:note nodes).

• note.add

Help for individual note.* commands can be displayed using:

<command> --help

3.6. Storm Reference 243

Synapse Documentation, Release 2.141.0

note.add

The note.add command will create a meta:note node containing the specified text and link it to the inbound node(s)
via an -(about)> light edge (i.e., meta:note=<guid> -(about)> <node(s)>).

Syntax:

storm> note.add --help

Add a new meta:note node and link it to the inbound nodes using an -(about)> edge.

Usage: note.add [options] <text>

Options:

--help : Display the command usage.
--type <type> : The note type.

Arguments:

<text> : The note text to add to the nodes.

Usage Notes:

Note: Synapse’s data and analytical models are meant to represent a broad range of data and information in a structured
(and therefore queryable) way. As free form notes are counter to this structured approach, we recommend using
meta:note nodes as an exception rather than a regular practice.

once

The once command is used to ensure a given node is processed by the associated Storm command only once, even if
the same command is executed in a different, independent Storm query. The once command uses Node Data to keep
track of the associated Storm command’s execution, so once is specific to the View in which it is executed. You can
override the single-execution feature of once with the --asof parameter.

Syntax:

storm> once --help

The once command ensures that a node makes it through the once command but a single␣
→˓time,

even across independent queries. The gating is keyed by a required name parameter to
the once command, so a node can be run through different queries, each a single time,

→˓ so
long as the names differ.

For example, to run an enrichment command on a set of nodes just once:

file:bytes#my.files | once enrich:foo | enrich.foo

If you insert the once command with the same name on the same nodes, they will be
(continues on next page)

244 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

dropped from the pipeline. So in the above example, if we run it again, the␣
→˓enrichment

will not run a second time, as all the nodes will be dropped from the pipeline before
reaching the enrich.foo portion of the pipeline.

Simlarly, running this:

file:bytes#my.files | once enrich:foo

Also yields no nodes. And even though the rest of the pipeline is different, this␣
→˓query:

file:bytes#my.files | once enrich:foo | enrich.bar

would not run the enrich.bar command, as the name "enrich:foo" has already been seen␣
→˓to

occur on the file:bytes passing through the once command, so all of the nodes will be
dropped from the pipeline.

However, this query:

file:bytes#my.files | once look:at:my:nodes

Would yield all the file:bytes tagged with #my.files, as the name parameter given to
the once command differs from the original "enrich:foo".

The once command utilizes a node's nodedata cache, and you can use the --asof␣
→˓parameter

to update the named action's timestamp in order to bypass/update the once timestamp.␣
→˓So

this command:

inet:ipv4#my.addresses | once node:enrich --asof now | my.enrich.command

Will yield all the enriched nodes the first time around. The second time that␣
→˓command is

run, all of those nodes will be re-enriched, as the asof timestamp will be greater␣
→˓the

second time around, so no nodes will be dropped.

As state tracking data for the once command is stored as nodedata, it is stored in␣
→˓your

view's write layer, making it view-specific. So if you have two views, A and B, and␣
→˓they

do not share any layers between them, and you execute this query in view A:

inet:ipv4=8.8.8.8 | once enrich:address | enrich.baz

And then you run it in view B, the node will still pass through the once command to␣
→˓the

enrich.baz portion of the pipeline, as the nodedata for the once command does not yet
exist in view B.

(continues on next page)

3.6. Storm Reference 245

Synapse Documentation, Release 2.141.0

(continued from previous page)

Usage: once [options] <name>

Options:

--help : Display the command usage.
--asof <asof> : The associated time the name was updated/performed.␣

→˓(default: None)

Arguments:

<name> : Name of the action to only perform once.

parallel

The Storm parallel command allows you to execute a Storm query using a specified number of query pipelines. This
can improve performance for some queries.

See also background.

Syntax:

storm> parallel --help

Execute part of a query pipeline in parallel.
This can be useful to minimize round-trip delay during enrichments.

Examples:
inet:ipv4#foo | parallel { $place = $lib.import(foobar).lookup(:latlong) [␣

→˓:place=$place] }

NOTE: Storm variables set within the parallel query pipelines do not interact.

Usage: parallel [options] <query>

Options:

--help : Display the command usage.
--size <size> : The number of parallel Storm pipelines to execute.␣

→˓(default: 8)

Arguments:

<query> : The query to execute in parallel.

246 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

pkg

Storm includes pkg.* commands that allow you to work with Storm packages (see Package).

• pkg.list

• pkg.load

• pkg.del

• pkg.docs

• pkg.perms.list

Help for individual pkg.* commands can be displayed using:

<command> --help

Packages typically contain Storm commands and Storm library code used to implement a Storm Service.

pkg.list

The pkg.list command lists each Storm package loaded in the Cortex. Output is displayed in tabular form and
includes the package name and version information.

Syntax:

storm> pkg.list --help

List the storm packages loaded in the cortex.

Usage: pkg.list [options]

Options:

--help : Display the command usage.

pkg.load

The pgk.load command loads the specified package into the Cortex.

Syntax:

storm> pkg.load --help

Load a storm package from an HTTP URL.

Usage: pkg.load [options] <url>

Options:

--help : Display the command usage.
--raw : Response JSON is a raw package definition without an␣

→˓envelope.
--verify : Enforce code signature verification on the storm package.
--ssl-noverify : Specify to disable SSL verification of the server.

(continues on next page)

3.6. Storm Reference 247

Synapse Documentation, Release 2.141.0

(continued from previous page)

Arguments:

<url> : The HTTP URL to load the package from.

pkg.del

The pkg.del command removes a Storm package from the Cortex.

Syntax:

storm> pkg.del --help

Remove a storm package from the cortex.

Usage: pkg.del [options] <name>

Options:

--help : Display the command usage.

Arguments:

<name> : The name (or name prefix) of the package to remove.

pkg.docs

The pkg.docs command displays the documentation for a Storm package.

Syntax:

storm> pkg.docs --help

Display documentation included in a storm package.

Usage: pkg.docs [options] <name>

Options:

--help : Display the command usage.

Arguments:

<name> : The name (or name prefix) of the package.

248 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

pkg.perms.list

The pkg.perms.list command lists the permissions declared by a Storm package.

Syntax:

storm> pkg.perms.list --help

List any permissions declared by the package.

Usage: pkg.perms.list [options] <name>

Options:

--help : Display the command usage.

Arguments:

<name> : The name (or name prefix) of the package.

ps

Storm includes ps.* commands that allow you to work with Storm tasks/queries.

• ps.list

• ps.kill

Help for individual ps.* commands can be displayed using:

<command> --help

ps.list

The ps.list command lists the currently executing tasks/queries. By default, the command displays the first 120
characters of the executing query. The --verbose option can be used to display the full query regardless of length.

Syntax:

storm> ps.list --help

List running tasks in the cortex.

Usage: ps.list [options]

Options:

--help : Display the command usage.
--verbose : Enable verbose output.

3.6. Storm Reference 249

Synapse Documentation, Release 2.141.0

ps.kill

The ps.kill command can be used to terminate an executing task/query. The command requires the Iden of the task
to be terminated, which can be obtained with ps.list.

Syntax:

storm> ps.kill --help

Kill a running task/query within the cortex.

Usage: ps.kill [options] <iden>

Options:

--help : Display the command usage.

Arguments:

<iden> : Any prefix that matches exactly one valid process iden␣
→˓is accepted.

queue

Storm includes queue.* commands that allow you to work with queues (see Queue).

• queue.add

• queue.list

• queue.del

Help for individual queue.* commands can be displayed using:

<command> --help

queue.add

The queue.add command adds a queue to the Cortex.

Syntax:

storm> queue.add --help

Add a queue to the cortex.

Usage: queue.add [options] <name>

Options:

--help : Display the command usage.

Arguments:

<name> : The name of the new queue.

250 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

queue.list

The queue.list command lists each queue in the Cortex.

Syntax:

storm> queue.list --help

List the queues in the cortex.

Usage: queue.list [options]

Options:

--help : Display the command usage.

queue.del

The queue.del command removes a queue from the Cortex.

Syntax:

storm> queue.del --help

Remove a queue from the cortex.

Usage: queue.del [options] <name>

Options:

--help : Display the command usage.

Arguments:

<name> : The name of the queue to remove.

reindex

The reindex command is currently reserved for future use.

The intended purpose of this administrative command is to reindex a given node property. This may be necessary as
part of a manual data migration.

Note: Any changes to the Synapse data model are noted in the changelog for the relevant Synapse release. Changes
that require data migration are specifically noted and the data migration is typically performed automatically when
deploying the new version. See the Data Migration section of the Synapse Devops Guide for additional detail.

Syntax:

storm> reindex --help

(continues on next page)

3.6. Storm Reference 251

https://synapse.docs.vertex.link/en/latest/synapse/changelog.html

Synapse Documentation, Release 2.141.0

(continued from previous page)

Use admin privileges to re index/normalize node properties.

NOTE: Currently does nothing but is reserved for future use.

Usage: reindex [options]

Options:

--help : Display the command usage.

runas

The runas command allows you to execute a Storm query as a specified user.

Note: The runas commmand requires admin permisisons.

Syntax:

storm> runas --help

Execute a storm query as a specified user.

NOTE: This command requires admin privileges.

Examples:

// Create a node as another user.
runas someuser { [inet:fqdn=foo.com] }

Usage: runas [options] <user> <storm>

Options:

--help : Display the command usage.
--asroot : Propagate asroot to query subruntime.

Arguments:

<user> : The user name or iden to execute the storm query as.
<storm> : The storm query to execute.

252 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

scrape

The scrape command parses one or more secondary properties of the inbound node(s) and attempts to identify
(“scrape”) common forms from the content, creating the nodes if they do not already exist. This is useful (for ex-
ample) for extracting forms such as email addresses, domains, URLs, hashes, etc. from unstructured text.

The --refs switch can be used to optionally link the source nodes(s) to the scraped forms via refs light edges.

By default, the scrape command will return the nodes that it received as input. The --yield option can be used to
return the scraped nodes rather than the input nodes.

Syntax:

storm> scrape --help

Use textual properties of existing nodes to find other easily recognizable nodes.

Examples:

Scrape properties from inbound nodes and create standalone nodes.
inet:search:query | scrape

Scrape properties from inbound nodes and make refs light edges to the scraped␣
→˓nodes.

inet:search:query | scrape --refs

Scrape only the :engine and :text props from the inbound nodes.
inet:search:query | scrape :text :engine

Scrape properties inbound nodes and yield newly scraped nodes.
inet:search:query | scrape --yield

Skip re-fanging text before scraping.
inet:search:query | scrape --skiprefang

Limit scrape to specific forms.
inet:search:query | scrape --forms (inet:fqdn, inet:ipv4)

Usage: scrape [options] <values>

Options:

--help : Display the command usage.
--refs : Create refs light edges to any scraped nodes from the␣

→˓input node
--yield : Include newly scraped nodes in the output
--skiprefang : Do not remove de-fanging from text before scraping
--forms <forms> : Only scrape values which match specific forms. (default:␣

→˓[])

Arguments:

[<values> ...] : Specific relative properties or variables to scrape

3.6. Storm Reference 253

Synapse Documentation, Release 2.141.0

Example:

• Scrape the text of WHOIS records for the domain woot.com and create nodes for common forms found in the
text:

storm> inet:whois:rec:fqdn=woot.com | scrape :text
inet:whois:rec=('woot.com', '2018/05/22 00:00:00.000')

:asof = 2018/05/22 00:00:00.000
:fqdn = woot.com
:text = domain name: woot.com
.created = 2023/07/12 15:16:13.015

Usage Notes:

• If no properties to scrape are specified, scrape will attempt to scrape all properties of the inbound nodes by
default.

• scrape will only scrape node properties; it will not scrape files (this includes files that may be referenced by
properties, such as media:news:file). In other words, scrape cannot be used to parse indicators from a file
such as a PDF.

• scrape extracts the following forms / indicators (note that this list may change as the command is updated):

– FQDNs

– IPv4s

– Servers (IPv4 / port combinations)

– Hashes (MD5, SHA1, SHA256)

– URLs

– Email addresses

– Cryptocurrency addresses

• scrape is able to recognize and account for common “defanging” techniques (such as evildomain[.]com,
myemail[@]somedomain.net, or hxxp://badwebsite.org/), and will scrape “defanged” indicators by de-
fault. Use the --skiprefang switch to ignore defanged indicators.

service

Storm includes service.* commands that allow you to work with Storm services (see Service).

• service.add

• service.list

• service.del

Help for individual service.* commands can be displayed using:

<command> --help

254 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

service.add

The service.add command adds a Storm service to the Cortex.

Syntax:

storm> service.add --help

Add a storm service to the cortex.

Usage: service.add [options] <name> <url>

Options:

--help : Display the command usage.

Arguments:

<name> : The name of the service.
<url> : The telepath URL for the remote service.

service.list

The service.list command lists each Storm service in the Cortex.

Syntax:

storm> service.list --help

List the storm services configured in the cortex.

Usage: service.list [options]

Options:

--help : Display the command usage.

service.del

The service.del command removes a Storm service from the Cortex.

Syntax:

storm> service.del --help

Remove a storm service from the cortex.

Usage: service.del [options] <iden>

Options:

--help : Display the command usage.
(continues on next page)

3.6. Storm Reference 255

Synapse Documentation, Release 2.141.0

(continued from previous page)

Arguments:

<iden> : The service identifier or prefix.

sleep

The sleep command adds a delay in returning each result for a given Storm query. By default, query results are
streamed back and displayed as soon as they arrive for optimal performance. A sleep delay effectively slows the
display of results.

Syntax:

storm> sleep --help

Introduce a delay between returning each result for the storm query.

NOTE: This is mostly used for testing / debugging.

Example:

#foo.bar | sleep 0.5

Usage: sleep [options] <delay>

Options:

--help : Display the command usage.

Arguments:

<delay> : Delay in floating point seconds.

Example:

• Retrieve email nodes from a Cortex every second:

storm> inet:email | sleep 1.0
inet:email=bar@gmail.com

:fqdn = gmail.com
:user = bar
.created = 2023/07/12 15:16:13.991

inet:email=baz@gmail.com
:fqdn = gmail.com
:user = baz
.created = 2023/07/12 15:16:13.996

inet:email=foo@gmail.com
:fqdn = gmail.com
:user = foo
.created = 2023/07/12 15:16:13.984

256 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

spin

The spin command is used to suppress the output of a Storm query. Spin simply consumes all nodes sent to the
command, so no nodes are output to the CLI. This allows you to execute a Storm query and view messages and results
without displaying the associated nodes.

Syntax:

storm> spin --help

Iterate through all query results, but do not yield any.
This can be used to operate on many nodes without returning any.

Example:

foo:bar:size=20 [+#hehe] | spin

Usage: spin [options]

Options:

--help : Display the command usage.

Example:

• Add the tag #int.research to any domain containing the string “firefox” but do not display the nodes.

storm> inet:fqdn~=firefox [+#int.research] | spin

splice

Note: The Synapse splice.* commands are deprecated. The use of views (View) and layers (Layer) - in particular,
the ability to Fork a view to create a “scratch space” for changes which can then be merged or discarded - provides
greater flexiblity and granularity in managing data and discarding unwanted changes.

Storm includes splice.* commands that allow you to work with splices (see Splice).

• splice.list

• splice.undo

Splices are represented as runtime nodes (“runt nodes” - see Node, Runt) of the form syn:splice. These runt nodes
can be lifted and filtered just like standard nodes in a Cortex.

Help for individual splice.* commands can be displayed using:

<command> --help

3.6. Storm Reference 257

Synapse Documentation, Release 2.141.0

splice.list

splice.list is a deprecated command. splice.list allows you to list (view) splices in the splice log. By default,
splices are displayed starting with the most recent and working backwards through the log.

Syntax:

storm> splice.list --help

Deprecated command to retrieve a list of splices backwards from the end of the␣
→˓splicelog.

Examples:

Show the last 10 splices.
splice.list | limit 10

Show splices after a specific time.
splice.list --mintime "2020/01/06 15:38:10.991"

Show splices from a specific timeframe.
splice.list --mintimestamp 1578422719360 --maxtimestamp 1578422719367

Notes:

If both a time string and timestamp value are provided for a min or max,
the timestamp will take precedence over the time string value.

Usage: splice.list [options]

Options:

--help : Display the command usage.
--maxtimestamp <maxtimestamp>: Only yield splices which occurred on or before this␣

→˓timestamp. (default: None)
--mintimestamp <mintimestamp>: Only yield splices which occurred on or after this␣

→˓timestamp. (default: None)
--maxtime <maxtime> : Only yield splices which occurred on or before this time.

→˓ (default: None)
--mintime <mintime> : Only yield splices which occurred on or after this time.␣

→˓(default: None)

258 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

splice.undo

splice.undo is a deprecated command.. splice.undo allows a user with appropriate permissions to roll back or
undo the specified set of splices (changes).

Syntax:

storm> splice.undo --help

Deprecated command to reverse the actions of syn:splice runt nodes.

Examples:

Undo the last 5 splices.
splice.list | limit 5 | splice.undo

Undo splices after a specific time.
splice.list --mintime "2020/01/06 15:38:10.991" | splice.undo

Undo splices from a specific timeframe.
splice.list --mintimestamp 1578422719360 --maxtimestamp 1578422719367 | splice.

→˓undo

Usage: splice.undo [options]

Options:

--help : Display the command usage.
--force : Force delete nodes even if it causes broken references␣

→˓(requires admin).

tag

Storm includes tag.* commands that allow you to work with tags (see Tag).

• tag.prune

Help for individual tag.* commands can be displayed using:

<command> --help

See also the related movetag command.

3.6. Storm Reference 259

Synapse Documentation, Release 2.141.0

tag.prune

The tag.prune command will delete the tags from incoming nodes, as well as all of their parent tags that don’t have
other tags as children.

Syntax:

storm> tag.prune --help

Prune a tag (or tags) from nodes.

This command will delete the tags specified as parameters from incoming nodes,
as well as all of their parent tags that don't have other tags as children.

For example, given a node with the tags:

#parent
#parent.child
#parent.child.grandchild

Pruning the parent.child.grandchild tag would remove all tags. If the node had
the tags:

#parent
#parent.child
#parent.child.step
#parent.child.grandchild

Pruning the parent.child.grandchild tag will only remove the parent.child.grandchild
tag as the parent tags still have other children.

Examples:

Prune the parent.child.grandchild tag
inet:ipv4=1.2.3.4 | tag.prune parent.child.grandchild

Usage: tag.prune [options] <tags>

Options:

--help : Display the command usage.

Arguments:

[<tags> ...] : Names of tags to prune.

260 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

tee

The tee command executes multiple Storm queries on the inbound nodes and returns the combined result set.

Syntax:

storm> tee --help

Execute multiple Storm queries on each node in the input stream, joining output␣
→˓streams together.

Commands are executed in order they are given; unless the ``--parallel`` switch is␣
→˓provided.

Examples:

Perform a pivot out and pivot in on a inet:ivp4 node
inet:ipv4=1.2.3.4 | tee { -> * } { <- * }

Also emit the inbound node
inet:ipv4=1.2.3.4 | tee --join { -> * } { <- * }

Execute multiple enrichment queries in parallel.
inet:ipv4=1.2.3.4 | tee -p { enrich.foo } { enrich.bar } { enrich.baz }

Usage: tee [options] <query>

Options:

--help : Display the command usage.
--join : Emit inbound nodes after processing storm queries.
--parallel : Run the storm queries in parallel instead of sequence.␣

→˓The node output order is not guaranteed.

Arguments:

[<query> ...] : Specify a query to execute on the input nodes.

Examples:

• Return the set of domains and IP addresses associated with a set of DNS A records.

storm> inet:fqdn:zone=mydomain.com -> inet:dns:a | tee { -> inet:fqdn } { -> inet:ipv4 }
inet:fqdn=baz.mydomain.com

:domain = mydomain.com
:host = baz
:issuffix = false
:iszone = false
:zone = mydomain.com
.created = 2023/07/12 15:16:17.228

inet:ipv4=127.0.0.2
:type = loopback

(continues on next page)

3.6. Storm Reference 261

Synapse Documentation, Release 2.141.0

(continued from previous page)

.created = 2023/07/12 15:16:17.228
inet:fqdn=foo.mydomain.com

:domain = mydomain.com
:host = foo
:issuffix = false
:iszone = false
:zone = mydomain.com
.created = 2023/07/12 15:16:17.212

inet:ipv4=8.8.8.8
:type = unicast
.created = 2023/07/12 15:16:17.212

inet:fqdn=bar.mydomain.com
:domain = mydomain.com
:host = bar
:issuffix = false
:iszone = false
:zone = mydomain.com
.created = 2023/07/12 15:16:17.221

inet:ipv4=34.56.78.90
:type = unicast
.created = 2023/07/12 15:16:17.221

• Return the set of domains and IP addresses associated with a set of DNS A records along with the original DNS
A records.

storm> inet:fqdn:zone=mydomain.com -> inet:dns:a | tee --join { -> inet:fqdn } { ->␣
→˓inet:ipv4 }
inet:fqdn=baz.mydomain.com

:domain = mydomain.com
:host = baz
:issuffix = false
:iszone = false
:zone = mydomain.com
.created = 2023/07/12 15:16:17.228

inet:ipv4=127.0.0.2
:type = loopback
.created = 2023/07/12 15:16:17.228

inet:dns:a=('baz.mydomain.com', '127.0.0.2')
:fqdn = baz.mydomain.com
:ipv4 = 127.0.0.2
.created = 2023/07/12 15:16:17.228

inet:fqdn=foo.mydomain.com
:domain = mydomain.com
:host = foo
:issuffix = false
:iszone = false
:zone = mydomain.com
.created = 2023/07/12 15:16:17.212

inet:ipv4=8.8.8.8
:type = unicast
.created = 2023/07/12 15:16:17.212

inet:dns:a=('foo.mydomain.com', '8.8.8.8')
(continues on next page)

262 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

:fqdn = foo.mydomain.com
:ipv4 = 8.8.8.8
.created = 2023/07/12 15:16:17.212

inet:fqdn=bar.mydomain.com
:domain = mydomain.com
:host = bar
:issuffix = false
:iszone = false
:zone = mydomain.com
.created = 2023/07/12 15:16:17.221

inet:ipv4=34.56.78.90
:type = unicast
.created = 2023/07/12 15:16:17.221

inet:dns:a=('bar.mydomain.com', '34.56.78.90')
:fqdn = bar.mydomain.com
:ipv4 = 34.56.78.90
.created = 2023/07/12 15:16:17.221

Usage Notes:

• tee can take an arbitrary number of Storm queries (i.e., 1 to n queries) as arguments.

tree

The tree command recursively performs the specified pivot until no additional nodes are returned.

Syntax:

storm> tree --help

Walk elements of a tree using a recursive pivot.

Examples:

pivot upward yielding each FQDN
inet:fqdn=www.vertex.link | tree { :domain -> inet:fqdn }

Usage: tree [options] <query>

Options:

--help : Display the command usage.

Arguments:

<query> : The pivot query

Example:

• List the full set of tags in the “TTP” tag hierarchy.

3.6. Storm Reference 263

Synapse Documentation, Release 2.141.0

storm> syn:tag=ttp | tree { $node.value() -> syn:tag:up }
syn:tag=ttp

:base = ttp
:depth = 0
.created = 2023/07/12 15:16:17.358

syn:tag=ttp.phish
:base = phish
:depth = 1
:up = ttp
.created = 2023/07/12 15:16:17.369

syn:tag=ttp.phish.payload
:base = payload
:depth = 2
:up = ttp.phish
.created = 2023/07/12 15:16:17.369

syn:tag=ttp.opsec
:base = opsec
:depth = 1
:up = ttp
.created = 2023/07/12 15:16:17.358

syn:tag=ttp.opsec.anon
:base = anon
:depth = 2
:up = ttp.opsec
.created = 2023/07/12 15:16:17.358

syn:tag=ttp.se
:base = se
:depth = 1
:up = ttp
.created = 2023/07/12 15:16:17.364

syn:tag=ttp.se.masq
:base = masq
:depth = 2
:up = ttp.se
.created = 2023/07/12 15:16:17.364

Usage Notes:

• tree is useful for “walking” a set of properties with a single command vs. performing an arbitrary number of
pivots until the end of the data is reached.

trigger

Note: See the Storm Reference - Automation guide for additional background on triggers (as well as cron jobs and
macros), including examples.

Storm includes trigger.* commands that allow you to create automated event-driven triggers (see Trigger) using the
Storm query syntax.

• trigger.add

• trigger.list

264 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

• trigger.mod

• trigger.disable

• trigger.enable

• trigger.del

Help for individual trigger.* commands can be displayed using:

<command> --help

Triggers are added to the Cortex as runtime nodes (“runt nodes” - see Node, Runt) of the form syn:trigger. These
runt nodes can be lifted and filtered just like standard nodes in Synapse.

trigger.add

The trigger.add command adds a trigger to a Cortex.

Syntax:

storm> trigger.add --help

Add a trigger to the cortex.

Notes:
Valid values for condition are:

* tag:add
* tag:del
* node:add
* node:del
* prop:set

When condition is tag:add or tag:del, you may optionally provide a form name
to restrict the trigger to fire only on tags added or deleted from nodes of
those forms.

The added tag is provided to the query as an embedded variable '$tag'.

Simple one level tag globbing is supported, only at the end after a period,
that is aka.* matches aka.foo and aka.bar but not aka.foo.bar. aka* is not
supported.

Examples:
Adds a tag to every inet:ipv4 added
trigger.add node:add --form inet:ipv4 --query {[+#mytag]}

Adds a tag #todo to every node as it is tagged #aka
trigger.add tag:add --tag aka --query {[+#todo]}

Adds a tag #todo to every inet:ipv4 as it is tagged #aka
trigger.add tag:add --form inet:ipv4 --tag aka --query {[+#todo]}

Usage: trigger.add [options] <condition>
(continues on next page)

3.6. Storm Reference 265

Synapse Documentation, Release 2.141.0

(continued from previous page)

Options:

--help : Display the command usage.
--form <form> : Form to fire on.
--tag <tag> : Tag to fire on.
--prop <prop> : Property to fire on.
--query <storm> : Query for the trigger to execute.
--async : Make the trigger run in the background.
--disabled : Create the trigger in disabled state.
--name <name> : Human friendly name of the trigger.

Arguments:

<condition> : Condition for the trigger.

trigger.list

The trigger-list command displays the set of triggers in the Cortex that the current user can view / modify based
on their permissions. Triggers are displayed at the Storm CLI in tabular format, with columns including the user who
created the trigger, the Iden of the trigger, the condition that fires the trigger (i.e., node:add), and the Storm query
associated with the trigger.

Triggers are displayed in alphanumeric order by iden. Triggers are sorted upon Cortex initialization, so newly-created
triggers will be displayed at the bottom of the list until the list is re-sorted the next time the Cortex is restarted.

Note: Triggers can also be viewed in runt node form as syn:trigger nodes.

Syntax:

storm> trigger.list --help

List existing triggers in the cortex.

Usage: trigger.list [options]

Options:

--help : Display the command usage.

trigger.mod

The trigger.mod command modifies the Storm query associated with a specific trigger. To modify a trigger, you
must provide the first portion of the trigger’s iden (i.e., enough of the iden that the trigger can be uniquely identified),
which can be obtained using trigger.list or by lifting the appropriate syn:trigger node.

Note: Other aspects of the trigger, such as the condition used to fire the trigger or the tag or property associated with
the trigger, cannot be modified once the trigger has been created. To change these aspects, you must delete and re-add

266 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

the trigger.

Syntax:

storm> trigger.mod --help

Modify an existing trigger's query.

Usage: trigger.mod [options] <iden> <query>

Options:

--help : Display the command usage.

Arguments:

<iden> : Any prefix that matches exactly one valid trigger iden␣
→˓is accepted.
<query> : New storm query for the trigger.

trigger.disable

The trigger.disable command disables a trigger and prevents it from firing without removing it from the Cortex.
To disable a trigger, you must provide the first portion of the trigger’s iden (i.e., enough of the iden that the trigger can
be uniquely identified), which can be obtained using trigger.list or by lifting the appropriate syn:trigger node.

Syntax:

storm> trigger.disable --help

Disable a trigger in the cortex.

Usage: trigger.disable [options] <iden>

Options:

--help : Display the command usage.

Arguments:

<iden> : Any prefix that matches exactly one valid trigger iden␣
→˓is accepted.

3.6. Storm Reference 267

Synapse Documentation, Release 2.141.0

trigger.enable

The trigger-enable command enables a disabled trigger. To enable a trigger, you must provide the first portion
of the trigger’s iden (i.e., enough of the iden that the trigger can be uniquely identified), which can be obtained using
trigger.list or by lifting the appropriate syn:trigger node.

Note: Triggers are enabled by default upon creation.

Syntax:

storm> trigger.enable --help

Enable a trigger in the cortex.

Usage: trigger.enable [options] <iden>

Options:

--help : Display the command usage.

Arguments:

<iden> : Any prefix that matches exactly one valid trigger iden␣
→˓is accepted.

trigger.del

The trigger.del command permanently removes a trigger from the Cortex. To delete a trigger, you must provide
the first portion of the trigger’s iden (i.e., enough of the iden that the trigger can be uniquely identified), which can be
obtained using trigger.list or by lifting the appropriate syn:trigger node.

Syntax:

storm> trigger.del --help

Delete a trigger from the cortex.

Usage: trigger.del [options] <iden>

Options:

--help : Display the command usage.

Arguments:

<iden> : Any prefix that matches exactly one valid trigger iden␣
→˓is accepted.

268 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

uniq

The uniq command removes duplicate results from a Storm query. Results are uniqued based on each node’s node
identifier (node ID / iden) so that only the first node with a given node ID is returned.

Syntax:

storm> uniq --help

Filter nodes by their uniq iden values.
When this is used a Storm pipeline, only the first instance of a
given node is allowed through the pipeline.

A relative property or variable may also be specified, which will cause
this command to only allow through the first node with a given value for
that property or value rather than checking the node iden.

Examples:

Filter duplicate nodes after pivoting from inet:ipv4 nodes tagged with
→˓#badstuff

#badstuff +inet:ipv4 ->* | uniq

Unique inet:ipv4 nodes by their :asn property
#badstuff +inet:ipv4 | uniq :asn

Usage: uniq [options] <value>

Options:

--help : Display the command usage.

Arguments:

[value] : A relative property or variable to uniq by.

Examples:

• Lift all of the unique IP addresses that domains associated with the Fancy Bear threat group have resolved to:

storm> inet:fqdn#rep.threatconnect.fancybear -> inet:dns:a -> inet:ipv4 | uniq
inet:ipv4=111.90.148.124

:type = unicast
.created = 2023/07/12 15:16:17.635

inet:ipv4=209.99.40.222
:type = unicast
.created = 2023/07/12 15:16:17.645

inet:ipv4=141.8.224.221
:type = unicast
.created = 2023/07/12 15:16:17.654

3.6. Storm Reference 269

Synapse Documentation, Release 2.141.0

uptime

The uptime command displays the uptime for the Cortex or specified service.

Syntax:

storm> uptime --help

Print the uptime for the Cortex or a connected service.

Usage: uptime [options] <name>

Options:

--help : Display the command usage.

Arguments:

[name] : The name, or iden, of the service (if not provided␣
→˓defaults to the Cortex).

version

The version command displays the current version of Synapse and associated metadata.

Syntax:

storm> version --help

Show version metadata relating to Synapse.

Usage: version [options]

Options:

--help : Display the command usage.

view

Storm includes view.* commands that allow you to work with views (see View).

• view.add

• view.fork

• view.set

• view.get

• view.list

• view.exec

• view.merge

• view.del

270 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Help for individual view.* commands can be displayed using:

<command> --help

view.add

The view.add command adds a view to the Cortex.

Syntax:

storm> view.add --help

Add a view to the cortex.

Usage: view.add [options]

Options:

--help : Display the command usage.
--name <name> : The name of the new view. (default: None)
--layers [<layers> ...] : Layers for the view. (default: [])

view.fork

The view.fork command forks an existing view from the Cortex. Forking a view creates a new view with a new
writeable layer on top of the set of layers from the previous (forked) view.

Syntax:

storm> view.fork --help

Fork a view in the cortex.

Usage: view.fork [options] <iden>

Options:

--help : Display the command usage.
--name <name> : Name for the newly forked view. (default: None)

Arguments:

<iden> : Iden of the view to fork.

3.6. Storm Reference 271

Synapse Documentation, Release 2.141.0

view.set

The view.set command sets a property on the specified view.

Syntax:

storm> view.set --help

Set a view option.

Usage: view.set [options] <iden> <name> <valu>

Options:

--help : Display the command usage.

Arguments:

<iden> : Iden of the view to modify.
<name> : The name of the view property to set.
<valu> : The value to set the view property to.

view.get

The view.get command retrieves an existing view from the Cortex.

Syntax:

storm> view.get --help

Get a view from the cortex.

Usage: view.get [options] <iden>

Options:

--help : Display the command usage.

Arguments:

[iden] : Iden of the view to get. If no iden is provided, the␣
→˓main view will be returned.

272 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

view.list

The view.list command lists the views in the Cortex.

Syntax:

storm> view.list --help

List the views in the cortex.

Usage: view.list [options]

Options:

--help : Display the command usage.

view.exec

The view.exec command executes a Storm query in the specified view.

Syntax:

storm> view.exec --help

Execute a storm query in a different view.

NOTE: Variables are passed through but nodes are not

Examples:

// Move some tagged nodes to another view
inet:fqdn#foo.bar $fqdn=$node.value() | view.exec␣

→˓95d5f31f0fb414d2b00069d3b1ee64c6 { [inet:fqdn=$fqdn] }

Usage: view.exec [options] <view> <storm>

Options:

--help : Display the command usage.

Arguments:

<view> : The GUID of the view in which the query will execute.
<storm> : The storm query to execute on the view.

3.6. Storm Reference 273

Synapse Documentation, Release 2.141.0

view.merge

The view.merge command merges all data from a forked view into its parent view.

Contrast with merge which can merge a subset of nodes.

Syntax:

storm> view.merge --help

Merge a forked view into its parent view.

Usage: view.merge [options] <iden>

Options:

--help : Display the command usage.
--delete : Once the merge is complete, delete the layer and view.

Arguments:

<iden> : Iden of the view to merge.

view.del

The view.del command permanently deletes a view from the Cortex.

Syntax:

storm> view.del --help

Delete a view from the cortex.

Usage: view.del [options] <iden>

Options:

--help : Display the command usage.

Arguments:

<iden> : Iden of the view to delete.

wget

The wget command retrieves content from one or more specified URLs. The command creates and yields
inet:urlfile nodes and the retrieved content (file:bytes) is stored in the Axon.

Syntax:

storm> wget --help

Retrieve bytes from a URL and store them in the axon. Yields inet:urlfile nodes.
(continues on next page)

274 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

Examples:

Specify custom headers and parameters
inet:url=https://vertex.link/foo.bar.txt | wget --headers $lib.dict("User-Agent"=

→˓"Foo/Bar") --params $lib.dict("clientid"="42")

Download multiple URL targets without inbound nodes
wget https://vertex.link https://vtx.lk

Usage: wget [options] <urls>

Options:

--help : Display the command usage.
--no-ssl-verify : Ignore SSL certificate validation errors.
--timeout <timeout> : Configure the timeout for the download operation.␣

→˓(default: 300)
--params <params> : Provide a dict containing url parameters. (default: None)
--headers <headers> : Provide a Storm dict containing custom request headers.␣

→˓(default:
{ 'Accept': '*/*',

'Accept-Encoding': 'gzip, deflate',
'Accept-Language': 'en-US,en;q=0.9',
'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) '

'AppleWebKit/537.36 (KHTML, like Gecko) '
'Chrome/92.0.4515.131 Safari/537.36'})

--no-headers : Do NOT use any default headers.

Arguments:

[<urls> ...] : URLs to download.

3.6.11 Storm Reference - Automation

Background

Synapse is designed to support large-scale analysis over disparate data sources with speed and efficiency. Many features
that support this analysis are built into Synapse’s architecture, from performance-optimized indexing and storage to an
extensible data model that allows you to reason over data in a structured manner.

Synapse also supports large-scale analysis through the use of automation. Synapse’s automation features include:

• Triggers and Cron

• Macros

• Dmons

Automation in Synapse provides significant advantages. It relieves analysts from performing tedious work, freeing
them to focus on more detailed analysis and complex tasks. It also allows you to scale analytical operations by limiting
the amount of work that must be performed manually.

3.6. Storm Reference 275

Synapse Documentation, Release 2.141.0

Automation in Synapse uses the Storm query language. This means that anything that can be written in Storm can be
automated, from the simple to the more advanced. Actions performed via automation are limited only by imagination
and Storm proficiency. Some automation is fairly basic (“if X occurs, do Y” or “once a week, update Z”). However,
automation can take advantage of all available Storm features, including subqueries, variables, libraries, control flow
logic, and so on.

Considerations

This section is not meant as a detailed guide on implementing automation. A few items are listed here for consideration
when planning the use of automation in your environment.

Permissions

Permissions impact the use of automation in Synapse in various ways. In some cases, you must explicitly grant per-
mission for users to create and manage automation. In other cases, the permissions that a given automated task runs
under may vary based on the type of automation used. See the relevant sections below for additional detail.

Scope

Automation components vary with respect to where they reside and execute within Synapse; some elements are global
(within a Cortex) while some reside and execute within a specific View, which may impact organizations that use
multiple views and / or use Synapse’s ability to Fork a view and later merge or delete it. See the relevant sections below
for additional detail.

Testing

Automation should always be tested before being placed into production. Storm used in automation can be syntactically
correct (uses proper Storm), but contain logical errors (fail to do what you want it to do). Similarly, new automation
may interact with existing automation in unexpected ways. Test your automation in a development environment (either
a separate development instance, or a separate Fork of your production view) before implementing it in production.

Use Cases

Organizations can implement automation as they see fit. Some automation may be enterprise-wide, used to support
an organization’s overall mission or analysis efforts. Other automation may be put in place by individual analysts to
support their own research efforts, either on an ongoing or temporary basis.

Design

There are varying approaches for “how” to write and implement automation. For example:

• Individual triggers and cron jobs can be kept entirely separate from one another, each executing their own ded-
icated Storm code. This approach helps keep automation “self-contained” and means the Storm executed by a
given trigger or cron job is directly introspectable via Storm itself (as a property of syn:trigger or syn:cron
nodes). However, it may provide less flexibility in executing the associated Storm compared with the use of
macros.

Alternatively, tasks such as triggers and cron jobs can be written to execute minimal Storm queries whose purpose
is to call more extensive Storm stored centrally in macros. This approach consolidates much of the associated

276 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Storm, which may make it easier to manage and maintain. Storm placed in macros also provides flexibility as
the macro can be called by a trigger, a cron job, or a user as part of a Storm query.

• Automation can be written as many small, individual elements. Each element can perform a relatively simple
task, but the elements can work together like building blocks to orchestrate larger-scale operations. This approach
keeps tasks “bite sized” and the Storm executed by a given piece of automation generally simpler. However it may
result in a larger number of automation elements to maintain, and may make it more challenging to understand
the potential interactions of so many different elements.

Alternatively, automation can be implemented using fewer elements that perform larger, more unified tasks (or
that consolidate numerous smaller tasks). This approach results in fewer automation elements overall, but typ-
ically requires you to write and maintain more advanced Storm (e.g., to create a small number of macros with
switch or if/else statements to each manage a variety of tasks). However, the Storm is consolidated in a few
locations, which may make managing and troubleshooting easier.

Each approach has its pros and cons; there is no single “right” way, and what works best in your environment or for a
particular task will depend on your needs (and possibly some trial and error).

Governance / Management

Consider any oversight or approval processes that you may need in order to implement and manage automation effec-
tively in your environment. A number of automation use cases may require coordination or deconfliction:

• Where multiple users have the ability to create automated tasks, it is possible for them to create duplicative
or even conflicting automation. Consider who should be repsonsible for deconflicting automation to mitigate
against these effects.

• Automation is often used to enrich indicators (i.e., query various third-party APIs to pull in more data related to
a node). Some third-party APIs may impose query limits, may be subject to a license or subscription fee, or both.
Consider how to balance effective use of automation without overusing or exceeding any applicable quotas.

• Some automation may be used to apply tags to nodes or “push” tags from one node to related nodes - effectively
automating the process of making an analytical assertion. Consider carefully under what circumstances this
should be automated, and who should review or approve the analysis logic used to make the assertion.

Existing Synapse features will help mitigate some of these potential issues. For example, if you inadvertently create
looping or recursive automation, it will eventually reach Synapse’s recursion limit and error / halt (with the only bad
effect being that the automation may only partially complete). In addition, Vertex-provided Synapse Power-Ups (see
Power-Up) are written to optimize third-party API use where possible (e.g., by caching responses or by checking
whether Synapse already has a copy of a file before attempting to download it from an external source). However, it is
a good idea to decide on any internal controls that are necessary to ensure automation works well in your organization.

Nodes In and Nodes Out

In cases where automation operates on nodes (the most common scenario), either the automation itself or any Storm
executed after the automation may fail if the inbound nodes (that is, the current nodes in the Storm pipeline) are not
what is expected by the query.

Users should keep the Storm Operating Concepts in mind when writing automation.

3.6. Storm Reference 277

Synapse Documentation, Release 2.141.0

Triggers and Cron

Triggers and cron are similar in terms of how they are implemented and managed.

• Permissions. Synapse uses permissions to determine who can create, modify, and delete triggers and cron jobs.
These permissions must be explicitly granted to users and/or roles.

• Execution. Both triggers and cron jobs execute with the permissions of the user who creates them. A trigger
or cron job can only perform actions that their creator has permissions to perform.

• Introspection. Triggers and cron jobs are created as runtime nodes (“runt nodes”) in Synapse (syn:trigger
and syn:cron nodes, respectively).

• Scope. Both triggers and cron jobs run within a specific view. Synapse allows the optional segregation of data
in a Cortex into multiple layers (Layer) that can be “stacked” to provide a unified View of data to users. You
must specify the particular view in which each trigger or cron job runs.

Note: This view-specific behavior is transparent when using a simple Synapse implementation consisting of a
single Cortex with a single layer and a single view (Synapse’s default configuration).

In environments with multiple views, and in particular where users may frequently Fork a view) you should take
this view-specific behavior into account. Key considerations include determining where (in which view) triggers
and cron jobs should reside, and understanding what happens when you merge or delete a view that contains
triggers or cron jobs (discussed in more detail in the appropriate sections below).

Triggers

Triggers are event-driven automation. As their name implies, they trigger (“fire”) their associated Storm when specific
events occur in Synapse’s data store.

Triggers can fire on the following events:

• Adding a node (node:add)

• Deleting a node (node:del)

• Setting (or modifying) a property (prop:set)

• Adding a tag to a node (tag:add)

• Deleting a tag from a node (tag:del)

Each event requires an object (a form, property, or tag) to act upon - that is, if you write a trigger to fire on a node:add
event, you must specify the type of node (form) associated with the event. Similarly, if a trigger should fire on a
tag:del event, you must specify the tag whose removal fires the trigger.

tag:add and tag:del events can take an optional form; this allows you to specify that a trigger should fire when a
given tag is added (or removed) from a specific form as opposed to any / all forms.

Note: The node(s) that cause a trigger to fire are considered inbound to the Storm executed by the trigger.

278 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Example Use Cases

Triggers execute immediately when their associated event occurs; the automation occurs in real time as opposed to
waiting for a scheduled cron job to execute (or for an analyst to manually perform some task). As such, triggers are
most appropriate for automating tasks that should occur right away (e.g., based on efficiency or importance). Example
use cases for triggers include:

• Performing enrichment. Tags are often used to indicate that a node is “interesting” in some way; if a node
is “interesting” we commonly want to know more about it. When an “interesting” tag is applied (tag:add), a
trigger can execute Storm commands that immediately collect additional data about the node from various Storm
services or Power-Ups.

• Applying assessments. You may be able to encode the logic you use to apply a tag into Storm. As a simple
example, you have identified an IPv4 address as a sinkhole. When a DNS A node (inet:dns:a) is created
where the associated IPv4 (:ipv4 property) is the IP of the sinkhole (prop:set), a trigger can automatically tag
the associated FQDN as sinkholed. If you want an analyst to confirm the assessment (vs. applying it in a fully
automated fashion), you can apply a “review” tag instead.

• “Pushing” tags. Analysts may identify cases where, when they tag a particular node, they consistently also want
to tag a set of “related” nodes. For example, if they tag a file:bytes node (as malicious, or as associated with
a particular threat group) they may always want to tag the associated hashes (hash:md5, etc.) as well. Or, if
a file:bytes node queries a “known bad” FQDN (via an inet:dns:request node), apply the tag from the
FQDN to both the DNS request and the file.

Usage Notes

• Users must be granted permissions in order to be able to work with triggers (i.e., to execute the associated
trigger.* Storm commands).

• Triggers execute with the permissions of the user who created the trigger. If a trigger calls a macro, the macro
will execute with the permissions of the trigger (macros execute with the permissions of the calling user).

Note: Once a trigger is created, it will execute automatically when the specified event occurs. This means
that while the trigger runs with the permissions of its creator, it is possible for lower-privileged users change
Synapse’s data (e.g., by creating a node or applying a tag) in a way that causes the trigger to fire and execute as
the higher-privileged user.

This is by design; triggers should be used for automation tasks that you always want to occur, regardless of the
user (or process) that generates the condition that fires the trigger.

• Triggers fire immediately when their associated event occurs. However, they only execute when that event occurs.
This means:

– Triggers do not operate retroactively on existing data. If you write a new trigger to fire when the tag my.tag
is applied to a hash:md5 node, the trigger will have no effect on existing hash:md5 nodes that already have
the tag.

– If a trigger depends on a resource (process, service, etc.) that is not available when it fires, the trigger will
simply fail; it will not “try again”.

• By default, triggers execute inline. When a process (typically a Storm query) causes a trigger to fire, the Storm
associated with the trigger will run immediately and in full. Conceptually, it is as though all of the trigger’s
Storm code and any additional Storm that it calls (such as a macro) are inserted into the middle of the original
Storm query that fired the trigger, and executed as part of that query.

3.6. Storm Reference 279

Synapse Documentation, Release 2.141.0

Warning: This inline execution can impact your query’s performance, depending on the Storm executed
by the trigger and the number of nodes causing the trigger to fire. The --async option can be used when
creating a trigger to specify that the trigger should run in the background as opposed to inline. This will cause
the trigger event to be stored in a persistent queue, which will then be consumed automatically by the Cortex.

As an example, you are reviewing a whitepaper on a new threat group that includes 800 indicators of com-
promise reportedly associated with the group. You tag all of the indicators, which fires a trigger to “enrich”
those indicators from multiple third-party APIs and results in the creation of dozens of new nodes for each
indicator enriched. This tag-and-enrich process is executed inline for each of the 800 indicators, which can
slow or appear to “block” the original query you ran in order to apply the tags.

If the trigger is created as an async trigger to run in the background, the query to apply the tags will finish
quickly. This allows you to continue working while the associated enrichment completes in the background.

• Triggers are view-specific - they both reside and execute within a particular View. This has implications for
environments that use multiple views or that regularly Fork and later merge or delete views. For example:

– Triggers that reside in a base view will not fire on changes made to a view that is forked from the base. The
trigger will fire when any relevant changes from the fork are merged (written) to the base view.

– Triggers that are created in a forked view are deleted by default when you merge or delete the fork. If you
want to retain any triggers created in the fork, you must explicitly move them into the base view prior to
merging or deleting the fork.

• When viewing triggers (i.e., with the trigger.list command), Synapse returns only those triggers in your current
view.

• In some cases proper trigger execution may depend on the timing and order of events with respect to creating
nodes, setting properties, and so on. For example, you may write a trigger based on a node:add action that
fails to perform as expected because you actually need the trigger to fire on a prop:set operation. The detailed
technical aspects of Synapse write operations are beyond the scope of this discussion; as always it is good practice
to test triggers (or other automation) before putting them into production.

• Creating a trigger will create an associated syn:trigger runtime node (runt node). While runt nodes (Runt
Node) are typically read-only, syn:trigger nodes include :name and :doc secondary properties that can be set
and modified via Storm (or configured via Optic). This allows you to manage triggers by giving them meaningful
names and descriptions. Changes to these properties will persist even after a Cortex restart.

• syn:trigger nodes can be lifted, filtered, and pivoted across just like other nodes. However, they cannot be
created or modified (e.g., using Storm’s data modification / edit syntax) except in the limited ways described
above.

• The creator (owner) of a trigger can be modified (with appropriate permissions) using the Storm $lib.trigger
library and stormprims-storm-trigger-f527 primitive. For example:

$trigger=$lib.trigger.get(<trigger_iden>) $trigger.set(user, <new_user_iden>)

280 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Variables

Triggers automatically have the Storm variable $auto populated when they run. The $auto variable is a dictionary
which contains the following keys:

$auto.iden
The identifier of the Trigger.

$auto.type
The type of automation. For a trigger this value will be trigger.

$auto.opts
Dictionary containing trigger-specific runtime information. This includes the following keys:

$auto.opts.form
The form of the triggering node.

$auto.opts.propfull
The full name of the property that was set on the node. Only present on prop:set
triggers.

$auto.opts.propname
The relative name of the property that was set on the node. Does not include a leading
:. Only present on prop:set triggers.

$auto.opts.tag
The tag which caused the trigger to fire. Only present on tag:add and tag:del trig-
gers.

$auto.opts.valu
The value of the triggering node.

Syntax

Triggers are created, modified, viewed, enabled, disabled, and deleted using the Storm trigger.* commands. See
the trigger command in the Storm Reference - Storm Commands document for details.

In Optic, triggers can also be managed through either the Admin Tool or the Workspaces Tool.

Note: Once a trigger is created, you can modify many of its properties (such as its name and description, or the Storm
associated with the trigger). However, you cannot modify the trigger conditions (e.g., the type of event that fires the
trigger, or the form a trigger operates on). To change those conditions, you must delete and re-create the trigger.

Examples

In the examples below, we show the command to create (add) the specified trigger.

For illustrative purposes, in the first example the newly created trigger is displayed using the trigger.list command
and then by lifting the associated syn:trigger runtime (“runt”) node.

• Add a trigger that fires when an inet:whois:email node is created. If the email address is associated with
a privacy-protected registration service (e.g., the email address is tagged whois.private), then also tag the
inet:whois:email node.

3.6. Storm Reference 281

Synapse Documentation, Release 2.141.0

storm> trigger.add --name "tag privacy protected inet:whois:email" node:add --form␣
→˓inet:whois:email --query { +{ -> inet:email +#whois.private } [+#whois.private] }
Added trigger: 9a007c0c689c7dd5a360d3c8662e3e7b

Newly created trigger via trigger.list:

storm> trigger.list
user iden en? async? cond object ␣
→˓ storm query
root 9a007c0c689c7dd5a360d3c8662e3e7b true false node:add inet:whois:email ␣
→˓ +{ -> inet:email +#whois.private } [+#whois.private]

The output of trigger.list contains the following columns:

• The username used to create the trigger.

• The trigger’s identifier (iden).

• Whether the trigger is currently enabled or disabled.

• Whether the trigger will run asynchronously / in the background.

• The condition that causes the trigger to fire.

• The object that the condition operates on, if any.

• The tag or tag expression used by the condition (for tag:add or tag:del conditions only).

• The query to be executed when the trigger fires.

Newly created trigger as a syn:trigger node:

storm> syn:trigger
syn:trigger=9a007c0c689c7dd5a360d3c8662e3e7b

:cond = node:add
:doc =
:enabled = true
:form = inet:whois:email
:name = tag privacy protected inet:whois:email
:storm = +{ -> inet:email +#whois.private } [+#whois.private]
:user = 544a04c71a8c4f48a31e9758cb1295a2
:vers = 1

• Add a trigger that fires when the :exe property of an inet:dns:request node is set. Check to see whether the
queried FQDN is malicious; if so, tag the associated file:bytes node for analyst review.

storm> trigger.add --name "tag file:bytes for review" prop:set --prop␣
→˓inet:dns:request:exe --query { +{ :query:name -> inet:fqdn +#malicious } :exe ->␣
→˓file:bytes [+#review] }
Added trigger: fdfe2be43d5a4b1f499ba0cd01a23050

• Add a trigger that fires when the tag cno.ttp.phish.payload is applied to a file:bytes node (indicating
that a file was an attachment to a phishing email). Use the trigger to also apply the tag attack.t1566.001
(representing the MITRE ATT&CK technique “Spearphishing Attachment”).

storm> trigger.add --name "tag phish attachment with #attack.t1566.001" tag:add --form␣
→˓file:bytes --tag cno.ttp.phish.payload --query { [+#attack.t1566.001] }
Added trigger: ed6759ce8cf271d5ff5fc670a8b97cb9

282 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

• Add a trigger that fires when the tag osint (indicating that the node was listed as a malicious indicator in public
reporting) is applied to any node. The trigger should call (execute) a macro called enrich. The macro contains
a Storm query that uses a switch case to call the appropriate Storm commands based on the tagged node’s form
(e.g., perform different enrichment / call different third-party services based on whether the node is an FQDN,
an IPv4, an email address, a URL, etc.).

storm> trigger.add --name "enrich osint" tag:add --tag osint --query { | macro.exec␣
→˓enrich }
Added trigger: cdcae880d7f459abb08bee5f847379f9

Cron

Cron jobs in Synapse are similar to the well-known cron utility. Where triggers are event-driven, cron jobs are time /
schedule based. Cron jobs can be written to execute once or on a recurring schedule. When creating a cron job, you
must specify the job’s schedule and the Storm to be executed.

Note: When scheduling cron jobs, Synapse interprets all times as UTC.

Example Use Cases

Because cron jobs are scheduled, they are most appropriate for automating routine, non-urgent tasks; maintenance
tasks; or resource-intensive tasks that should run during off-hours.

• Data ingest. Cron jobs can be used to ingest / synchronize data that you want to load into Synapse on a regular
basis. For example, you can create a cron job to retrieve and load a list of TOR exit nodes every hour.

• Housekeeping. You created a trigger to automatically look up and apply geolocation and autonomous system
(AS) properties to IPv4 nodes when they are created in Synapse. However, you already have a large number of
IPv4 nodes that existed before the trigger was added. You can create a one-time cron job to retrieve and “backfill”
this information for IPv4s that already exist.

• Process intensive jobs. Data enrichment may be resource intensive where it generates a significant number of
write operations. If you reguarly perform routine (non-urgent) enrichment, it can be scheduled to run when it
will have less impact on users.

Usage Notes

• Users must be granted permissions in order to be able to work with cron jobs (i.e., to execute the associated
cron.* Storm commands).

• Cron jobs execute with the permissions of the user who created the job. If a cron job calls a macro, the macro
will execute with the permissions of the cron job (macros execute with the permissions of the calling user).

• Cron jobs reside in the Cortex but execute within a particular View. This has implications for environments that
use multiple views or that regularly Fork and later merge or delete views. For example:

– Cron jobs that execute in a forked view are “orphaned” when you merge or delete the fork. The jobs will
remain in Synapse (because they reside in the Cortex), but will not execute because they are not assigned
to a view. You must assign the jobs to a new view for them to run (or delete them if no longer needed).

• When viewing cron jobs (i.e., with the cron.list command), Synapse returns all cron jobs in the Cortex, regard-
less of the view the job executes in.

3.6. Storm Reference 283

Synapse Documentation, Release 2.141.0

• Cron jobs are exclusive - if for some reason a job has not finished executing before its next scheduled start, the
original job will run to completion and the “new” job will be skipped.

• Creating a cron job will create an associated syn:cron runtime node (runt node). While runt nodes (Runt Node)
are typically read-only, syn:cron nodes include :name and :doc secondary properties that can be set and
modified via Storm (or configured via Optic). This allows you to manage cron jobs by giving them meaningful
names and descriptions. Changes to these properties will persist even after a Cortex restart.

• syn:cron nodes can be lifted, filtered, and pivoted across just like other nodes. However, they cannot be created
or modified (e.g., using Storm’s data modification / edit syntax) except in the limited ways described above.

• The creator (owner) of a cron job can be modified (with appropriate permissions) using the Storm $lib.cron
library and stormprims-storm-cronjob-f527 primitive. For example:

$cron=$lib.cron.get(<cron_iden>) $cron.set(creator, <new_creator_iden>)

Variables

Cron jobs automatically have the Storm variable $auto populated when they run. The $auto variable is a dictionary
which contains the following keys:

$auto.iden
The identifier of the cron job.

$auto.type
The type of automation. For a cron job this value will be cron.

Syntax

Cron jobs are created, modified, viewed, enabled, disabled, and deleted using the Storm cron.* commands. See the
cron command in the Storm Reference - Storm Commands document for details.

In Optic, cron jobs can also be managed through the Admin Tool.

Note: Once a cron job is created, you can modify many of its properties (such as its name and description, or the
Storm associated with the job). However, you cannot modify other aspects of the job, such as its schedule. To change
those conditions, you must delete and re-create the cron job.

Examples

In the examples below, we show the command to create (add) the specified cron job.

For illustrative purposes, in the first example the newly created cron job is then displayed using the cron.list com-
mand and by lifting the associated syn:cron runtime (“runt”) node.

• Add a one-time / non-recurring cron job to run at 7:00 PM to create the RFC1918 IPv4 addresses in the
172.16.0.0/16 range.

storm> cron.at --hour 19 { [inet:ipv4=172.16.0.0/16] }
Created cron job: d1e1c17c587a2b66f61f7583d9d20370

Newly created cron job via cron.list:

284 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

storm> cron.list
user iden view en? rpt? now? err? # start last start last end ␣
→˓ query
root d1e1c17c.. ecb8fbbf.. Y N N 0 Never Never ␣
→˓ [inet:ipv4=172.16.0.0/16]

The output of cron.list contains the following columns:

• The username used to create the job.

• The first eight characters of the job’s identifier (iden).

• The view the cron job resides in. Note that for “orphaned” cron jobs, this will be the job’s last view (before it
was orphaned).

• Whether the job is currently enabled or disabled.

• Whether the job is scheduled to repeat.

• Whether the job is currently executing.

• Whether the last job execution encountered an error.

• The number of times the job has started.

• The date and time of the job’s last start (or start attempt) and last end.

• The query executed by the cron job.

Newly created cron job as a syn:cron node:

storm> syn:cron
syn:cron=d1e1c17c587a2b66f61f7583d9d20370

:doc =
:name =
:storm = [inet:ipv4=172.16.0.0/16]

• Add a cron job to run on the 15th of every month that lifts all IPv4 address nodes with missing geolocation
data (i.e., no :loc property) and submits them to a Storm command that calls an IP geolocation service. (Note:
Synapse does not include a geolocation service in its open source distribution; this cron job assumes such a
service has been implemented).

storm> cron.add --day 15 { inet:ipv4 -:loc | ipgeoloc }
Created cron job: 71dae8a6e7047ac104a943bff6a7cdc4

• Add a cron job to run every Tuesday, Thursday, and Saturday at 2:00 AM UTC to lift all MD5, SHA1, and
SHA256 hashes tagged “malicious” that do not have corresponding file (file:bytes) nodes and submit them
to a Storm command that queries a third-party malware service and attempts to download those files. (Note:
Synapse does not include a malware service in its open source distribution; this cron job assumes such a service
has been implemented).

storm> cron.add --day Tue,Thu,Sat --hour 2 { hash:md5#malicious hash:sha1#malicious␣
→˓hash:sha256#malicious -{ -> file:bytes } | malwaresvc }
Created cron job: b868908d7dc327366b55a499d2d28f01

3.6. Storm Reference 285

Synapse Documentation, Release 2.141.0

Macros

A macro is simply a stored Storm query / set of Storm code that can be executed on demand.

Strictly speaking, macros are not automation - they do not execute on their own. However, macros are often used with
(called by) triggers or cron jobs.

Macros differ from triggers and cron in some important ways:

• Permissions. No special permissions are required to work with macros. Any user can create or call a macro.

• Execution. Macros execute with the permissions of the calling user. A macro can only perform actions that the
calling user has permissions to perform. If a user runs a macro that whose actions exceed the user’s permissions,
the macro will fail with an AuthDeny error.

• Introspection. Synapse does not create runtime nodes (“runt nodes”) for macros.

• Scope. Where triggers and cron jobs are specific to a View, macros are specific to a given Cortex. Macros can
be viewed, modified, and executed from any view.

Example Use Cases

Macros are a convenient way to save and run frequently used Storm without having to create or type that Storm each
time. The Storm can be as simple or advanced as you like.

• Organizational use. Macros can be developed for use across entire teams or organizations to support common
tasks or workflows such as enrichment or threat hunting. Using a macro makes it easier to perform the task (by
calling it with a single Storm command) and also ensures that the task is performed consistently (i.e., in the same
way each time) by each user.

• Personal use. Users can create macros to store frequently-used or lengthy Storm queries specific to their personal
workflow that can be executed easily on demand.

• Automation. For triggers or cron jobs that execute longer Storm queries, saving the Storm in a macro may make
it easier to set, view, edit, and manage vs. storing the Storm directly as part of the trigger or cron job.

• Flexibility. Because macros are composed in Storm and executed via a Storm command, they can be executed
any way Storm can be executed (e.g., on demand or called as part of a trigger or cron job). Macros are ideal for
Storm that performs a task or set of tasks that you may want to execute in a variety of ways.

Usage Notes

• Macros are specific to an individual Synapse Cortex; they are not limited to an individual View. Any macros that
exist in a Cortex are visible to all users of that Cortex.

• Any user can create or run a macro. You do not need to explicitly grant any permissions.

• Macros are differentiated by name, and cannot be renamed once created.

• The user who creates a macro is the owner / admin of the macro. Other users can read and execute the macro
(within the limitations of their permissions), but cannot modify or delete it.

• Macros execute with the permissions of the calling user.

– While any user can execute any macro, if the macro takes some action that the calling user does not have
permission to perform, the macro will fail with an AuthDeny error.

– If a macro is called by a trigger or cron job, the macro will execute with the permissions of the author of
the trigger or cron job.

286 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

• Macros commonly take nodes as input. Similarly, a macro may output nodes based on the Storm it executes. For
both of these conditions, Storm’s “pipeline” behavior applies. A macro will error if it receives nodes that cannot
be processed by the associated Storm code; similarly, if you execute additional Storm after the macro runs, that
Storm must be appropriate for any nodes that exit the macro.

Syntax

Macros are created, modified, viewed, and deleted using the Storm macro.* commands. See the macro command in
the Storm Reference - Storm Commands document for details.

In Optic, macros can also be managed through the Storm Editor.

Examples

• Add a macro named sinkhole.check that lifts all IPv4 addresses tagged as sinkholes (#cno.infra.dns.
sinkhole) and submits those nodes to a Storm command that calls a third-party passive DNS service to retrieve
any FQDNs currently resolving to the sinkhole IP. (Note: Synapse does not include a passive DNS service in its
open source distribution; the macro assumes such a service has been implemented.)

storm> macro.set sinkhole.check ${ inet:ipv4#cno.infra.dns.sinkhole | pdns }
Set macro: sinkhole.check

• Add a macro named check.c2 that takes an inbound set of file:bytes nodes and returns any FQDNs that the
files query and any IPv4 addresses the files connect to. Use a filter in the macro to ensure that the macro code
only attempts to process inbound file:bytes nodes.

storm> macro.set check.c2 ${ +file:bytes | tee { -> inet:dns:request :query:name ->␣
→˓inet:fqdn | uniq } { -> inet:flow:src:exe :dst:ipv4 -> inet:ipv4 | uniq } }
Set macro: check.c2

• Add a macro named enrich that takes any node as input and uses a switch statement to call Storm commands
for third-party services able to enrich a given form (line breaks and indentations used for readability). (Note:
Synapse does not include third-party services / connectors in its open source distribution; the macro assumes
such services have been implemented.)

storm> macro.set enrich ${ switch $node.form() {

/* You can put comments in macros!!! */

"inet:fqdn": { | whois | pdns | malware }
"inet:ipv4": { | pdns }
"inet:email": { | revwhois }
*: { }

} }
Set macro: enrich

3.6. Storm Reference 287

Synapse Documentation, Release 2.141.0

Dmons

A Dmon is a long-running or recurring query or process that runs continuously in the background, similar to a traditional
Linux or Unix daemon.

Variables

Dmons will have the storm variable $auto populated when they run. The $auto variable is a dictionary which contains
the following keys:

$auto.iden
The identifier of the Dmon.

$auto.type
The type of automation. For a Dmon this value will be dmon.

Note: If the variable $auto was captured during the creation of the Dmon, the variable will not be mapped in.

Syntax

Users can interact with dmons using the Storm dmon.* commands (see the dmon command in the Storm Reference -
Storm Commands document for details) and the $lib.dmon Storm libraries.

3.7 Storm Advanced

The are several more advanced Storm language language concepts which are documented in the following sections.

3.7.1 Storm Reference - Advanced - Variables

Storm supports the use of variables. A Variable is a value that can change depending on conditions or on information
passed to the Storm query. (Contrast this with a Constant, which is a value that is fixed and does not change.)

Variables can be used in a variety of ways, from providing simpler or more efficient ways to reference node properties,
to facilitating bulk operations, to performing complex tasks or writing extensions such as Power-Ups (see Power-Up)
to Synapse in Storm.

Note: These documents approach variables and their use from a user standpoint and aim to provide sufficient back-
ground for users to understand and begin to use variables. They do not provide an in-depth discussion of variables and
their use. See the Synapse Developer Guide for more developer-focused topics.

• Storm Operating Concepts

• Variable Concepts

– Variable Scope

– Call Frame

– Runtsafe vs. Non-Runtsafe

• Types of Variables

288 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

– Built-In Variables

– User-Defined Variables

Storm Operating Concepts

When using variables in Storm, it is important to keep in mind the high-level Storm Operating Concepts. Specifically:

• Storm operations (e.g., lifts, filters, pivots, etc.) are commonly performed on nodes.

• Operations can be chained and are executed in order from left to right.

• Storm acts as an execution pipeline, with each node passed individually and independently through the chain of
Storm operations.

• Most Storm operations consume nodes — that is, a given operation (such as a filter or pivot) acts upon the
inbound node in some way and returns only the node or set of nodes that result from that operation.

These principles apply to variables that reference nodes (or node properties) in Storm just as they apply to nodes, and
so affect the way variables behave within Storm queries.

Variable Concepts

Variable Scope

A variable’s scope is its lifetime and under what conditions it may be accessed. There are two dimensions that impact
a variable’s scope: its call frame and its runtime safety (“runtsafety”).

Call Frame

A variable’s call frame is where the variable is used. The main Storm query starts with its own call frame, and each
call to a “pure” Storm command, function, or subquery creates a new call frame. The new call frame gets a copy of all
the variables from the calling call frame. Changes to existing variables or the creation of new variables within the new
call frame do not impact the calling scope.

Runtsafe vs. Non-Runtsafe

An important distinction to keep in mind when using variables in Storm is whether the variable is runtime-safe
(”Runtsafe”) or non-runtime safe (”Non-Runtsafe”).

A variable that is runtsafe has a value independent of any nodes passing through the Storm pipeline. For example,
a variable whose value is explicitly set, such as $string = mystring or $ipv4 = 8.8.8.8 is considered runtsafe
because the value does not change / is not affected by the specific node passing through the Storm pipeline.

A variable that is non-runtsafe has a value derived from a node passing through the Storm pipeline. For example, a
variable whose value is set to a node property value may change based on the specific node passing through the Storm
pipeline. In other words, if your Storm query is operating on a set of DNS A nodes (inet:dns:a) and you define the
variable $fqdn = :fqdn (setting the variable to the value of the :fqdn secondary property), the value of the variable
will change based on the specific value of that property for each inet:dns:a node in the pipeline.

All non-runtsafe variables are scoped to an individual node as it passes through the Storm pipeline. This means that
a variable’s value based on a given node is not available when processing a different node (at least not without using
special commands, methods, or libraries). In other words, the path of a particular node as it passes through the Storm
pipeline is its own scope.

3.7. Storm Advanced 289

Synapse Documentation, Release 2.141.0

Note: The “safe” in non-runtsafe should not be interpreted to mean that the use of non-runtsafe variables is somehow
“risky” or involves insecure programming or processing of data. It simply means the value of the variable is not safe
from changing (i.e., it may change) as the Storm pipeline progresses.

Types of Variables

Storm supports two types of variables:

• Built-in variables. Built-in variables facilitate many common Storm operations. They may vary in their scope
and in the context in which they can be used.

• User-defined variables User-defined variables are named and defined by the user. They are most often limited
in scope and facilitate operations within a specific Storm query.

Built-In Variables

Storm includes a set of built-in variables and associated variable methods (Storm Reference - Advanced - Methods) and
libraries (Storm Libraries) that facilitate Cortex-wide, node-specific, and context-specific operations.

Built-in variables differ from user-defined variables in that built-in variable names:

• are initialized at Cortex start,

• are reserved,

• can be accessed automatically (i.e., without needing to define them) from within Storm, and

• persist across user sessions and Cortex reboots.

Tip: We cover a few of the most common built-in variables here. For additional detail on Synapse’s Storm types
(objects) and libraries, see the Storm Library Documentation.

Global Variables

Global variables operate independently of any node. That is, they can be invoked in a Storm query in the absence of
any nodes in the Storm execution pipeline (though they can also be used when performing operations on nodes).

$lib

The library variable ($lib) is a built-in variable that provides access to the global Storm library. In Storm, libraries
are accessed using built-in variable names (e.g., $lib.print()).

Libraries provide access to a wide range of additional functionality with Storm. See the Storm Libraries technical
documentation for descriptions of the libraries available within Storm.

290 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Node-Specific Variables

Storm includes node-specific variables that are designed to operate on or in conjunction with nodes and require one or
more nodes in the Storm pipeline.

Note: Node-specific variables are always non-runtsafe.

$node

The node variable ($node) is a built-in Storm variable that references the current node in the Storm pipeline. Specif-
ically, this variable contains the inbound node’s node object, and provides access to the node’s attributes, properties,
and associated attribute and property values.

Invoking this variable during a Storm query is useful when you want to:

• access the entire raw node object,

• store the value of the current node before pivoting to another node, or

• use an aspect of the current node in subsequent query operations.

The $node variable supports a number of built-in methods that can be used to access specific data or properties
associated with a node. See the technical documentation for the stormprims-storm-node-f527 object or the $node
section of the Storm Reference - Advanced - Methods user documentation for additional detail and examples.

$path

The path variable ($path) is a built-in Storm variable that references the path of a node as it travels through the
pipeline of a Storm query.

The $path variable is not used on its own, but in conjunction with its methods. See the technical documentation
for the stormprims-storm-path-f527 object or the $path section of the Storm Reference - Advanced - Methods user
documentation for additional detail and examples.

Trigger-Specific Variables

A Trigger is used to support automation within a Cortex. Triggers use events (such as creating a node, setting a node’s
property value, or applying a tag to a node) to fire (“trigger”) the execution of a predefined Storm query. Storm uses a
built-in variable specifically within the context of trigger-initiated Storm queries.

$tag

For triggers that fire on tag:add events, the $tag variable represents the name of the tag that caused the trigger to fire.

For example:

You write a trigger to fire when any tag matching the expression #foo.bar.* is added to a file:bytes node. The
trigger executes the following Storm command:

-> hash:md5 [+#$tag]

3.7. Storm Advanced 291

Synapse Documentation, Release 2.141.0

Because the trigger uses a tag glob (“wildcard”) expression, it will fire on any tag that matches that expression (e.g.,
#foo.bar.hurr, #foo.bar.derp, etc.). The Storm snippet above will take the inbound file:bytes node, pivot to
the file’s associated MD5 node (hash:md5), and apply the same tag that fired the trigger to the MD5.

See the Triggers section of the Storm Reference - Automation document and the Storm trigger command for a more
detailed discussion of triggers and associated Storm commands.

Ingest Variables

Synapse’s csvtool can be used to ingest (import) data into Synapse from a comma-separated value (CSV) file. Storm
includes a built-in variable to facilitate bulk data ingest using CSV.

$rows

The $rows variable refers to the set of rows in a CSV file. When ingesting data into Synapse, CSVTool (or the Optic
Ingest Tool) reads a CSV file and a file containing a Storm query that tells Synapse how to process the CSV data. The
Storm query is typically constructed to iterate over the set of rows ($rows) using a For Loop that uses user-defined
variables to reference each field (column) in the CSV data.

For example:

for ($var1, $var2, $var3, $var4) in $rows { <do stuff> }

Tip: The commercial Synapse UI (Optic) includes an Ingest Tool that can ingest data in CSV, JSONL, or JSON format.
The $rows variable is used in the Ingest Tool to refer to either the set of rows in a CSV file or the set of lines (“rows”)
in a JSONL file. In addition, the $blob variable is used to refer to the entire JSON blob when ingesting JSON data.
See the ingest examples section of the Ingest Tool documentation for additional detail.

User-Defined Variables

User-defined variables can be defined in one of two ways:

• At runtime (i.e., within the scope of a specific Storm query). This is the most common use for user-defined
variables.

• Mapped via options passed to the Storm runtime (for example, when using the Cortex API). This method is less
common for everyday users. When defined in this manner, user-defined variables will behave as though they are
built-in variables that are runtsafe.

Variable Names

All variable names in Storm (including built-in variables) begin with a dollar sign ($). A variable name can be any
alphanumeric string, except for the name of a built-in variable (see Built-In Variables), as those names are reserved.
Variable names are case-sensitive; the variable $MyVar is different from $myvar.

Note: Storm will not prevent you from using the name of a built-in variable to define a variable (such as $node =
7). However, doing so may result in undesired effects or unexpected errors due to the variable name collision.

292 Chapter 3. Synapse User Guide

https://synapse.docs.vertex.link/projects/optic/en/latest/user_interface/userguides/ingest_tool.html
https://synapse.docs.vertex.link/projects/optic/en/latest/user_interface/userguides/ingest_tool.html#ingest-examples

Synapse Documentation, Release 2.141.0

Defining Variables

Within Storm, a user-defined variable is defined using the syntax:

$<varname> = <value>

The variable name must be specified first, followed by the equals sign and the value of the variable itself.

<value> can be:

• an explicit value (literal),

• a node property (secondary or universal),

• a built-in variable or method (e.g., can allow you to access a node’s primary property, form name, or other
elements),

• a tag (allows you to access timestamps associated with a tag),

• a library function,

• an expression, or

• an embedded Storm query.

Examples

The examples below use the $lib.print() library function to display the value of the user-defined variable being
set. (This is done for illustrative purposes only; $lib.print() is not required in order to use variables or methods.)

In some instances we include a second example to illustrate how a particular kind of variable assignment might be used
in a real-world scenario. While we have attempted to use relatively simple examples for clarity, some examples may
leverage additional Storm features such as subqueries, subquery filters, or control flow elements such as for loops or
switch statements.

Tip: Keep Storm’s operation chaining, pipeline, and node consumption aspects in mind when reviewing the following
examples. When using $lib.print() to display the value of a variable, the queries below will:

• Lift the specified node(s).

• Assign the variable. Note that assigning a variable has no impact on the nodes themselves.

• Print the variable’s value using $lib.print().

• Return any nodes still in the pipeline. Because variable assignment doesn’t impact the node(s), they are not
consumed and so are returned (displayed) at the CLI.

The effect of this process is that for each node in the Storm query pipeline, the output of $lib.print() is displayed,
followed by the relevant node.

In some examples the Storm spin command is used to suppress display of the node itself. We do this for cases where
displaying the node detracts from illustrating the value of the variable.

Explicit values / literals

You can assign an explicit, unchanging value to a variable.

• Assign the value 5 to the variable $threshold:

3.7. Storm Advanced 293

https://synapse.docs.vertex.link/en/latest/synapse/userguides/storm_ref_subquery.html
https://synapse.docs.vertex.link/en/latest/synapse/userguides/storm_ref_filter.html#subquery-filters
https://synapse.docs.vertex.link/en/latest/synapse/userguides/storm_adv_control.html

Synapse Documentation, Release 2.141.0

storm> $threshold=5 $lib.print($threshold)
5

Example:

• Tag file:bytes nodes that have a number of AV signature hits higher than a given threshold for review:

storm> $threshold=5 file:bytes +{ -> it:av:filehit } >= $threshold [+#review]
file:bytes=sha256:00007694135237ec8dc5234007043814608f239befdfc8a61b992e4d09e0cf3f

:sha256 = 00007694135237ec8dc5234007043814608f239befdfc8a61b992e4d09e0cf3f
.created = 2023/07/12 15:15:42.151
#review

Tip: The example above uses a subquery filter (Subquery Filters) to pivot to the it:av:filehit nodes associated
with the file:bytes node, and compares the number of AV hits to the value of the $threshold variable.

Node properties

You can assign the value of a particular node property (secondary or universal) to a variable.

• Secondary property: Assign the :user property from an Internet-based account (inet:web:acct) to the
variable $user:

storm> inet:web:acct=(twitter.com,hacks4cats) $user=:user $lib.print($user)
hacks4cats
inet:web:acct=twitter.com/hacks4cats

:email = ron@protonmail.com
:site = twitter.com
:user = hacks4cats
.created = 2023/07/12 15:15:42.327

• Universal property: Assign the .seen universal property from a DNS A node to the variable $time:

storm> inet:dns:a=(woot.com,1.2.3.4) $time=.seen $lib.print($time)
(1543289294000, 1565893967000)
inet:dns:a=('woot.com', '1.2.3.4')

:fqdn = woot.com
:ipv4 = 1.2.3.4
.created = 2023/07/12 15:15:42.392
.seen = ('2018/11/27 03:28:14.000', '2019/08/15 18:32:47.000')

Note: In the output above, the variable value is displayed as a pair of epoch milliseconds, which is how Synapse stores
date/time values.

Example:

• Given a DNS A record observed within a specific time period, find other DNS A records that pointed to the same
IP address in the same time window:

storm> inet:dns:a=(woot.com,1.2.3.4) $time=.seen -> inet:ipv4 -> inet:dns:a +.seen@=$time
inet:dns:a=('woot.com', '1.2.3.4')

:fqdn = woot.com
(continues on next page)

294 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

:ipv4 = 1.2.3.4
.created = 2023/07/12 15:15:42.392
.seen = ('2018/11/27 03:28:14.000', '2019/08/15 18:32:47.000')

inet:dns:a=('hurr.net', '1.2.3.4')
:fqdn = hurr.net
:ipv4 = 1.2.3.4
.created = 2023/07/12 15:15:42.446
.seen = ('2018/12/09 06:02:53.000', '2019/01/03 11:27:01.000')

Tip: An interval (such as a .seen property) consists of a pair of date/time values. In the example above, the value
of the variable $time is the combined pair (min / max) of times.

To access the “first seen” (minimum) or “last seen” (maximum) time values separately, use a pair of variables in the
assignment:

($min, $max) = .seen

Built-in variables and methods

Built-In Variables (including Node-Specific Variables) allow you to reference common Synapse objects and their asso-
ciated components. For many common user-facing tasks, the $node variable and its methods are the most useful.

• Node object: Assign an entire FQDN node to the variable $fqdn using the $node built-in variable:

storm> inet:fqdn=mail.mydomain.com $fqdn=$node $lib.print($fqdn)
Node{(('inet:fqdn', 'mail.mydomain.com'), {'iden':
→˓'6511121afd61bf42cb4d14aed4f61daf62ebfc76042dba12d95a6506dd8b6cc4', 'tags': {}, 'props
→˓': {'.created': 1689174942502, 'host': 'mail', 'domain': 'mydomain.com', 'issuffix': 0,
→˓ 'iszone': 0, 'zone': 'mydomain.com'}, 'tagprops': {}, 'nodedata': {}})}
inet:fqdn=mail.mydomain.com

:domain = mydomain.com
:host = mail
:issuffix = false
:iszone = false
:zone = mydomain.com
.created = 2023/07/12 15:15:42.502

Note: When you use the built-in variable $node to assign a value to a variable, the value is set to the entire node
object (refer to the output above). For common user-facing tasks, it is less likely that users will need “the entire node”;
more often, they need to refer to a component of the node, such as its primary property value, form name, or associated
tags.

For some use cases, Synapse and Storm can “understand” which component of the node you want when referring to
the full $node object. However, you can always be explicit by using the appropriate method to access the specific
component you want (such as $node.value() or $node.form()).

See the technical documentation for the stormprims-storm-node-f527 object or the $node section of the Storm Reference
- Advanced - Methods user documentation for additional detail and examples when using methods associated with the
$node built-in variable.

• Node method: Assign the primary property value of a domain node to the variable $fqdn using the $node.
value() method:

3.7. Storm Advanced 295

Synapse Documentation, Release 2.141.0

storm> inet:fqdn=mail.mydomain.com $fqdn=$node.value() $lib.print($fqdn)
mail.mydomain.com
inet:fqdn=mail.mydomain.com

:domain = mydomain.com
:host = mail
:issuffix = false
:iszone = false
:zone = mydomain.com
.created = 2023/07/12 15:15:42.502

• Find the DNS A records associated with a given domain where the PTR record for the IP matches the FQDN:

storm> inet:fqdn=mail.mydomain.com $fqdn=$node.value() -> inet:dns:a +{ -> inet:ipv4␣
→˓+:dns:rev=$fqdn }
inet:dns:a=('mail.mydomain.com', '25.25.25.25')

:fqdn = mail.mydomain.com
:ipv4 = 25.25.25.25
.created = 2023/07/12 15:15:42.557

Tip: The example above uses a subquery filter (see Subquery Filters) to pivot from the DNS A records to associated
IPv4 nodes (inet:ipv4) and checks whether the :dns:rev property matches the FQDN in the variable $fqdn.

Tags

Recall that tags are both nodes (syn:tag=my.tag) and labels that can be applied to other nodes (#my.tag). Tags can
also have optional timestamps (a time interval) associated with them.

There are various ways to assign tags as variables, depending on what part of the tag you want to access. Many of these
use cases are covered above so are briefly illustrated here.

• Tag value: Assign an explicit tag value (literal) to the variable $mytag:

storm> $mytag=cno.infra.dns.sinkhole

• Tag on a node: Given a hash:md5 node, assign any malware tags (tags matching the glob pattern cno.mal.*)
to the variable $mytags using the $node.tags() method:

storm> hash:md5=d41d8cd98f00b204e9800998ecf8427e $mytags=$node.tags(cno.mal.*) $lib.
→˓print($mytags)
['cno.mal.foo', 'cno.mal.bar']
hash:md5=d41d8cd98f00b204e9800998ecf8427e

.created = 2023/07/12 15:15:42.657
#cno.mal.bar
#cno.mal.foo
#cno.threat.baz

Tip: In the example above, the value of the variable $mytags is the set of two tags, cno.mal.foo and cno.mal.bar,
because the MD5 hash node has two tags that match the pattern cno.mal.*.

To assign the set of any / all tags on a node to a variable, simply use $mytags=$node.tags().

Note that you can also use $node.tags() directly (this method always refers to the set of tags on the current node)
without explicitly assigning a separate variable.)

296 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Where the value of a variable is a set, a For Loop is often used to “do something” based on each value in the set.

Example

• Given an MD5 hash, copy any cno.mal.* tags from the hash to the associated file (file:bytes node):

storm> hash:md5=d41d8cd98f00b204e9800998ecf8427e $mytags=$node.tags(cno.mal.*) for $tag␣
→˓in $mytags { -> file:bytes [+#$tag] }
file:bytes=sha256:e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

:md5 = d41d8cd98f00b204e9800998ecf8427e
:sha1 = da39a3ee5e6b4b0d3255bfef95601890afd80709
:sha256 = e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
:size = 0
.created = 2023/07/12 15:15:42.707
#cno.mal.foo

file:bytes=sha256:e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
:md5 = d41d8cd98f00b204e9800998ecf8427e
:sha1 = da39a3ee5e6b4b0d3255bfef95601890afd80709
:sha256 = e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
:size = 0
.created = 2023/07/12 15:15:42.707
#cno.mal.bar
#cno.mal.foo

The output above includes two “copies” of the file:bytes node because the node is output twice - once for each
iteration of the for loop. For a detailed explanation of this behavior, see Advanced Storm - Example.

Tip: The above example explicitly creates and assigns the variable $mytags and then uses that variable in a For Loop.
In this case you can shorten the syntax by skipping the explicit variable assignment and using the $node.tags()
method directly:

hash:md5=d41d8cd98f00b204e9800998ecf8427e for $tag in $node.tags(cno.mal.*) { ->␣
→˓file:bytes [+#$tag] }

• Tag timestamps: Assign the times associated with Threat Group 20’s control of a malicious domain to the
variable $time:

storm> inet:fqdn=evildomain.com $time=#cno.threat.t20.own $lib.print($time)
(1567900800000, 1631059200000)
inet:fqdn=evildomain.com

:domain = com
:host = evildomain
:issuffix = false
:iszone = true
:zone = evildomain.com
.created = 2023/07/12 15:15:42.756
#cno.threat.t20.own = (2019/09/08 00:00:00.000, 2021/09/08 00:00:00.000)

Example

• Find DNS A records for any subdomain associated with a Threat Group 20 FQDN (zone) during the time they
controlled the domain:

3.7. Storm Advanced 297

Synapse Documentation, Release 2.141.0

storm> inet:fqdn#cno.threat.t20.own $time=#cno.threat.t20.own -> inet:fqdn:zone ->␣
→˓inet:dns:a +.seen@=$time
inet:dns:a=('www.evildomain.com', '1.2.3.4')

:fqdn = www.evildomain.com
:ipv4 = 1.2.3.4
.created = 2023/07/12 15:15:42.809
.seen = ('2020/07/12 00:00:00.000', '2020/12/13 00:00:00.000')

inet:dns:a=('smtp.evildomain.com', '5.6.7.8')
:fqdn = smtp.evildomain.com
:ipv4 = 5.6.7.8
.created = 2023/07/12 15:15:42.817
.seen = ('2020/04/04 00:00:00.000', '2020/08/02 00:00:00.000')

Library Functions

Storm types (Storm objects) and Storm libraries allow you to inspect, edit, and otherwise work with data in Synapse in
various ways. You can assign a value to a variable based on the output of a method or library.

A full discussion of this topic is outside of the scope of this user guide. See Storm Library Documentation for additional
details.

• Assign the current time to the variable $now using $lib.time.now():

storm> $now=$lib.time.now() $lib.print($now)
1689174942871

• Convert an epoch milliseconds integer into a human-readable date/time string using $lib.str.format():

storm> $now=$lib.time.now() $time=$lib.time.format($now, '%Y/%m/%d %H:%M:%S') $lib.print(
→˓$time)
2023/07/12 15:15:42

Expressions

You can assign a value to a variable based on the computed value of an expression:

• Use an expression to increment the variable $x:

storm> $x=5 $x=($x + 1) $lib.print($x)
6

Embedded Storm query

You can assign a value to a variable based on the output of a Storm query. To denote the Storm query to be evaluated,
enclose the query in curly braces ({ <storm query> }).

• Assign an ou:org node’s guid value to the variable $org by lifting the associated org node by its :name property:

storm> $org={ ou:org:name=vertex } $lib.print($org)
c8f255b92507c88f18757bbd51e8daa2

298 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

3.7.2 Storm Reference - Advanced - Methods

Some of Storm’s Built-In Variables support methods used to perform various actions on the object represented by the
variable.

A subset of the built-in variables / objects that support methods, along with a few commonly used methods and exam-
ples, are listed below. For full detail, refer to the Storm Types technical reference.

The built-in $lib variable is used to access Storm libraries. See the Storm Libraries technical reference for additional
detail on available libraries.

Note: In the examples below, the $lib.print() library function is used to display the value returned when a specific
built-in variable or method is called. This is done for illustrative purposes only; $lib.print() is not required in order
to use variables or methods.

In some instances we have also included “use-case” examples, where the variable or method is used in one or more
sample queries to illustrate possible practical use cases. These represent exemplar Storm queries for how a variable
or method might be used in practice. While we have attempted to use relatively simple examples for clarity, some
examples may leverage additional Storm features such as subqueries (Storm Reference - Subqueries), subquery filters
(Subquery Filters), or flow control elements such as “for” loops or “switch” statements (Storm Reference - Advanced -
Control Flow).

$node

$node is a built-in Storm variable that references the current node in the Storm query pipeline. $node can be used
as a variable on its own or with the example methods listed below. See the stormprims-storm-node-f527 section of the
Storm Types technical documentation for a full list.

Note: As the $node variable and related methods reference the current node in the Storm pipeline, the variable and
its methods will contain (and return) a null value if the inbound result set is empty (i.e., contains no nodes).

Examples

• Print the value of $node for an inet:dns:a node:

storm> inet:dns:a=(woot.com,54.173.9.236) $lib.print($node) | spin
Node{(('inet:dns:a', ('woot.com', 917309932)), {'iden':
→˓'01235b5877954084e798f09ba3fd3f1cda2e7b41d79b752b80acbed1b609cbaa', 'tags': {}, 'props
→˓': {'.created': 1689174949556, 'fqdn': 'woot.com', 'ipv4': 917309932, '.seen':␣
→˓(1482957991000, 1482957991001)}, 'tagprops': {}, 'nodedata': {}})}

• Print the value of $node for an inet:fqdn node with tags present:

storm> inet:fqdn=aunewsonline.com $lib.print($node) | spin
Node{(('inet:fqdn', 'aunewsonline.com'), {'iden':
→˓'53aa7a2f7125392302c36247b97569dd84a7f3fe9e92eb99abd984349dc53fe4', 'tags': {'aka':␣
→˓(None, None), 'aka.feye': (None, None), 'aka.feye.thr': (None, None), 'aka.feye.thr.
→˓apt1': (None, None), 'cno': (None, None), 'cno.infra': (None, None), 'cno.infra.sink':␣
→˓(None, None), 'cno.infra.sink.hole': (None, None), 'cno.infra.sink.hole.kleissner':␣
→˓(1385424000000, 1480118400000)}, 'props': {'.created': 1689174949672, 'host':
→˓'aunewsonline', 'domain': 'com', 'issuffix': 0, 'iszone': 1, 'zone': 'aunewsonline.com
→˓'}, 'tagprops': {}, 'nodedata': {}})}

3.7. Storm Advanced 299

Synapse Documentation, Release 2.141.0

Note: The value of $node is the entire node object and associated properties and tags, as opposed to a specific aspect
of the node, such as its iden or primary property value.

As demonstrated below, some node constructors can “intelligently” leverage the relevant aspects of the full node object
(the value of the $node variable) when creating new nodes.

• Use the $node variable to create an edge:refs node showing that a news article references the domain
woot[.]com:

storm> media:news=a3759709982377809f28fc0555a38193 [edge:refs=($node,(inet:fqdn,woot.
→˓com))]
edge:refs=(('media:news', 'a3759709982377809f28fc0555a38193'), ('inet:fqdn', 'woot.com'))

:n1 = ('media:news', 'a3759709982377809f28fc0555a38193')
:n1:form = media:news
:n2 = ('inet:fqdn', 'woot.com')
:n2:form = inet:fqdn
.created = 2023/07/12 15:15:49.751

media:news=a3759709982377809f28fc0555a38193
.created = 2023/07/12 15:15:49.721

In the example above, the $node.ndef() method could have been used instead of $node to create the edge:refs node.
In this case, the node constructor knows to use the ndef from the $node object to create the node.

• Use the $node variable to create multiple whois name server records (inet:whois:recns) from a set of inbound
recent whois record nodes for the domain woot[.]com:

storm> inet:whois:rec:fqdn=woot.com +:asof>=2019/06/13 [inet:whois:recns=(ns1.
→˓somedomain.com,$node)]
inet:whois:recns=('ns1.somedomain.com', ('woot.com', '2019/06/13 00:00:00.000'))

:ns = ns1.somedomain.com
:rec = ('woot.com', '2019/06/13 00:00:00.000')
:rec:asof = 2019/06/13 00:00:00.000
:rec:fqdn = woot.com
.created = 2023/07/12 15:15:49.835

inet:whois:rec=('woot.com', '2019/06/13 00:00:00.000')
:asof = 2019/06/13 00:00:00.000
:fqdn = woot.com
:text = ns1.somedomain.com
.created = 2023/07/12 15:15:49.795

inet:whois:recns=('ns1.somedomain.com', ('woot.com', '2019/09/12 00:00:00.000'))
:ns = ns1.somedomain.com
:rec = ('woot.com', '2019/09/12 00:00:00.000')
:rec:asof = 2019/09/12 00:00:00.000
:rec:fqdn = woot.com
.created = 2023/07/12 15:15:49.840

inet:whois:rec=('woot.com', '2019/09/12 00:00:00.000')
:asof = 2019/09/12 00:00:00.000
:fqdn = woot.com
:text = ns1.somedomain.com
.created = 2023/07/12 15:15:49.801

In the example above, the $node.value() method could have been used instead of $node to create the
inet:whois:recns nodes. In this case, the node constructor knows to use the primary property value from the
inet:whois:rec nodes to create the inet:whois:recns nodes.

300 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

$node.form()

The $node.form() method returns the form of the current node in the Storm pipeline.

The method takes no arguments.

Examples

• Print the form of an inet:dns:a node:

storm> inet:dns:a=(woot.com,54.173.9.236) $lib.print($node.form()) | spin
inet:dns:a

$node.globtags()

The $node.globtags() method returns a list of string matches from the set of tags applied to the current node
in the Storm pipeline.

The method takes a single argument consisting of a wildcard expression for the substring to match.

• The argument requires at least one wildcard (*) representing the substring(s) to match.

• The method performs an exclusive match and returns only the matched substring(s), not the entire tag containing
the substring match.

• The wildcard (*) character can be used to match full or partial tag elements.

• Single wildcards are constrained by tag element boundaries (i.e., the dot (.) character. Single wildcards can
match an entire tag element or a partial string within an element.

• The double wildcard (**) can be used to match across any number of tag elements; that is, the double wildcard
is not constrained by the dot boundary.

• If the string expression starts with a wildcard, it must be enclosed in quotes in accordance with the use of Entering
Literals.

See $node.tags() to access full tags (vs. tag substrings).

Examples

• Print the set of top-level (root) tags from any tags applied to the current node:

storm> inet:fqdn=aunewsonline.com $lib.print($node.globtags("*")) | spin
['aka', 'cno']

• Print the list of numbers associated with any threat group tags applied to the current node:

storm> inet:fqdn=aunewsonline.com $lib.print($node.globtags(cno.threat.t*)) | spin
['83']

In the example above, $node.globtags() returns the matching substring only (“83”), which is the portion matching
the wildcard; it does not return the “t” character.

• Print the list of organizations and associated threat group names from any third-party alias (“aka”) tags applied
to the current node:

storm> inet:fqdn=aunewsonline.com $lib.print($node.globtags(aka.*.thr.*)) | spin
[('feye', 'apt1'), ('symantec', 'commentcrew')]

• Print all sub-tags for any tags starting with “foo” applied to the current node:

3.7. Storm Advanced 301

Synapse Documentation, Release 2.141.0

storm> inet:fqdn=aunewsonline.com $lib.print($node.globtags(foo.**)) | spin
['bar', 'bar.baz', 'derp']

$node.iden()

The $node.iden() method returns the Iden of the current node in the Storm pipeline.

The method takes no arguments.

Examples

• Print the iden of an inet:dns:a node:

storm> inet:dns:a=(woot.com,54.173.9.236) $lib.print($node.iden()) | spin
01235b5877954084e798f09ba3fd3f1cda2e7b41d79b752b80acbed1b609cbaa

$node.isform()

The $node.isform() method returns a Boolean value (true / false) for whether the current node in the Storm pipeline
is of a specified form.

The method takes a single argument of a form name.

Examples

• Print the Boolean value for whether a node is an inet:dns:a form:

storm> inet:dns:a=(woot.com,54.173.9.236) $lib.print($node.isform(inet:dns:a)) | spin
true

• Print the Boolean value for whether a node is an inet:fqdn form:

storm> inet:dns:a=(woot.com,54.173.9.236) $lib.print($node.isform(inet:fqdn)) | spin
false

$node.ndef()

The $node.ndef() method returns the Ndef (“node definition”) of the current node in the Storm pipeline.

The method takes no arguments.

Examples

• Print the ndef of an inet:dns:a node:

storm> inet:dns:a=(woot.com,54.173.9.236) $lib.print($node.ndef()) | spin
('inet:dns:a', ('woot.com', 917309932))

302 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

$node.repr()

The $node.repr()method returns the human-friendly Repr (“representation”) of the specified property of the current
node in the Storm pipeline.

The method can optionally take one argument.

• If no arguments are provided, the method returns the repr of the node’s primary property value.

• If an argument is provided, it should be the string of the secondary property name (i.e., without the leading colon
(:) from relative property syntax).

• If a universal property string is provided, it must be preceded by the dot / period (.) and enclosed in quotes in
accordance with the use of Entering Literals.

See $node.value() to return the raw value of a property.

Examples

• Print the repr of the primary property value of an inet:dns:a node:

storm> inet:dns:a=(woot.com,54.173.9.236) $lib.print($node.repr()) | spin
('woot.com', '54.173.9.236')

• Print the repr of the :ipv4 secondary property value of an inet:dns:a node:

storm> inet:dns:a=(woot.com,54.173.9.236) $lib.print($node.repr(ipv4)) | spin
54.173.9.236

• Print the repr of the .seen universal property value of an inet:dns:a node:

storm> inet:dns:a=(woot.com,54.173.9.236) $lib.print($node.repr(".seen")) | spin
('2016/12/28 20:46:31.000', '2016/12/28 20:46:31.001')

$node.tags()

The $node.tags() method returns a list of the tags applied to the current node in the Storm pipeline.

The method can optionally take one argument.

• If no arguments are provided, the method returns the full list of all tags applied to the node.

• An optional argument consisting of a wildcard string expression can be used to match a subset of tags.

– If a string is used with no wildcards, the string must be an exact match for the tag element.

– The wildcard (*) character can be used to match full or partial tag elements.

– The method performs an inclusive match and returns the full tag for all tags that match the provided
expression.

– Single wildcards are constrained by tag element boundaries (i.e., the dot (.) character). Single wildcards
can match an entire tag element or a partial string within an element.

– The double wildcard (**) can be used to match across any number of tag elements; that is, the double
wildcard is not constrained by the dot boundary.

– If the string expression starts with a wildcard, it must be enclosed in quotes in accordance with the use of
Entering Literals.

3.7. Storm Advanced 303

Synapse Documentation, Release 2.141.0

See $node.globtags() to access tag substrings (vs. full tags).

Examples

• Print the list of all tags associated with an inet:fqdn node:

storm> inet:fqdn=aunewsonline.com $lib.print($node.tags()) | spin
['aka', 'aka.feye', 'aka.feye.thr', 'aka.feye.thr.apt1', 'cno', 'cno.infra', 'cno.infra.
→˓sink', 'cno.infra.sink.hole', 'cno.infra.sink.hole.kleissner', 'aka.symantec', 'aka.
→˓symantec.thr', 'aka.symantec.thr.commentcrew', 'cno.threat', 'cno.threat.t83', 'cno.
→˓threat.t83.tc', 'foo', 'foo.bar', 'foo.bar.baz', 'faz', 'faz.baz', 'foo.derp']

• Print the tag matching the string “cno” if present on an inet:fqdn node:

storm> inet:fqdn=aunewsonline.com $lib.print($node.tags(cno)) | spin
['cno']

• Print the list of all tags two elements in length that start with “foo”:

storm> inet:fqdn=aunewsonline.com $lib.print($node.tags(foo.*)) | spin
['foo.bar', 'foo.derp']

• Print the list of all tags of any length that start with “f”:

storm> inet:fqdn=aunewsonline.com $lib.print($node.tags(f**)) | spin
['foo', 'foo.bar', 'foo.bar.baz', 'faz', 'faz.baz', 'foo.derp']

• Print the list of all tags of any length whose first element starts with “a” and whose third element is “thr”:

storm> inet:fqdn=aunewsonline.com $lib.print($node.tags(a*.*.thr.**)) | spin
['aka.feye.thr.apt1', 'aka.symantec.thr.commentcrew']

$node.value()

The $node.value() method returns the raw value of the primary property of the current node in the Storm pipeline.

The method takes no arguments.

See $node.repr() to return the human-friendly value of a property.

Note: The $node.value() method is only used to return the primary property value of a node. Secondary property
values can be accessed via a user-defined variable (i.e., $myvar = :<prop>).

Examples

• Print the value of the primary property value of an inet:dns:a node:

storm> inet:dns:a=(woot.com,54.173.9.236) $lib.print($node.value()) | spin
('woot.com', 917309932)

304 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

$path

$path is a built-in Storm variable that references the path of a node as it travels through the pipeline of a Storm
query.

The $path variable is generally not used on its own, but in conjunction with its methods. See the stormprims-storm-
path-f527 section of the Storm Types technical documentation for a full list.

$path.idens()

The $path.idens() method returns the list of idens (Iden) of each node in a node’s path through a Storm query.

The method takes no arguments.

Examples

• Print the list of iden(s) for the path of a single lifted node:

storm> inet:fqdn=aunewsonline.com $lib.print($path.idens()) | spin
['53aa7a2f7125392302c36247b97569dd84a7f3fe9e92eb99abd984349dc53fe4']

Note: A lift operation contains no pivots (i.e., no “path”), so the method returns only the iden of the lifted node.

• Print the list of idens for the path of a single node through two pivots to a single end node:

storm> inet:fqdn=aunewsonline.com -> inet:dns:a +:ipv4=67.215.66.149 -> inet:ipv4 $lib.
→˓print($path.idens())
['53aa7a2f7125392302c36247b97569dd84a7f3fe9e92eb99abd984349dc53fe4',
→˓'07c79039d00b4391699c9328dc6ccaf864d84d0b38545ded117d1d7ccc6e366c',
→˓'9596f5253f25ee74689157706ddf3b459874a6d3cb0adfce4e07018ec8162fc1']
inet:ipv4=67.215.66.149

:type = unicast
.created = 2023/07/12 15:15:50.367

The example above returns the idens of the original inet:fqdn node, the inet:dns:a node with the specified IP, and
the inet:ipv4 node.

• Print the list of idens for the path of a single node through two pivots to three different end nodes (i.e., three
paths):

storm> inet:fqdn=aunewsonline.com -> inet:dns:a -> inet:ipv4 $lib.print($path.idens())
['53aa7a2f7125392302c36247b97569dd84a7f3fe9e92eb99abd984349dc53fe4',
→˓'07c79039d00b4391699c9328dc6ccaf864d84d0b38545ded117d1d7ccc6e366c',
→˓'9596f5253f25ee74689157706ddf3b459874a6d3cb0adfce4e07018ec8162fc1']
inet:ipv4=67.215.66.149

:type = unicast
.created = 2023/07/12 15:15:50.367

['53aa7a2f7125392302c36247b97569dd84a7f3fe9e92eb99abd984349dc53fe4',
→˓'0dde48198d3bcc58b40ab82155b218ecd48b533b964d5d2fa3e7453d990541f5',
→˓'5af9ae36456988c24edecafa739da75231c067ba3d104a2746e9616ea7a312d6']
inet:ipv4=184.168.221.92

:type = unicast
.created = 2023/07/12 15:15:50.374

['53aa7a2f7125392302c36247b97569dd84a7f3fe9e92eb99abd984349dc53fe4',
(continues on next page)

3.7. Storm Advanced 305

Synapse Documentation, Release 2.141.0

(continued from previous page)

→˓'1c53655a7f3bc67be338cde70d6565d4bc84d343d37513679d4efcd0ec59d3fe',
→˓'acecd1f87d1dfc31148bf0ed417b69fde1c77eb2e7effdea434765fe8b759351']
inet:ipv4=104.239.213.7

:type = unicast
.created = 2023/07/12 15:15:50.380

In the example above, the FQDN has three DNS A records, thus there are three different paths that the original node
takes through the query.

3.7.3 Storm Reference - Advanced - Control Flow

Storm includes a number of common programming control flow structures to facilitate more advanced Storm queries.
These include:

• Init Block

• Fini Block

• If-Else Statement

• Switch Statement

• For Loop

• While Loop

• Try. . .Catch Statement

The examples below are for illustrative purposes. This guide is not meant as a Storm programming tutorial. The intent
is to introduce Storm users who may not be familiar with programming concepts (or programmers who are learning
to program in Storm) to possible use cases and simple examples for these structures. We’ve included some Advanced
Storm - Tips and an Advanced Storm - Example to provide some pointers and an illustration of how Storm’s “pipeline”
behavior and control flow structures may interact.

See the follwing User Guide and Reference sections for additional information:

• Storm Reference - Advanced - Variables

• Storm Reference - Advanced - Methods

• Storm Libraries

• Storm Types

Storm Developers may also wish to refer to the Synapse Developer Guide.

Advanced Storm - Tips

Storm Operating Concepts - Review

Tip: It is essential to keep the Storm Operating Concepts in mind when using more advanced Storm queries and con-
structs. For standard Storm queries, these concepts are intuitive - you don’t really need to think about them, and Storm
just works. However, these concepts are critical to writing more advanced Storm - remembering these fundamentals
can save you time and headaches trying to debug a Storm query that is not behaving the way you think it should.

Users are strongly encouraged to review the Storm Operating Concepts as well as the additional data below.

306 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

WORKING SET

• We use the term working set to refer to the set of nodes you are operating on in Storm.

– The nodes you “start with” (often by performing an initial lift operation) are your initial working set.

– The nodes at any given point in a Storm query are your current working set.

OPERATION CHAINING

• Storm operations (lifts, filters, pivots, subqueries, commands, control flow elements. . .) can be chained together
to form longer queries. However, each operation is executed individually and in sequence.

NODE CONSUMPTION

• Each Storm operation typically changes your current working set. (We sometimes say that Storm operations
consume nodes. This refers to the fact that in many cases the nodes that “come out” of a Storm operation are
not the same nodes that “went in”.)

If you perform a filter operation, the resulting set of nodes is typically a subset of the ones you started with. If
you use a pivot operation, you typically leave your “original” nodes behind and “move to” the new nodes. In
most cases, your current working set is constantly changing.

STORM AS A PIPELINE

• A Storm query made up of multiple chained operations acts as a pipeline through which each node passes
individually.

– This means that a Storm query is executed once for each node that passes through the pipeline - not “just
once” for the entire set of nodes.

– The fact that each inbound node is processed independently by each Storm operation impacts your current
working set.

A simple example of this impact is the “duplication” of results (nodes) following some pivot operations - this
is expected behavior. If you pivot from a set of FQDNs (inet:fqdn) to their DNS A records (inet:dns:a)
and then to the associated IPv4 addresses (inet:ipv4), your results may include multiple instances of the
same IPv4 node if more than one FQDN resolved to the same IPv4 address. In short, you get one “copy” of
the IPv4 for each FQDN that resolved to (had a DNS A record for) that address. (The Storm uniq command
is used to de-duplicate the nodes in the current working set).

The way Storm behaves - these operating concepts - impacts advanced constructs such as control flow, and are important
to understand when writing and debugging more advanced Storm.

Tip: See the Advanced Storm - Example below for an illustration of how these concepts may impact your Storm in
unexpected ways.

Storm Debugging Tips

A few helpful tips when writing and debugging advanced Storm:

Be aware of your pipeline.

That is, understand what is in your current working set at any point in your query. A significant part of Storm
troubleshooting comes down to figuring out that the current working set is not what you think it is.

Be aware of your variables.

Storm supports both runtime-safe (“runtsafe”) and non-runtime-safe (“non-runtsafe”) variables. Non-runtsafe variables
have values that may change based on the current node in the Storm pipeline. Another significant part of Storm

3.7. Storm Advanced 307

Synapse Documentation, Release 2.141.0

troubleshooting involves understanding the values of any variables at any given point in your Storm code. (See Variable
Concepts for addditional information.)

Operations may execute multiple times.

Because each node passes through each operation in a Storm query individually, operations execute more than once
(typically once for each node in the pipeline as it passes through that operation). This includes control flow operations,
such as for loops! If you don’t account for this behavior with control flow operations in particular, it can result in
behavior such as:

• An exponentially increasing working set (if each node passing through an operation generates multiple results,
and the results are not deduplicated / uniq’ed appropriately).

• A variable that is set by an operation being consistently changed (re-set) for each node passing through the
operation (commonly resulting in “last node wins” with respect to variable assignment).

• A variable that fails to be set for a node that does not pass through the operation where the variable is assigned
(resulting in a NoSuchVar error).

Use subqueries. . . but understand how they work.

Unlike most Storm operations and commands, subqueries do not consume nodes - by default, what goes into a subquery
comes out of a subquery, regardless of what happens inside the subquery itself. This means you can use subqueries
(see Storm Reference - Subqueries) with advanced Storm to isolate certain operations and keep the “primary” nodes
passing through the Storm pipeline consistent.

That said, a node still has to pass into a subquery for the Storm inside a subquery to run. If your subquery fails to
execute, it may be because nothing is going in to it.

Start small and add to your Storm incrementally.

It’s easier to verify that smaller Storm queries execute correctly and then build on that code than to try and write a more
advanced query all at once and try to figure out where things aren’t working.

As with all debugging, print statements are your friend.

Scatter $lib.print() or $lib.pprint() statements (see $lib.print(mesg, **kwargs) and $lib.pprint(item, prefix=,
clamp=None)) generously throughout your Storm during testing. You can print message strings at various points during
execution:

$lib.print("Hey! This worked!")

You can print the value of a variable, to check its value at a given point in your query:

inet:ipv4=1.2.3.4
$asn=:asn
$lib.print($asn)

You can also print values associated with the node(s) in the current working set, using the various methods associated
with the $node Storm type. (See Storm Reference - Advanced - Methods for a user-focused introduction to methods,
or stormprims-storm-node-f527 in the detailed Storm Libraries / Storm Types documentation for a more technical
discussion.)

$lib.print($node.ndef())

308 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

Control Flow Operations

Tip: The examples below are Storm excerpts used to illustrate specific concepts, but do not represent complete Storm
queries / Storm code.

Init Block

An init block allows you to execute the specified Storm once at the beginning of your Storm query. This allows you to
use Storm to perform a set of operations a single time only. Without the init block, the code would be executed once
for each node passing through the Storm query.

See also Fini Block.

Syntax:

init { <storm> }

Example:

You want to use an init block to initialize a set of variables that will be used later in the Storm query. Initializing the
variables to default values can:

• Explicitly set a variable value up front.

• Specify default values for variables in the event they are not set during subsequent execution (e.g., due to a
missing node, property, or tag that the variable depends on).

• Initialize variables that will be modified during execution (e.g., lists, sets, tallies, or other ‘count’ values you
expect to change or increment).

init {

$url=https://www.example.com/my_data/
$threatname=''
$fqdns=$lib.set()
$fqdn_count=0

}

Fini Block

A fini block allows you to execute the specified Storm once after all nodes have passed through the preceding code in
the Storm pipeline. This allows you to use Storm to perform a set of operations a single time “outside” of the normal
Storm pipeline; without the fini block, the code would be executed once for each node passing through the query.

See also Init Block.

Syntax:

fini { <storm> }

Example:

You have a Storm query that processes a series of inet:fqdn nodes, adding nodes that meet certain criteria to a set
(specified with the variable $fqdns). After processing the nodes, you want to print a message with the total number of
nodes in your set (which you stored in the variable $fqdn_count) and return the set of nodes.

3.7. Storm Advanced 309

Synapse Documentation, Release 2.141.0

fini {

$lib.print(`Total count is {$fqdn_count}`)
return($fqdns)

}

If-Else Statement

An if-else statement matches inbound objects against a specified condition. If that condition is met, a set of Storm
operations are performed. If the condition is not met, a different set of Storm operations are performed. Storm supports
the use of if by itself; if-else; or if-elif-else.

Note that the “Storm operations” performed can include no operations / “do nothing” if no Storm is provided (e.g., if
the associated curly braces are left empty).

If

Syntax:

if <condition> { <storm> }

If <condition> is met, execute the Storm query in the curly braces. If <condition> is not met, do nothing. (Note
that this is equivalent to an if statement followed by an empty else statement.)

Note: If <condition> is an expression to be evaluated, it must be enclosed in parentheses (). If the expression
includes strings, they must be enclosed in single or double quotes.

if ($str = 'Oh hai!') { <storm> }

Or:

if (:time > $date) { <storm> }

(Where :time represents a property on an inbound node.)

If-Else

Syntax:

if <condition> { <storm> }
else { <storm> }

If <condition> is met, execute the associated Storm; otherwise, execute the alternate Storm.

Similar to the if example above with no else option (or an empty query for else), you can have an empty if query:

if <condition> { }
else { <storm> }

If <condition> is met, do nothing; otherwise, execute the alternate Storm query.

310 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

If-Elif-Else

Syntax:

if <condition> { <storm> }
elif <condition> { <storm> }
else { <storm> }

If <condition> is met, execute the associated Storm; otherwise, if (else if) the second <condition> is met, execute
the associated Storm; otherwise (else) execute the final Storm query.

You can use multiple elif statements before the final else. If-elif-else is helpful because it allows you to handle
multiple conditions differently while avoiding “nested” if-else statements.

Example:

You have a subscription to a third-party malware service that allows you to download malware binaries via the service’s
API. However, the service has a query limit, so you don’t want to make any unnecessary API requests that might exhaust
your limit.

You can use a simple if-else statement to check whether you already have a copy of the binary in your storage Axon
before attempting to download it.

<inbound file:bytes node(s)>

if $lib.bytes.has(:sha256) { }

else { | malware.download }

The Storm query above:

• takes an inbound file:bytes node;

• checks for the file in the Axon ($lib.bytes.has(sha256)) using the :sha256 value of the inbound file;

• if $lib.bytes.has(:sha256) returns true (i.e., we have the file), do nothing ({ });

• otherwise call the malware.download service to attempt to download the file.

Note: In the above example, malware.download is used as an example Storm service name only; it does not exist in
the base Synapse code.

Switch Statement

A switch statement matches inbound objects against a set of specified constants. Depending on which constant is
matched, a set of Storm operations is performed. The switch statement can include an optional default case to perform
a set of Storm operations in the case where none of the explicitly defined constants are matched.

Syntax:

<inbound nodes>

switch <constant> {

<case1>: { <storm> }
<case2>: { <storm> }
<case3>: { <storm> }

(continues on next page)

3.7. Storm Advanced 311

Synapse Documentation, Release 2.141.0

(continued from previous page)

*: { <storm for optional default case> }
}

Example:

You want to write a macro (see Macros) to automatically enrich a set of indicators (i.e., query third-party data sources
for additional data). Instead of writing separate macros for each type of indicator, you want a single macro that can
take any type of indicator and send it to the appropriate Storm commands.

A switch statement can send your indicators to the correct services based on the kind of inbound node (e.g., the node’s
form).

<inbound nodes>

switch $node.form() {

"hash:md5": { | malware.service }

"hash:sha1": { | malware.service }

"hash:sha256": { | malware.service }

"inet:fqdn": { | pdns.service | whois.service }

"inet:ipv4": { | pdns.service }

"inet:email": { | whois.service }

*: { $lib.print("{form} is not supported.", form=$node.form()) }
}

The Storm query above:

• takes a set of inbound nodes;

• checks the switch conditions based on the form of the node (see $node.form());

• matches the form name against the list of forms;

• handles each form differently (e.g., hashes are submitted to a malware service, domains are submitted to passive
DNS and whois services, etc.)

• if the inbound form does not match any of the specified cases, print ($lib.print(mesg, **kwargs)) the specified
statement (e.g., "file:bytes is not supported.").

The default case above is not strictly necessary - any inbound nodes that fail to match a condition will simply pass
through the switch statement with no action taken. It is used above to illustrate the optional use of a default case for
any non-matching nodes.

Note: the Storm command names used above are examples only. Commands with those names do not exist in the base
Synapse code.

312 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

For Loop

A for loop will iterate over a set of objects, performing the specified Storm operations on each object in the set.

Syntax:

for $<var> in $<vars> {

<storm>
}

Note: The user documentation for the Synapse csvtool (csvtool) includes additional examples of using a for loop to
iterate over the rows of a CSV-formatted file (i.e., for $row in $rows { <storm> }).

Example:

You routinely apply tags to files (file:bytes nodes) to annotate things such as whether the file is associated with a
particular malware family (cno.mal.redtree) or threat group (cno.threat.viciouswombat). When you apply any
of these tags to a file, you want to automatically apply those same tags to the file’s associated hashes (e.g., hash:md5,
etc.)

You can use a for loop to iterate over the relevant tags on the file and apply(“push”) the same set of tags to the file’s
hashes. (Note: this code could be executed by a trigger (see Triggers) that fires when the relevant tag(s) are applied.)

<inbound file:bytes node(s)>

for $tag in $node.tags(cno.**) {

{ :md5 -> hash:md5 [+#$tag] }
{ :sha1 -> hash:sha1 [+#$tag] }
{ :sha256 -> hash:sha256 [+#$tag] }
{ :sha512 -> hash:sha512 [+#$tag] }

}

For each inbound node, the for loop:

• Looks for tags on the node that match the specified pattern (cno.**)

• For each tag that matches the pattern, execute the Storm code to:

– Pivot from each of the file’s hash properties to the associated hash node.

– Apply the tag to the node.

Because each “pivot and tag” operation is isolated in a Subquery, the original file:bytes node remains in our Storm
pipeline throughout the set of operations.

Note: A for loop will iterate over “all the things” as defined by the for loop syntax. In the example above, a single
inbound node may have multiple tags that match the pattern defined by the for loop. This means that the for loop
operations will execute once per matching tag per node and yield the inbound node (the file:bytes node) to the
pipeline for each iteration of the for loop.

In other words, for each inbound node:

• the first matching tag causes the for loop to execute;

• the loop operations are performed for that tag (i.e., the tag is applied to the associated hashes);

• the file:bytes node is yielded from the for loop;

3.7. Storm Advanced 313

Synapse Documentation, Release 2.141.0

• if there are additional matching tags to process from the inbound node, repeat the for loop for each tag.

Recall that a “single” multi-element tag (such as cno.mal.redtree) actually represents three tags (cno, cno.mal,
and cno.mal.redtree). If an inbound file:bytes node has the tag #cno.mal.redtree, the for loop will execute
twice (for the matching tags cno.mal and cno.mal.redtree) and yield two copies of the file:bytes node (one for
each match / each iteration of the for loop).

This is by design, and is the way Storm variables (specifically, non-runtime safe variables (Non-Runtsafe)) and the
Storm execution pipeline (see Storm Operating Concepts) are intended to work.

See the Advanced Storm - Example below for an illustration of how for loops in particular are impacted by Storm’s
pipeline behavior.

While Loop

A while loop checks inbound nodes against a specified condition and performs the specified Storm operations for as
long as the condition is met.

Syntax:

while <condition> {

<storm>
}

While loops are more frequently used for developer tasks, such as consuming from Queues; and are less common for
day-to-day user use cases.

Try. . .Catch Statement

A try. . . catch statement allows you to attempt (try) a Storm operation and handle (catch) any errors if they occur.
Because Storm’s default behavior is to halt execution when an error occurs, try. . . catch statements allow for more
graceful error handling within Storm. “Catching” an error allows the remainder of your Storm to continue executing.

Tip: Storm supports some basic error handling (allowing you to “warn and continue” vs “error and halt”) specifically
when creating nodes and setting properties or tags through the use of the Edit “Try” Operator (?=).

Syntax:

try {

<storm>

} catch <name> as err {

<storm>
}

If the Storm in the try block runs without error, the catch block (or blocks) are ignored. If an error occurs, execution
of the try block halts (any remaining Storm in the try block is ignored) and flow passes to the appropriate catch block
to handle the error. Multiple catch blocks can be used to handle different kinds of errors.

Because the catch block handles the error, any additional Storm (i.e., after the catch block) will continue to execute.

314 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

In the catch block above, <name> can be the name of a single error type, a set of error types, or the asterisk (*) to
represent any error. When using multiple catch blocks, the asterisk can be used in the final block as a default case to
catch any error not explicitly handled by a previous catch block.

The catch block can return a status (e.g., return((1))) or output a warning message (e.g., using $lib.warn() - see
$lib.warn(mesg, **kwargs)).

Example:

You have an “enrich” macro used to send various kinds of nodes to Storm commands that connect to third-party data
sources. There is a particular data source that occasionally returns malformed data, which throws an error and causes
the entire macro to halt. You want to isolate the Storm command for that vendor within a try. . . catch block so the macro
will continue to run if an error is encountered.

try {

| enrich.badvendor

} catch * as err {

$lib.warn("BadVendor blew up again!")
}

Advanced Storm - Example

The example below is meant to provide a more concrete illustration of some of Storm’s pipeline behavior when com-
bined with certain control flow operations - specifically, with for loops. Control flow operations such as if-else or switch
statements allow you to perform more advanced Storm operations, but still typically represent a single “path” through
the pipeline for any given node - even though the specific path for a given node may vary depending on the if-else or
switch conditions.

With for loops, however, we may execute the same Storm multiple times, which may have unexpected results if you
don’t keep Storm’s pipeline concept in mind.

For Loop - No Subquery

Consider the following query:

inet:fqdn=vertex.link
$list = ('foo','bar','baz')

for $item in $list {

$lib.print($item)
}

$lib.print('And we're done!')

The query:

• lifts a single FQDN node;

• defines a list containing three elements, foo, bar, and baz;

• uses a for loop to iterate over the list, printing each element;

3.7. Storm Advanced 315

Synapse Documentation, Release 2.141.0

• prints And we're done!

When executed, the query generates the following output:

storm> inet:fqdn=vertex.link
$list = ('foo', 'bar', 'baz')

for $item in $list {

$lib.print($item)
}

$lib.print("And we're done!")

foo
And we're done!
inet:fqdn=vertex.link

:domain = link
:host = vertex
:issuffix = false
:iszone = true
:zone = vertex.link
.created = 2023/07/12 15:14:36.533

bar
And we're done!
inet:fqdn=vertex.link

:domain = link
:host = vertex
:issuffix = false
:iszone = true
:zone = vertex.link
.created = 2023/07/12 15:14:36.533

baz
And we're done!
inet:fqdn=vertex.link

:domain = link
:host = vertex
:issuffix = false
:iszone = true
:zone = vertex.link
.created = 2023/07/12 15:14:36.533

What’s going on here? Why does And we're done! print three times? Why do we apparently have three copies of
our FQDN node? The reason has to do with Storm’s pipeline behavior, and how our FQDN node travels through the
pipeline when the pipeline loops.

Our query starts with a single inet:fqdn node in our initial working set. Setting the $list variable does not change
our working set of nodes.

When we reach the for loop, the loop needs to execute multiple times (three times in this case, once for each item in
$list). Anything currently in our pipeline (any nodes that are inbound to the for loop, as well as any variables that
are currently set) is passed into each iteration of the for loop.

In this case, because the for loop is part of our main Storm pipeline (it is not isolated in any way, such as by being
placed inside a subquery), each iteration of the loop outputs our original FQDN node. . .which then continues its

316 Chapter 3. Synapse User Guide

Synapse Documentation, Release 2.141.0

passage through the remainder of the Storm pipeline, causing the $lib.print('And we're done!') statement to
print (remember, each node travels through the pipeline one by one). Storm then executes the second iteration of the
for loop, and the FQDN that exits from this second iteration continues through the pipeline, and so on.

It may help to think of this process as the for loop effectively “splitting” the main Storm pipeline into multiple pipelines
that then each continue to execute in full, one after the other.

Note: Each pipeline still executes sequentially - not in parallel. So the first iteration of the for loop (where $item=foo)
will execute and the remainder of the Storm pipeline will run to completion; followed by the second iteration of the
for loop and the remainder of the Storm pipeline, and so on. (This is why one instance of And we're done! prints
before the messages associated with the second iteration of the loop where $item=bar, etc.).

For Loop - With Subquery

In this variation on our original query, we isolate the for loop within a subquery (Storm Reference - Subqueries):

inet:fqdn=vertex.link
$list = ('foo','bar','baz')

{
for $item in $list {

$lib.print($item)
}

}

$lib.print('And we're done!')

The query performs the same actions as described above, but thanks to the subquery, the behavior of this query is
different, as we can see from the query’s output:

storm> inet:fqdn=vertex.link
$list = ('foo', 'bar', 'baz')

{
for $item in $list {

$lib.print($item)
}

}

$lib.print("And we're done!")

foo
bar
baz
And we're done!
inet:fqdn=vertex.link

:domain = link
:host = vertex
:issuffix = false
:iszone = true

(continues on next page)

3.7. Storm Advanced 317

Synapse Documentation, Release 2.141.0

(continued from previous page)

:zone = vertex.link
.created = 2023/07/12 15:14:36.533

In this case, the query behaves more “as expected” - the strings within the for loop print once for each item / iteration
of the loop, And we're done! prints once, and a single FQDN node exits our pipeline when our query completes. So
what’s different?

One of the key features of a subquery is that by default (i.e., unless the yield option is used), the nodes that go
into a subquery also come out of a subquery, regardless of what occurs inside the subquery itself. In other words,
subqueries do not “consume” nodes.

We still have our single FQDN inbound to the subquery. Inside the subquery, our for loop still executes, effectively
“splitting” the Storm pipeline into three pipelines that execute in sequence. But once we complete the for loop and exit
the subquery, those pipelines are “discarded”. The single FQDN that went into the subquery exits the subquery. We are
back to our single node in the main pipeline. That single node causes our print statement to print And we're done!
only once, and we are left with our single node at the end of the query.

Many of the concepts above are closely related and this outline represents a reasonable effort to introduce concepts in a
logical order. However, it is difficult to fully understand the potential of Synapse and hypergraphs without grasping the
power of the Storm query language to understand, manipulate, and annotate data. Similarly, it’s hard to understand the
effectiveness of Storm without knowledge of the underlying data model. The outline above is our suggested order
but readers are encouraged to skip around or revisit earlier sections after digesting later sections to better see
how these topics are tied together.

318 Chapter 3. Synapse User Guide

CHAPTER

FOUR

SYNAPSE ADMIN GUIDE

This guide is designed for use by Synapse Administrators (“global admins”). Synapse Admins are typically Synapse
power-users with admin=true privileges on the Cortex who are responsible for configuration and management of a
production instance of Synapse.

The Synapse Admin Guide provides important instructions and background information on topics related to day-to-day
Synapse administrative tasks, and focuses on using Storm to carry out those tasks.

Synapse provides a number of additional methods that can be used to perform some or all of the tasks described in this
guide; however, these methods are not covered here. Additional methods include:

• Storm Libraries that allow you to work with a broad range of objects in Synapse.

• Synapse tools that can be used from the host CLI (as opposed to the Storm CLI). Tools are available in the
synapse.tools package of the Synapse Python API . The Synapse User Guide includes documentation on some of
these Tools.

• The Synapse HTTP/REST API .

Tip: If you are a commercial Synapse user with the Synapse UI (Optic), see the UI documentation for information on
performing Synapse Admin tasks using Optic. Optic simplifies many of Synapse’s administrative tasks. However, we
encourage you to review the information in this guide for important background and an overview of the relevant topics.

4.1 Enable Synapse Power-Ups

The Vertex Project provides a number of Power-Ups that extend the functionality of Synapse. For more information on
configuring your Cortex to use Rapid Power-Ups, see the blog post on Synapse Power-Ups.

Note: Advanced Power-Ups are deployed via their own Docker containers and are typically configured by a DevOps
team.

319

https://synapse.docs.vertex.link/en/latest/synapse/autodocs/synapse.tools.html
https://synapse.docs.vertex.link/projects/optic/en/latest/index.html
https://vertex.link/blogs/synapse-power-ups/
https://www.docker.com/resources/what-container/

Synapse Documentation, Release 2.141.0

4.2 Create and Manage Users and Roles

A User account is required to authenticate to and access Synapse. Having “a Synapse account” effectively means
having an account in the Cortex.

In Synapse, a Role can be used to “group” users with similar responsibilities (and related permissions requirements).
You can grant or revoke one or more roles from a user.

You grant (or deny) permissions to users or roles by assigning rules that specify those permissions (see Assign and
Manage Permissions).

Synapse includes the following built-in users and roles:

• Root user. The root account has Admin privileges in the Cortex. The admin status of the root account cannot
be revoked, and the account cannot be locked / disabled.

• All role. The all role has read access to the Cortex (specifically, to any view with worldreadable=true, which
includes the default view). All user accounts are automatically granted the all role (are part of the all “group”);
this role cannot be revoked.

Tip: The set of Storm auth commands are collectively used to manage users, roles, and permissions from Storm.

In the commercial Optic UI, users, roles, and permissions can be managed through the Admin Tool and through dialogs
associated with various objects (such as Views or Stories).

Note: The descriptions and examples below assume that you have deployed Synapse using native Synapse management
and authentication of users, roles, and permissions.

The Synapse Devops Guide includes information on provisioning initial users when Synapse is first deployed (see
Managing Users and Roles). This guide focuses on ongoing management of users and roles once Synapse admins have
access to Storm (i.e., the Storm CLI or Optic UI).

4.2.1 Working with Users

Add a User

The auth.user.add command creates a new user. Newly created users do not have any permissions (other than those
associated with the built-in all role).

Example:

Add the user “Ron” with email address ronthecat@vertex.link:

storm> auth.user.add ron --email ronthecat@vertex.link
User (ron) added with iden: 72d77fbe2df8bc7e25c0cf1e76d2eb4b

Tip: Users are represented by a unique 128-bit identifier (iden). You can modify information about the user account
(such as the username or associated email address) without affecting the underlying identifier or any associated roles
or permissions.

320 Chapter 4. Synapse Admin Guide

Synapse Documentation, Release 2.141.0

Display a User

The auth.user.show command displays information about a user, including any assigned roles or rules (permissions)
and their order.

Example:

Display information for user “Ron”:

storm> auth.user.show ron
User: ron (72d77fbe2df8bc7e25c0cf1e76d2eb4b)

Locked: false
Admin: false
Email: ronthecat@vertex.link
Rules:

Roles:
d9d720443ca613fcdd56b6b1e5591d11 - all

Gates:

Modify a User

The auth.user.mod command modifies a user account. Use the command to:

• Change the username or email address associated with the user.

• Set or reset the user’s password.

• Assign (or remove) admin status for the user.

• Lock (or unlock) the account.

Examples:

Update the email address for user “Ron”:

storm> auth.user.mod ron --email ron@vertex.link
User (ron) email address set to ron@vertex.link.

Assign admin status to the user “ron_admin”:

storm> auth.user.mod ron_admin --admin $lib.true
User (ron_admin) admin status set to true.

Remove admin status from user “ron_admin”:

storm> auth.user.mod ron_admin --admin $lib.false
User (ron_admin) admin status set to false.

Lock the user account “ron_admin”:

storm> auth.user.mod ron_admin --locked $lib.true
User (ron_admin) locked status set to true.

4.2. Create and Manage Users and Roles 321

Synapse Documentation, Release 2.141.0

Warning: We strongly encourage you to lock (disable) accounts when necessary instead of deleting them. Changes
to data in the Cortex (such as creating nodes, setting properties, or adding tags) are associated with the user account
that made those changes. Deleting an account associated with past changes will prohibit you from identifying the
user who made those changes.

If necesssary, user accounts can be deleted using the $lib.auth.users.del(iden) library, but there is no equivalent
Storm command.

List All Users

The auth.user.list command lists all users in the Cortex.

Example:

List all users:

storm> auth.user.list
Users:
ron
root

Locked Users:
ron_admin

4.2.2 Working with Roles

Add a Role

The auth.role.add command creates a new role. Newly created roles do not have any permissions or associated user
accounts.

Example:

Add the new role “cattribution analyst”:

storm> auth.role.add "cattribution analyst"
Role (cattribution analyst) added with iden: 05f3f536b0bb51432c33d4e34247f161

Tip: Roles are represented by a unique 128-bit identifier (iden). You can later change information about the role (such
as the role name) without affecting the underlying role or any associated permissions or users.

Display a Role

The auth.role.show command displays information about a role, including any assigned rules (permissions) and their
associated objects.

Example:

Display information for the “all” role:

322 Chapter 4. Synapse Admin Guide

Synapse Documentation, Release 2.141.0

storm> auth.role.show all
Role: all (d9d720443ca613fcdd56b6b1e5591d11)

Rules:

Gates:
729469dd5f908039d9b4ff10483ec35e - (layer)
[0] - layer.read

1bfaeed8f919a216a6ad7c1f18d56ffe - (view)
[0] - view.read

Modify a Role

The auth.role.mod command modifies a role. The command can be used to change the name of the role.

Example:

Change the name of the role “cattribution analyst” to “meow-ware analyst”:

storm> auth.role.mod "cattribution analyst" --name "meow-ware analyst"
Role (cattribution analyst) renamed to meow-ware analyst.

List all Roles

The auth.role.list command lists all roles in the Cortex.

Example:

List all roles:

storm> auth.role.list
Roles:
a-cat-emic researcher
all
cattribution analyst
meow-ware analyst

Delete a Role

The auth.role.del command deletes a role.

Example:

Delete the role “meow-ware analyst”:

storm> auth.role.del "meow-ware analyst"
Role (meow-ware analyst) deleted.

Note: Deleting a role has no impact on any users who have been granted the role (other than losing any permissions
provided by that role). The user accounts remain intact and the role is simply removed from each user’s list of roles.

4.2. Create and Manage Users and Roles 323

Synapse Documentation, Release 2.141.0

4.2.3 Grant or Revoke Roles

Granting a role to a user allows the user to inherit the role’s permissions. Revoking a role removes the associated
permissions from the user. It is not possible to grant a role to another role (i.e., roles cannot be nested).

Roles can be granted or revoked using the auth.user.grant and auth.user.revoke commands.

Examples:

Grant the role “cattribution analyst” to the user “ron”:

storm> auth.user.grant ron "cattribution analyst"
Granting role cattribution analyst to user ron.

Revoke the role “a-cat-emic researcher” from user “ron”:

storm> auth.user.revoke ron "a-cat-emic researcher"
Revoking role a-cat-emic researcher from user ron.

Note: The order in which roles are granted to a user matters; when determining whether a user has permission to
perform an action, the permissions for each of the user’s roles are checked in sequence.

Each role granted to a user is added to the end of the set of roles unless a location (index) for the role is specified. To
“reorder” roles, you must either:

• revoke the roles and grant them in the desired order;

• use the --index option to specify the location to insert the role;

• use stormprims-storm-auth-user-setRoles to replace the user’s roles with a new list of roles; or

• use the commercial Synapse UI (Optic) to reorder the roles using drag-and drop.

See Permissions Background for additional detail on permissions and Precedence.

4.3 Assign and Manage Permissions

Synapse provides a highly flexible system of role-based access control (RBAC). Rules are used to assign permissions
to users and / or roles, with a defined order of precedence for how permissions are evaluated.

Permissions can be assigned very broadly, such as allowing a user (or role) to create / modify / delete any node.
Permissions can also be very fine-grained, restricting users so that they can only create specific nodes, set specific
properties, create specific edges, or apply specific tags.

4.3.1 Permissions Background

Before describing how to assign and manage permissions in Synapse, it is helpful to define some key components of
Synapse and the permissions ecosystem.

324 Chapter 4. Synapse Admin Guide

Synapse Documentation, Release 2.141.0

Services

Synapse is designed as a modular set of services. A service can be thought of as a container used to run an application.
Synapse services make up the core Synapse architecture, and include the Cortex (data store), Axon (file storage), and
the commercial Optic UI. Services handle user authentication and authorization.

From a Synapse Admin perspective, you will primarily be concerned with managing user accounts and permissions to
(and within) the Synapse Cortex.

Tip: When we talk about “Synapse users” or “permissions to Synapse” we are generally referring to user accounts
and roles in a Cortex, and permissions to a Cortex and its associated objects.

Depending on your Synapse deployment, you may need to grant or manage permissions to additional Synapse services.
See the sections on Optic Permissions and Power-Up Permissions for details.

Cortex

The Cortex is Synapse’s primary data store. Users and roles are created and managed in the Cortex, and most things
for which users will need permissions apply to the Cortex and to the views, layers, and data (nodes, tags, etc.) that
reside there.

Auth Gate

An Auth Gate (or “gate”, informally) is an object within a service (such as a Cortex) that may have its own set of
permissions. A View and a Layer are both common examples of Auth Gates.

Auth Gates are represented by a 128-bit identifier (iden) that uniquely identifies the Auth Gate object itself. They also
have an associated type to specify the kind of Auth Gate object (e.g., “view”). Some Auth Gates also support the use
of “user friendly” names, though this is dependent on the type of Auth Gate and has no impact on the underlying iden
or associated permissions.

Scope

Scope refers to the object to which a particular permission applies. For example, permissions granted on an Auth Gate
(such as a view) are scoped to (or local to) that Auth Gate. Permissions granted at the Cortex level are global with
respect to the Cortex.

Scope affects the order (precedence) in which permissions are evaluated.

Permission

A permission is a string that is used to control access. For example:

view.add

Tip: A list of most permissions available in a Cortex can be found under Cortex Permissions. You can also display
the list in Synapse using the auth.list.perms command.

Most permission strings use a dotted (hierarchical) format; specifying a permission higher up in the hierarchy includes
all permissions below it. For example, the permission view includes all of the following permissions: view.add,
view.del, view.read, and view.set.

4.3. Assign and Manage Permissions 325

Synapse Documentation, Release 2.141.0

Permissions related to objects such as nodes or tags can optionally extend the permission string to be highly specific,
referencing particular forms, properties, tags/tag trees, or light edges. This allows you to set highly granular permis-
sions.

Granular permissions may be useful for organizations with specialized users or teams, where certain individuals are
responsible for specific types of analysis (e.g., strategic analysis vs. tactical threat tracking) and should be the only
users authorized to create, modify, and tag certain types of data.

Granular permissions can also be used to differentiate between senior and junior roles; for example, only senior analysts
may be allowed to apply tags representing certain assessments (such as attribution).

Examples:

Description Permission
Perform any action on any kind of node
(including deleting nodes and working with properties, tags,
edges, and node data)

node

Add any kind of node
(but not delete nodes, or work with properties, tags, edges, or
node data)

node.add

Only add inet:ipv4 nodes
(but not set properties, or work with tags or edges)

node.add.
inet:ipv4

Only add (set) the :asn property of inet:ipv4 nodes
(but not create nodes or work with other properties, tags,
edges, etc.)

node.prop.set.
inet:ipv4:asn

Add or remove any tag
(Note that adding/removing tags may require the ability to
create syn:tag nodes, unless those nodes already exist.)

node.tag

Only add and remove tags in the “mytag” tag tree node.tag.add.
mytag node.
tag.del.mytag

Add or remove any edge
(Note that adding or removing edges allows creating edges
between any nodes; there are no model constraints on the
kinds of nodes that can be joined. It also allows the creation
of new / arbitrarily named edges.)

node.edge

Only add edges node.edge.add
Only add refs edges node.edge.add.

refs

Note: Permissions strings do not support wildcards (*). For example, you cannot specify node.tag.*.mytag to
allow users to both add and delete tags in the mytag tree.

326 Chapter 4. Synapse Admin Guide

Synapse Documentation, Release 2.141.0

Rule

A rule is used to grant (or prohibit) a specific permission. Rules are evaluated in a defined order of precedence.

When you specify a rule, there is an implicit allow directive; a permission string by itself indicates the permission is
allowed/true:

view.add

To use a rule to deny a permission, use the “not” or “bang” symbol (!) to indicate the permission is denied/false:

!node.tag.add.mytag

Precedence

Rules in Synapse are evaluated in order of precedence. A requested action will be allowed (or denied) based on the
first matching rule found for the action. If no matching rule is found, the action is denied.

Generally speaking, rules are evaluated from “most specific” to “least specific”. Rules are evaluated in the following
order:

• User rules at the local (i.e., Auth Gate) level.

• Role rules at the local level.

• User rules at the global (i.e., Cortex) level.

• Role rules at the global level.

Note: Because global rules are evaluated after local rules, permissions granted at the global level can “override”
permissions that are not explicitly denied at the local level. For example, a user may fork a view (making them admin
of that view) and grant “read” access to a coworker (view.read).

If the coworker has “write” permissions (such as node.tag) at the global level, they will be able to add tags within
the forked view (or any view where they have view.read permissions).

If the user forking the view also specified !node for the view’s layer, the coworker would be prevented from adding
any tags in the forked view (or making any edits whatsoever).

Roles (granted to a user) and rules (assigned to a user or role) are also ordered:

• When granting roles to a user, each new role is added to the end of the list of roles unless a location (index) for
the role is specified.

• When assigning rules to a role or user, each new rule is added to the end of the list of rules unless a location
(index) for the rule is specified.

Rules and roles are evaluated in the following order:

• User rules are evaluated in order from first to last.

• Each role granted to a user is evaluated in order from first to last.

• For each role, the role’s rules are evaluated in order from first to last.

This means that the same rules, applied and evaluated in a different order, will give different results. As a simple
example:

These rules will allow the creation of file:bytes nodes, but no other nodes:

4.3. Assign and Manage Permissions 327

Synapse Documentation, Release 2.141.0

node.add.file:bytes
!node.add

The same rules in the opposite order will disallow the creation of any nodes:

!node.add
node.add.file:bytes

Admin

Admin status allows a user to bypass all permissions checks for the scope where the user is admin. For example, a
Synapse (Cortex) admin user can bypass all Cortex permissions checks (can “do anything” within the Cortex).

Users are generally admin of objects that they create. A user who forks a view is admin for the view that they fork,
and can bypass all permissions checks (“do anything”) within the forked view.

Note: It is not possible to assign admin privileges to a role.

Easy Permissions

Easy permissions (“easy perms” for short) is a mechanism that simplifies granting common sets of permissions to users
or roles for a particular object. Where easy perms are used, you can specify four levels of access: deny, read, edit, and
admin. These access levels have corresponding integer values:

• Deny = 0

• Read = 1

• Edit = 2

• Admin = 3

Easy perms apply to specific objects. Where easy perms are available, the following conventions apply:

• The user who creates the object has admin privileges for that object.

• Admin privileges include the ability to grant permissions to others (including the ability to explicitly deny ac-
cess).

• Admin privileges are required to delete the object (i.e., edit permissions do not include delete).

Tip: $lib.macro.grant library is an example of where easy permissions can be used to assign permissions.

328 Chapter 4. Synapse Admin Guide

https://synapse.docs.vertex.link/en/latest/synapse/autodocs/stormtypes_libs.html#lib-macro-grant-name-scope-iden-level

Synapse Documentation, Release 2.141.0

Views and Layers

Data in a Cortex is stored in one or more layers (see Layer). Layers are composed into views (see View) containing
the data that should be visible to users or roles. (A standard installation of Synapse consists of the default view, which
contains one layer.)

Views define the data that a user or role can see - they act as a read boundary. Granting the view.read permission
on a view allows users to see (read) data in any of the view’s layers; you do not need to explicitly grant “read” access
to the individual layers themselves.

The ability to read data in a view is “all or nothing” - you cannot allow users to see some nodes in a view but not others.
(Sensitive data should be stored in its own layer, and views containing that layer should be limited to users or roles with
a need to access that data.)

Layers define the changes (if any) that a user or role can make to data in Synapse - they act as a write boundary. In
normal circumstances, only the top layer in a view is writable. The ability to write data to a layer is controlled by
the various node.* permissions, which specify the forms / properties / tags / light edges a user or role can work with
(create / modify / delete). Permissions to modify data must be assigned at the appropriate layer (or globally, if the
permissions apply to all writable layers in the Cortex).

4.3.2 Assign Permissions

You assign (allow or deny) permissions in Synapse by adding rules to (or removing rules from) roles or users. Recall
that order matters when adding rules (see Precedence).

From a Synapse Admin perspective, managing permissions within Synapse commonly involves:

• Assigning rules to users and roles within the Cortex.

• Assigning rules to users and roles for various Auth Gates (such as layers or views) if necessary.

• Assigning rules to users and roles to allow or deny access to additional services, such as various Power-Ups.

Permissions in Synapse are managed using the Storm auth commands.

In the commercial Optic UI, permissions can also be managed through the Admin Tool and through dialogs associated
with various objects (such as Views or Stories).

Tip: If a user attempts an action that they do not have permissions to perform, Synapse will return an AuthDeny error
that lists the specific permission that is required.

Note: The descriptions and examples below assume that you have deployed Synapse using native Synapse management
and authentication of users, roles, and permissions.

Default Permissions

Synapse includes the following default permissions:

• The built-in root user has admin access (admin=true) to the Cortex.

• The built-in all role has read access (view.read) to any view created with worldreadable=True. This in-
cludes the default view.

Any additional permissions must be explicitly granted to users or roles. In all but a few edge cases, Synapse assumes
an implicit default deny all as the final rule evaluated when checking permissions.

4.3. Assign and Manage Permissions 329

Synapse Documentation, Release 2.141.0

Note: There are a few edge cases where a specific permission assumes a default allow instead of a default deny,
but these are uncommon. These cases are highly specific, and usually arise in cases where a new permission has been
implemented. That is, an action that was not originally subject to a permissions check now has one (usually because
of a need to explicitly deny that action to particular users or roles).

If a previously unchecked action were added with “default deny”, it would potentially break existing Synapse deploy-
ments by suddenly blocking an action that had been previously allowed (ungated). In these circumstances the new
permission is given a “default allow” that can then be specifically denied if necessary.

Global (Cortex) Permissions

Permissions in Synapse can be assigned at the global (Cortex) level, or to a specific Auth Gate (see Auth Gate Permis-
sions). To assign permissions to an Auth Gate, you must specify its identifier (iden) (i.e., using the --gate option to
the appropriate Storm command) when adding the associated rule to a user or role.

If you do not specify an Auth Gate, the permissions are global and apply to any / all instances within the Cortex where
a user or role has access. For example, the following Storm command:

auth.role.addrule all node

. . . grants (allows) the node permission to the built-in all role. This allows any user (because all users are granted the
all role by default) to perform any action on any node in any layer that is the topmost (writeable) layer in any view
that the user can see.

Specifying rules at the global (Cortex) level may be sufficient for many basic Synapse deployments.

Note: Recall that order matters when adding rules:

• by default, each rule is added to the end of the list of rules assigned to a user or role; and

• rules are evaluated in order of precedence.

To reorder rules, you must:

• use the --index option with auth.user.addrule or auth.role.addrule to specify a location to insert a
specific rule;

• remove and re-add the rules in the desired order;

• use stormprims-storm-auth-user-setRules or stormprims-storm-auth-role-setRules to replace the rules for a user
or role with a new set of rules; or

• use the commercial Synapse UI (Optic) to reorder rules using drag-and-drop.

Assign Permissions

Permissions rules (allow or deny) are assigned using the auth.user.addrule and auth.role.addrule commands.

Examples:

Prevent the user “ron” from setting tag descriptions (setting the syn:tag:desc property):

storm> auth.user.addrule ron "!node.prop.set.syn:tag:desc"
Added rule !node.prop.set.syn:tag:desc to user ron.

330 Chapter 4. Synapse Admin Guide

Synapse Documentation, Release 2.141.0

Tip: Deny rules specified with Storm must be enclosed in quotes (single or double) because they begin with a symbol
(!).

Allow the role “senior analysts” to add tags in threat attribution (cno.threat) tag tree:

storm> auth.role.addrule "senior analysts" node.tag.add.cno.threat
Added rule node.tag.add.cno.threat to role senior analysts.

Prevent the “all” role from deleting nodes:

storm> auth.role.addrule all "!node.del"
Added rule !node.del to role all.

Prevent the “all” role from deleting nodes, and insert this as the first rule for the role:

storm> auth.role.addrule --index 0 all "!node.del"
Added rule !node.del to role all.

Tip: Recall that you can Display a User or Display a Role with the auth.user.show and auth.role.show commands.

Revoke Permissions

Permissions rules are revoked using the auth.user.delrule and auth.role.delrule commands.

Examples:

Revoke the rule that prevents user “ron” from setting tag descriptions:

storm> auth.user.delrule ron "!node.prop.set.syn:tag:desc"
Removed rule !node.prop.set.syn:tag:desc from user ron.

Revoke the rule that allows “junior analysts” to apply tags in the cno.threat tag tree:

storm> auth.role.delrule "junior analysts" node.tag.cno.threat
Removed rule node.tag.cno.threat from role junior analysts.

Check Permissions

The auth.user.allowed command can be used to check whether a user has a particular permission (i.e., is allowed to
perform the associated operation) for a specific scope (i.e., globally or for an individual Auth Gate). If an appropriate
allow rule exists, the command will show the source (i.e., the rule, role, and / or associated Auth Gate) where the
permission has been assigned.

Tip:

• A user may have permissions locally (e.g., to a specific Auth Gate) that they do not have globally. In other words a
global check may (correctly) show that a user does not have an expected permission globally, but the permission
will show as “allowed” when the appropriate Auth Gate is checked.

• When checking whether a user can see (read) data or manipulate (e.g., fork) a view, check the relevant view.

4.3. Assign and Manage Permissions 331

Synapse Documentation, Release 2.141.0

• When checking whether a user can modify (write or delete) data, check the relevant layer.

Examples:

Check whether user ‘ron’ is allowed to apply tags in the cno tag tree globally:

storm> auth.user.allowed ron node.tag.add.cno
allowed: true - Matched role rule (node.tag.add.cno) for role cattribution analyst.

Check whether user ‘ron’ is allowed to apply tags in the cno tag tree in the current layer:

storm> auth.user.allowed --gate $lib.layer.get().iden ron node.tag.add.cno
allowed: true - Matched role rule (node.tag.add.cno) for role cattribution analyst.

Note that the response for each of the commands above is identical, even though the first example performed a global
check (no --gate option) while the second example checked the current layer (retrieved with $lib.layer.get()).
The response in the second example shows that Ron can apply tags in the current layer because he has global permissions
for this action - indicated by the absence of an iden in the response. If Ron’s permissions were restricted to the queried
gate (in this case, the layer), the associated iden would have been included in the command output.

Check whether user ‘ron’ is allowed to fork the current view:

storm> auth.user.allowed --gate $lib.view.get().iden ron view.add
allowed: false - No matching rule found.

Auth Gate Permissions

To assign permissions for an Auth Gate, you use the same Storm commands used to assign global permissions, but you
must specify the Auth Gate’s full identifier (iden) (using the --gate option) when adding or removing the rule.

Obtain a Gate’s Iden

The Storm view and layer commands can be used to manage views and layers, respectively. In particular, the following
commands are useful for displaying all views or layers (including their idens), or displaying a specific view or layer:

• view.list

• view.get

• layer.list

• layer.get

Examples:

Display all views:

storm> view.list

View: 1bfaeed8f919a216a6ad7c1f18d56ffe (name: default)
Creator: e8612ee8e55b161e2495ae25602ab0c4
Layers:
729469dd5f908039d9b4ff10483ec35e: default readonly: False

Display the current layer:

332 Chapter 4. Synapse Admin Guide

Synapse Documentation, Release 2.141.0

storm> layer.get
Layer: 729469dd5f908039d9b4ff10483ec35e (name: default) readonly: False creator:␣
→˓e8612ee8e55b161e2495ae25602ab0c4

View a Gate’s Permissions

The auth.gate.show command is used to display permissions information about a particular Auth Gate (e.g., a view
or layer). You can provide the specific iden for an Auth Gate, or use the syntax below to retrieve information for the
current view or layer. (Viewing information for the “current layer” will return information for the top layer of the
current view.)

Example:

Display information for the current view:

storm> auth.gate.show $lib.view.get().iden
Gate Type: view

Auth Gate Users:
e8612ee8e55b161e2495ae25602ab0c4 - root
Admin: true
Rules:

Auth Gate Roles:
d9d720443ca613fcdd56b6b1e5591d11 - all
Rules:
[0] - view.read

Display information for the current layer (i.e., the top layer of the current view):

storm> auth.gate.show $lib.layer.get().iden
Gate Type: layer

Auth Gate Users:
e8612ee8e55b161e2495ae25602ab0c4 - root
Admin: true
Rules:

Auth Gate Roles:
d9d720443ca613fcdd56b6b1e5591d11 - all
Rules:
[0] - layer.read

4.3. Assign and Manage Permissions 333

Synapse Documentation, Release 2.141.0

4.3.3 Permissions Best Practices

• Synapse Admins should use a designated admin account for administrative tasks and a separate account for their
user tasks.

• Where possible, assign permissions to roles and grant roles to users vs. assigning permissions to users directly.

• Create a general purpose role (such as users, or use the built-in all role) and assign the basic permissions that
all Synapse users should have to this role. This includes “things all users should be able to do” (allow rules)
as well as “things all users should be explicitly prohibited from doing” (deny rules). Create additional roles as
needed to allow (or further restrict) specific operations.

• Segregate data with different access requirements into different layers. Grant access to data sets by composing
those layers into views and granting roles access to the appropriate view(s).

• The ability to delete nodes in Synapse should be granted to a limited number of trusted individuals. We recom-
mend creating a dedicated role for this purpose.

• If a role will have limited permissions, it is generally easier to explicitly allow only those actions; everything
else will be denied by default.

• If a role or user will have broad permissions with some restrictions, it is generally easier to explicitly deny the
restricted actions first, and then grant broad permissions (for example !node.del followed by node). Because
permissions rules are checked in order, Synapse will encounter any deny rules first (i.e., user is unable to delete
nodes), blocking the prohibited action while then allowing anything not specifically denied (i.e., user can do
anything else to nodes).

4.3.4 Example Permissions

The examples below illustrate a few common use cases for roles and permissions within Synapse. These rule sets are
meant as simple illustrations and do not necessarily illustrate fully-defined, production-ready permission sets.

Recall that:

• Views control read access to the data store. Users with read access to a view (view.read) can read all data in
all layers of the view (i.e., no additional layer-specific permissions are required for read access).

• Layers control write access to the data store. Use permissions to manage the data that can be written to a given
layer (including the ability to merge data into that layer from a forked view).

• A user who can fork a view is admin within their forked view.

A list of available Cortex permissions is available under the Cortex Permissions section, or can be viewed in Synapse
with the auth.perms.list command.

Case 1 - Grant common permissions - basic

These basic permissions can be assigned to a role to allow users to perform common operations in Synapse.

Permis-
sion

Description

view.
read

See / read any view

view.
add

Fork any view they can see

node Create, modify, or delete any type of data (nodes, properties, light
edges, tags, and node data) in the top layer of any view they can see

334 Chapter 4. Synapse Admin Guide

Synapse Documentation, Release 2.141.0

Tips:

• The all role has implicit (and non-revocable) “read” access to Synapse’s default view. This is not the same as
global view.read access. To allow the all role (or any role) to see other views, you must explicitly assign the
view.read permission (either globally or to individual views).

• Users can only fork (view.add) views they can see (view.read). If users should be allowed to fork any view
where they have read access, the view.add permission can be assigned globally even if read access is managed
on a per-view basis.

Case 2 - Grant common permissions - intermediate

These permissions expand on Case 1, but only allow the role to see specific views (by granting view.read locally to
individual views).

Any global permissions (e.g., node.add) will apply to the top (writeable) layer of any view the role can see, unless
the permissions are overridden locally.

These permissions also prevent the role from deleting nodes globally, while allowing them to delete properties or edges
and to remove tags.

Permission Scope Description
view.add global Fork any view they can see (based on view.read)
!node.del global Prevent deletion of any nodes
node.add global Create nodes in the top layer of any view they can see
node.prop global Set, modify, or delete node properties in the top layer of any

view they can see
node.edge global Add or remove light edges in the top layer of any view they

can see
node.tag global Add or remove tags from nodes in the top layer of any view they

can see
view.read local See all the data in all the layers of the specific view(s)

where the rule is assigned

Case 3 - Create a dedicated role that can delete nodes

Deleting nodes indiscriminately or incorrectly can negatively impact your data store (i.e., leaving “holes” in the graph
or destroying data). Synapse requires that users run an explicit command (delnode) to delete nodes, so the action is a
deliberate choice (vs. an “accidental click”).

We strongly recommend that you create a role whose sole permission is the ability to delete nodes, and grant that role
to a limited number of users. To do this:

• Explicitly deny permission to delete nodes (!node.del) at the global level to the general purpose role you use
to manage permissions for all users (as shown in Case 2 above).

• Create a dedicated role whose only permission will be the ability to delete nodes.

– We encourage a name that inspires caution, such as fire ze missiles or agents of destruction,
but you can just use deleters.

• Assign the node.del rule to the role (globally, or for specific layers).

Tips:

4.3. Assign and Manage Permissions 335

Synapse Documentation, Release 2.141.0

• All delete operations (whether deleting nodes, properties, edges, or removing tags) must be performed directly
in the layer where the data resides. As admin of any view that they fork, “normal” users can delete data created
or modified within their forked view.

Case 4 - Place guardrails around writing (creating or merging) data

Permissions can be used to prevent roles from:

• creating various types of data directly in a layer/view; or

• merging various types of data into an underlying view (technically, to the view’s top layer).

These types of permissions can help ensure that data in a “production” layer remains as pristine and error-free as
possible. For example:

• Help to limit typos that result in “bad” tags or edges.

• Prevent data from a sensitive or restricted layer from being written to a non-restricted layer.

Example use cases:

• Use permissions around light edges to only allow the creation of specific named edges. This can limit typos in
edge names and/or prevent users from creating arbitrarily named edges.

• Use permissions around tags or tag trees to only allow applying certain tags (e.g., to enforce your organization’s
tag conventions). For example, permissions can ensure that users’ “scratch” tags (#thesilence.mywork) or
tags indicating sensitive data (#tlp.red) are not added to “production” data.

• Use permissions around individual properties to prohibit setting specific properties in particular layers. For
example, taxonomy properties (such as risk:threat:type) may be “under development” in an internal analysis
view while users test and agree on appropriate categories. You may want to prevent this property from being set
(merged) into production data until the taxonomy is finalized.

Tip: The degree to which you enforce data and tag conventions through permissions vs. by consensus (i.e., users agree
on “best efforts” to keep the data tidy) will depend on your organization and your use case. Managing permissions adds
overhead, but may be worth the effort for data sets that require high fidelity or quality. The overhead may have less
benefit for internal data or test data where occasional errors have minimal impact and can be “cleaned up” as needed.

The sample rules below can be applied globally (a user with this role can write “approved” data to any writeable layer
of any view they can see) or locally to specific layers.

The examples below only illustrate how certain write actions can be restricted and do not address other permissions
that a user/role might need. These permissions could be added to an existing role (such as your general users role),
or granted via their own role.

Example 1:

If a limited set of actions are allowed, simply specify the changes that the role can make. Anything else is implicitly
denied by default.

In this example, a role with the following permissions can:

• only add and remove tags in the listed tag trees; and

• only create and delete the listed edges.

336 Chapter 4. Synapse Admin Guide

Synapse Documentation, Release 2.141.0

Permission Description
node.tag.add.cno Add / apply tags in the cno tree (e.g., cno, cno.mal,

cno.mal.plugx etc.)
node.tag.del.cno Remove any tags in the cno tree
node.tag.add.rep Add / apply any tags in the rep tree
node.tag.del.rep Remove any tags in the rep tree
node.edge.add.refs Add refs light edges
node.edge.del.refs Delete refs light edges
node.edge.add.uses Add uses light edges
node.edge.del.uses Delete uses light edges
node.edge.add.targets Add targets light edges
node.edge.del.targets Delete targets light edges

Example 2:

If specific actions are prohibited, deny those changes and then allow “everything else”.

A role with the following permissions is prohibited from:

• Creating risk:threat:type:taxonomy nodes (representing “categories” of threats).

• Setting the :type property for risk:threat nodes (e.g., specifying the taxonomy category for a particular
threat).

• Creating tags in the tlp tree.

Note that the permissions as listed only prohibit actions. For a role with these permissions to be able to make other
changes (e.g., add other nodes or edges), those permissions need to be granted after these “deny” rules, or as part of
another role.

Permission Description
!node.add.
risk:threat:type:taxonomy

Prevent creating these nodes

!node.prop.set.risk:threat:type Prevent setting this property (i.e., on existing
risk:threat nodes)

!node.tag.add.tlp Prevent applying tags in the tlp tree

Tip: To prevent users or roles from making any changes to a particular view (i.e., users cannot merge any data into
the view / write any data directly to the view’s topmost layer):

• Do not add node permissions to the view’s topmost layer (write permissions that are not granted are implicitly
denied).

• If a role has been granted node (or similar) permissions globally, override this by explicitly denying (!node) the
permission on the layer you want to protect.

4.3. Assign and Manage Permissions 337

Synapse Documentation, Release 2.141.0

Case 5 - Senior vs. junior roles

Senior roles (with more permissions) and junior roles (with limited permissions) are used in a variety of situations,
such as new trainees vs. experienced users or junior vs. senior analysts.

When using a “fork and merge” workflow, a junior user can “do anything” (as admin) in a view that they fork. This
allows them to enrich data and annotate their assessments using tags. But permissions can prevent them from merging
some (or all) data and tags until a senior user has reviewed the changes. The senior role (with appropriate permissions)
can then merge the data on the junior user’s behalf.

For example, tags representing key analytical assessments - such as determining if a file or indicator is associated with
a malware family, or tags representing threat clustering and attribution - may require careful consideration. The ability
to merge these tags may be limited to senior analysts who can verify that the junior analyst has applied them correctly.

These types of permissions are typically cumulative; generic users may be prohibited (or simply not allowed) to
perform a certain action, with additional permissions granted to increasingly senior or experienced roles. In the example
below, all users would have the general users role and analysts would be granted each additional role as they gained
experience.

Example:

Role Permission(s) Description
users !node.tag.cno

!node.tag.rep
node.tag

Prevent applying tags in the cno and
rep trees (representing specific analytical
assessements) but apply other tags

novice
analyst

node.tag.add.rep Novices can apply tags in the rep tree
(representing third-party reporting)

junior
analyst

node.tag.add.cno.
infra

Junior analysts can apply tags in the
cno.infra tree (related to network
infrastructure)

senior
analyst

node.tag.add.cno.
threat

Senior analysts can apply tags in the
cno.threat and cno.mal trees
(assessments related to threat clusters and
malware families)

Note: Because of Precedence, as additional roles are granted, they would need to be added (indexed) before the users
role to prevent that role’s explicit deny permissions from overriding the newly allowed tag privileges.

Case 6 - Specialized roles

For organizations with diverse analysis teams (e.g., where analysts specialize in particular areas) or organizations where
multiple teams or departments use Synapse for different purposes, it may be helpful to create highly specialized roles.

Examples:

• An organization with a dedicated malware analysis team may only allow those specialists to apply tags related
to malware/code families and malware ecosystems.

• An organization’s strategic analysts may be solely responsible for certain objects and related data. For example,
a strategic team may be in charge of researching and creating organizations (ou:org) and associated industries
(ou:industry) in order to track victimology. Strategic analysts can ensure that these objects are created accord-
ing to the team’s standards and that organizations are assigned to the appropriate industries.

Malware analyst example:

338 Chapter 4. Synapse Admin Guide

Synapse Documentation, Release 2.141.0

• We assume the ability to apply the specialized tags listed below is either not granted or explicitly denied else-
where/to other roles.

• Malware analysts can also be granted the ability to remove the tags listed below with the corresponding node.
tag.del permissions.

Permission Description
node.tag.
add.cno.code

Apply cno.code tags (designating specific samples of code
families - e.g., cno.code.plugx)

node.tag.
add.cno.mal

Apply cno.mal tags (designating components of malware / code
family ecosystems, such as related droppers or C2 - e.g.,
cno.mal.plugx)

node.tag.
add.cno.rel

Apply cno.rel tags (designating components that may be observed
as part of a malware ecosystem but are not inherently malicious -
e.g., cno.rel.plugx)

Strategic analyst example:

• We assume the ability to create these nodes / set these properties is either not granted or explicitly denied
elsewhere/to other roles.

• Strategic analysts can optionally be granted the ability to delete relevant nodes/properties with the corresponding
node.del or node.prop.del permissions.

• Depending on how you assign permissions, keep in mind that roles that cannot create nodes may still be able
to set or modify properties on the node as long as the node already exists. This ability can be restricted via
additional node.prop.set rules if necessary.

Permission Description
node.add.ou:org Create organization nodes
node.prop.set.ou:org:industries Assign organizations to one or more industries
node.add.ou:industry Create industry nodes

4.3.5 Cortex Permissions

The following is a list of the Cortex permissions that may be granted to a user or role. If a gate other than cortex is
specified, the permission will be checked against the specific gate instance and if no match is found, it will be checked
against the global rules.

storm> auth.perms.list
globals

Used to control all operations for global variables.
gate: cortex
default: false

globals.get
Used to control read access to all global variables.
gate: cortex
default: false

globals.get.<name>
Used to control read access to a specific global variable.

(continues on next page)

4.3. Assign and Manage Permissions 339

Synapse Documentation, Release 2.141.0

(continued from previous page)

gate: cortex
default: false

globals.pop
Used to control delete access to all global variables.
gate: cortex
default: false

globals.pop.<name>
Used to control delete access to a specific global variable.
gate: cortex
default: false

globals.set
Used to control edit access to all global variables.
gate: cortex
default: false

globals.set.<name>
Used to control edit access to a specific global variable.
gate: cortex
default: false

node
Controls all node edits in a layer.
gate: layer
default: false

node.add
Controls adding any form of node in a layer.
gate: layer
default: false

node.add.<form>
Controls adding a specific form of node in a layer.
gate: layer
default: false
example: node.add.inet:ipv4

node.del
Controls removing any form of node in a layer.
gate: layer
default: false

node.del.<form>
Controls removing a specific form of node in a layer.
gate: layer
default: false

node.prop
Controls editing any prop on any node in the layer.
gate: layer

(continues on next page)

340 Chapter 4. Synapse Admin Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

default: false

node.prop.del
Controls removing any prop on any node in a layer.
gate: layer
default: false

node.prop.del.<prop>
Controls removing a specific property from a node in a layer.
gate: layer
default: false
example: node.prop.del.inet:ipv4:asn

node.prop.set
Controls setting any prop on any node in a layer.
gate: layer
default: false

node.prop.set.<prop>
Controls setting a specific property on a node in a layer.
gate: layer
default: false
example: node.prop.set.inet:ipv4:asn

node.tag
Controls editing any tag on any node in a layer.
gate: layer
default: false

node.tag.add
Controls adding any tag on any node in a layer.
gate: layer
default: false

node.tag.add.<tag...>
Controls adding a specific tag on any node in a layer.
gate: layer
default: false
example: node.tag.add.cno.mal.redtree

node.tag.del
Controls removing any tag on any node in a layer.
gate: layer
default: false

node.tag.del.<tag...>
Controls removing a specific tag on any node in a layer.
gate: layer
default: false
example: node.tag.del.cno.mal.redtree

storm.lib.auth.roles.add

(continues on next page)

4.3. Assign and Manage Permissions 341

Synapse Documentation, Release 2.141.0

(continued from previous page)

Controls the ability to add a role to the system. USE WITH CAUTION!
gate: cortex
default: false

storm.lib.auth.roles.del
Controls the ability to remove a role from the system. USE WITH CAUTION!
gate: cortex
default: false

storm.lib.auth.users.add
Controls the ability to add a user to the system. USE WITH CAUTION!
gate: cortex
default: false

storm.lib.auth.users.del
Controls the ability to remove a user from the system. USE WITH CAUTION!
gate: cortex
default: false

storm.lib.axon.del
Controls the ability to remove a file from the Axon.
gate: cortex
default: false

storm.lib.axon.get
Controls the ability to retrieve a file from the Axon.
gate: cortex
default: false

storm.lib.axon.has
Controls the ability to check if the Axon contains a file.
gate: cortex
default: false

storm.lib.axon.wget
Controls the ability to retrieve a file from URL and store it in the Axon.
gate: cortex
default: false

storm.lib.axon.wput
Controls the ability to push a file from the Axon to a URL.
gate: cortex
default: false

storm.lib.telepath.open
Controls the ability to open an arbitrary telepath URL. USE WITH CAUTION.
gate: cortex
default: false

storm.lib.telepath.open.<scheme>
Controls the ability to open a telepath URL with a specific URI scheme. USE WITH␣

→˓CAUTION.

(continues on next page)

342 Chapter 4. Synapse Admin Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

gate: cortex
default: false

view
Controls all view permissions.
gate: cortex
default: false

view.add
Controls access to add a new view including forks.
gate: cortex
default: false

view.read
Used to control read access to a view.
gate: view
default: false

4.3.6 Optic Permissions

Commercial Synapse customers with the Optic UI may need to explicitly grant users or roles permission to some UI
tools (such as Spotlight).

• See the Optic Deployment Guide for information on Optic deployment.

• See the Optic DevOps Guide for information on Optic permissions and other features.

Tip: You do not need to explicitly grant permissions to Optic itself. If you are creating and managing Synapse
(“Cortex”) users and roles via Optic, they have permission to access Optic by default.

4.3.7 Power-Up Permissions

Synapse Power-Ups have their own sets of permissions that must be granted to users or roles to allow them to use the
Power-Up and any associated Storm commands. Specific permissions are documented in the Admin Guide section of
the Power-Up documentation for the individual Power-Up.

Tip: While most Vertex-provided Power-Ups are part of the commercial Synapse offering, the following Rapid Power-
Ups are also available for use with the community (open source) version of Synapse:

• Synapse-MISP

• Synapse-MITRE-ATT&CK

• Synapse-PSL (FQDN public suffix list)

• Synapse-TOR

4.3. Assign and Manage Permissions 343

https://synapse.docs.vertex.link/projects/optic/en/latest/user_interface/deploymentguide.html
https://synapse.docs.vertex.link/projects/optic/en/latest/user_interface/devopsguide.html
https://synapse.docs.vertex.link/en/latest/synapse/power_ups.html
https://synapse.docs.vertex.link/en/latest/synapse/power_ups/rapid_power_ups.html
https://synapse.docs.vertex.link/en/latest/synapse/power_ups/rapid_power_ups.html
https://synapse.docs.vertex.link/projects/rapid-powerups/en/latest/storm-packages/synapse-misp/index.html
https://synapse.docs.vertex.link/projects/rapid-powerups/en/latest/storm-packages/synapse-mitre-attack/index.html
https://synapse.docs.vertex.link/projects/rapid-powerups/en/latest/storm-packages/synapse-psl/index.html
https://synapse.docs.vertex.link/projects/rapid-powerups/en/latest/storm-packages/synapse-tor/index.html

Synapse Documentation, Release 2.141.0

4.3.8 Storm Runtime Permissions

When a user runs a Storm query interactively (e.g., in the Storm CLI or via the Optic Query Bar), or performs an
action in the Optic UI (such as accessing a menu option), the query or action executes with the permissions of the
user, based on the applicable user and role permissions and the current scope for the query or action.

There are a few cases of Storm runtime execution where different permissions are used that may require additional
considerations.

Automation

Synapse includes the ability to automate Storm-based tasks using triggers, cron jobs, and / or macros. These elements
are all impacted by permissions in various ways, including:

• who can create or manage automation (e.g., by default any user can create a macro, but explicit permissions are
required to create triggers or cron jobs);

• who a given piece of automation runs as (e.g., macros run as the user who executes them, but triggers and cron
jobs run as the user who created them).

Refer to the Storm Reference - Automation section of the Synapse User Guide for a detailed discussion of automation
in Synapse (including permissions considerations).

Power-Ups

Power-Ups implement Storm packages and Storm services to provide additional functionality to Synapse. Power-Ups
may be provided by The Vertex Project (as free or commercial offerings). Organizations may also develop their own
custom Power-Ups.

Power-Ups commonly install Storm commands to allow users to make use of the additional capabilities of the Power-
Up. In some cases, Power-Ups may need to access sensitive data (such as API keys or similar credentials) or perform
actions (e.g., in adding nodes or applying tags) that some users would not be allowed to perform on their own.

Power-Ups can use privilege separation (“privsep”) so that a limited subset of Power-Up capabilities can run with
elevated privileges if necessary, with the remainder of the code running as the user who calls the Power-Up.

See the Rapid Power-Up Development section of the Synapse Developer Guide for additional details.

Note: Synapse Admins are typically only responsible for ensuring that the appropriate users and roles can use or run
individual Power-Ups (see Power-Up Permissions). While Synapse Admins should be aware of privilege separation
within a Power-Up as a best practice, implementation of privilege separation is left to Power-Up developers.

4.4 Add Extended Model Elements

The Synapse data model in a Cortex can be extended with custom forms or properties by using the model extension
Storm Library ($lib.model.ext). Extended model forms and properties must have names beginning with an underscore
(_) to avoid potential naming conflicts with built-in model elements.

344 Chapter 4. Synapse Admin Guide

https://synapse.docs.vertex.link/en/latest/synapse/glossary.html#form-extended
https://synapse.docs.vertex.link/en/latest/synapse/glossary.html#property-extended

Synapse Documentation, Release 2.141.0

4.4.1 Extended Forms

When adding a form, $lib.model.ext.addForm takes the following arguments:

formname
Name of the form, must begin with an underscore (_) and contain at least one colon (:).

basetype
The Synapse data model type for the form.

typeopts
A dictionary of type specific options.

typeinfo
A dictionary of info values for the form.

To add a new form named _foocorp:name, which contains string values which will be normalized to lowercase, with
whitespace stripped from the beginning/end:

$typeopts = ({'lower': $lib.true, 'strip': $lib.true})
$typeinfo = ({'doc': 'Foocorp name.'})

$lib.model.ext.addForm(_foocorp:name, str, $typeopts, $typeinfo)

If the form is no longer in use and there are no nodes of this form in the Cortex, it can be removed with:

$lib.model.ext.delForm(_foocorp:name)

4.4.2 Extended Properties

When adding properties, $lib.model.ext.addFormProp takes the following arguments:

formname
Name of the form to add the property to, may be a built-in or extended model form.

propname
Relative name of the property, must begin with an underscore (_).

typedef
A tuple of (type, typeopts) which defines the type for the property

propinfo
A dictionary of info values for the property.

To add a property named _score to the _foocorp:name form which contains int values between 0 and 100:

$typeopts = ({'min': 0, 'max': 100})
$propinfo = ({'doc': 'Score for this name.'})

$lib.model.ext.addFormProp(_foocorp:name, _score, (int, $typeopts), $propinfo)

To add a property named _aliases to the _foocorp:name form which contains a unique array of ou:name values:

$typeopts = ({'type': 'ou:name', 'uniq': $lib.true})
$propinfo = ({'doc': 'Aliases for this name.'})

$lib.model.ext.addFormProp(_foocorp:name, _aliases, (array, $typeopts), $propinfo)

4.4. Add Extended Model Elements 345

autodocs/datamodel_types.html

Synapse Documentation, Release 2.141.0

Properties may also be added to existing forms, for example, to add a property named _classification to inet:fqdn
which must contain a string from a predefined set of values:

$typeopts = ({'enums': 'unknown,benign,malicious'})
$propinfo = ({'doc': 'Classification for this FQDN.'})

$lib.model.ext.addFormProp(inet:fqdn, _classification, (str, $typeopts), $propinfo)

4.4.3 Extended Universal Properties

Similar to $lib.model.ext.addFormProp, $lib.model.ext.addUnivProp takes the same propname, typedef,
and propinfo arguments, but applies to all forms.

4.5 Manage Model Deprecations

As the Synapse Data Model grows and evolves, model elements (types, forms, and properties) may be deprecated and
should no longer be used for new data modeling. The Storm model.deprecated commands can be used to prepare
for the eventual removal of deprecated model elements.

4.5.1 Lock Deprecated Model Elements

The model.deprecated.lock command edits the lock status of deprecated model elements. Locked model elements
can still be viewed or deleted, but can no longer be added. Attempting to add a locked model element will cause
an IsDeprLocked error. The model.deprecated.locks command can be used to show the current lock status of all
deprecated model elements.

Examples:

Lock the ps:person:img property:

storm> model.deprecated.lock ps:person:img
Locking: ps:person:img

Unlock the ps:person:img property:

storm> model.deprecated.lock --unlock ps:person:img
Unlocking: ps:person:img

Lock all deprecated model elements:

storm> model.deprecated.lock *
Locking all deprecated model elements.

346 Chapter 4. Synapse Admin Guide

Synapse Documentation, Release 2.141.0

4.5.2 Check for Deprecated Model Elements

The model.deprecated.check command checks for lock status and the existence of deprecated model elements in the
Cortex. Warnings will be produced for any deprecated model elements which are unlocked or still in use in the Cortex.
Once all warnings have been resolved, your Cortex will be ready for future model updates.

4.6 Configure a Mirrored Layer

A Cortex may be configured to mirror a layer from a remote Cortex which will synchronize all edits from the remote
layer and use write-back support to facilitate edits originating from the downstream layer. The mirrored layer will be
an exact copy of the layer on the remote system including all edit history and will only allow changes which are first
sent to the upstream layer.

When configuring a mirrored layer, you may choose to mirror from a remote layer or from the top layer of a remote
view. If you choose to mirror from the top layer of a remote view, that view will have the opportunity to fire triggers
and enforce model constraints on the changes being provided by the mirrored layer.

To specify a remote layer as the upstream, use a Telepath URL which includes the shared object */layer/
<layeriden> such as:

aha://cortex.loop.vertex.link/*/layer/8ea600d1732f2c4ef593120b3226dea3

To specify a remote view, use the shared object */view/<viewiden> such as:

aha://cortex.loop.vertex.link/*/view/8ea600d1732f2c4ef593120b3226dea3

When you specify a --mirror option to the layer.add command or within a layer definition provided to the $lib.
layer.add() Storm API the telepath URL will not be checked. This allows configuration of a remote layer or view
which is not yet provisioned or is currently offline.

Note: To allow write access, the telepath URL must allow admin access to the remote Cortex due to being able to
fabricate edit origins. The telepath URL may use aliased names or TLS client side certs to prevent credential disclosure.

Once a mirrored layer is configured, it will need to stream down the entire history of events from the upstream layer.
During this process, the layer will be readable but writes will hang due to needing to await the write-back to be fully
caught up to guarantee that edits are immediately observable like a normal layer. During that process, you may track
progress by calling the getMirrorStatus() API on the layer object within the Storm runtime.

4.6. Configure a Mirrored Layer 347

Synapse Documentation, Release 2.141.0

348 Chapter 4. Synapse Admin Guide

CHAPTER

FIVE

SYNAPSE DEPLOYMENT GUIDE

5.1 Introduction

This step-by-step guide will walk you through a production-ready Synapse deployment. Services will be configured to
register with AHA for service discovery and to prepare for future devops tasks such as promoting a mirror to leader and
provisioning future Synapse Advanced Power-Ups.

This guide will also walk you through deploying all Synapse services using TLS to authenticate both servers and clients
using client-certificates to minimize the need for secrets management by eliminating passwords from all telepath URLs.

For the purposes of this guide, we will use docker-compose as a light-weight orchestration mechanism. The steps,
configurations, and volume mapping guidance given in this guide apply equally to other container orchestration mech-
anisms such as Kubernetes but for simplicity’s sake, this guide will only cover docker-compose based deployments.

Note: Due to known networking limitations of docker on Mac we do not support or recommend the use of Docker
for Mac for testing or deploying production Synapse instances. Containers run within separate docker-compose
commands will not be able to reliably communicate with each other.

Synapse services require persistent storage. Each docker container expects persistent storage to be available within
the directory /vertex/storage which should be a persistent mapped volume. Only one container may run from a
given volume at a time.

Note: To allow hosts to be provisioned on one system, this guide instructs you to disable HTTP API listening ports
on all services other than the main Cortex. You may remove those configuration options if you are running on separate
hosts or select alternate ports which do not conflict.

5.2 Prepare your Hosts

Ensure that you have an updated install of docker and docker-compose.

In order to help you run the Synapse service containers as a non-root user, Synapse service docker containers have been
preconfigured with a user named synuser with UID 999. You may replace 999 in the configs below, but keep in mind
that doing so will result in the container not having a name for the user. We recommend that you do not use the Linux
user nobody for this purpose.

Default kernel parameters on most Linux distributions are not optimized for database performance. We recommend
adding the following lines to /etc/sysctl.conf on all systems being used to host Synapse services:

349

https://docs.docker.com/desktop/mac/networking/#known-limitations-use-cases-and-workarounds
https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/

Synapse Documentation, Release 2.141.0

vm.swappiness=10
vm.dirty_expire_centisecs=20
vm.dirty_writeback_centisecs=20

See Performance Tuning for a list of additional tuning options.

We will use the directory /srv/syn/ on the host systems as the base directory used to deploy the Synapse services.
Each service will be deployed in separate /srv/syn/<svcname> directories. This directory can be changed to what-
ever you would like, and the services may be deployed to any host provided that the hosts can directly connect to each
other. It is critical to performance that these storage volumes be low-latency. More latent storage mechanisms such as
spinning disks, NFS, or EFS should be avoided!

We highly recommend that hosts used to run Synapse services deploy a log aggregation agent to make it easier to view
the logs from the various containers in a single place.

When using AHA, you may run any of the other services on additional hosts as long as they can connect directly to
the AHA service. You may also shutdown a service, move it’s volume to a different host, and start it backup without
changing anything.

5.3 Decide on a Name

Throughout the examples, we will be using <yournetwork> as the AHA network name which is also used as the
common-name (CN) for the CA certificate. This should be changed to an appropriate network name used by your
synapse deployment such as syn.acmecorp.com. We will use <yournetwork> in the following configs to specify
locations which should be replaced with your selected AHA network name. For a test deployment which runs all
docker containers on one host, you may use loop.vertex.link.

Note: It is important that you choose a name and stick with it for a given deployment. Once we begin generating host
and service account certificates, changing this name will be difficult.

5.4 Deploy AHA Service

The AHA service is used for service discovery and acts as a CA to issue host/user certificates used to link Synapse
services. Other Synapse services will need to be able to resolve the IP address of the AHA service by name, so it is
likely that you need to create a DNS A/AAAA record in your existing resolver. When you are using AHA, the only
host that needs DNS or other external name resolution is the AHA service.

Note: It is important to ensure that aha.<yournetwork> is resolvable via DNS or docker container service name
resolution from within the container environment! There are configuration options you may use if this is impossible,
but the configuration is far simpler if we can make this assumption.

Create the container directory:

mkdir -p /srv/syn/aha/storage

Create the /srv/syn/aha/docker-compose.yaml file with contents:

350 Chapter 5. Synapse Deployment Guide

Synapse Documentation, Release 2.141.0

version: "3.3"
services:
aha:
user: "999"
image: vertexproject/synapse-aha:v2.x.x
network_mode: host
restart: unless-stopped
volumes:

- ./storage:/vertex/storage
environment:

- SYN_AHA_HTTPS_PORT=null
- SYN_AHA_AHA_NAME=aha
- SYN_AHA_AHA_NETWORK=<yournetwork>
- SYN_AHA_DMON_LISTEN=ssl://aha.<yournetwork>?ca=<yournetwork>
- SYN_AHA_PROVISION_LISTEN=ssl://aha.<yournetwork>:27272

Note: Don’t forget to replace <yournetwork> with your chosen network name!

Change ownership of the storage directory to the user you will use to run the container:

chown -R 999 /srv/syn/aha/storage

Start the container using docker-compose:

docker-compose -f /srv/syn/aha/docker-compose.yaml pull
docker-compose -f /srv/syn/aha/docker-compose.yaml up -d

To view the container logs at any time you may run the following command on the host from the /srv/syn/aha
directory:

docker-compose logs -f

You may also execute a shell inside the container using docker-compose from the /srv/syn/aha directory on the
host. This will be necessary for some of the additional provisioning steps:

docker-compose exec aha /bin/bash

5.5 Deploy Axon Service

In the Synapse service architecture, an Axon provides a place to store arbitrary bytes/files as binary blobs and exposes
APIs for streaming files in and out regardless of their size. Given sufficient file system size, an Axon can be used to
efficiently store and retrieve very large files as well as a high number (easily billions) of files.

Inside the AHA container

Generate a one-time use provisioning URL:

python -m synapse.tools.aha.provision.service 00.axon

These one-time use URLs are used to connect to the Aha service, retrieve configuration data, and provision SSL
certificates for the service. When this is done, the service records that the URL has been used in its persistent storage,
and will not attempt to perform the provisioning process again unless the URL changes. If the provisioning URL is

5.5. Deploy Axon Service 351

Synapse Documentation, Release 2.141.0

reused, services will encounter NoSuchName errors and fail to start up - this indicates a service has attempted to re-use
the one-time use URL!

Note: We strongly encourage you to use a numbered hierarchical naming convention for services where the first part
of the name is a 0 padded number and the second part is the service type. The above example 00.axon will allow
you to deploy mirror instances in the future, such as 01.axon, where the AHA name axon.<yournetwork> will
automatically resolve to which ever one is the current leader.

You should see output that looks similar to this:

one-time use URL: ssl://aha.<yournetwork>:27272/<guid>?certhash=<sha256>

On the Host

Create the container directory:

mkdir -p /srv/syn/00.axon/storage
chown -R 999 /srv/syn/00.axon/storage

Create the /srv/syn/00.axon/docker-compose.yaml file with contents:

version: "3.3"
services:
00.axon:
user: "999"
image: vertexproject/synapse-axon:v2.x.x
network_mode: host
restart: unless-stopped
volumes:

- ./storage:/vertex/storage
environment:

disable HTTPS API for now to prevent port collisions
- SYN_AXON_HTTPS_PORT=null
- SYN_AXON_AHA_PROVISION=ssl://aha.<yournetwork>:27272/<guid>?certhash=<sha256>

Note: Don’t forget to replace your one-time use provisioning URL!

Start the container:

docker-compose --file /srv/syn/00.axon/docker-compose.yaml pull
docker-compose --file /srv/syn/00.axon/docker-compose.yaml up -d

352 Chapter 5. Synapse Deployment Guide

Synapse Documentation, Release 2.141.0

5.6 Deploy JSONStor Service

Inside the AHA container

Generate a one-time use provisioning URL:

python -m synapse.tools.aha.provision.service 00.jsonstor

You should see output that looks similar to this:

one-time use URL: ssl://aha.<yournetwork>:27272/<guid>?certhash=<sha256>

On the Host

Create the container directory:

mkdir -p /srv/syn/00.jsonstor/storage
chown -R 999 /srv/syn/00.jsonstor/storage

Create the /srv/syn/00.jsonstor/docker-compose.yaml file with contents:

version: "3.3"
services:
00.jsonstor:
user: "999"
image: vertexproject/synapse-jsonstor:v2.x.x
network_mode: host
restart: unless-stopped
volumes:

- ./storage:/vertex/storage
environment:

disable HTTPS API for now to prevent port collisions
- SYN_JSONSTOR_HTTPS_PORT=null
- SYN_JSONSTOR_AHA_PROVISION=ssl://aha.<yournetwork>:27272/<guid>?certhash=

→˓<sha256>

Note: Don’t forget to replace your one-time use provisioning URL!

Start the container:

docker-compose --file /srv/syn/00.jsonstor/docker-compose.yaml pull
docker-compose --file /srv/syn/00.jsonstor/docker-compose.yaml up -d

5.7 Deploy Cortex Service

Inside the AHA container

Generate a one-time use provisioning URL:

python -m synapse.tools.aha.provision.service 00.cortex

You should see output that looks similar to this:

5.6. Deploy JSONStor Service 353

Synapse Documentation, Release 2.141.0

one-time use URL: ssl://aha.<yournetwork>:27272/<guid>?certhash=<sha256>

On the Host

Create the container directory:

mkdir -p /srv/syn/00.cortex/storage
chown -R 999 /srv/syn/00.cortex/storage

Create the /srv/syn/00.cortex/docker-compose.yaml file with contents:

version: "3.3"
services:
00.cortex:
user: "999"
image: vertexproject/synapse-cortex:v2.x.x
network_mode: host
restart: unless-stopped
volumes:

- ./storage:/vertex/storage
environment:

- SYN_CORTEX_AXON=aha://axon...
- SYN_CORTEX_JSONSTOR=aha://jsonstor...
- SYN_CORTEX_AHA_PROVISION=ssl://aha.<yournetwork>:27272/<guid>?certhash=<sha256>

Note: Don’t forget to replace your one-time use provisioning URL!

Note: The values aha://axon... and aha://jsonstor... can be used as-is without changing them because the
AHA network (provided by the provisioning server) is automatically subtituted in any aha:// scheme URL ending
with ...

Start the container:

docker-compose --file /srv/syn/00.cortex/docker-compose.yaml pull
docker-compose --file /srv/syn/00.cortex/docker-compose.yaml up -d

Remember, you can view the container logs in real-time using:

docker-compose --file /srv/syn/00.cortex/docker-compose.yaml logs -f

5.8 Deploy Cortex Mirror (optional)

Inside the AHA container

Generate a one-time use URL for provisioning from inside the AHA container:

python -m synapse.tools.aha.provision.service 01.cortex --mirror cortex

You should see output that looks similar to this:

354 Chapter 5. Synapse Deployment Guide

Synapse Documentation, Release 2.141.0

one-time use URL: ssl://aha.<yournetwork>:27272/<guid>?certhash=<sha256>

On the Host

Create the container storage directory:

mkdir -p /srv/syn/01.cortex/storage
chown -R 999 /srv/syn/01.cortex/storage

Create the /srv/syn/01.cortex/docker-compose.yaml file with contents:

version: "3.3"
services:
01.cortex:
user: "999"
image: vertexproject/synapse-cortex:v2.x.x
network_mode: host
restart: unless-stopped
volumes:

- ./storage:/vertex/storage
environment:

disable HTTPS API for now to prevent port collisions
- SYN_CORTEX_HTTPS_PORT=null
- SYN_CORTEX_AHA_PROVISION=ssl://aha.<yournetwork>:27272/<guid>?certhash=<sha256>

Note: Don’t forget to replace your one-time use provisioning URL!

Start the container:

docker-compose --file /srv/syn/01.cortex/docker-compose.yaml pull
docker-compose --file /srv/syn/01.cortex/docker-compose.yaml up -d

Note: If you are deploying a mirror from an existing large Cortex, this startup may take a while to complete initial-
ization.

5.9 Enroll CLI Users

A Synapse user is generally synonymous with a user account on the Cortex. To bootstrap CLI users who will have
Cortex access using the Telepath API, we will need to add them to the Cortex and generate user certificates for them.
To add a new admin user to the Cortex, run the following command from inside the Cortex container:

python -m synapse.tools.moduser --add --admin true visi

Note: If you are a Synapse Enterprise customer, using the Synapse UI with SSO, the admin may now login to the
Synapse UI. You may skip the following steps if the admin will not be using CLI tools to access the Cortex.

Then we will need to generate a one-time use URL they may use to generate a user certificate. Run the following
command from inside the AHA container to generate a one-time use URL for the user:

5.9. Enroll CLI Users 355

Synapse Documentation, Release 2.141.0

python -m synapse.tools.aha.provision.user visi

You should see output that looks similar to this:

one-time use URL: ssl://aha.<yournetwork>:27272/<guid>?certhash=<sha256>

Then the user may run:

python -m synapse.tools.aha.enroll ssl://aha.<yournetwork>:27272/<guid>?certhash=<sha256>

Once they are enrolled, they will have a user certificate located in ~/.syn/certs/users and their telepath configu-
ration located in ~/.syn/telepath.yaml will be updated to reflect the use of the AHA server. From there the user
should be able to use standard Synapse CLI tools using the aha:// URL such as:

python -m synapse.tools.storm aha://visi@cortex.<yournetwork>

5.10 What’s next?

See the Synapse Admin Guide for instructions on performing application administrator tasks. See the Synapse Devops
Guide for instructions on performing various maintenance tasks on your deployment!

356 Chapter 5. Synapse Deployment Guide

CHAPTER

SIX

SYNAPSE DEVOPS GUIDE

6.1 Overview

6.1.1 Docker Images

Each Synapse service is distributed as a docker image which contains all the dependencies required to run the service.
For the open-source Synapse images, the tag :v2.x.x will always be present on the most recent supported release.
Image names are specified in each service specific section below.

Synapse services require persistent storage. Each docker container expects persistent storage to be available within
the directory /vertex/storage which should be a persistent mapped volume. Only one container may run from a
given volume at a time.

6.1.2 cell.yaml

Each Synapse service has one configuration file, cell.yaml, which is located in the service storage directory, typically
/vertex/storage/cell.yaml in the docker images. Configuration options are specified in YAML format using
the same syntax as their documentation, for example:

aha:name: cortex
aha:network: loop.vertex.local

6.1.3 Environment Variables

Synapse services may also be configured using environment variables specified in their documentation. The value
will be parsed as a YAML value to allow structured data to be specified via environment variables and then subject to
normal configuration schema validation.

6.1.4 HTTPS Certificates

Synapse services that expose HTTPS APIs will automatically generate a self-signed certificate and key if they are not
found at sslcert.crt and sslkey.pem in the service storage directory. At any time, you can replace these self-signed
files with a certificate and key generated using easycert or generated and signed by an external CA.

357

Synapse Documentation, Release 2.141.0

6.2 Common Devops Tasks

6.2.1 Generating a Backup

Note: If you are a Synapse Enterprise customer you should deploy the Synapse-Backup Advanced Power-Up.

It is strongly recommended that users schedule regular backups of all services deployed within their Synapse ecosystem.
Each service must be backed up using either the live backup tool synapse.tools.livebackup or the offline backup
tool synapse.tools.backup.

For a production deployment similar to the one described in the Synapse Deployment Guide you can easily run the
backup tool by executing a shell inside the docker container. For example, if we were generating a backup of the
Cortex we would:

cd /srv/syn/00.cortex
docker-compose exec 00.cortex /bin/bash

And from the shell executed within the container:

python -m synapse.tools.livebackup

This will generate a backup in a time stamp directory similar to:

/vertex/storage/backups/20220422094622

Once the backup directory is generated you may exit the docker shell and the backup will be accessible from the host
file system as:

/srv/syn/00.cortex/storage/backups/20220422094622

At this point it is safe to use standard tools like mv, tar, and scp on the backup folder:

mv /srv/syn/00.cortex/storage/backups/20220422094622 /nfs/backups/00.cortex/

Note: It is important that you use synapse.tools.livebackup to ensure a transactionally consistant backup.

Note: When taking a backup of a service, the backup is written by the service locally to disk. This may take up
storage space equal to the current size of the service. If the service does not have the backup:dir option configured
for a dedicated backup directory (or volume), this backup is made to /vertex/storage/backups by default. If the
volume backing /vertex/storage reaches a maximum capacity, the backup process will fail.

To avoid this from being an issue, when using the default configuration, make sure services do not exceed 50% of their
storage utilization. For example, a Cortex that has a size of 32GB of utilized space may take up 32GB during a backup.
The volume backing /vertex/storage should be at least 64GB in size to avoid issues taking backups.

It is also worth noting that the newly created backup is a defragmented / optimized copy of the databases. We rec-
ommend occasionally scheduling a maintenance window to create a “cold backup” using the offline synapse.tools.
backup command with the service offline and deploy the backup copy when bringing the service back online. Regularly
performing this “restore from cold backup” procedure can dramatically improve performance and resource utilization.

358 Chapter 6. Synapse Devops Guide

Synapse Documentation, Release 2.141.0

6.2.2 Restoring a Backup

In the hopefully unlikely event that you need to restore a Synapse service from a backup the process is fairly simple.
For a production deployment similar to the one described in Synapse Deployment Guide and assuming we moved the
backup file as described in Generating a Backup:

cd /srv/syn/00.cortex
docker-compose down
mv storage storage.broken
cp -R /nfs/backups/00.cortex/20220422094622 storage
docker-compose up -d

Then you can tail the logs to ensure the service is fully restored:

cd /srv/syn/00.cortex
docker-compose logs -f

6.2.3 Promoting a Mirror

Note: To gracefully promote a mirror to being the leader, your deployment must include AHA based service discovery
as well as use TLS client-certificates for service authentication.

To gracefully promote a mirror which was deployed in a similar fashion to the one described in Synapse Deployment
Guide you can use the built-in promote tool synapse.tools.promote. Begin by executing a shell within the mirror
container:

cd /srv/syn/01.cortex
docker-compose exec 01.cortex /bin/bash

And from the shell executed within the container:

python -m synapse.tools.promote

Once completed, the previous leader will now be configured as a follower of the newly promoted leader.

Note: If you are promoting the follower due to a catastrophic failure of the previous leader, you may use the command
synapse.tools.promote --failure to force promotion despite not being able to carry out a graceful handoff. It
is critical that you not bring the previous leader back online once this has been done. To regain redundancy, deploy
a new mirror using the AHA provisioning process described in the Synapse Deployment Guide.

6.2.4 Updating Services

Updating a Synapse service requires pulling the newest docker image and restarting the container. For Synapse services
which have mirrors deployed, you must ensure that the mirrors are updated first so that any newly introduced change
messages can be consumed. If you are using a mirrors-of-mirrors tree topology, the update should be deployed in a
“leafs first” order.

Continuing with our previous example from the Synapse Deployment Guide we would update the mirror 01.cortex
first:

6.2. Common Devops Tasks 359

Synapse Documentation, Release 2.141.0

cd /srv/syn/01.cortex
docker-compose pull
docker-compose down
docker-compose up -d

After ensuring that the mirror has come back online and is fully operational, we will update the leader which may
include a Data Migration while it comes back online:

cd /srv/syn/00.cortex
docker-compose pull
docker-compose down
docker-compose up -d

Note: Once a Synapse service update has been deployed, you may NOT revert to a previous version!

Data Migration

When a Synapse release contains a data migration for a part of the Synapse data model, the Changelog will indicate
what component is being migrated and why. This will be made under the Automated Migrations header, at the top
of the changelog.

Automatic data migrations may cause additional startup times on the first boot of the version. When beginning a data
migration, a WARNING level log message will be printed for each stage of the migration:

beginning model migration -> (0, 2, 8)

Once complete, a WARNING level log message will be issued:

...model migrations complete!

Note: Please ensure you have a tested backup available before applying these updates.

Model Flag Day

Periodically, a Synapse release will include small, but technically backward incompatible, changes to the data model.
All such migrations will include a Model Flag Day heading in the Changelog with a detailed description of each
change to the data model. Additionally, the release will execute an in-place migration to modify data to confirm with
model updates. If necessary, any data that can not be migrated automatically will be saved to a location documented
within the detailed description.

When we release a Synapse version containing a Model Flag Day update, we will simultaneously release updates to
any effected Power-Ups.

Examples of potential Model Flag Day changes:

• Removing a previously deprecated property

• Specifying a more specific type for a property to allow pivoting

• Tightening type normalization constraints of a property

360 Chapter 6. Synapse Devops Guide

Synapse Documentation, Release 2.141.0

It is highly recommended that production deployments have a process for testing custom storm code in a staging
environment to help identify any tweaks that may be necessary due to the updated data model.

Note: Please ensure you have a tested backup available before applying these updates.

6.2.5 Configure Logging

Synapse services support controlling log verbosity via the SYN_LOG_LEVEL environment variable. The following values
may be used: CRITCAL, ERROR, WARNING, INFO, and DEBUG. For example:

SYN_LOG_LEVEL=INFO

To enable JSON structured logging output suitable for ingest and indexing, specify the following environment variable
to the docker container:

SYN_LOG_STRUCT=true

These structured logs are designed to be easy to ingest into third party log collection platforms. They contain the log
message, level, time, and metadata about where the log message came from:

{
"message": "log level set to INFO",
"logger": {
"name": "synapse.lib.cell",
"process": "MainProcess",
"filename": "common.py",
"func": "setlogging"

},
"level": "INFO",
"time": "2021-06-28 15:47:54,825"

}

When exceptions are logged with structured logging, we capture additional information about the exception, including
the entire traceback. In the event that the error is a Synapse Err class, we also capture additional metadata which was
attached to the error. In the following example, we also have the query text, username and user iden available in the
log message pretty-printed log message:

{
"message": "Error during storm execution for { || }",
"logger": {
"name": "synapse.lib.view",
"process": "MainProcess",
"filename": "view.py",
"func": "runStorm"

},
"level": "ERROR",
"time": "2021-06-28 15:49:34,401",
"err": {
"efile": "coro.py",
"eline": 233,
"esrc": "return await asyncio.get_running_loop().run_in_executor(forkpool, _runtodo,␣

→˓todo)",
(continues on next page)

6.2. Common Devops Tasks 361

Synapse Documentation, Release 2.141.0

(continued from previous page)

"ename": "forked",
"at": 1,
"text": "||",
"mesg": "No terminal defined for '|' at line 1 col 2. Expecting one of: #, $, (, *,␣

→˓+ or -, -(, -+>, -->, ->, :, <(, <+-, <-, <--, [, break, command name, continue, fini,␣
→˓for, function, if, init, property name, return, switch, while, whitespace or comment,␣
→˓yield, {",

"etb": ".... long traceback ...",
"errname": "BadSyntax"

},
"text": "||",
"username": "root",
"user": "3189065f95d3ab0a6904e604260c0be2"

}

6.2.6 Configure Free Space Requirement

To avoid the risk of data corruption due to lack of disk space, Synapse services periodically check the amount of
free space available and will switch to read-only mode if they are below a minimum threshold. This threshold can be
controlled via the limit:disk:free configuration option, and is set to 5% free space by default.

If the available free space goes below the minimum threshold, the service will continue the free space checks and
re-enable writes if the available space returns above the threshold.

6.2.7 Performance Tuning

Performance tuning Synapse services is very similar to performance tuning other database systems like PostgreSQL
or MySQL. Recommendations for good performance for other database systems may also apply to Synapse services.
Database systems run best when given as much RAM as possible. Under ideal circumstances, the amount of RAM
exceeds the total database storage size.

Minimizing storage latency is important for a high performance Synapse service. Locating the storage volume backed
by a mechanical hard drive is strongly discouraged. For the same reason, running Synapse services from an NFS file
system (including NFS-based systems like AWS EFS) is strongly discouraged.

The default settings of most Linux-based operating systems are not set for ideal performance.

Consider setting the following Linux system variables. These can be set via /etc/sysctl.conf, the sysctl utility, or writing
to the /proc/sys file system.

vm.swappiness=10
Reduce preference for kernel to swap out memory-mapped files.

vm.dirty_expire_centisecs=20
Define “old” data to be anything changed more than 200 ms ago.

vm.dirty_writeback_centisecs=20
Accelerate writing “old” data back to disk.

vm.dirty_background_ratio=2
This is expressed as a percentage of total RAM in the system. After the total amount of dirty memory exceeds
this threshold, the kernel will begin writing it to disk in the background. We want this low to maximize storage
I/O throughput utilization.

362 Chapter 6. Synapse Devops Guide

Synapse Documentation, Release 2.141.0

This value is appropriate for systems with 128 GiB RAM. For systems with less RAM, this number should be
larger, for systems with more, this number may be smaller.

vm.dirty_ratio=4
This is expressed as a percentage of total RAM in the system. After the total amount of dirty memory exceeds
this threshold, all writes will become synchronous, which means the Cortex will “pause” waiting for the write
to complete. To avoid large sawtooth-like behavior, this value should be low.

This value is appropriate for systems with 128 GiB RAM. For systems with less RAM, this number should be
larger, for systems with more, this number may be smaller.

This setting is particularly important for systems with lots of writing (e.g. making new nodes), lots of RAM, and
relatively slow storage.

6.2.8 Managing Users and Roles

Adding Users

Managing users and service accounts in the Synapse ecosystem is most easily accomplished using the moduser tool
executed from within the service docker container. In this example we add the user visi as an admin user to the
Cortex by running the following command from within the Cortex container:

python -m synapse.tools.moduser --add --admin visi

If the deployment is using AHA and TLS client certificates and the user will be connecting via the Telepath API using
the storm CLI tool, will also need to provision a user TLS certificate for them. This can be done using the synapse.
tools.aha.provision.user command from within the AHA container:

python -m synapse.tools.aha.provision.user visi

Which will produce output similar to:

one-time use URL: ssl://aha.<yournetwork>:27272/<guid>?certhash=<sha256>

Note: The enrollment URL may only be used once. It should be given to the user using a secure messaging system to
prevent an attacker from using it before the user.

Once the one-time enrollment URL has been passed along to the user, the user must run an enrollment command to
configure their environment to use the AHA server and generate a user certificate from the host they will be using to
run the Storm CLI:

python -m synapse.tools.aha.enroll ssl://aha.<yournetwork>:27272/<guid>?certhash=<sha256>

Once they are enrolled, the user can connect using the Telepath URL aha://cortex.<yournetwork>:

python -m synapse.tools.storm aha://cortex.<yournetwork>

6.2. Common Devops Tasks 363

Synapse Documentation, Release 2.141.0

6.2.9 Updating to AHA and Telepath TLS

If you have an existing deployment which didn’t initially include AHA and Telepath TLS, it can easily be deployed and
configured after the fact. However, as services move to TLS it will break existing telepath URLs that may be in use,
so you should test the deployment before updating your production instance.

To move to AHA, first deploy an AHA service as discussed in the Synapse Deployment Guide. For each service, you
may then run the provision tool as described and add the aha:provision configuration option to the cell.yaml
or use the service specific environment variable to prompt the service to provision itself.

Note: It is recommended that you name your services with leading numbers to prepare for an eventual mirror deploy-
ment.

For example, to add an existing Axon to your new AHA server, you would execute the following from inside the AHA
container:

python -m synapse.tools.aha.provision 00.axon

You should see output that looks similar to this:

one-time use URL: ssl://aha.<yournetwork>:27272/<guid>?certhash=<sha256>

Then add the following entry to the Axon’s cell.conf:

aha:provision: ssl://aha.<yournetwork>:27272/<guid>?certhash=<sha256>

Or add the following environment variable to your orchestration:

SYN_AXON_AHA_PROVISION=ssl://aha.<yournetwork>:27272/<guid>?certhash=<sha256>

Then restart the Axon container. As it restarts, the service will generate user and host certificates and update it’s cell.
yaml file to include the necessary AHA configuration options. The dmon:listen option will be updated to reflect the
use of SSL/TLS and the requirement to use client certificates for authentication. As additional services are provisioned,
you may update the URLs they use to connect to the Axon to aha://axon....

6.2.10 Deployment Options

The following are some additional deployment options not covered in the Synapse Deployment Guide.

Note: These examples assume the reader has reviewed and understood the Synapse Deployment Guide.

Telepath Listening Port

If you need to deploy a service to have Telepath listen on a specific port, you can use the provision tool to specify the
port to bind. This example will show deploying the Axon to a specific Telepath listening port.

Inside the AHA container

Generate a one-time use provisioning URL, with the --dmon-port option:

python -m synapse.tools.aha.provision.service --dmon-port 30001 01.axon

364 Chapter 6. Synapse Devops Guide

Synapse Documentation, Release 2.141.0

You should see output that looks similar to this:

one-time use URL: ssl://aha.<yournetwork>:27272/<guid>?certhash=<sha256>

On the Host

Create the container directory:

mkdir -p /srv/syn/01.axon/storage
chown -R 999 /srv/syn/01.axon/storage

Create the /srv/syn/01.axon/docker-compose.yaml file with contents:

version: "3.3"
services:
01.axon:
user: "999"
image: vertexproject/synapse-axon:v2.x.x
network_mode: host
restart: unless-stopped
volumes:

- ./storage:/vertex/storage
environment:

disable HTTPS API for now to prevent port collisions
- SYN_AXON_HTTPS_PORT=null
- SYN_AXON_AHA_PROVISION=ssl://aha.<yournetwork>:27272/<guid>?certhash=<sha256>

After starting the service, the Axon will now be configured to bind its Telepath listening port to 30001. This can be
seen in the services cell.yaml file.

aha:name: 01.axon
aha:network: <yournetwork>
aha:provision: ssl://aha.<yournetwork>:27272/<guid>?certhash=<sha256>
aha:registry:
- ssl://root@aha.<yournetwork>
aha:user: root
dmon:listen: ssl://0.0.0.0:30001?hostname=01.axon.<yournetwork>&ca=
→˓<yournetwork>
...

HTTPS Listening Port

If you need to deploy a service to have HTTPs listen on a specific port, you can use the provision tool to specify the
port to bind. This example will show deploying the Cortex to a specific HTTPS listening port.

Inside the AHA container

Generate a one-time use provisioning URL, with the --https-port option:

python -m synapse.tools.aha.provision.service --https-port 8443 02.cortex

You should see output that looks similar to this:

6.2. Common Devops Tasks 365

Synapse Documentation, Release 2.141.0

one-time use URL: ssl://aha.<yournetwork>:27272/<guid>?certhash=<sha256>

On the Host

Create the container directory:

mkdir -p /srv/syn/02.cortex/storage
chown -R 999 /srv/syn/02.cortex/storage

Create the /srv/syn/01.axon/docker-compose.yaml file with contents:

version: "3.3"
services:
02.cortex:
user: "999"
image: vertexproject/synapse-axon:v2.x.x
network_mode: host
restart: unless-stopped
volumes:

- ./storage:/vertex/storage
environment:

- SYN_CORTEX_AHA_PROVISION=ssl://aha.<yournetwork>:27272/<guid>?certhash=<sha256>

After starting the service, the Cortex will now be configured to bind its HTTPS listening port to 8443. This can be seen
in the services cell.yaml file.

aha:name: 02.cortex
aha:network: <yournetwork>
aha:provision: ssl://aha.<yournetwork>:27272/<guid>?certhash=<sha256>
aha:registry:
- ssl://root@aha.<yournetwork>
aha:user: root
dmon:listen: ssl://0.0.0.0:0?hostname=02.cortex.<yournetwork>&ca=<yournetwork>
https:port: 8443
...

6.2.11 Trimming the Nexus Log

The Nexus log can be trimmed to reduce the storage size of any Synapse Service that has Nexus logging enabled. This
is commonly done before taking backups to reduce to their size.

For a Cortex without any mirrors, this is best accomplished in Storm via the following query:

$lib.cell.trimNexsLog()

The Storm API call will rotate the Nexus log and then delete the older entries.

If the Cortex is mirrored, a list of Telepath URLs of all mirrors must be provided. This ensures that all mirrors have
rotated their Nexus logs before the cull operation is executed.

Warning: If this list is ommitted, or incorrect, the mirrors may become de-synchronized which will require a
re-deployment from a backup of the upstream.

366 Chapter 6. Synapse Devops Guide

Synapse Documentation, Release 2.141.0

The Telepath URLs can be provided to the Storm API as follows:

$mirrors = ("aha://01.cortex...", "aha://02.cortex...")
$lib.cell.trimNexsLog(consumers=$mirrors)

6.2.12 Viewing Deprecation Warnings

When functionality in Synapse is deprecated, it is marked with the standard Python warnings mechanism to note that
it is deprecated. Deprecated functionality is also noted in service changelogs as well. To view these warnings in your
environment, you can set the PYTHONWARNINGS environment variable to display them. The following shows this being
enabled for a Cortex deployment:

version: "3.3"
services:
00.cortex:
user: "999"
image: vertexproject/synapse-cortex:v2.x.x
network_mode: host
restart: unless-stopped
volumes:

- ./storage:/vertex/storage
environment:

- SYN_CORTEX_AXON=aha://axon...
- SYN_CORTEX_JSONSTOR=aha://jsonstor...
- PYTHONWARNINGS=default::DeprecationWarning:synapse.common

With this set, our deprecation warnings are emitted the first time the deprecated functionality is used. For example, if
a remote caller uses the eval() API on a Cortex, it would log the following message:

/usr/local/lib/python3.8/dist-packages/synapse/common.py:913: DeprecationWarning:
→˓"CoreApi.eval" is deprecated in 2.x and will be removed in 3.0.0
warnings.warn(mesg, DeprecationWarning)

This would indicate the use of a deprecated API.

6.2.13 Entrypoint Hooking

Synapse service containers provide two ways that users can modify the container startup process, in order to execute
their own scripts or commands.

The first way to modify the startup process is using a script that executes before services start. This can be configured
by mapping in a file at /vertex/boothooks/preboot.sh and making sure it is marked as an executable. If this file
is present, the script will be executed prior to booting the service. If this does not return 0, the container will fail to
start up.

One example for using this hook is to use certbot to create HTTPS certificates for a Synapse service. This example
assumes the Cortex is running as root, so that certbot can bind port 80 to perform the http-01 challenge. Non-root
deployments may require additional port mapping for a given deployment.

Create a boothooks directory:

mkdir -p /srv/syn/00.cortex/bookhooks

6.2. Common Devops Tasks 367

https://docs.python.org/3/library/warnings.html

Synapse Documentation, Release 2.141.0

Copy the following script to /srv/syn/cortex/bookhooks/preboot.sh and use chmod to mark it as an executable
file:

#!/bin/bash

Certbot preboot example
Author: william.gibb@vertex.link

This script is an example of using Let's Encrypt certbot tool to generate
an HTTPS certificate for a Synapse service.
#
This creates and stores a Python venv in the
/vertex/storage/preboot/letsencrypt/venv directory, so the certbot
tool is installed once in a separate python environment, and cached in
a mapped volume.
#
Once the venv is setup, certbot is used to create and potentially renew
an HTTPS certificate. This certificate and private key are then copied to
the locations in /vertex/storage where Synapse services assume they will
find the HTTPS keys.
#
certbot does use a random backoff timer when performing a renewal. There may
be a random delay when starting a service when the certificate needs to be
renewed.
#
Required Environment variables:
#
CERTBOT_HOSTNAME - the hostname that certbot will generate a certificate for.
CERTBOT_EMAIL - the email address used with certbot.
#
Optional Environment variables:
#
CERTBOT_ARGS - additional args passed to the "certbot certonly" and
"certbot renew" commands.
#

set -x # echo commands
set -e # exit on nonzero

BASEDIR=/vertex/preboot
DSTKEY=/vertex/storage/sslkey.pem
DSTCRT=/vertex/storage/sslcert.pem

if [-z ${CERTBOT_HOSTNAME}]; then
echo "CERTBOT_HOSTNAME env var is unset"
exit 1

fi

if [-z ${CERTBOT_EMAIL}]; then
echo "CERTBOT_EMAIL env var is unset"
exit 1

fi

(continues on next page)

368 Chapter 6. Synapse Devops Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

LEDIR=$BASEDIR/letsencrypt

CONFDIR=$LEDIR/conf
LOGSDIR=$LEDIR/logs
WORKDIR=$LEDIR/work
VENV=$LEDIR/venv

mkdir -p $LOGSDIR
mkdir -p $CONFDIR
mkdir -p $WORKDIR

CERTBOT_DIR_ARGS=" --work-dir ${WORKDIR} --logs-dir=${LOGSDIR} --config-dir=${CONFDIR} "

KEYFILE="${CONFDIR}/live/${CERTBOT_HOSTNAME}/privkey.pem"
CERTFILE="${CONFDIR}/live/${CERTBOT_HOSTNAME}/fullchain.pem"

Create a python venv, activate it, and install certbot and supporting tools.
if [! -d $VENV]; then

echo "Creating venv and installing certbot"
python3 -m venv --without-pip --copies $VENV

. $VENV/bin/activate

python3 -Im ensurepip --default-pip
python3 -m pip install --no-cache-dir -U pip wheel
python3 -m pip install --no-cache-dir "certbot==2.0.0"

else

echo "Activating venv"
. $VENV/bin/activate

fi

if [! -f ${KEYFILE}]; then

certbot -n ${CERTBOT_DIR_ARGS} certonly --agree-tos --email ${CERTBOT_EMAIL} --
→˓standalone -d ${CERTBOT_HOSTNAME} ${CERTBOT_ARGS:-}

if [$? -ne 0]; then
echo "Error running certbot"
exit 1

fi

fi

certbot -n ${CERTBOT_DIR_ARGS} renew --standalone ${CERTBOT_ARGS:-}

if [$? -ne 0]; then
echo "Error checking certificate renewal"
exit 1

fi
(continues on next page)

6.2. Common Devops Tasks 369

Synapse Documentation, Release 2.141.0

(continued from previous page)

echo "Copying certificates"

cp ${KEYFILE} ${DSTKEY}
cp ${CERTFILE} ${DSTCRT}

echo "Done setting up HTTPS certificates"

That directory will be mounted at /vertex/boothooks. The following docker-compose file shows mounting that
directory into the container and setting environment variables for the script to use:

version: "3.3"
services:
00.cortex:
image: vertexproject/synapse-cortex:v2.x.x
network_mode: host
restart: unless-stopped
volumes:

- ./storage:/vertex/storage
- ./boothooks:/vertex/boothooks

environment:
SYN_LOG_LEVEL: "DEBUG"
SYN_CORTEX_STORM_LOG: "true"
SYN_CORTEX_AHA_PROVISION: "ssl://aha.<yournetwork>:27272/<guid>?certhash=<sha256>

→˓"
CERTBOT_HOSTNAME: "cortex.acme.corp"
CERTBOT_EMAIL: "user@acme.corp"

When started, the container will attempt to run the script before starting the Cortex service.

The second way to modify a container startup process is running a script concurrently to the service. This can be set
by mapping in a file at /vertex/boothooks/concurrent.sh, also as an executable file. If this file is present, the
script is executed as a backgrounded task prior to starting up the Synapse service. This script would be stopped when
the container is stopped.

Note: If a volume is mapped into /vertex/boothooks/ it will not be included in any backups made by a Synapse
service using the backup APIs. Making backups of any data persisted in these locations is the responsibility of the
operator configuring the container.

6.2.14 Containers with Custom Users

By default, Synapse service containers will work running as root (uid 0) and synuser (uid 999) without any
modification. In order to run a Synapse service container as a different user that is not built into the container by
default, the user, group and home directory need to be added to the image. This can be done with a custom Dockerfile
to modify a container. For example, the following Dockerfile would add the user altuser to the Container with a user
id value of 8888:

FROM vertexproject/synapse-cortex:v2.x.x
RUN set -ex \
&& groupadd -g 8888 altuser \

(continues on next page)

370 Chapter 6. Synapse Devops Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

&& useradd -r --home-dir=/home/altuser -u 8888 -g altuser --shell /bin/bash altuser \
&& mkdir -p /home/altuser \
&& chown 8888:8888 /home/altuser

Running this with a docker build command can be used to create the image customcortex:v2.x.x:

$ docker build -f Dockerfile --tag customcortex:v2.x.x .
Sending build context to Docker daemon 4.608kB
Step 1/2 : FROM vertexproject/synapse-cortex:v2.113.0
---> 8a2dd3465700
Step 2/2 : RUN set -ex && groupadd -g 8888 altuser && useradd -r --home-dir=/home/
→˓altuser -u 8888 -g altuser --shell /bin/bash altuser && mkdir -p /home/altuser &&␣
→˓chown 8888:8888 /home/altuser
---> Running in 9c7b30365c2d
+ groupadd -g 8888 altuser
+ useradd -r --home-dir=/home/altuser -u 8888 -g altuser --shell /bin/bash altuser
+ mkdir -p /home/altuser
+ chown 8888:8888 /home/altuser
Removing intermediate container 9c7b30365c2d
---> fd7173d42923
Successfully built fd7173d42923
Successfully tagged customcortex:v2.x.x

That custom user can then be used to run the Cortex:

version: "3.3"
services:
00.cortex:
user: "8888"
image: customcortex:v2.x.x
network_mode: host
restart: unless-stopped
volumes:
- ./storage:/vertex/storage
environment:
- SYN_CORTEX_AXON=aha://axon...
- SYN_CORTEX_JSONSTOR=aha://jsonstor...
- SYN_CORTEX_AHA_PROVISION=ssl://aha.<yournetwork>:27272/<guid>?certhash=<sha256>

The following bash script can be used to help automate this process, by adding the user to an image and appending the
custom username to the image tag:

#!/bin/bash
Add a user to a debian based container with an arbitrary uid/gid value.
default username: altuser
default uid: 8888

set -e

if [-z $1]
then

echo "Usage: srcImage name id suffix"
echo "srcImage required."

(continues on next page)

6.2. Common Devops Tasks 371

Synapse Documentation, Release 2.141.0

(continued from previous page)

exit 1
fi

SRC_IMAGE_NAME=$1
NEW_NAME=${2:-altuser}
NEW_ID=${3:-8888}
SUFFIX=-${4:-$NEW_NAME}

echo "Add user/group ${NEW_NAME} with ${NEW_ID} into ${SRC_IMAGE_NAME}, creating: ${SRC_
→˓IMAGE_NAME}${SUFFIX}"

printf "FROM $SRC_IMAGE_NAME \
\nRUN set -ex \\

&& groupadd -g $NEW_ID $NEW_NAME \\
&& useradd -r --home-dir=/home/$NEW_NAME -u $NEW_ID -g $NEW_NAME --shell /bin/bash

→˓$NEW_NAME \\
&& mkdir -p /home/$NEW_NAME \\
&& chown $NEW_ID:$NEW_ID /home/$NEW_NAME\n" > ./Dockerfile

docker build -t SRC_IMAGE_NAMESUFFIX -f ./Dockerfile .

rm ./Dockerfile

exit 0

Saving this to adduserimage.sh, it can then be used to quickly modify an image. The following example shows
running this to add a user named foouser with the uid 1234:

$./adduserimage.sh vertexproject/synapse-aha:v2.113.0 foouser 1234
Add user/group foouser with 1234 into vertexproject/synapse-aha:v2.113.0, creating:␣
→˓vertexproject/synapse-aha:v2.113.0-foouser
Sending build context to Docker daemon 4.608kB
Step 1/2 : FROM vertexproject/synapse-aha:v2.113.0
---> 53251b832df0
Step 2/2 : RUN set -ex && groupadd -g 1234 foouser && useradd -r --home-dir=/home/
→˓foouser -u 1234 -g foouser --shell /bin/bash foouser && mkdir -p /home/foouser &&␣
→˓chown 1234:1234 /home/foouser
---> Running in 1c9e793d6761
+ groupadd -g 1234 foouser
+ useradd -r --home-dir=/home/foouser -u 1234 -g foouser --shell /bin/bash foouser
+ mkdir -p /home/foouser
+ chown 1234:1234 /home/foouser
Removing intermediate container 1c9e793d6761
---> 21a12f395462
Successfully built 21a12f395462
Successfully tagged vertexproject/synapse-aha:v2.113.0-foouser

372 Chapter 6. Synapse Devops Guide

Synapse Documentation, Release 2.141.0

6.3 Synapse Services

6.3.1 AHA

The AHA service provides service discovery, provisioning, graceful mirror promotion, and certificate authority services
to the other Synapse services. For a step-by-step guide to deploying an AHA instance, see the Synapse Deployment
Guide. We will use <yournetwork> to specify locations where the value should be replaced with your chosen AHA
network name.

Docker Image: vertexproject/synapse-aha:v2.x.x

Configuration

A typical AHA deployment requires some initial configuration options. At a minimum, you must specify the following:

aha:name: aha
aha:network: <yournetwork>
dmon:listen: ssl://aha.<yournetwork>&ca=<yournetwork>

To enable provisioning using AHA you must specify an alternate listener such as:

provision:listen: tcp://aha.<yournetwork>:27272

Note: The network connection from a Synapse service to the AHA service must NOT be passing through a Network
Adress Translation (NAT) device.

For the full list supported options, see the AHA Configuration Options.

Using Aha with Custom Client Code

Loading the known AHA resolvers for use with custom python clients can be easily accomplished using the
withTeleEnv() context manager:

import sys
import asyncio

import synapse.telepath as s_telepath

async def main(argv):

This context manager loads telepath.yaml
async with s_telepath.withTeleEnv():

async with await s_telepath.openurl(argv[0]) as proxy:

call service provided telepath APIs

info = await proxy.getCellInfo()
print(repr(info))

return 0

sys.exit(asyncio.run(main(sys.argv[1:]))))

6.3. Synapse Services 373

Synapse Documentation, Release 2.141.0

6.3.2 Axon

Note: If you are a Synapse Enterprise customer you should consider deploying the Synapse-S3 Axon.

The Axon service provides binary / blob storage inside of the Synapse ecosystem. Binary objects are indexed based
on the SHA-256 hash so that storage of the same set of bytes is not duplicated. The Axon exposes a set of Telepath
/ HTTP APIs that can be used to upload, download, and check for the existence of a binary blob. For a step-by-step
guide to deploying an Axon, see the Synapse Deployment Guide.

Docker Image: vertexproject/synapse-axon:v2.x.x

Note: For ease of use in simple deployments, the Cortex contains an embedded Axon instance. For production
deployments it is highly recommended that you install it as a separated service to help distribute load and allow direct
access by other Advanced Power-Ups.

Configuration

A typical Axon deployment does not require any additional configuration. For the full list supported options, see the
Axon Configuration Options.

Permissions

axon
Controls access to all axon.* permissions.

axon.get
Controls access to retrieve a binary blob from the Axon based on the SHA256 hash.

axon.has
Controls access to check if bytes are present and return sizes based on the SHA256 hash.

axon.upload
Controls access to upload a binary blob to the Axon.

For example, to allow the user visi to upload, download, and confirm files you would execute the following command
from inside the Axon container:

python -m synapse.tools.moduser --add visi --allow axon

6.3.3 JSONStor

The JSONStor is a utility service that provides a mechanism for storing and retrieving arbitrary JSON objects using a
hierarchical naming system. It is commonly used to store user preferences, cache API query responses, and hold data
that is not part of the Data Model. For an example of deploying a JSONStor, see the Synapse Deployment Guide.

Docker Image: vertexproject/synapse-jsonstor:v2.x.x

Note: For ease of use in simple deployments, the Cortex contains an embedded JSONStor instance. For production
deployments it is highly recommended that you install it as a separated service to help distribute load and allow direct
access by other Advanced Power-Ups.

Configuration

374 Chapter 6. Synapse Devops Guide

Synapse Documentation, Release 2.141.0

A typical JSONStor deployment does not require any additional configuration. For the full list supported options, see
the JSONStor Configuration Options.

6.3.4 Cortex

A Cortex is the hypergraph database and main component of the Synapse service architecture. The Cortex is also where
the Storm query language runtimes and execute where all automation and enrichment occurs. For a step-by-step guide
to deploying a Cortex, see the Synapse Deployment Guide.

Docker Image: vertexproject/synapse-cortex:v2.x.x

Configuration

Many of the configurations and permissions managed within the Cortex are the responsibility of the global admin rather
than the devops team. See the Synapse Admin Guide for details on global admin tasks and details.

The Cortex can be configured to log Storm queries executed by users. This is done by setting the storm:log and
storm:log:level configuration options. The storm:log:level option may be one of DEBUG, INFO , WARNING,
ERROR, CRITICAL This allows an organization to set what log level their Storm queries are logged at.

When enabled, the log message contains the query text and username:

2021-06-28 16:17:55,775 [INFO] Executing storm query {inet:ipv4=1.2.3.4} as [root]␣
→˓[cortex.py:_logStormQuery:MainThread:MainProcess]

When structured logging is also enabled for a Cortex, the query text, username, and user iden are included as individual
fields in the logged message as well:

{
"message": "Executing storm query {inet:ipv4=1.2.3.4} as [root]",
"logger": {
"name": "synapse.storm",
"process": "MainProcess",
"filename": "cortex.py",
"func": "_logStormQuery"

},
"level": "INFO",
"time": "2021-06-28 16:18:47,232",
"text": "inet:ipv4=1.2.3.4",
"username": "root",
"user": "3189065f95d3ab0a6904e604260c0be2"

}

This logging does interplay with the underlying log configuration (Configure Logging). The storm:log:level value
must be greater than or equal to the SYN_LOG_LEVEL, otherwise the Storm log will not be emitted.

For the full list supported options, see the Cortex Configuration Options.

6.3. Synapse Services 375

https://en.wikipedia.org/wiki/Hypergraph

Synapse Documentation, Release 2.141.0

6.4 Devops Details

6.4.1 Orchestration

Kubernetes

A popular option for Orchestration is Kubernetes. Kubernetes is an open-source system for automating the deployment,
scaling and management of containerized applications. Synapse does work in Kubernetes environments.

Note: If you are using these examples to get started with Synapse on Kubernetes, you may need to adapt them to meet
operational needs for your environment.

Example Deployment

The following examples walk through deploying an example Synapse deployment (based on Synapse Deployment
Guide), but inside of a managed Kubernetes cluster managed by Digital Ocean. This deployment makes a few assump-
tions:

Synapse Deployment Guide
This guide assumes a familiarity with the Synapse deployment guide. Concepts covered there are
not repeated here.

namespace
These examples use the Kubernetes default namespace.

PersistentVolumeClaim
These examples use PersistentVolumeClaim (PVC) to create a persistent storage location. All
Synapse services assume they have some persistent storage to read and write to. This example uses
the storageClass of do-block-storage. You may need to alter these examples to provide a
storageClass that is appropriate for your environment.

Aha naming
In Kubernetes, we rely on the default naming behavior for services to find the Aha service via DNS,
so our Aha name and Aha network should match the internal naming for services in the cluster.
The aha:network value is <namespace>.<cluster dns root>. This DNS root value is nor-
mally svc.cluster.local, so the resulting DNS label for the Aha service is aha.default.svc.
cluster.local. Similarly, the Aha service is configured to listen on 0.0.0.0, since we cannot
bind the DNS label provided by Kubernetes prior to the Pod running Aha being available.

Aha

The following aha.yaml can be used to deploy an Aha service.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: example-aha
labels:
app.kubernetes.io/name: "aha"
app.kubernetes.io/instance: "aha"

(continues on next page)

376 Chapter 6. Synapse Devops Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

app.kubernetes.io/version: "v2.x.x"
app.kubernetes.io/component: "aha"
app.kubernetes.io/part-of: "synapse"
environment: "dev"

spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 10Gi

storageClassName: do-block-storage

apiVersion: apps/v1
kind: Deployment
metadata:
name: aha
labels:
app.kubernetes.io/name: "aha"
app.kubernetes.io/instance: "aha"
app.kubernetes.io/version: "v2.x.x"
app.kubernetes.io/component: "aha"
app.kubernetes.io/part-of: "synapse"
environment: "dev"

spec:
selector:
matchLabels:
app.kubernetes.io/name: "aha"
app.kubernetes.io/instance: "aha"
app.kubernetes.io/version: "v2.x.x"
app.kubernetes.io/component: "aha"
app.kubernetes.io/part-of: "synapse"
environment: "dev"

strategy:
type: Recreate

template:
metadata:
labels:
app.kubernetes.io/name: "aha"
app.kubernetes.io/instance: "aha"
app.kubernetes.io/version: "v2.x.x"
app.kubernetes.io/component: "aha"
app.kubernetes.io/part-of: "synapse"
environment: "dev"

spec:
securityContext:
runAsUser: 999
runAsGroup: 999
fsGroup: 999

volumes:
- name: data
persistentVolumeClaim:
claimName: example-aha

(continues on next page)

6.4. Devops Details 377

Synapse Documentation, Release 2.141.0

(continued from previous page)

containers:
- name: aha
image: vertexproject/synapse-aha:v2.x.x
env:
- name: SYN_LOG_LEVEL
value: DEBUG

- name: SYN_LOG_STRUCT
value: "false"

- name: SYN_AHA_AHA_NAME
value: aha

- name: SYN_AHA_AHA_NETWORK
This is <namespace>.<cluster dns root> - it is used as Certificate␣

→˓Authority name
value: default.svc.cluster.local

- name: SYN_AHA_DMON_LISTEN
This is <aha name>.<namespace>.<cluster dns root> and the CA name from␣

→˓above
value: "ssl://0.0.0.0?hostname=aha.default.svc.cluster.local&ca=default.svc.

→˓cluster.local"
- name: SYN_AHA_PROVISION_LISTEN
This is <aha name>.<namespace>.<cluster dns root>
value: "ssl://0.0.0.0:27272?hostname=aha.default.svc.cluster.local"

- name: SYN_AHA_HTTPS_PORT
value: null

volumeMounts:
- mountPath: /vertex/storage
name: data

imagePullPolicy: Always
startupProbe:
failureThreshold: 2147483647
timeoutSeconds: 20
periodSeconds: 20
exec:
command: ['python', '-m', 'synapse.tools.healthcheck', '-c', 'cell:///vertex/

→˓storage']
readinessProbe:
failureThreshold: 2
initialDelaySeconds: 20
timeoutSeconds: 20
periodSeconds: 20
exec:
command: ['python', '-m', 'synapse.tools.healthcheck', '-c', 'cell:///vertex/

→˓storage']
restartPolicy: Always

apiVersion: v1
kind: Service
metadata:
name: aha
labels:
app.kubernetes.io/name: "aha"
app.kubernetes.io/instance: "aha"

(continues on next page)

378 Chapter 6. Synapse Devops Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

app.kubernetes.io/version: "v2.x.x"
app.kubernetes.io/component: "aha"
app.kubernetes.io/part-of: "synapse"
environment: "dev"

spec:
type: ClusterIP
selector:
app.kubernetes.io/instance: aha
environment: "dev"

ports:
- port: 27492
protocol: TCP
name: telepath

- port: 27272
protocol: TCP
name: provisioning

This can be deployed via kubectl apply. That will create the PVC, deployment, and service.

$ kubectl apply -f aha.yaml
persistentvolumeclaim/example-aha created
deployment.apps/aha created
service/aha created

You can see the startup logs as well:

$ kubectl logs -l app.kubernetes.io/instance=aha
2023-03-08 04:22:02,568 [DEBUG] Set config valu from envar: [SYN_AHA_DMON_LISTEN]␣
→˓[config.py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 04:22:02,568 [DEBUG] Set config valu from envar: [SYN_AHA_HTTPS_PORT] [config.
→˓py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 04:22:02,568 [DEBUG] Set config valu from envar: [SYN_AHA_AHA_NAME] [config.
→˓py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 04:22:02,569 [DEBUG] Set config valu from envar: [SYN_AHA_AHA_NETWORK]␣
→˓[config.py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 04:22:02,651 [INFO] Adding CA certificate for default.svc.cluster.local [aha.
→˓py:initServiceRuntime:MainThread:MainProcess]
2023-03-08 04:22:02,651 [INFO] Generating CA certificate for default.svc.cluster.local␣
→˓[aha.py:genCaCert:MainThread:MainProcess]
2023-03-08 04:22:06,401 [INFO] Adding server certificate for aha.default.svc.cluster.
→˓local [aha.py:initServiceRuntime:MainThread:MainProcess]
2023-03-08 04:22:08,879 [INFO] dmon listening: ssl://0.0.0.0?hostname=aha.default.svc.
→˓cluster.local&ca=default.svc.cluster.local [cell.
→˓py:initServiceNetwork:MainThread:MainProcess]
2023-03-08 04:22:08,882 [INFO] ...ahacell API (telepath): ssl://0.0.0.0?hostname=aha.
→˓default.svc.cluster.local&ca=default.svc.cluster.local [cell.
→˓py:initFromArgv:MainThread:MainProcess]
2023-03-08 04:22:08,882 [INFO] ...ahacell API (https): disabled [cell.
→˓py:initFromArgv:MainThread:MainProcess]

6.4. Devops Details 379

Synapse Documentation, Release 2.141.0

Axon

The following axon.yaml can be used as the basis to deploy an Axon service.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: example-axon00
labels:
app.kubernetes.io/name: "axon"
app.kubernetes.io/instance: "axon00"
app.kubernetes.io/version: "v2.x.x"
app.kubernetes.io/component: "axon"
app.kubernetes.io/part-of: "synapse"
environment: "dev"

spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 10Gi

storageClassName: do-block-storage

apiVersion: apps/v1
kind: Deployment
metadata:
name: axon00
labels:
app.kubernetes.io/name: "axon"
app.kubernetes.io/instance: "axon00"
app.kubernetes.io/version: "v2.x.x"
app.kubernetes.io/component: "axon"
app.kubernetes.io/part-of: "synapse"
environment: "dev"

spec:
selector:
matchLabels:
app.kubernetes.io/name: "axon"
app.kubernetes.io/instance: "axon00"
app.kubernetes.io/version: "v2.x.x"
app.kubernetes.io/component: "axon"
app.kubernetes.io/part-of: "synapse"
environment: "dev"

strategy:
type: Recreate

template:
metadata:
labels:
app.kubernetes.io/name: "axon"
app.kubernetes.io/instance: "axon00"
app.kubernetes.io/version: "v2.x.x"
app.kubernetes.io/component: "axon"

(continues on next page)

380 Chapter 6. Synapse Devops Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

app.kubernetes.io/part-of: "synapse"
environment: "dev"

spec:
securityContext:
runAsUser: 999
runAsGroup: 999
fsGroup: 999

volumes:
- name: data
persistentVolumeClaim:
claimName: example-axon00

containers:
- name: axon
image: vertexproject/synapse-axon:v2.x.x
env:
- name: SYN_LOG_LEVEL
value: DEBUG

- name: SYN_LOG_STRUCT
value: "false"

- name: SYN_AXON_AHA_PROVISION
value: "ssl://aha.default.svc.cluster.local:27272/..."

- name: SYN_AXON_HTTPS_PORT
value: null

volumeMounts:
- mountPath: /vertex/storage
name: data

imagePullPolicy: Always
startupProbe:
failureThreshold: 2147483647
timeoutSeconds: 20
periodSeconds: 20
exec:
command: ['python', '-m', 'synapse.tools.healthcheck', '-c', 'cell:///vertex/

→˓storage']
readinessProbe:
failureThreshold: 2
initialDelaySeconds: 20
timeoutSeconds: 20
periodSeconds: 20
exec:
command: ['python', '-m', 'synapse.tools.healthcheck', '-c', 'cell:///vertex/

→˓storage']
restartPolicy: Always

Before we deploy that, we need to create the Aha provisioning URL. We can do that via kubectl exec. That should
look like the following:

$ kubectl exec deployment/aha -- python -m synapse.tools.aha.provision.service 00.axon
one-time use URL: ssl://aha.default.svc.cluster.local:27272/
→˓39a33f6e3fa2b512552c2c7770e28d30?
→˓certhash=09c8329ed29b89b77e0a2fdc23e64aea407ad4d7e71d67d3fea92ddd9466592f

We want to copy that URL into the SYN_AXON_AHA_PROVISION environment variable, so that block looks like the

6.4. Devops Details 381

Synapse Documentation, Release 2.141.0

following:

- name: SYN_AXON_AHA_PROVISION
value: "ssl://aha.default.svc.cluster.local:27272/39a33f6e3fa2b512552c2c7770e28d30?

→˓certhash=09c8329ed29b89b77e0a2fdc23e64aea407ad4d7e71d67d3fea92ddd9466592f"

This can then be deployed via kubectl apply:

$ kubectl apply -f axon.yaml
persistentvolumeclaim/example-axon00 unchanged
deployment.apps/axon00 created

You can see the Axon logs as well. These show provisioning and listening for traffic:

$ kubectl logs -l app.kubernetes.io/instance=axon00
2023-03-08 17:27:44,721 [INFO] log level set to DEBUG [common.
→˓py:setlogging:MainThread:MainProcess]
2023-03-08 17:27:44,722 [DEBUG] Set config valu from envar: [SYN_AXON_HTTPS_PORT]␣
→˓[config.py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 17:27:44,722 [DEBUG] Set config valu from envar: [SYN_AXON_AHA_PROVISION]␣
→˓[config.py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 17:27:44,723 [INFO] Provisioning axon from AHA service. [cell.py:_
→˓bootCellProv:MainThread:MainProcess]
2023-03-08 17:27:44,833 [DEBUG] Set config valu from envar: [SYN_AXON_HTTPS_PORT]␣
→˓[config.py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 17:27:44,833 [DEBUG] Set config valu from envar: [SYN_AXON_AHA_PROVISION]␣
→˓[config.py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 17:27:51,649 [INFO] Done provisioning axon AHA service. [cell.py:_
→˓bootCellProv:MainThread:MainProcess]
2023-03-08 17:27:51,898 [INFO] dmon listening: ssl://0.0.0.0:0?hostname=00.axon.default.
→˓svc.cluster.local&ca=default.svc.cluster.local [cell.
→˓py:initServiceNetwork:MainThread:MainProcess]
2023-03-08 17:27:51,899 [INFO] ...axon API (telepath): ssl://0.0.0.0:0?hostname=00.axon.
→˓default.svc.cluster.local&ca=default.svc.cluster.local [cell.
→˓py:initFromArgv:MainThread:MainProcess]
2023-03-08 17:27:51,899 [INFO] ...axon API (https): disabled [cell.
→˓py:initFromArgv:MainThread:MainProcess]

The hostname 00.axon.default.svc.cluster.local seen in the logs is not a DNS label in Kubernetes. That is
an internal label used by the service to resolve SSL certificates that it provisioned with the Aha service, and as the name
that it uses to register with the Aha service.

JSONStor

The following jsonstor.yaml can be used as the basis to deploy a JSONStor service.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: example-jsonstor00
labels:
app.kubernetes.io/name: "jsonstor"

(continues on next page)

382 Chapter 6. Synapse Devops Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

app.kubernetes.io/instance: "jsonstor00"
app.kubernetes.io/version: "v2.x.x"
app.kubernetes.io/component: "jsonstor"
app.kubernetes.io/part-of: "synapse"
environment: "dev"

spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 10Gi

storageClassName: do-block-storage

apiVersion: apps/v1
kind: Deployment
metadata:
name: jsonstor00
labels:
app.kubernetes.io/name: "jsonstor"
app.kubernetes.io/instance: "jsonstor00"
app.kubernetes.io/version: "v2.x.x"
app.kubernetes.io/component: "jsonstor"
app.kubernetes.io/part-of: "synapse"
environment: "dev"

spec:
selector:
matchLabels:
app.kubernetes.io/name: "jsonstor"
app.kubernetes.io/instance: "jsonstor00"
app.kubernetes.io/version: "v2.x.x"
app.kubernetes.io/component: "jsonstor"
app.kubernetes.io/part-of: "synapse"
environment: "dev"

strategy:
type: Recreate

template:
metadata:
labels:
app.kubernetes.io/name: "jsonstor"
app.kubernetes.io/instance: "jsonstor00"
app.kubernetes.io/version: "v2.x.x"
app.kubernetes.io/component: "jsonstor"
app.kubernetes.io/part-of: "synapse"
environment: "dev"

spec:
securityContext:
runAsUser: 999
runAsGroup: 999
fsGroup: 999

volumes:
- name: data
persistentVolumeClaim:

(continues on next page)

6.4. Devops Details 383

Synapse Documentation, Release 2.141.0

(continued from previous page)

claimName: example-jsonstor00
containers:
- name: jsonstor
image: vertexproject/synapse-jsonstor:v2.x.x
env:
- name: SYN_LOG_LEVEL
value: DEBUG

- name: SYN_LOG_STRUCT
value: "false"

- name: SYN_JSONSTOR_AHA_PROVISION
value: "ssl://aha.default.svc.cluster.local:27272/..."

- name: SYN_JSONSTOR_HTTPS_PORT
value: null

volumeMounts:
- mountPath: /vertex/storage
name: data

imagePullPolicy: Always
startupProbe:
failureThreshold: 2147483647
timeoutSeconds: 20
periodSeconds: 20
exec:
command: ['python', '-m', 'synapse.tools.healthcheck', '-c', 'cell:///vertex/

→˓storage']
readinessProbe:
failureThreshold: 2
initialDelaySeconds: 20
timeoutSeconds: 20
periodSeconds: 20
exec:
command: ['python', '-m', 'synapse.tools.healthcheck', '-c', 'cell:///vertex/

→˓storage']
restartPolicy: Always

Before we deploy that, we need to create the Aha provisioning URL. We can do that via kubectl exec. That should
look like the following:

$ kubectl exec deployment/aha -- python -m synapse.tools.aha.provision.service 00.
→˓jsonstor
one-time use URL: ssl://aha.default.svc.cluster.local:27272/
→˓cbe50bb470ba55a5df9287391f843580?
→˓certhash=09c8329ed29b89b77e0a2fdc23e64aea407ad4d7e71d67d3fea92ddd9466592f

We want to copy that URL into the SYN_JSONSTOR_AHA_PROVISION environment variable, so that block looks like
the following:

- name: SYN_JSONSTOR_AHA_PROVISION
value: "ssl://aha.default.svc.cluster.local:27272/cbe50bb470ba55a5df9287391f843580?

→˓certhash=09c8329ed29b89b77e0a2fdc23e64aea407ad4d7e71d67d3fea92ddd9466592f"

This can then be deployed via kubectl apply:

384 Chapter 6. Synapse Devops Guide

Synapse Documentation, Release 2.141.0

$ kubectl apply -f jsonstor.yaml
persistentvolumeclaim/example-jsonstor00 created
deployment.apps/jsonstor00 created

You can see the JSONStor logs as well. These show provisioning and listening for traffic:

$ kubectl logs -l app.kubernetes.io/instance=jsonstor00
2023-03-08 17:29:15,137 [INFO] log level set to DEBUG [common.
→˓py:setlogging:MainThread:MainProcess]
2023-03-08 17:29:15,137 [DEBUG] Set config valu from envar: [SYN_JSONSTOR_HTTPS_PORT]␣
→˓[config.py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 17:29:15,138 [DEBUG] Set config valu from envar: [SYN_JSONSTOR_AHA_PROVISION]␣
→˓[config.py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 17:29:15,140 [INFO] Provisioning jsonstorcell from AHA service. [cell.py:_
→˓bootCellProv:MainThread:MainProcess]
2023-03-08 17:29:15,261 [DEBUG] Set config valu from envar: [SYN_JSONSTOR_HTTPS_PORT]␣
→˓[config.py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 17:29:15,261 [DEBUG] Set config valu from envar: [SYN_JSONSTOR_AHA_PROVISION]␣
→˓[config.py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 17:29:19,325 [INFO] Done provisioning jsonstorcell AHA service. [cell.py:_
→˓bootCellProv:MainThread:MainProcess]
2023-03-08 17:29:19,966 [INFO] dmon listening: ssl://0.0.0.0:0?hostname=00.jsonstor.
→˓default.svc.cluster.local&ca=default.svc.cluster.local [cell.
→˓py:initServiceNetwork:MainThread:MainProcess]
2023-03-08 17:29:19,966 [INFO] ...jsonstorcell API (telepath): ssl://0.0.0.0:0?
→˓hostname=00.jsonstor.default.svc.cluster.local&ca=default.svc.cluster.local [cell.
→˓py:initFromArgv:MainThread:MainProcess]
2023-03-08 17:29:19,966 [INFO] ...jsonstorcell API (https): disabled [cell.
→˓py:initFromArgv:MainThread:MainProcess]

Cortex

The following cortex.yaml can be used as the basis to deploy the Cortex.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: example-cortex00
labels:
app.kubernetes.io/name: "cortex"
app.kubernetes.io/instance: "cortex00"
app.kubernetes.io/version: "v2.x.x"
app.kubernetes.io/component: "cortex"
app.kubernetes.io/part-of: "synapse"
environment: "dev"

spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 10Gi

(continues on next page)

6.4. Devops Details 385

Synapse Documentation, Release 2.141.0

(continued from previous page)

storageClassName: do-block-storage

apiVersion: apps/v1
kind: Deployment
metadata:
name: cortex00
labels:
app.kubernetes.io/name: "cortex"
app.kubernetes.io/instance: "cortex00"
app.kubernetes.io/version: "v2.x.x"
app.kubernetes.io/component: "cortex"
app.kubernetes.io/part-of: "synapse"
environment: "dev"

spec:
selector:
matchLabels:
app.kubernetes.io/name: "cortex"
app.kubernetes.io/instance: "cortex00"
app.kubernetes.io/version: "v2.x.x"
app.kubernetes.io/component: "cortex"
app.kubernetes.io/part-of: "synapse"
environment: "dev"

strategy:
type: Recreate

template:
metadata:
labels:
app.kubernetes.io/name: "cortex"
app.kubernetes.io/instance: "cortex00"
app.kubernetes.io/version: "v2.x.x"
app.kubernetes.io/component: "cortex"
app.kubernetes.io/part-of: "synapse"
environment: "dev"

spec:
securityContext:
runAsUser: 999
runAsGroup: 999
fsGroup: 999

volumes:
- name: data
persistentVolumeClaim:
claimName: example-cortex00

containers:
- name: cortex
image: vertexproject/synapse-cortex:v2.x.x
env:
- name: SYN_LOG_LEVEL
value: DEBUG

- name: SYN_LOG_STRUCT
value: "false"

- name: SYN_CORTEX_AHA_PROVISION
value: "ssl://aha.default.svc.cluster.local:27272/..."

(continues on next page)

386 Chapter 6. Synapse Devops Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

- name: SYN_CORTEX_HTTPS_PORT
value: null

- name: SYN_CORTEX_STORM_LOG
value: "true"

- name: SYN_CORTEX_JSONSTOR
value: "aha://jsonstor..."

- name: SYN_CORTEX_AXON
value: "aha://axon..."

volumeMounts:
- mountPath: /vertex/storage
name: data

imagePullPolicy: Always
startupProbe:
failureThreshold: 2147483647
timeoutSeconds: 20
periodSeconds: 20
exec:
command: ['python', '-m', 'synapse.tools.healthcheck', '-c', 'cell:///vertex/

→˓storage']
readinessProbe:
failureThreshold: 2
initialDelaySeconds: 20
timeoutSeconds: 20
periodSeconds: 20
exec:
command: ['python', '-m', 'synapse.tools.healthcheck', '-c', 'cell:///vertex/

→˓storage']
restartPolicy: Always

apiVersion: v1
kind: Service
metadata:
name: cortex
labels:
app.kubernetes.io/name: "cortex"
app.kubernetes.io/instance: "cortex00"
app.kubernetes.io/version: "v2.x.x"
app.kubernetes.io/component: "cortex"
app.kubernetes.io/part-of: "synapse"
environment: "dev"

spec:
type: ClusterIP
selector:
app.kubernetes.io/instance: cortex00
environment: "dev"

ports:
- port: 27492
protocol: TCP
name: telepath

Before we deploy that, we need to create the Aha provisioning URL. This uses a fixed listening port for the Cortex, so
that we can later use port-forwarding to access the Cortex service. We do this via kubectl exec. That should look
like the following:

6.4. Devops Details 387

Synapse Documentation, Release 2.141.0

$ kubectl exec deployment/aha -- python -m synapse.tools.aha.provision.service 00.cortex␣
→˓--dmon-port 27492
one-time use URL: ssl://aha.default.svc.cluster.local:27272/
→˓c06cd588e469a3b7f8a56d98414acf8a?
→˓certhash=09c8329ed29b89b77e0a2fdc23e64aea407ad4d7e71d67d3fea92ddd9466592f

We want to copy that URL into the SYN_CORTEX_AHA_PROVISION environment variable, so that block looks like the
following:

- name: SYN_CORTEX_AHA_PROVISION
value: "ssl://aha.default.svc.cluster.local:27272/c06cd588e469a3b7f8a56d98414acf8a?

→˓certhash=09c8329ed29b89b77e0a2fdc23e64aea407ad4d7e71d67d3fea92ddd9466592f"

This can then be deployed via kubectl apply:

$ kubectl apply -f cortex.yaml
persistentvolumeclaim/example-cortex00 created
deployment.apps/cortex00 created
service/cortex created

You can see the Cortex logs as well. These show provisioning and listening for traffic, as well as the connection being
made to the Axon and JSONStor services:

$ kubectl logs -l app.kubernetes.io/instance=cortex00
2023-03-08 17:29:16,892 [INFO] log level set to DEBUG [common.
→˓py:setlogging:MainThread:MainProcess]
2023-03-08 17:29:16,893 [DEBUG] Set config valu from envar: [SYN_CORTEX_AXON] [config.
→˓py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 17:29:16,893 [DEBUG] Set config valu from envar: [SYN_CORTEX_JSONSTOR]␣
→˓[config.py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 17:29:16,894 [DEBUG] Set config valu from envar: [SYN_CORTEX_STORM_LOG]␣
→˓[config.py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 17:29:16,894 [DEBUG] Set config valu from envar: [SYN_CORTEX_HTTPS_PORT]␣
→˓[config.py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 17:29:16,894 [DEBUG] Set config valu from envar: [SYN_CORTEX_AHA_PROVISION]␣
→˓[config.py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 17:29:16,896 [INFO] Provisioning cortex from AHA service. [cell.py:_
→˓bootCellProv:MainThread:MainProcess]
2023-03-08 17:29:17,008 [DEBUG] Set config valu from envar: [SYN_CORTEX_AXON] [config.
→˓py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 17:29:17,009 [DEBUG] Set config valu from envar: [SYN_CORTEX_JSONSTOR]␣
→˓[config.py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 17:29:17,009 [DEBUG] Set config valu from envar: [SYN_CORTEX_STORM_LOG]␣
→˓[config.py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 17:29:17,010 [DEBUG] Set config valu from envar: [SYN_CORTEX_HTTPS_PORT]␣
→˓[config.py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 17:29:17,010 [DEBUG] Set config valu from envar: [SYN_CORTEX_AHA_PROVISION]␣
→˓[config.py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 17:29:20,356 [INFO] Done provisioning cortex AHA service. [cell.py:_
→˓bootCellProv:MainThread:MainProcess]
2023-03-08 17:29:21,077 [INFO] dmon listening: ssl://0.0.0.0:27492?hostname=00.cortex.
→˓default.svc.cluster.local&ca=default.svc.cluster.local [cell.
→˓py:initServiceNetwork:MainThread:MainProcess]

(continues on next page)

388 Chapter 6. Synapse Devops Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

2023-03-08 17:29:21,078 [INFO] ...cortex API (telepath): ssl://0.0.0.0:27492?hostname=00.
→˓cortex.default.svc.cluster.local&ca=default.svc.cluster.local [cell.
→˓py:initFromArgv:MainThread:MainProcess]
2023-03-08 17:29:21,078 [INFO] ...cortex API (https): disabled [cell.
→˓py:initFromArgv:MainThread:MainProcess]
2023-03-08 17:29:21,082 [DEBUG] Connected to remote axon aha://axon... [cortex.
→˓py:onlink:MainThread:MainProcess]
2023-03-08 17:29:21,174 [DEBUG] Connected to remote jsonstor aha://jsonstor... [cortex.
→˓py:onlink:MainThread:MainProcess]

CLI Tooling Example

Synapse services and tooling assumes that IP and Port combinations registered with the AHA service are reachable.
This example shows a way to connect to the Cortex from outside of the Kubernetes cluster without resolving service
information via Aha. Communication between services inside of the cluster does not need to go through these steps.
This does assume that your local environment has the Python synapse package available.

First add a user to the Cortex:

$ kubectl exec -it deployment/cortex00 -- python -m synapse.tools.moduser --add --admin␣
→˓true visi
Adding user: visi
...setting admin: true

Then we need to generate a user provisioning URL:

$ kubectl exec -it deployment/aha -- python -m synapse.tools.aha.provision.user visi
one-time use URL: ssl://aha.default.svc.cluster.local:27272/
→˓5d67f84c279afa240062d2f3b32fdb99?
→˓certhash=e32d0e1da01b5eb0cefd4c107ddc8c8221a9a39bce25dea04f469c6474d84a23

Port-forward the AHA provisioning service to your local environment:

kubectl port-forward service/aha 27272:provisioning

Run the enroll tool to create a user certificate pair and have it signed by the Aha service. We replace the service DNS
name of aha.default.svc.cluster.local with localhost in this example.

$ python -m synapse.tools.aha.enroll ssl://localhost:27272/
→˓5d67f84c279afa240062d2f3b32fdb99?
→˓certhash=e32d0e1da01b5eb0cefd4c107ddc8c8221a9a39bce25dea04f469c6474d84a23
Saved CA certificate: /home/visi/.syn/certs/cas/default.svc.cluster.local.crt
Saved user certificate: /home/visi/.syn/certs/users/visi@default.svc.cluster.local.crt
Updating known AHA servers

The Aha service port-forward can be disabled, and replaced with a port-forward for the Cortex service:

kubectl port-forward service/cortex 27492:telepath

Then connect to the Cortex via the Storm CLI, using the URL ssl://visi@localhost:27492/?hostname=00.
cortex.default.svc.cluster.local.

6.4. Devops Details 389

Synapse Documentation, Release 2.141.0

$ python -m synapse.tools.storm "ssl://visi@localhost:27492/?hostname=00.cortex.default.
→˓svc.cluster.local"

Welcome to the Storm interpreter!

Local interpreter (non-storm) commands may be executed with a ! prefix:
Use !quit to exit.
Use !help to see local interpreter commands.

storm>

The Storm CLI tool can then be used to run Storm commands.

Commercial Components

For Synapse-Enterprise users, deploying commercial components can follow a similar pattern. The following is an
example of deploying Optic, the Synapse User Interface, as it is a common part of a Synapse deployment. This enables
users to interact with Synapse via a web browser, instead of using the CLI tools. This example shows accessing the
service via a port-forward. This example does not contain the full configuration settings you will need for a production
deployment of Optic, please see Synapse User Interface for more information.

Note: Optic is available as a part of the Synapse Enterprise commercial offering. This example assumes that the
Kubernetes cluster has a valid imagePullSecret named regcred which can access commercial images.

The following optic.yaml can be used as the basis to deploy Optic.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: example-optic00
labels:
app.kubernetes.io/name: "optic"
app.kubernetes.io/instance: "optic00"
app.kubernetes.io/version: "v2.x.x"
app.kubernetes.io/component: "optic"
app.kubernetes.io/part-of: "synapse"
environment: "dev"

spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 10Gi

You will need to use an appropriate storageClassName for your cluster.
storageClassName: do-block-storage

apiVersion: apps/v1
kind: Deployment
metadata:
name: optic00

(continues on next page)

390 Chapter 6. Synapse Devops Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

labels:
app.kubernetes.io/name: "optic"
app.kubernetes.io/instance: "optic00"
app.kubernetes.io/version: "v2.x.x"
app.kubernetes.io/component: "optic"
app.kubernetes.io/part-of: "synapse"
environment: "dev"

spec:
selector:
matchLabels:
app.kubernetes.io/name: "optic"
app.kubernetes.io/instance: "optic00"
app.kubernetes.io/version: "v2.x.x"
app.kubernetes.io/component: "optic"
app.kubernetes.io/part-of: "synapse"
environment: "dev"

strategy:
type: Recreate

template:
metadata:
labels:
app.kubernetes.io/name: "optic"
app.kubernetes.io/instance: "optic00"
app.kubernetes.io/version: "v2.x.x"
app.kubernetes.io/component: "optic"
app.kubernetes.io/part-of: "synapse"
environment: "dev"

spec:
securityContext:
runAsUser: 999
runAsGroup: 999
fsGroup: 999

volumes:
- name: data
persistentVolumeClaim:
claimName: example-optic00

containers:
- name: optic
image: vertexproject/optic:v2.x.x
securityContext:
readOnlyRootFilesystem: true

env:
- name: SYN_LOG_LEVEL
value: DEBUG

- name: SYN_LOG_STRUCT
value: "false"

- name: SYN_OPTIC_AHA_PROVISION
value: "ssl://aha.default.svc.cluster.local:27272/..."

- name: SYN_OPTIC_HTTPS_PORT
value: "4443"

- name: SYN_OPTIC_AXON
value: "aha://axon..."

(continues on next page)

6.4. Devops Details 391

Synapse Documentation, Release 2.141.0

(continued from previous page)

- name: SYN_OPTIC_CORTEX
value: "aha://cortex..."

- name: SYN_OPTIC_JSONSTOR
value: "aha://jsonstor..."

volumeMounts:
- mountPath: /vertex/storage
name: data

imagePullPolicy: Always
startupProbe:
failureThreshold: 2147483647
timeoutSeconds: 20
periodSeconds: 20
exec:
command: ['python', '-m', 'synapse.tools.healthcheck', '-c', 'cell:///vertex/

→˓storage']
readinessProbe:
failureThreshold: 2
initialDelaySeconds: 20
timeoutSeconds: 20
periodSeconds: 20
exec:
command: ['python', '-m', 'synapse.tools.healthcheck', '-c', 'cell:///vertex/

→˓storage']
restartPolicy: Always
imagePullSecrets:
- name: "regcred"

apiVersion: v1
kind: Service
metadata:
name: optic
labels:
app.kubernetes.io/name: "optic"
app.kubernetes.io/instance: "optic00"
app.kubernetes.io/version: "v2.x.x"
app.kubernetes.io/component: "optic"
app.kubernetes.io/part-of: "synapse"
environment: "dev"

spec:
type: ClusterIP
selector:
app.kubernetes.io/name: optic
environment: "dev"

ports:
- port: 4443
protocol: TCP
name: https

Before we deploy that, we need to create the Aha provisioning URL. We do this via kubectl exec. That should look
like the following:

$ kubectl exec deployment/aha -- python -m synapse.tools.aha.provision.service 00.optic
(continues on next page)

392 Chapter 6. Synapse Devops Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

one-time use URL: ssl://aha.default.svc.cluster.local:27272/
→˓3f692cda9dfb152f74a8a0251165bcc4?
→˓certhash=09c8329ed29b89b77e0a2fdc23e64aea407ad4d7e71d67d3fea92ddd9466592f

We want to copy that URL into the SYN_OPTIC_AHA_PROVISION environment variable, so that block looks like the
following:

- name: SYN_OPTIC_AHA_PROVISION
value: "ssl://aha.default.svc.cluster.local:27272/3f692cda9dfb152f74a8a0251165bcc4?

→˓certhash=09c8329ed29b89b77e0a2fdc23e64aea407ad4d7e71d67d3fea92ddd9466592f"

This can then be deployed via kubectl apply:

$ kubectl apply -f optic.yaml
persistentvolumeclaim/example-optic00 created
deployment.apps/optic00 created
service/optic created

You can see the Optic logs as well. These show provisioning and listening for traffic, as well as the connection being
made to the Axon, Cortex, and JSONStor services:

$ kubectl logs --tail 30 -l app.kubernetes.io/instance=optic00
2023-03-08 17:32:40,149 [INFO] log level set to DEBUG [common.
→˓py:setlogging:MainThread:MainProcess]
2023-03-08 17:32:40,150 [DEBUG] Set config valu from envar: [SYN_OPTIC_CORTEX] [config.
→˓py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 17:32:40,150 [DEBUG] Set config valu from envar: [SYN_OPTIC_AXON] [config.
→˓py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 17:32:40,151 [DEBUG] Set config valu from envar: [SYN_OPTIC_JSONSTOR] [config.
→˓py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 17:32:40,151 [DEBUG] Set config valu from envar: [SYN_OPTIC_HTTPS_PORT]␣
→˓[config.py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 17:32:40,152 [DEBUG] Set config valu from envar: [SYN_OPTIC_AHA_PROVISION]␣
→˓[config.py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 17:32:40,153 [INFO] Provisioning optic from AHA service. [cell.py:_
→˓bootCellProv:MainThread:MainProcess]
2023-03-08 17:32:40,264 [DEBUG] Set config valu from envar: [SYN_OPTIC_CORTEX] [config.
→˓py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 17:32:40,265 [DEBUG] Set config valu from envar: [SYN_OPTIC_AXON] [config.
→˓py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 17:32:40,265 [DEBUG] Set config valu from envar: [SYN_OPTIC_JSONSTOR] [config.
→˓py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 17:32:40,265 [DEBUG] Set config valu from envar: [SYN_OPTIC_HTTPS_PORT]␣
→˓[config.py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 17:32:40,266 [DEBUG] Set config valu from envar: [SYN_OPTIC_AHA_PROVISION]␣
→˓[config.py:setConfFromEnvs:MainThread:MainProcess]
2023-03-08 17:32:45,181 [INFO] Done provisioning optic AHA service. [cell.py:_
→˓bootCellProv:MainThread:MainProcess]
2023-03-08 17:32:45,247 [INFO] optic wwwroot: /usr/local/lib/python3.10/dist-packages/
→˓optic/site [app.py:initServiceStorage:MainThread:MainProcess]
2023-03-08 17:32:45,248 [WARNING] Waiting for remote jsonstor... [app.
→˓py:initJsonStor:MainThread:MainProcess]
2023-03-08 17:32:45,502 [INFO] Connected to JsonStor at [aha://jsonstor...] [app.

(continues on next page)

6.4. Devops Details 393

Synapse Documentation, Release 2.141.0

(continued from previous page)

→˓py:initJsonStor:MainThread:MainProcess]
2023-03-08 17:32:45,504 [INFO] Waiting for connection to Cortex [app.py:_
→˓initOpticCortex:MainThread:MainProcess]
2023-03-08 17:32:45,599 [INFO] Connected to Cortex at [aha://cortex...] [app.py:_
→˓initOpticCortex:MainThread:MainProcess]
2023-03-08 17:32:45,930 [INFO] Connected to Axon at [aha://axon...] [app.
→˓py:onaxonlink:MainThread:MainProcess]
2023-03-08 17:32:45,937 [DEBUG] Email settings/server not configured or invalid. [app.
→˓py:initEmailApis:asyncio_0:MainProcess]
2023-03-08 17:32:45,975 [INFO] dmon listening: ssl://0.0.0.0:0?hostname=00.optic.default.
→˓svc.cluster.local&ca=default.svc.cluster.local [cell.
→˓py:initServiceNetwork:MainThread:MainProcess]
2023-03-08 17:32:45,976 [WARNING] NO CERTIFICATE FOUND! generating self-signed␣
→˓certificate. [cell.py:addHttpsPort:MainThread:MainProcess]
2023-03-08 17:32:47,773 [INFO] https listening: 4443 [cell.
→˓py:initServiceNetwork:MainThread:MainProcess]
2023-03-08 17:32:47,773 [INFO] ...optic API (telepath): ssl://0.0.0.0:0?hostname=00.
→˓optic.default.svc.cluster.local&ca=default.svc.cluster.local [cell.
→˓py:initFromArgv:MainThread:MainProcess]
2023-03-08 17:32:47,773 [INFO] ...optic API (https): 4443 [cell.
→˓py:initFromArgv:MainThread:MainProcess]

Once Optic is connected, we will need to set a password for the user we previously created in order to log in. This can
be done via kubectl exec, setting the password for the user on the Cortex:

$ kubectl exec -it deployment/cortex00 -- python -m synapse.tools.moduser --passwd␣
→˓secretPassword visi
Modifying user: visi
...setting passwd: secretPassword

Enable a port-forward to connect to the Optic service:

$ kubectl port-forward service/optic 4443:https

You can then use a Chrome browser to navigate to https://localhost:4443 and you should be prompted with an
Optic login screen. You can enter your username and password (visi and secretPassword) in order to login to
Optic.

Practical Considerations

The following items should be considered for Kubernetes deployments intended for production use cases:

Healthchecks
These examples use large startupProbe failure values. Vertex recommends these large values,
since service updates may have automatic data migrations which they perform at startup. These will
be performed before a service has enabled any listeners which would respond to healthcheck probes.
The large value prevents a service from being terminated prior to a long running data migration
completing.

Ingress and Load Balancing
The use of kubectl port-forward may not be sustainable in a production environment. It is
common to use a form of ingress controller or load balancer for external services to reach services
such as the Cortex or Optic applications. It is common for the Optic UI or the Cortex HTTP API to be

394 Chapter 6. Synapse Devops Guide

Synapse Documentation, Release 2.141.0

exposed to end users since that often has a simpler networking configuration than exposing Telepath
services on Aha and the Cortex.

Log aggregation
Many Kubernetes clusters may perform some sort of log aggregation for the containers running in
them. If your log aggregation solution can parse JSON formatted container logs, you can set the
SYN_LOG_STRUCT environment variable to "true" to enable structured log output. See Configure
Logging for more information about that option.

Node Selectors
These examples do not use any node selectors to bind pods to specific nodes or node types. Node
selectors on the podspec can be used to constrain different services to different types of nodes. For
example, they can be used to ensure the Cortex is deployed to a node which has been provisioned as
a high memory node for that purpose.

PVC
The previous examples used relatively small volume claim sizes for demonstration purposes. A
storageClass which can be dynamically resized will be helpful in the event of needing to grow
the storage used by a deployment. This is a common feature for managed Kubernetes instances.

Performance Tuning in Kubernetes

It is common for Kubernetes to be executed in a managed environment, where an operator may not have direct access
to the underlying hosts. In that scenario, applying the system configurations detailed in Performance Tuning may be
difficult. The following example shows a DaemonSet which runs a privileged pod, that ensures that the desired sysctl
values are set on the host. You may need to modify this to meet any requirements which are specific to your deployment.

The following sysctl.yaml can be used as the basis to deploy these modifications.

apiVersion: "apps/v1"
kind: "DaemonSet"
metadata:
name: "setsysctl"
labels:
app.kubernetes.io/name: "sysctl"
app.kubernetes.io/instance: "sysctl"
app.kubernetes.io/version: "1.36.0-glibc"
app.kubernetes.io/component: "sysctl"
app.kubernetes.io/part-of: "synapse"
environment: "dev"

spec:
selector:
matchLabels:
app.kubernetes.io/name: "sysctl"
app.kubernetes.io/instance: "sysctl"
app.kubernetes.io/version: "1.36.0-glibc"
app.kubernetes.io/component: "sysctl"
app.kubernetes.io/part-of: "synapse"
environment: "dev"

template:
metadata:
labels:
app.kubernetes.io/name: "sysctl"
app.kubernetes.io/instance: "sysctl"

(continues on next page)

6.4. Devops Details 395

Synapse Documentation, Release 2.141.0

(continued from previous page)

app.kubernetes.io/version: "1.36.0-glibc"
app.kubernetes.io/component: "sysctl"
app.kubernetes.io/part-of: "synapse"
environment: "dev"

spec:
containers:
- name: "apply-sysctl"
image: "busybox:1.36.0-glibc" # Latest glibc based busybox
securityContext:
privileged: true

command:
- "/bin/sh"
- "-c"
- |
set -o errexit
set -o xtrace
while sysctl -w vm.swappiness=10 vm.dirty_expire_centisecs=20 vm.dirty_

→˓writeback_centisecs=20 vm.dirty_background_ratio=2 vm.dirty_ratio=4
do
sleep 600s

done

This can be deployed via kubectl apply. That will create the DaemonSet for you..

$ kubectl apply -f sysctl_dset.yaml
daemonset.apps/setsysctl created

You can see the sysctl pods by running the following command:

$ kubectl get pods -l app.kubernetes.io/component=sysctl -o wide

6.4.2 AHA Configuration Options

aha:admin

An AHA client certificate CN to register as a local admin user.

Type
string

Environment Variable
SYN_AHA_AHA_ADMIN

396 Chapter 6. Synapse Devops Guide

Synapse Documentation, Release 2.141.0

aha:leader

The AHA service name to claim as the active instance of a storm service.

Type
string

Environment Variable
SYN_AHA_AHA_LEADER

aha:name

The name of the cell service in the aha service registry.

Type
string

Environment Variable
SYN_AHA_AHA_NAME

aha:network

The AHA service network. This makes aha:name/aha:leader relative names.

Type
string

Environment Variable
SYN_AHA_AHA_NETWORK

aha:provision

The telepath URL of the aha provisioning service.

Type
['string', 'array']

Environment Variable
SYN_AHA_AHA_PROVISION

aha:registry

The telepath URL of the aha service registry.

Type
['string', 'array']

Environment Variable
SYN_AHA_AHA_REGISTRY

6.4. Devops Details 397

Synapse Documentation, Release 2.141.0

aha:urls

A list of all available AHA server URLs.

Type
['string', 'array']

Environment Variable
SYN_AHA_AHA_URLS

aha:user

The username of this service when connecting to others.

Type
string

Environment Variable
SYN_AHA_AHA_USER

auth:anon

Allow anonymous telepath access by mapping to the given user name.

Type
string

Environment Variable
SYN_AHA_AUTH_ANON

auth:passwd

Set to <passwd> (local only) to bootstrap the root user password.

Type
string

Environment Variable
SYN_AHA_AUTH_PASSWD

backup:dir

A directory outside the service directory where backups will be saved. Defaults to ./backups in the service storage
directory.

Type
string

Environment Variable
SYN_AHA_BACKUP_DIR

398 Chapter 6. Synapse Devops Guide

Synapse Documentation, Release 2.141.0

dmon:listen

A config-driven way to specify the telepath bind URL.

Type
['string', 'null']

Environment Variable
SYN_AHA_DMON_LISTEN

https:headers

Headers to add to all HTTPS server responses.

Type
object

Environment Variable
SYN_AHA_HTTPS_HEADERS

https:parse:proxy:remoteip

Enable the HTTPS server to parse X-Forwarded-For and X-Real-IP headers to determine requester IP addresses.

Type
boolean

Default Value
False

Environment Variable
SYN_AHA_HTTPS_PARSE_PROXY_REMOTEIP

https:port

A config-driven way to specify the HTTPS port.

Type
['integer', 'null']

Environment Variable
SYN_AHA_HTTPS_PORT

limit:disk:free

Minimum disk free space percentage before setting the cell read-only.

Type
['integer', 'null']

Default Value
5

Environment Variable
SYN_AHA_LIMIT_DISK_FREE

6.4. Devops Details 399

Synapse Documentation, Release 2.141.0

mirror

A telepath URL for our upstream mirror (we must be a backup!).

Type
['string', 'null']

Environment Variable
SYN_AHA_MIRROR

nexslog:en

Record all changes to a stream file on disk. Required for mirroring (on both sides).

Type
boolean

Default Value
False

Environment Variable
SYN_AHA_NEXSLOG_EN

onboot:optimize

Delay startup to optimize LMDB databases during boot to recover free space and increase performance. This may take
a while.

Type
boolean

Default Value
False

Environment Variable
SYN_AHA_ONBOOT_OPTIMIZE

provision:listen

A telepath URL for the AHA provisioning listener.

Type
['string', 'null']

Environment Variable
SYN_AHA_PROVISION_LISTEN

400 Chapter 6. Synapse Devops Guide

Synapse Documentation, Release 2.141.0

6.4.3 Axon Configuration Options

aha:admin

An AHA client certificate CN to register as a local admin user.

Type
string

Environment Variable
SYN_AXON_AHA_ADMIN

aha:leader

The AHA service name to claim as the active instance of a storm service.

Type
string

Environment Variable
SYN_AXON_AHA_LEADER

aha:name

The name of the cell service in the aha service registry.

Type
string

Environment Variable
SYN_AXON_AHA_NAME

aha:network

The AHA service network. This makes aha:name/aha:leader relative names.

Type
string

Environment Variable
SYN_AXON_AHA_NETWORK

aha:provision

The telepath URL of the aha provisioning service.

Type
['string', 'array']

Environment Variable
SYN_AXON_AHA_PROVISION

6.4. Devops Details 401

Synapse Documentation, Release 2.141.0

aha:registry

The telepath URL of the aha service registry.

Type
['string', 'array']

Environment Variable
SYN_AXON_AHA_REGISTRY

aha:user

The username of this service when connecting to others.

Type
string

Environment Variable
SYN_AXON_AHA_USER

auth:anon

Allow anonymous telepath access by mapping to the given user name.

Type
string

Environment Variable
SYN_AXON_AUTH_ANON

auth:passwd

Set to <passwd> (local only) to bootstrap the root user password.

Type
string

Environment Variable
SYN_AXON_AUTH_PASSWD

backup:dir

A directory outside the service directory where backups will be saved. Defaults to ./backups in the service storage
directory.

Type
string

Environment Variable
SYN_AXON_BACKUP_DIR

402 Chapter 6. Synapse Devops Guide

Synapse Documentation, Release 2.141.0

dmon:listen

A config-driven way to specify the telepath bind URL.

Type
['string', 'null']

Environment Variable
SYN_AXON_DMON_LISTEN

http:proxy

An aiohttp-socks compatible proxy URL to use in the wget API.

Type
string

Environment Variable
SYN_AXON_HTTP_PROXY

https:headers

Headers to add to all HTTPS server responses.

Type
object

Environment Variable
SYN_AXON_HTTPS_HEADERS

https:parse:proxy:remoteip

Enable the HTTPS server to parse X-Forwarded-For and X-Real-IP headers to determine requester IP addresses.

Type
boolean

Default Value
False

Environment Variable
SYN_AXON_HTTPS_PARSE_PROXY_REMOTEIP

https:port

A config-driven way to specify the HTTPS port.

Type
['integer', 'null']

Environment Variable
SYN_AXON_HTTPS_PORT

6.4. Devops Details 403

Synapse Documentation, Release 2.141.0

limit:disk:free

Minimum disk free space percentage before setting the cell read-only.

Type
['integer', 'null']

Default Value
5

Environment Variable
SYN_AXON_LIMIT_DISK_FREE

max:bytes

The maximum number of bytes that can be stored in the Axon.

Type
integer

Environment Variable
SYN_AXON_MAX_BYTES

max:count

The maximum number of files that can be stored in the Axon.

Type
integer

Environment Variable
SYN_AXON_MAX_COUNT

nexslog:en

Record all changes to a stream file on disk. Required for mirroring (on both sides).

Type
boolean

Default Value
False

Environment Variable
SYN_AXON_NEXSLOG_EN

onboot:optimize

Delay startup to optimize LMDB databases during boot to recover free space and increase performance. This may take
a while.

Type
boolean

Default Value
False

404 Chapter 6. Synapse Devops Guide

Synapse Documentation, Release 2.141.0

Environment Variable
SYN_AXON_ONBOOT_OPTIMIZE

tls:ca:dir

An optional directory of CAs which are added to the TLS CA chain for wget and wput APIs.

Type
string

Environment Variable
SYN_AXON_TLS_CA_DIR

6.4.4 JSONStor Configuration Options

aha:admin

An AHA client certificate CN to register as a local admin user.

Type
string

Environment Variable
SYN_JSONSTOR_AHA_ADMIN

aha:leader

The AHA service name to claim as the active instance of a storm service.

Type
string

Environment Variable
SYN_JSONSTOR_AHA_LEADER

aha:name

The name of the cell service in the aha service registry.

Type
string

Environment Variable
SYN_JSONSTOR_AHA_NAME

6.4. Devops Details 405

Synapse Documentation, Release 2.141.0

aha:network

The AHA service network. This makes aha:name/aha:leader relative names.

Type
string

Environment Variable
SYN_JSONSTOR_AHA_NETWORK

aha:provision

The telepath URL of the aha provisioning service.

Type
['string', 'array']

Environment Variable
SYN_JSONSTOR_AHA_PROVISION

aha:registry

The telepath URL of the aha service registry.

Type
['string', 'array']

Environment Variable
SYN_JSONSTOR_AHA_REGISTRY

aha:user

The username of this service when connecting to others.

Type
string

Environment Variable
SYN_JSONSTOR_AHA_USER

auth:anon

Allow anonymous telepath access by mapping to the given user name.

Type
string

Environment Variable
SYN_JSONSTOR_AUTH_ANON

406 Chapter 6. Synapse Devops Guide

Synapse Documentation, Release 2.141.0

auth:passwd

Set to <passwd> (local only) to bootstrap the root user password.

Type
string

Environment Variable
SYN_JSONSTOR_AUTH_PASSWD

backup:dir

A directory outside the service directory where backups will be saved. Defaults to ./backups in the service storage
directory.

Type
string

Environment Variable
SYN_JSONSTOR_BACKUP_DIR

dmon:listen

A config-driven way to specify the telepath bind URL.

Type
['string', 'null']

Environment Variable
SYN_JSONSTOR_DMON_LISTEN

https:headers

Headers to add to all HTTPS server responses.

Type
object

Environment Variable
SYN_JSONSTOR_HTTPS_HEADERS

https:parse:proxy:remoteip

Enable the HTTPS server to parse X-Forwarded-For and X-Real-IP headers to determine requester IP addresses.

Type
boolean

Default Value
False

Environment Variable
SYN_JSONSTOR_HTTPS_PARSE_PROXY_REMOTEIP

6.4. Devops Details 407

Synapse Documentation, Release 2.141.0

https:port

A config-driven way to specify the HTTPS port.

Type
['integer', 'null']

Environment Variable
SYN_JSONSTOR_HTTPS_PORT

limit:disk:free

Minimum disk free space percentage before setting the cell read-only.

Type
['integer', 'null']

Default Value
5

Environment Variable
SYN_JSONSTOR_LIMIT_DISK_FREE

nexslog:en

Record all changes to a stream file on disk. Required for mirroring (on both sides).

Type
boolean

Default Value
False

Environment Variable
SYN_JSONSTOR_NEXSLOG_EN

onboot:optimize

Delay startup to optimize LMDB databases during boot to recover free space and increase performance. This may take
a while.

Type
boolean

Default Value
False

Environment Variable
SYN_JSONSTOR_ONBOOT_OPTIMIZE

408 Chapter 6. Synapse Devops Guide

Synapse Documentation, Release 2.141.0

6.4.5 Cortex Configuration Options

aha:admin

An AHA client certificate CN to register as a local admin user.

Type
string

Environment Variable
SYN_CORTEX_AHA_ADMIN

aha:leader

The AHA service name to claim as the active instance of a storm service.

Type
string

Environment Variable
SYN_CORTEX_AHA_LEADER

aha:name

The name of the cell service in the aha service registry.

Type
string

Environment Variable
SYN_CORTEX_AHA_NAME

aha:network

The AHA service network. This makes aha:name/aha:leader relative names.

Type
string

Environment Variable
SYN_CORTEX_AHA_NETWORK

aha:provision

The telepath URL of the aha provisioning service.

Type
['string', 'array']

Environment Variable
SYN_CORTEX_AHA_PROVISION

6.4. Devops Details 409

Synapse Documentation, Release 2.141.0

aha:registry

The telepath URL of the aha service registry.

Type
['string', 'array']

Environment Variable
SYN_CORTEX_AHA_REGISTRY

aha:user

The username of this service when connecting to others.

Type
string

Environment Variable
SYN_CORTEX_AHA_USER

auth:anon

Allow anonymous telepath access by mapping to the given user name.

Type
string

Environment Variable
SYN_CORTEX_AUTH_ANON

auth:passwd

Set to <passwd> (local only) to bootstrap the root user password.

Type
string

Environment Variable
SYN_CORTEX_AUTH_PASSWD

axon

A telepath URL for a remote axon.

Type
string

Environment Variable
SYN_CORTEX_AXON

410 Chapter 6. Synapse Devops Guide

Synapse Documentation, Release 2.141.0

backup:dir

A directory outside the service directory where backups will be saved. Defaults to ./backups in the service storage
directory.

Type
string

Environment Variable
SYN_CORTEX_BACKUP_DIR

cron:enable

Enable cron jobs running.

Type
boolean

Default Value
True

Environment Variable
SYN_CORTEX_CRON_ENABLE

dmon:listen

A config-driven way to specify the telepath bind URL.

Type
['string', 'null']

Environment Variable
SYN_CORTEX_DMON_LISTEN

http:proxy

An aiohttp-socks compatible proxy URL to use storm HTTP API.

Type
string

Environment Variable
SYN_CORTEX_HTTP_PROXY

https:headers

Headers to add to all HTTPS server responses.

Type
object

Environment Variable
SYN_CORTEX_HTTPS_HEADERS

6.4. Devops Details 411

Synapse Documentation, Release 2.141.0

https:parse:proxy:remoteip

Enable the HTTPS server to parse X-Forwarded-For and X-Real-IP headers to determine requester IP addresses.

Type
boolean

Default Value
False

Environment Variable
SYN_CORTEX_HTTPS_PARSE_PROXY_REMOTEIP

https:port

A config-driven way to specify the HTTPS port.

Type
['integer', 'null']

Environment Variable
SYN_CORTEX_HTTPS_PORT

jsonstor

A telepath URL for a remote jsonstor.

Type
string

Environment Variable
SYN_CORTEX_JSONSTOR

layer:lmdb:map_async

Set the default lmdb:map_async value in LMDB layers.

Type
boolean

Default Value
True

Environment Variable
SYN_CORTEX_LAYER_LMDB_MAP_ASYNC

layer:lmdb:max_replay_log

Set the max size of the replay log for all layers.

Type
integer

Default Value
10000

Environment Variable
SYN_CORTEX_LAYER_LMDB_MAX_REPLAY_LOG

412 Chapter 6. Synapse Devops Guide

Synapse Documentation, Release 2.141.0

layers:lockmemory

Should new layers lock memory for performance by default.

Type
boolean

Default Value
False

Environment Variable
SYN_CORTEX_LAYERS_LOCKMEMORY

layers:logedits

Whether nodeedits are logged in each layer.

Type
boolean

Default Value
True

Environment Variable
SYN_CORTEX_LAYERS_LOGEDITS

limit:disk:free

Minimum disk free space percentage before setting the cell read-only.

Type
['integer', 'null']

Default Value
5

Environment Variable
SYN_CORTEX_LIMIT_DISK_FREE

max:nodes

Maximum number of nodes which are allowed to be stored in a Cortex.

Type
integer

Environment Variable
SYN_CORTEX_MAX_NODES

6.4. Devops Details 413

Synapse Documentation, Release 2.141.0

mirror

A telepath URL for our upstream mirror (we must be a backup!).

Type
['string', 'null']

Environment Variable
SYN_CORTEX_MIRROR

modules

A list of module classes to load.

Type
array

Default Value
[]

Environment Variable
SYN_CORTEX_MODULES

nexslog:en

Record all changes to a stream file on disk. Required for mirroring (on both sides).

Type
boolean

Default Value
True

Environment Variable
SYN_CORTEX_NEXSLOG_EN

onboot:optimize

Delay startup to optimize LMDB databases during boot to recover free space and increase performance. This may take
a while.

Type
boolean

Default Value
False

Environment Variable
SYN_CORTEX_ONBOOT_OPTIMIZE

414 Chapter 6. Synapse Devops Guide

Synapse Documentation, Release 2.141.0

storm:interface:scrape

Enable Storm scrape interfaces when using $lib.scrape APIs.

Type
boolean

Default Value
True

Environment Variable
SYN_CORTEX_STORM_INTERFACE_SCRAPE

storm:interface:search

Enable Storm search interfaces for lookup mode.

Type
boolean

Default Value
True

Environment Variable
SYN_CORTEX_STORM_INTERFACE_SEARCH

storm:log

Log storm queries via system logger.

Type
boolean

Default Value
False

Environment Variable
SYN_CORTEX_STORM_LOG

storm:log:level

Logging log level to emit storm logs at.

Type
['integer', 'string']

Default Value
'INFO'

Environment Variable
SYN_CORTEX_STORM_LOG_LEVEL

6.4. Devops Details 415

Synapse Documentation, Release 2.141.0

tls:ca:dir

An optional directory of CAs which are added to the TLS CA chain for Storm HTTP API calls.

Type
string

Environment Variable
SYN_CORTEX_TLS_CA_DIR

trigger:enable

Enable triggers running.

Type
boolean

Default Value
True

Environment Variable
SYN_CORTEX_TRIGGER_ENABLE

416 Chapter 6. Synapse Devops Guide

CHAPTER

SEVEN

SYNAPSE DEVELOPER GUIDE

This Dev Guide is written by and for Synapse developers.

Note: Synapse as a library is under constant development. It is posssible that content here may become out of date. If
you encounter issues with documentation in the Developers guides, please reach out to us on our Synapse Slack chat
or file an issue in our projects Github page.

The Dev Guide is a living document and will continue to be updated and expanded as appropriate. The current sections
are:

7.1 Rapid Power-Up Development

Developing Rapid Power-Ups allows Synapse power users to extend the capabilities of the Storm query language,
provides ways to implement use-case specific commands, embed documentation, and even implement customized
visual workflows in Optic, the commercial Synapse UI.

A Rapid Power-Up consists of a Storm Package which is a JSON object which defines everything used to extend the
Storm language and provide additional documentation. Storm Packages can be loaded directly into your Cortex.

In this guide we will discuss the basics of Storm Package development and discuss a few best practices you can use
to ensure they are secure, powerful, and easy to use.

The example acme-hello power-up discussed in this guide is included in the Synapse repository within the
examples/power-ups/rapid/acme-hello folder. You can find that at Acme-Hello Example.

7.1.1 Anatomy of a Storm Package

A Storm Package consists of a YAML file which defines the various commands, modules, documentation, and work-
flows embedded within the package.

417

https://v.vtx.lk/join-slack
https://github.com/vertexproject/synapse/tree/master/examples/power-ups/rapid/acme-hello

Synapse Documentation, Release 2.141.0

Minimal Example

As you can see in the minimal example below, the Storm Package is defined by a YAML file that gets processed and
loaded into your Cortex.

acme-hello.yaml:

name: acme-hello
version: 0.0.1

synapse_minversion: [2, 101, 0]

genopts:
dotstorm: true # Specify that storm command/module files end with ".storm"

author:
url: https://acme.newp
name: ACME Explosives and Anvils

desc: Acme-Hello is a minimal example of a Rapid Power-Up.

modules:
- name: acme.hello
- name: acme.hello.privsep
asroot:perms:

- [acme, hello, user]

commands:
- name: acme.hello.sayhi
descr: Print the hello message.

Note: First, a note on namespacing. To ensure your Storm Package is going to play well with other packages, it is
important to choose an appropriate namespace for your power-up. In this case, the acme part of the name is meant to
be replaced with your company name or an abbreviated version of it. The hello part is meant to be replaced with an
indicator of the type of functionality the Storm Package contains.

Namespace now, thank yourself later.

When you define commands and modules, they will be loaded from files using the location of the Storm Package
YAML file to locate their contents:

acme-hello.yaml
storm/

modules/
acme.hello.storm
acme.hello.privsep.storm

commands/
acme.hello.sayhi.storm

storm/modules/acme.hello.storm:

418 Chapter 7. Synapse Developer Guide

Synapse Documentation, Release 2.141.0

function woot(text) {
$lib.print($text)
return($lib.null)

}

storm/commands/acme.hello.sayhi.storm:

$hello = $lib.import(acme.hello)
$hello.woot("hello storm!")

Building / Loading

To build and load Storm Packages, use the genpkg tool included within Synapse. For this example, we will assume
you have deployed your Synapse environment according to the Deployment Guide:

python -m synapse.tools.genpkg acme-hello.yaml --push aha://cortex...

Note: If you added an alternate admin user or used a non-standard naming convention you may need to adjust the
aha://cortex... telepath URL to connect to your Cortex.

Once your Storm Package has loaded successfully, you can use the Storm CLI to see it in action:

invisigoth@visi01:~$ python -m synapse.tools.storm aha://cortex...

Welcome to the Storm interpreter!

Local interpreter (non-storm) commands may be executed with a ! prefix:
Use !quit to exit.
Use !help to see local interpreter commands.

storm> acme.hello.sayhi
hello storm!
complete. 0 nodes in 1 ms (0/sec).
storm>

7.1.2 Storm Modules

Deploying Storm Modules allows you to author powerful library functions that you can use in automation or Storm
Commands to facilitate code re-use and enforce privilege separation boundaries.

A Storm Module is specified within the modules: section of the Storm Package YAML file.

modules:

- name: acme.hello
modconf:

varname: varvalu
othervar: [1, 2, 3]

The modconf: key can be used to specify variables which will be mapped into the module’s Storm runtime and
accessible using the implicit variable $modconf:

7.1. Rapid Power-Up Development 419

https://synapse.docs.vertex.link/en/latest/synapse/deploymentguide.html

Synapse Documentation, Release 2.141.0

function foo() {
$lib.print($modconf.varname)
return((10))

}

function bar() {
for $i in $modconf.othervar {

// Do something using $i...
}

}

Privileged Modules

In order to facilitate delegating permission for privileged operations, Storm modules may specify permissions which
allow the module to be imported with admin privileges. It is a best-practice to declare these permissions within the
Storm package using the perms: key before using them:

perms:
- perm: [acme, hello, user]
gate: cortex
desc: Allows a user to call privileged APIs from Acme-Hello.

modules:

- name: acme.hello.privsep
asroot:perms:

- [acme, hello, user]

To minimize risk, you must very carefully consider what functions to implement within a privileged Storm module!
Privileged modules should contain the absolute minimum required functionality.

An excellent example use case for a privileged Storm module exists when you have an API key or password which
you would like to use on a user’s behalf without disclosing the actual API key. The Storm library $lib.globals.
set(<name>, <valu>) and $lib.globals.get(<name>) can be used to access protected global variables which
regular users may not access without special permissions. By implementing a privileged Storm module which retrieves
the API key and uses it on the user’s behalf without disclosing it, you may protect the API key from disclosure while
also allowing users to use it. For example, acme.hello.privsep.storm:

function getFooByBar(bar) {

// Retrieve an API key from protected storage
$apikey = $lib.globals.get(acme:hello:apikey)

$headers = ({
"apikey": $apikey

})

$url = $lib.str.format("https://acme.newp/api/v1/foo/{bar}", bar=$bar)

// Use the API key on the callers behalf
$resp = $lib.inet.http.get($url, headers=$headers)
if ($resp.code != 200) {

(continues on next page)

420 Chapter 7. Synapse Developer Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

$lib.warn("/api/v1/foo returned HTTP code: {code}", code=$resp.code)
return($lib.null)

}

// Return the JSON response (but not the API key)
return($resp.json())

}

Notice that the $apikey is being retrieved and used to call the HTTP API but is not returned to the caller.

7.1.3 Storm Commands

Adding Storm Commands to your Cortex via a Storm Package is a great way to extend the functionality of your
Cortex in a CLI user-friendly way.

Command Line Options

Every Storm command has the --help option added automatically. This means that it is always safe to execute any
command with --help to get a usage statement and enumerate command line arguments. The desc field specified in
the command is included in the output:

storm> acme.hello.sayhi --help

Print the hello message.

Usage: acme.hello.sayhi [options]

Options:

--help : Display the command usage.
complete. 0 nodes in 4 ms (0/sec).
storm>

Storm Commands may specify command line arguments using a convention which is similar (although not identical
to) Python’s argparse library.

A more complex command declaration:

commands:

- name: acme.hello.omgopts
descr: |

This is a multi-line description containing usage examples.

// Run the command with some nodes
inet:fqdn=acme.newp | acme.hello.omgopts vertex.link

// Run the command with some command line switches
acme.hello.omgopts --debug --hehe haha vertex.link

cmdargs:
(continues on next page)

7.1. Rapid Power-Up Development 421

Synapse Documentation, Release 2.141.0

(continued from previous page)

- - --hehe
- type: str
help: The value of the hehe optional input.

- - --debug
- type: bool
default: false
action: store_true
help: Enable debug output.

- - fqdn
- type: str
help: A mandatory / positional command line argument.

A more complete example of help output:

storm> acme.hello.omgopts --help

This is a multi-line description containing usage examples.

// Run the command with some nodes
inet:fqdn=acme.newp | acme.hello.omgopts vertex.link

// Run the command with some command line switches
acme.hello.omgopts --debug --hehe haha vertex.link

Usage: acme.hello.omgopts [options] <fqdn>

Options:

--help : Display the command usage.
--hehe <hehe> : The value of the hehe optional input.
--debug : Enable debug output.

Arguments:

<fqdn> : A mandatory / positional command line argument.
complete. 0 nodes in 6 ms (0/sec).

Command line options are available within the Storm command by accessing the implicit $cmdopts variable.

storm/commands/acme.hello.omgopts.storm:

// An init {} block only runs once even if there are multiple nodes in the pipeline.

init {

// Set global debug (once) if the user specified --debug
if $cmdopts.debug { $lib.debug = $lib.true }

if ($cmdopts.hehe) { $lib.print("User Specified hehe: {hehe}", hehe=$cmdopts.hehe) }
(continues on next page)

422 Chapter 7. Synapse Developer Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

// Normalize the FQDN in case we want to send it to an external system
($ok, $fqdn) = $lib.trycast(inet:fqdn, $cmdopts.fqdn)
if (not $ok) {

$lib.exit("Invalid FQDN Specified: {fqdn}", fqdn=$cmdopts.fqdn)
}

// Maybe call an API here or something...
$lib.print("FQDN: {fqdn}", fqdn=$fqdn)

}

// You may also act on nodes in the pipeline
$lib.print("GOT NODE: {repr}", repr=$node.repr())

if $lib.debug { $lib.print("debug mode detected!") }

// Any nodes still in the pipeline are sent as output

Command Option Conventions

--help This option is reserved and handled automatically to print a command usage state-
ment which also enumerates any positional or optional arguments.

--debug This option is typically used to enable debug output in the Storm interpreter by
setting the $lib.debug variable if it is specified. The $lib.debug variable has
a recursive effect and will subsequently enable debug output in any command or
functions called from the command.

--yield By default, a command is generally expected to yield the nodes that it received
as input from the pipeline. In some instances it is useful to instruct the command
to yield the nodes it creates. For example, if you specify inet:fqdn nodes as
input to a DNS resolver command, it may be useful to tell the command to yield
the newly created inet:dns:a records rather than the input inet:fqdn nodes.
Commands frequently use the divert Storm command to implement --yield
functionality.

--asof <time> To minimize duplicate API calls, many Storm packages cache results using the
$lib.jsonstorAPI. When caching is in use, the --asof <time> option is used
to control cache aging. Users may specify --asof now to disable caching.

7.1.4 Specifying Documentation

Documentation may be specified in the Storm Package file that will embed markdown documentation into the package.
While there are not currently any CLI tools to view/use this documentation, it is presented in the Power-Ups tab in the
Help Tool within the commercial Synapse User Interface.

Markdown documents may be specified for inclusion by adding a docs: section to the Storm Package YAML file:

docs:
- title: User Guide
path: docs/userguide.md

(continues on next page)

7.1. Rapid Power-Up Development 423

Synapse Documentation, Release 2.141.0

(continued from previous page)

- title: Admin Guide
path: docs/adminguide.md

- title: Changelog
path: docs/changelog.md

7.1.5 Testing Storm Packages

It is highly recommended that any production Storm Packages use development “best practices” including version
control and unit testing. For the acme-hello example, we have included a test that you can use as an example to
expand on.

test_acme_hello.py:

import os

import synapse.tests.utils as s_test

dirname = os.path.abspath(os.path.dirname(__file__))

class AcmeHelloTest(s_test.StormPkgTest):

assetdir = os.path.join(dirname, 'testassets')
pkgprotos = (os.path.join(dirname, 'acme-hello.yaml'),)

async def test_acme_hello(self):

async with self.getTestCore() as core:

msgs = await core.stormlist('acme.hello.sayhi')
self.stormIsInPrint('hello storm!', msgs)
self.stormHasNoWarnErr(msgs)

With the file test_acme_hello.py located in the same directory as acme-hello.yaml you can use the standard
pytest invocation to run the test:

python -m pytest -svx test_acme_hello.py

7.1.6 Advanced Features

Using divert to implement --yield

The --yield option is typically used to allow a Storm command which takes nodes as input to optionally output the
new nodes it added rather than the nodes it received as input. The divert command was added to Storm to simplify
implementing this convention.

To implement a command with a --yield option is typically accomplished via the following pattern:

commands:

- name: acme.hello.mayyield
descr: |

(continues on next page)

424 Chapter 7. Synapse Developer Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

Take in an FQDN and make DNS A records to demo --yield

inet:fqdn=vertex.link | acme.hello.mayyield

cmdargs:

- - --yield
- default: false
action: store_true
help: Yield the newly created inet:dns:a records rather than the input␣

→˓inet:fqdn nodes.

Then within storm/commands/acme.hello.mayyield.storm:

function nodeGenrFunc(fqdn) {
// Fake a DNS lookup and make a few inet:dns:a records...
[inet:dns:a=($fqdn, 1.2.3.4)]
[inet:dns:a=($fqdn, 123.123.123.123)]

}

divert --yield $cmdopts.yield $nodeGenrFunc($node)

When executed, the acme.hello.mayyield command will output the nodes received as inputs which is useful for
pipelining enrichments. If the user specifies --yield the command will output the resulting inet:dns:a nodes
constructed by the nodeGenrFunc() function.

Optic Actions

If you have access to the Synapse commercial UI Optic you may find it helpful to embed Optic actions within your
Storm Package. These actions will be presented to users in the context-menu when they right-click on nodes within
Optic.

To define Optic actions, you declare them in the Storm Package YAML file:

optic:
actions:
- name: Hello Omgopts
storm: acme.hello.omgopts --debug
descr: This description is displayed as the tooltip in the menu
forms: [inet:ipv4, inet:fqdn]

By specifying the forms: key, you can control which node actions will be presented on different forms. For example,
if you are writing a DNS power-up, you may want to limit the specified actions to inet:ipv4, inet:ipv6, and
inet:fqdn nodes.

When selected, the query specified in the storm: key will be run with the currently selected nodes as input. For
example, if you right-click on the node inet:fqdn=vertex.link and select actions -> acme-hello -> Hello
Omgopts it will execute the specified query as though it were run like this:

inet:fqdn=vertex.link | acme.hello.omgopts --debug

Any printed output, including warnings, will be displayed in the Optic Console Tool.

7.1. Rapid Power-Up Development 425

Synapse Documentation, Release 2.141.0

7.2 Synapse Architecture

When viewed as a library, not just an application, Synapse is made of up a few core components and concepts.

7.2.1 Library Architecture

The Synapse library is broken out in a hierarchical fashion. The root of the library contains application level code, such
as the implementations of the Cortex, Axon, Cryotank, as well as the Telepath client and server components. There are
also a set of common helper functions (common.py) and exceptions (exc.py). There are several submodules available
as well:

synapse.cmds
Command implementations for the Cmdr CLI tool

synapse.data
Data files stored in the library.

synapse.lib
The lib module contains many of the primitives used by applications in order to implement them.

synapse.lookup
The lookup module contains various lookup definitions.

synapse.models
The models directory contains the core Synapse data model definitions.

synapse.servers
The servers module contains servers use to start and run Synapse applications.

synapse.tests
This is test code. It also contains a useful helper synapse.tests.utils which defines our base test class.

synapse.tools
The tools module contains various tools used to interact with the Synapse ecosystem.

synapse.vendor
This contains third-party code and associated LICENSE files. This is for internal library use only; no external
API stability is guaranteed for any libraries under this module.

7.2.2 Object hierarchies

There is one base class that many objects inherit from, the Base (base.py) class. The Base class provides a few useful
components (including, but not limited too):

• A way to do asynchronous object construction by override the __anit__method. This method is executed inside
the python ioloop, allowing the object construction to do async function calls. An implementer still needs to call
await s_base.Base.__anit__(self) first in order to ensure that the Base is setup properly.

• A way to register object teardown methods and perform object teardowns via the onfini() and fini(). These
allow us to keep more granular control over how things are shut down and resources are released, versus relying
solely on the garbage collector to handle teardowns properly. Often times, order matters, so we need to be sure
that things are torn down cleanly. These routines can be registered during __anit__.

• Base objects are made via await the call to the Base.anit() function. If the __anit__ function completed
then the anitted attribute on the object will be True, otherwise it will be False.

426 Chapter 7. Synapse Developer Guide

https://github.com/vertexproject/synapse/blob/master/synapse/common.py
https://github.com/vertexproject/synapse/blob/master/synapse/exc.py
https://github.com/vertexproject/synapse/blob/master/synapse/lib/base.py

Synapse Documentation, Release 2.141.0

• Context manager support. The Base object has native async context manager support, and upon exiting the
context it will call fini() to do teardown. This pattern is convenient since it allows us to freely create Base
classes without having to remember to always have to tear them down.

• The Base contains helpers for implementing an observable design pattern, where functions can be registered
as event handlers, and events can be fired on the object at will. This can be very powerful for signaling across
disparate components which would be otherwise too heavy to have explicit callbacks for.

• The Base contains helpers for executing asyncio coroutines on the ioloop. This is most commonly done via the
schedCoroTask routine. This will schedule the coroutine to run on the ioloop, register the task with the Base
and return the asyncio future. During Base fini, any coroutines still executing will be cancelled. This makes it
very easy to schedule free-running coroutines from any Base class.

There are a few very important classes which use the Base object:

• The Synapse Cell. This is a batteries included primitive for running an application.

• The Telepath Daemon. This serves as a RPC server component.

• The Telepath Proxy. This serves as a RPC client component.

The Cell (cell.py) is a Base implementation which has several components available to it:

• It is a Base, so it benefits from all the components a Base has.

• It contains support for configuration directives at start time, so a cell can have well defined configuration options
availble to it.

• It has persistent storage available via two different mechanisms, a LMDB slab for arbitrary data that is local to
the cell, and a Hive for key-value data storage that can be remotely read and written.

• It handles user authentication and authorization via user data stored in the Hive.

• The Cell is Telepath aware, and will start his own Daemon that allows remote access. By default, the Cell has
a PF Unix socket available for access, so local telepath access is trivial.

• Since the Cell is Telepath aware, there is a base CellApi that implements his RPC routines. Cell implementers
can easily sublcass the CellApi class to add additional RPC routines.

• The Cell also contains hooks for easily starting a Tornado webserver. This allows us to trivially add web API
routes to an object.

• The Cell contains a Boss which can be used to remotely enumerate and cancel managed coroutines.

Since the cell contains so much core management functionality, adding functionality to the Synapse Cell allows all
applications using a Cell to be immediately extended to take advantage of that functionality without having to re-
visit multiple different implementations to update them. For this reason, our core application components (the Axon,
Cortex, and CryoCell) all implement the Cell class. For example, if we add a new user management capability, that
is now available to all those applications, as well as any others Cell implementations.

The application level components themselves have servers in the synapse.serversmodule, but there is also a generic
server for starting any cell, synapse.servers.cell. These servers will create the Cell, and also add any additional
RPC or HTTP API listening servers as necessary. Those are the preferred ways to run an application implemented via
a Cell.

7.2. Synapse Architecture 427

https://github.com/vertexproject/synapse/blob/master/synapse/lib/cell.py

Synapse Documentation, Release 2.141.0

7.2.3 Telepath RPC

The Telepath RPC protocol is a lightweight RPC protocol used in Synapse. The server component, the previously
mentioned Daemon, is used to share objects. An object may or may not be Telepath aware. In the case that it is not
aware, all of its methods are exposed via Telepath. Objects which are Telepath aware, such as the Cell, implement an
API interface that allows much more fine grained control over the the methods which are remotely available.

The base Telepath client is the Proxy class, this is used to connect to the Daemon. The Proxy intercepts attribute
lookups to make and set remote method helpers at runtime, and sends those requests to the Daemon to be serviced. A
very brief example of this is the following:

import synapse.telepath as s_telepath

url = 'tcp://user:secret@1.2.3.4:27492/someObject'

async with await s_telepath.openurl(url) as proxy:

Make attribute called "someMethod" on the proxy
then send a task to the server called "someMethod"
with the argument of somearg=1234
resp = proxy.someMethod(somearg=1234)
The resp is the result of calling the someMethod argument on
the object named someObject on the daemon.
print(resp)

A few notes about Telepath:

• Telepath remote call arguments and server responses must be able to be serialized using the msgpack protocol.

• Telepath supports generator protocols; so a server API may be a synchronous or asynchronous generator. From
the proxy perspective, these are both considered asynchronous generators.

• The Telepath Proxy contains some helpers that allow is to be used from non-async code. These helpers run their
API calls through the currently running ioloop, and will cause the client to make an ioloop if one is not currently
running.

• Remote calls that raise exceptions on the server will have that exception serialized and sent back to the Proxy.
The Proxy will then raise an exception to the caller.

• Methods calls prefixed with a underscore (_somePrivatMethod() for example) will be rejected by the Daemon.
This does allow us to protect private methods on shared objects.

7.3 Cortex Development Quickstart

This guide is intended for developers looking to integrate Synapse components with other applications by using the
Telepath API. Additionally, this guide will introduce developers to writing custom Cortex modules in Python to allow
custom data model extensions, storm commands, ingest functions, and change hooks. This guide assumes familiarity
with deploying Cortex servers and the Storm query syntax. For help on getting started, see Getting Started.

For complete API documentation on all Synapse components see Synapse Python API .

428 Chapter 7. Synapse Developer Guide

Synapse Documentation, Release 2.141.0

7.3.1 Remote Cortex Access

A Cortex, like most synapse components, provides two mechanisms for remote API calls. The HTTP/REST API and
the Telepath API. For additional documentation on the Cortex HTTP API, see Synapse HTTP/REST API . This guide
will cover remote API calls using Telepath.

Telepath is an asynchronous, high-performance, streaming oriented, RPC protocol. It is designed for minimum devel-
opment effort and maximum performance. Data is serialized using the highly efficient Message_Pack format which is
not only more size efficient than JSON, but allows serialization of binary data and supports incremental decoding for
use in stream based protocols.

Telepath allows a client to connect to a Python object shared on a remote server and, in most instances, call methods as
though the object were local. However, this means all arguments and return values must be serializable using Message
Pack.

To connect to a remote object, the caller specifies a URI to connect and construct a Telepath Proxy. In the follow-
ing examples, we will assume a Cortex was previously setup and configured with the user visi and the password
secretsauce running on port 27492 on the host 1.2.3.4.

Making a simple call

Once a Telepath proxy is connected, most methods may simply be called as though the object were local. For example,
the getModelDict method on the CoreApi returns a Python dictionary containing the details of the data model in the
remote Cortex.

import asyncio
import synapse.telepath as s_telepath

async def main():

async with await s_telepath.openurl('tcp://visi:secretsauce@1.2.3.4:27492/') as core:

model = await core.getModelDict()

for form in model.get('forms'):
dostuff()

if __name__ == '__main__':
asyncio.run(main())

Like many objects in the Synapse ecosystem, a Telepath proxy inherits from synapse.lib.base.Base. This requires
the fini method to be called to release resources and close sockets. In the example above, we use the async context
manager implemented by the Base class (async with) to ensure that the proxy is correctly shutdown. However,
Telepath is designed for long-lived Proxy objects to minimize API call delay by using existing sockets and sessions.
A typical app will create a telepath proxy during initialization and only create a new one in the event that the remote
Telepath server is restarted.

The above example also demonstrates that Telepath is designed for use with Python 3.11 asyncio. However, the Telepath
proxy can also be constructed and used transparently from non-async code as seen below.

import synapse.telepath as s_telepath

def main():

core = s_telepath.openurl('tcp://visi:secretsauce@1.2.3.4:27492/')
(continues on next page)

7.3. Cortex Development Quickstart 429

https://msgpack.org/index.html

Synapse Documentation, Release 2.141.0

(continued from previous page)

model = core.getModelDict()

if __name__ == '__main__':
main()

The remainder of the examples in this guide will assume the use of an asyncio loop.

Generators and Yielding

Many of the Telepath APIs published by Synapse services are capable of yielding results as a generator to facilitate
incremental reads and time_to_first_byte (TTFB) optimizations. In the remote case, this means the caller may receive
and begin processing results before all of the results have been enumerated by the server. Any Python async generator
method on a shared object may be iterated by a client with full back_pressure to the server. This means a caller may issue
a query which produces a very large result set and consume the results incrementally without concern over client/server
memory exhaustion due to buffering. The following example demonstrates using the Cortex storm API to retrieve a
message stream, which includes nodes in it.

import asyncio
import synapse.telepath as s_telepath

async def main():

async with await s_telepath.openurl('tcp://visi:secretsauce@1.2.3.4:27492/') as core:

async for mesg in core.storm('inet:ipv4 | limit 10000'):

Handle node messages specifically.
if mesg[0] == 'node':

node = mesg[1]
dostuff(node)

else:
Handle non-node messages.
do_not_node_stuff(mesg)

if __name__ == '__main__':
asyncio.run(main())

The storm() API is the preferred API to use for executing Storm queries on a Cortex. It generates a series of messages
which the caller needs to consume.

For API documentation on the full Cortex Telepath API, see CoreAPi.

430 Chapter 7. Synapse Developer Guide

https://en.wikipedia.org/wiki/Time_to_first_byte
https://en.wikipedia.org/wiki/Back_pressure#Backpressure_in_information_technology
../autodocs/synapse.html#synapse.cortex.CoreApi

Synapse Documentation, Release 2.141.0

7.4 Synapse Docker Builds

This doc details the docker builds and scripts used by Synapse.

7.4.1 Images

There are several images provided by the Synapse repository. These are built from an external image that is periodically
updated with core Synapse dependencies.

The images provided include the following:

vertexproject/synapse
This container just contains Synapse installed into it. It does not start any services.

vertexproject/synapse-aha
This container starts the Aha service.

vertexproject/synapse-axon
This container starts the Axon service.

vertexproject/synapse-cortex
This container starts the Cortex service.

vertexproject/synapse-cryotank
This container starts the Cryotank service.

vertexproject/synapse-jsonstor
This container starts the JSONStor service.

vertexproject/synapse-stemcell
This container launches the Synapse stemcell server.

7.4.2 Building All Images

Images are built using Bash scripts. All of the images can be built directly with a single command:

$./docker/build_all.sh <optional_image_tag>

If the image tag is not provided, it will tag the images with :dev_build.

7.4.3 Building a Specific Application Image

A specific application images can be built as well.

$./docker/build_image.sh <application> <optional_image_tag>

Example of building a local Cortex image.

$./docker/build_image.sh cortex my_test_image

If the image tag is not provided, it will tag the image with :dev_build.

7.4. Synapse Docker Builds 431

Synapse Documentation, Release 2.141.0

7.4.4 Building the vertexproject/synapse image

The bare image with only Synapse installed on it can be built like the following:

$ docker build --pull -t vertexproject/synapse:$TAG -f docker/images/synapse/
→˓Dockerfile .

Example of building directly with the tag mytag

$ docker build --pull -t vertexproject/synapse:mytag -f docker/images/synapse/
→˓Dockerfile .

7.4.5 Working with Synapse Images

Developers working with Synapse images should consider the following items:

• The Synapse images are not locked to a specific Python version. The underlying Python minor version or base
distribution may change. If they do change, that will be noted in the Synapse changelog. If you are building
containers off of a floating tag such as vertexproject/synapse:v2.x.x, make sure you are reviewing our
changelog for items which may affect your use cases. Python patch level updates will not be included in the
changelogs.

• The synapse package, and supporting packages, are currently installed to the distribution Python environment.
The version of pip installed in the containers is PEP668 aware. If you are installing your own Python pack-
ages to the distribution Python environment with `pip, you will need to add the --break-system-packages
argument:

python -m pip install --break-system-packages yourTargetPackage

7.5 Storm Service Development

7.5.1 Anatomy of a Storm Service

A Storm Service (see Service) is a standalone application that extends the capabilities of the Cortex. One common
use case for creating a service is to add a Storm command that will query third-party data, translate the results into the
Synapse datamodel, and then ingest them into the hypergraph.

In order to leverage core functionalities it is recommended that Storm services are created as Cell implementations,
and the documentation that follows will assume this. For additional information see Synapse Architecture.

A Storm service generally implements the following components:

• A Package that contains the new Storm Service Commands and optional new Storm Service Modules.

• A subclass of synapse.lib.CellApi which uses the synapse.lib.StormSvc mixin and contains the follow-
ing information:

– The service name, version, packages, and events as defined in synapse.lib.StormSvc.

– Custom methods which will be accessible as Telepath API endpoints, and therefore available for use within
defined Storm commands.

• A subclass of synapse.lib.Cell which includes additional configuration definitions and methods required to
implement the service.

432 Chapter 7. Synapse Developer Guide

https://peps.python.org/pep-0668/

Synapse Documentation, Release 2.141.0

When implemented as a Cell, methods can also optionally have custom permissions applied to them. If a specific rule
is added it should be namespaced with the service name, e.g. svcname.rule1. Alternatively, a method can wrapped
with @s_cell.adminapi() to only allow admin access.

For additional details see Minimal Storm Service Example.

Connecting a service

Before connecting a service to a Cortex it is a best practice to add a new service user, which can be accomplished with
synapse.tools.cellauth. For example:

python -m synapse.tools.cellauth tcp://root:<root_passwd>@<svc_ip>:<svc_port> modify␣
→˓svcuser1 --adduser
python -m synapse.tools.cellauth tcp://root:<root_passwd>@<svc_ip>:<svc_port> modify␣
→˓svcuser1 --passwd secret

If the service requires specific permissions for a new user they can also be added:

python -m synapse.tools.cellauth tcp://root:<root_passwd>@<svc_ip>:<svc_port> modify␣
→˓svcuser1 --addrule svcname.rule1

Permissions to access the service can be granted by adding the service.get.<svc_iden> rule to the appropriate
users / roles in the Cortex.

A Storm command can be run on the Cortex to add the new service, and the new service will now be present in the
service list and Storm help.

Services are added to a Cortex with the service.add command.

storm> service.add mysvc tcp://root:secret@127.0.0.1:42853/
added 37c4d625360f35a4b2e47f0b0dba9d46 (mysvc): tcp://root:secret@127.0.0.1:42853/
complete. 0 nodes in 46 ms (0/sec).

Services that have been connected to the Cortex can be listed with the service.list command.

storm> service.list

Storm service list (iden, ready, name, service name, service version, url):
37c4d625360f35a4b2e47f0b0dba9d46 false (mysvc) (Unknown @ Unknown): tcp://

→˓root:secret@127.0.0.1:42853/

1 services
complete. 0 nodes in 269 ms (0/sec).

7.5.2 Storm Service Commands

Implementation

Multiple Storm commands can be added to a Storm service package, with each defining the following attributes:

• name: Name of the Storm command to expose in the Cortex.

• descr: Description of the command which will be available in help displays.

• cmdargs: An optional list of arguments for the command.

7.5. Storm Service Development 433

Synapse Documentation, Release 2.141.0

• cmdconf: An optional dictionary of additional configuration variables to provide to the command Storm execu-
tion.

• forms: List of input and output forms for the command.

• storm: The Storm code, as a string, that will be executed when the command is called.

Typically, the Storm code will start by getting a reference to the service via $svc = $lib.service.get($cmdconf.
svciden) and reading in any defined cmdargs that are available in $cmdopts. The methods defined in the service’s
Cell API can then be called by, for example, $retn = $svc.mysvcmethod($cmdopts.query).

Input/Output Conventions

Most commands that enrich or add additional context to nodes should simply yield the nodes they were given as inputs.
If they don’t know how to enrich or add additional context to a given form, nodes of that form should be yielded rather
than producing an error. This allows a series of enrichment commands to be pipelined regardless of the different inputs
that a given command knows how to operate on.

Argument Conventions

--verbose

In general, Storm commands should operate silently over their input nodes and should especially avoid printing anything
“per node”. However, when an error occurs, the command may use $lib.warn() to print a warning message per-node.
Commands should implement a --verbose command line option to enable printing “per node” informational output.

--debug

For commands where additional messaging would assist in debugging a --debug command line option should be
implemented. For example, a Storm command that is querying a third-party data source could use $lib.print() to
print the raw query string and raw response when the --debug option is specified.

--yield

For commands that create additional nodes, it may be beneficial to add a --yield option to allow a query to operate
on the newly created nodes. Some guidelines for --yield options:

• The command should not yield the input node(s) when a --yield is specified

• The --yield option should not be implemented when pivoting from the input node to reach the newly created
node is a “refs out” or 1-to-1 direct pivot. For example, there is no need to have a --yield option on the maxmind
command even though it may create an inet:asn node for an input inet:ipv4 node due to the 1-to-1 pivot ->
inet:asn being possible.

• The --yield option should ideally determine a “primary” node form to yield even when the command may
create many forms in order to tag them or update .seen times.

434 Chapter 7. Synapse Developer Guide

Synapse Documentation, Release 2.141.0

7.5.3 Storm Service Modules

Modules can be added to a Storm service package to expose reusable Storm functions. Each module defines a name,
which is used for importing elsewhere via $lib.import(), and a storm string. The Storm code in this case contains
callable functions with the format:

function myfunc(var1, var2) {
// function Storm code

}

7.5.4 Minimal Storm Service Example

A best practice is to separate the Storm and service code into separate files, and nest within a synmods directory to
avoid Python namespace conflicts:

service-example
synmods

example
__init__.py
service.py
storm.py
version.py

The Storm package and the service should also maintain consistent versioning.

For convenience, the example below shows the Storm code included in the service.py file.

service.py

import sys
import asyncio

import synapse.lib.cell as s_cell
import synapse.lib.stormsvc as s_stormsvc

The Storm definitions below are included here for convenience
but are typically contained in a separate storm.py file and imported to service.py.
Other Storm commands could be created to call the additional Telepath endpoints.
svc_name = 'example'
svc_guid = '0ecc1eb65659a0f07141bc1a360abda3' # can be generated with synapse.common.
→˓guid()
svc_vers = (0, 0, 1)
svc_minvers = (2, 8, 0)

svc_evts = {
'add': {

'storm': f'[(meta:source={svc_guid} :name="Example data")]'
}

}

svc_mod_ingest_storm = '''
function ingest_ips(data, srcguid) {

(continues on next page)

7.5. Storm Service Development 435

Synapse Documentation, Release 2.141.0

(continued from previous page)

$results = $lib.set()

for $ip in $data {
[inet:ipv4=$ip]

// Lightweight edge back to meta:source
{ [<(seen)+ { meta:source=$srcguid }] }

{ +inet:ipv4 $results.add($node) }
}

| spin |

return($results)
}
'''

The first line of this description will display in the Storm help
svc_cmd_get_desc = '''
Query the Example service.

Examples:

Query the service and create an IPv4 node
inet:fqdn=good.com | example.get

Query the service and yield the created inet:ipv4 node
inet:fqdn=good.com | example.get --yield

'''

svc_cmd_get_forms = {
'input': [

'inet:fqdn',
],
'output': [

'inet:ipv4',
],

}

svc_cmd_get_args = (
('--yield', {'default': False, 'action': 'store_true',

'help': 'Whether to yield the created nodes to the output stream.'}),
('--debug', {'default': False, 'action': 'store_true',

'help': 'Enable debug output.'}),
)

svc_cmd_get_conf = {
'srcguid': svc_guid,

}

svc_cmd_get_storm = '''
init {

(continues on next page)

436 Chapter 7. Synapse Developer Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

$svc = $lib.service.get($cmdconf.svciden)
$ingest = $lib.import(example.ingest)
$srcguid = $cmdconf.srcguid
$debug = $cmdopts.debug
$yield = $cmdopts.yield

}

// $node is a special variable that references the inbound Node object
$form = $node.form()

switch $form {
"inet:fqdn": {

$query=$node.repr()
}
*: {

$query=""
$lib.warn("Example service does not support {form} nodes", form=$form)

}
}

// Yield behavior to drop the inbound node
if $yield { spin }

// Call the service endpoint and ingest the results
if $query {

if $debug { $lib.print("example.get query: {query}", query=$query) }

$retn = $svc.getData($query)

if $retn.status {
$results = $ingest.ingest_ips($retn.data, $srcguid)

if $yield {
for $result in $results { $lib.print($result) yield $result }

}
} else {

$lib.warn("example.get error: {err}", err=$retn.mesg)
}

}
'''

svc_cmds = (
{

'name': f'{svc_name}.get',
'descr': svc_cmd_get_desc,
'cmdargs': svc_cmd_get_args,
'cmdconf': svc_cmd_get_conf,
'forms': svc_cmd_get_forms,
'storm': svc_cmd_get_storm,

},
)

(continues on next page)

7.5. Storm Service Development 437

Synapse Documentation, Release 2.141.0

(continued from previous page)

svc_pkgs = (
{

'name': svc_name,
'version': svc_vers,
'synapse_minversion': svc_minvers,
'modules': (

{
'name': f'{svc_name}.ingest',
'storm': svc_mod_ingest_storm,

},
),
'commands': svc_cmds,

},
)

class ExampleApi(s_cell.CellApi, s_stormsvc.StormSvc):
'''
A Telepath API for the Example service.
'''

These defaults must be overridden from the StormSvc mixin
_storm_svc_name = svc_name
_storm_svc_vers = svc_vers
_storm_svc_evts = svc_evts
_storm_svc_pkgs = svc_pkgs

async def getData(self, query):
return await self.cell.getData(query)

async def getInfo(self):
await self._reqUserAllowed(('example', 'info'))
return await self.cell.getInfo()

@s_cell.adminapi()
async def getAdminInfo(self):

return await self.cell.getAdminInfo()

class Example(s_cell.Cell):

cellapi = ExampleApi

confdefs = {
'api_key': {

'type': 'string',
'description': 'API key for accessing an external service.',

},
'api_url': {

'type': 'string',
'description': 'The URL for an external service.',
'default': 'https://example.com',

},
}

(continues on next page)

438 Chapter 7. Synapse Developer Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

async def __anit__(self, dirn, conf):
await s_cell.Cell.__anit__(self, dirn, conf=conf)
self.apikey = self.conf.get('api_key')
self.apiurl = self.conf.get('api_url')

async def getData(self, query):
Best practice is to also return a status and optional message in case of an␣

→˓error
retn = {

'status': True,
'data': None,
'mesg': None,

}

Retrieving and parsing data would go here
if query == 'good.com':

data = ['1.2.3.4', '5.6.7.8']
retn['data'] = data

else:
retn['status'] = False
retn['mesg'] = 'An error occurred during data retrieval.'

return retn

async def getInfo(self):
info = {

'generic': 'info',
}

return info

async def getAdminInfo(self):
info = {

'admin': 'info',
}

return info

7.6 Storm API Guide

7.6.1 Storm APIs

Storm is available over Telepath and HTTP API interfaces. Both interfaces require a Storm query string, and may take
additional opts arguments.

7.6. Storm API Guide 439

Synapse Documentation, Release 2.141.0

Telepath

There are three Storm APIs exposed via Telepath.

storm(text, opts=None)
The Storm API returns a message stream. It can be found here storm.

callStorm(text, opts=None)
The callStorm API returns a message given by the Storm return() syntax. It can be found here callStorm.

count(text, opts=None)
The count API returns a count of the number of nodes which would have been emitted by running a given query.
It can be found here Cortex.

HTTP API

The HTTP API versions of the Storm APIs can be found here Cortex HTTP API.

/v1/api/storm
This API returns a message stream.

/v1/api/storm/call
This API returns a message given by the Storm return() syntax.

/v1/api/storm/export
This API returns a stream of msgpack encoded data, which can be used as a .nodes file for later import.

7.6.2 Message Types

The Telepath storm() and HTTP api/v1/storm APIs yield messages from the Storm runtime to the caller. These
are the messages that may be seen when consuming the message stream.

Each message has the following basic structure:

["type", { ..type specific info... }]

init

First message sent by a Storm query runtime.

It includes the following keys:

task
The task identifier (which can be used for task cancellation).

tick
The epoch time the query execution started (in milliseconds).

text
The Storm query text.

hash
The md5sum of the Storm query text.

Example:

440 Chapter 7. Synapse Developer Guide

../autodocs/synapse.html#synapse.cortex.CoreApi.storm
../autodocs/synapse.html#synapse.cortex.CoreApi.callStorm
../httpapi.html#cortex

Synapse Documentation, Release 2.141.0

('init',
{'task': '8c90c67e37a30101a2f6a7dfb2fa0805',
'text': '.created | limit 3',
'hash': '2d16e12e80be53e0e79e7c7af9bda12b',
'tick': 1539221678859})

node

This represents a packed node. Each serialized node will have the following structure:

[
[<form>, <valu>], # The [typename, typevalue] definition of the node.
{

"iden": <hash>, # A stable identifier for the node.
"tags": {}, # The tags on the node.
"props": {}, # The node's secondary properties.
"path": {}, # Path related information in the node.
"tagprops": {}, # The node's tag properties.

optional
"repr": ... # Presentation values for the type value.
"reprs": {} # Presentation values for props which need it.
"tagpropreprs": {} # Presentation values for tagprops which need it.

}
]

Example:

This example is very simple - it does not include repr information, or things related to path data:

('node',
(('inet:fqdn', 'icon.torrentart.com'),
{'iden': 'ae6d871163980f82dc1d3b06e784a80e8085493f68fbf2813c9681cb3e2630a8',
'props': {'.created': 1526590932444,

'.seen': (1491771661000, 1538477660797),
'domain': 'torrentart.com',
'host': 'icon',
'issuffix': 0,
'iszone': 0,
'zone': 'torrentart.com'},

'tags': {'aka': (None, None),
'aka.beep': (None, None),}}))

For path and repr information, see the examples in the opts documentation Storm Opts.

7.6. Storm API Guide 441

Synapse Documentation, Release 2.141.0

print

The print event contains a message intended to be displayed to the caller.

It includes the following key:

mesg
The message to be displayed to the user.

Example:

(print, {'mesg': 'I am a message!'})

This can be produced by users with the $lib.print() Storm API.

warn

The warn event contains data about issues encountered when performing an action.

It includes the following keys:

mesg
The message to be displayed to the user.

The warn event may contain additional, arbitrary keys in it.

Example:

('warn',
{'mesg': 'Unable to foo the bar.com domain',
'domain': 'bar.com'})

This can be produced by users with the $lib.warn() Storm API.

err

The err event is sent if there is a fatal error encountered when executing a Storm query. There will be no further
processing; only a fini message sent afterwards.

The err event does contain a marshalled exception in it. This contains the exception type as the identifier; and several
attributes from the exception.

The following keys are usually present in the marshalled information:

esrc
Source line that raised the exception.

efile
File that the exception was raised from.

eline
Line number from the raising file.

ename
Name of the function where the exception was from.

mesg
The mesg argument to a SynErr exception, if present; or the str() exception.

442 Chapter 7. Synapse Developer Guide

Synapse Documentation, Release 2.141.0

Additional keys may also be present, depending on the exception that was raised.

Example:

('err',
('BadTypeValu',
{'efile': 'inet.py',
'eline': 294,
'form': 'inet:fqdn',
'mesg': 'FQDN failed to match fqdnre [^[\\w._-]+$]',
'name': 'inet:fqdn',
'valu': '1234@#'}))

fini

The last message sent by a Storm query runtime. This can be used as a key to stop processing messages or finalize any
sort of rollup of messages.

It includes the following keys:

tock
The epoch time the query execution finished (in milliseconds).

took
The amount of time it took for the query to execute (in milliseconds).

count
The number of nodes yielded by the runtime.

Example:

('fini', {'count': 1, 'tock': 1539221715240, 'took': 36381})

Note: If the Storm runtime is cancelled for some reason, there will be no err or fini messages sent. This is because
the task cancellation may tear down the channel and we would have an async task blocking on attempting to send data
to a closed channel.

node:edits

The node:edits message represents changes that are occurring to the underlying graph, as a result of running a Storm
query.

It includes the following key:

edits
A list of changes made to a set of nodes.

Example:

Nodeedits produced by the following query: [(inet:ipv4=1.2.3.4 :asn=1)]

('node:edits',
{'edits': (('20153b758f9d5eaaa38e4f4a65c36da797c3e59e549620fa7c4895e1a920991f',

'inet:ipv4',
(continues on next page)

7.6. Storm API Guide 443

Synapse Documentation, Release 2.141.0

(continued from previous page)

((0, (16909060, 4), ()),
(2, ('.created', 1662578208195, None, 21), ()),
(2, ('type', 'unicast', None, 1), ()))),)})

('node:edits',
{'edits': (('20153b758f9d5eaaa38e4f4a65c36da797c3e59e549620fa7c4895e1a920991f',

'inet:ipv4',
((2, ('asn', 1, None, 9), ()),)),

('371bfbcd479fec0582d55e8cf1011c91c97f306cf66ceea994ac9c37e475a537',
'inet:asn',
((0, (1, 9), ()),
(2, ('.created', 1662578208196, None, 21), ()))))})

node:edits:count

The node:edits:count message represents a summary of changes that are occurring to the underlying graph, as a
result of running a Storm query. These are produced when the query opts set editformat to count.

It includes the following key:

count
The number of changes made to the graph as a result of a single node:edits event.

Example:

counts produced by the following query: [(inet:ipv4=1.2.3.4 :asn=1)]

('node:edits:count', {'count': 3})
('node:edits:count', {'count': 3})

storm:fire

The storm:fire message is a arbitrary user created message produced by the $lib.fire() Storm API. It includes
the following keys:

type
The type of the event.

data
User provided data.

Example:

The following query produces an event
$l = ((1), (2), (3)) $lib.fire('demo', key=valu, somelist=$l)

The event produced.
('storm:fire', {'data': {'key': 'valu', 'somelist': (1, 2, 3)}, 'type': 'demo'})

444 Chapter 7. Synapse Developer Guide

Synapse Documentation, Release 2.141.0

look:miss

The look:miss message is sent when the Storm runtime is set to lookup mode and the node that was identified by
the scrape logic is not present in the current View.

It includes the following key:

ndef
A tuple of the form and normalized value.

Example:

('look:miss', {'ndef': ('inet:fqdn', 'hehe.com')})

The ipv4 value is presented in system mode.
('look:miss', {'ndef': ('inet:ipv4', 16909060)})

csv:row

The csv:row message is sent by the Storm runtime by the $lib.csv.emit() Storm API.

It includes the following keys:

row
A list of elements that make up the row.

table
A optional table name. This may be None.

Example:

This query produces the following event: $lib.csv.emit(foo, bar, $lib.time.now())
('csv:row', {'row': ('foo', 'bar', 1662578057658), 'table': None})

This query produces the following event: $lib.csv.emit(foo, bar, $lib.time.now(),␣
→˓table=foo)
('csv:row', {'row': ('foo', 'bar', 1662578059282), 'table': 'foo'})

7.6.3 Storm Call APIs

The Telepath callStorm() and HTTP API storm/call interfaces are designed to return a single message to the
caller, as opposed to a stream of messages. This is done using the Storm return() syntax. Common uses for the call
interfaces include getting and setting values where the full message stream would not be useful.

Example:

The following example shows retrieving a user definition.

Prox is assumed to be a Telepath proxy to a Cortex.
>>> text = '$user = $lib.auth.users.byname($name) return ($user)'
>>> opts = {'vars': {'name': 'root'}}
>>> ret = prox.callStorm(text, opts=opts)
>>> pprint(ret)
{'admin': True,
'archived': False,
'authgates': {'0b942d5f4309d70e5fa64423714e25aa': {'admin': True},

(continues on next page)

7.6. Storm API Guide 445

Synapse Documentation, Release 2.141.0

(continued from previous page)

'cdf6f1727da73dbac95e295e5d258847': {'admin': True}},
'email': None,
'iden': '933a320b7ce8134ba5abd93aa487e1b5',
'locked': False,
'name': 'root',
'roles': (),
'rules': (),
'type': 'user'}

The following shows setting an API key for a Power-Up. There is no return statement, so the return value
defaults to None.

Prox is assumed to be a Telepath proxy to a Cortex.
>>> text = 'foobar.setup.apikey $apikey'
>>> opts = {'vars': {'apikey': 'secretKey'}}
>>> ret = prox.callStorm(text, opts=opts)
>>> print(ret)
None

7.6.4 Storm Opts

All Storm API endpoints take an opts argument. This is a dictionary that contains metadata that is used by the Storm
runtime for various purposes. Examples are given using Python syntax.

debug

If this is set to True, the Storm runtime will be created with $lib.debug set to True.

Example:

opts = {'debug': True}

editformat

This is a string containing the format that node edits are streamed in. This may be nodeedits (the default value),
none, or count. If the value is none, then no edit messages will be streamed. If the value is count, each node:edits
message is replaced by a node:edits:count message, containing a summary of the number of edits made for a given
message.

Examples:

Turn node:edit messages into counts
opts = {'editformat': 'count'}

Disable node edits
opts = {'editformat': 'none'}

446 Chapter 7. Synapse Developer Guide

Synapse Documentation, Release 2.141.0

idens

This is a list of node iden hashes to use as initial input to the Storm runtime. These nodes are lifted after any ndefs
options are lifted, but prior to regular lift operations which may start a Storm query.

Example:

idens = ('ee6b92c9fd848a2cb00f3a3618148c512b58456b8b51fbed79251811597eeea3',
'c5a67a095b71771d9663d691f0ab36b53ebdc14fbad18f23f95e923543156bd6',)

opts = {'idens': idens}

limit

Limit the total number of nodes that the Storm runtime produces. When this number is reached, the runtime will be
stopped.

Example:

opts = {'limit': 100}

mode

This is the mode that a Storm query is parsed in. This value can be specified to lookup, autoadd, and search modes
to get different behaviors.

Example:

Using lookup mode, the query text, before switching to command mode with a |␣
→˓character,
will have its text scrapped for simple values such as FQDNs, IP Addresses,␣
→˓and Hashes
and attempt to lift any matching nodes.
opts = {'mode': 'lookup'}

Using autoadds mode, the query text is scrapped like in lookup mode; and for␣
→˓any
values which we try to lift that do not produce nodes, those nodes will be␣
→˓added
in the current view.
opts = {'mode': 'autoadd'}

Using search mode, the query will be run through the Storm search interface.
This will lift nodes based on searching, which is enabled by the
Synapse-Search Advanced Power-up.
opts = {'mode': 'search'}

7.6. Storm API Guide 447

Synapse Documentation, Release 2.141.0

ndefs

This is a list of form and value tuples to use as initial input to the Storm runtime. These are expected to be the already
normalized, system mode, values for the nodes. These nodes are lifted before any other lift operators are run.

Example:

ndefs = (
('inet:fqdn', 'com'),
('inet:ipv4', 134744072),

)

opts = {'ndefs': ndefs}

path

If this is set to True, the path key in the packed nodes will contain a nodes key, which contains a list of the node iden
hashes that were used in pivot operations to get to the node.

Example:

opts = {'path': True}

A Storm node message with a node path added to it, from the query inet:ipv4 ->␣
→˓inet:asn.

('node',
(('inet:asn', 1),
{'iden': '371bfbcd479fec0582d55e8cf1011c91c97f306cf66ceea994ac9c37e475a537',
'nodedata': {},
'path': {'nodes': ('20153b758f9d5eaaa38e4f4a65c36da797c3e59e549620fa7c4895e1a920991f',

'371bfbcd479fec0582d55e8cf1011c91c97f306cf66ceea994ac9c37e475a537
→˓')},
'props': {'.created': 1662493825668},
'tagprops': {},
'tags': {}}))

readonly

Run the Storm query in a readonly mode. This prevents editing the graph data, and only allows a small subset of
whitelisted Storm library functions to be used.

Examples:

opts = {'readonly': True}

448 Chapter 7. Synapse Developer Guide

Synapse Documentation, Release 2.141.0

repr

If this is set to True, the packed node will have a repr and reprs key populated, to contain human friendly represen-
tations of system mode values.

Example:

opts = {'repr': True}

A Storm node message with reprs added to it.

('node',
(('inet:ipv4', 134744072),
{'iden': 'ee6b92c9fd848a2cb00f3a3618148c512b58456b8b51fbed79251811597eeea3',
'nodedata': {},
'path': {},
'props': {'.created': 1662491423034, 'type': 'unicast'},
'repr': '8.8.8.8',
'reprs': {'.created': '2022/09/06 19:10:23.034'},
'tagpropreprs': {},
'tagprops': {},
'tags': {}}))

scrub

This is a set of rules that can be provided to the Storm runtime which dictate which data should be included or excluded
from nodes that are returned in the message stream. Currently the only rule type supported is include for tags.

Example:

Only include tags which start with cno and rep.foo
scrub = {'include': {'tags': ['cno', 'rep.foo',]}}
opts = {'scrub': scrub}

Do not include any tags in the output
scrub = {'include': {'tags': []}}
opts = {'scrub': scrub}

show

A list of message types to include in the output message stream. The init, fini, and err message types cannot be
filtered with this option.

Example:

Only node and warning messages.
opts = {'show': ['node', 'warning']}

Only include required messages.
opts = {'show': []}

7.6. Storm API Guide 449

Synapse Documentation, Release 2.141.0

task

A user provided guid that is used as the task identifier for the Storm runtime. This allows a user to have a predictable
identifier that they can use for task cancellation.

The Storm runtime will raise a BadArg value if the task iden is associated with a currently running task.

Example:

Generate a guid on the client side and provide it to the Cortex
import synapse.common as s_commmon
task_iden = s_common.guid()
opts = {'task': task_iden}

user

The User iden to run the Storm query as. This allows a user with the permission impersonate to run a Storm query
as another user.

Example:

opts = {'user': 6e9c8de2f1aa39fee11c19d0974e0917}

vars

A dictionary of key - value pairs that are mapped into the Storm runtime as variables. Some uses of this include
providing data to the runtime that is used with an ingest script, or to provide secrets to the Storm runtime so that they
will not be logged.

Example:

A secret key - A good example of this is configuring a Rapid Power-Up.
vars = {'secretkey': 'c8de2fe11c19d0974e091aa39fe176e9'}
opts = {'vars': vars}

Some example data that could be used in a Storm ingest script.
records = (

('foobar.com', '8.8.8.8', '20210810'),
('bazplace.net', '1.2.3.4', '20210810'),

)
vars = {'records': records}
opts = {'vars': vars}

view

The View iden in which to run the Storm query in. If not specified, the query will run in the user’s default view.

Example:

opts = {'view': 31ded629eea3c7221be0a61695862952}

450 Chapter 7. Synapse Developer Guide

CHAPTER

EIGHT

SYNAPSE GLOSSARY

This Glossary provides a quick reference for common terms related to Synapse technical and analytical concepts.

8.1 A

8.1.1 Addition, Automatic

See Autoadd.

8.1.2 Addition, Dependent

See Depadd.

8.1.3 Advanced Power-Up

See Power-Up, Advanced.

8.1.4 Admin Tool

See Tool, Admin.

8.1.5 Analytical Model

See Model, Analytical.

8.1.6 Auth Gate

An auth gate (short for “authorization gate”, informally a “gate”) is an object within a Service that may have its own
set of permissions.

Both a Layer and a View are common examples of auth gates.

451

Synapse Documentation, Release 2.141.0

8.1.7 Autoadd

Short for “automatic addition”. Within Synapse, a feature of node creation where any secondary properties that are
derived from a node’s primary property are automatically set when the node is created. Because these secondary
properties are based on the node’s primary property (which cannot be changed once set), the secondary properties are
read-only.

For example, creating the node inet:email=alice@mail.somecompany.org will result in the autoadd of the sec-
ondary properties inet:email:user=alice and inet:email:domain=mail.somecompany.org.

See also the related concept Depadd.

8.1.8 Axon

The Axon is a Synapse Service that provides binary / blob (“file”) storage within the Synapse ecosystem. An Axon
indexes binaries based on their SHA-256 hash for deduplication. The default Axon implemenation stores the blobs in
an LMDB Slab.

8.2 B

8.2.1 Base Tag

See Tag, Base.

8.2.2 Binary Unique Identifier

See BUID.

8.2.3 BUID

Short for Binary Unique Identifier. Within Synapse, a BUID is the globally unique (within a Cortex) SHA-256 digest
of a node’s msgpack-encoded Ndef .

8.3 C

8.3.1 Cell

The Cell is a basic building block of a Synapse Service, including the Cortex. See Synapse Architecture for additional
detail.

452 Chapter 8. Synapse Glossary

Synapse Documentation, Release 2.141.0

8.3.2 Column, Embed

In Optic, a column in Tabular display mode that displays a property value from an adjacent or nearby node.

8.3.3 Column, Property

In Optic, a column in Tabular display mode that displays a property value from the specified form.

8.3.4 Column, Tag

In Optic, a column in Tabular display mode that displays the timestamps associated with the specified tag. (Technically,
Optic displays two columns - one for each of the min / max timestamps, if present).

8.3.5 Column, Tag Glob

In Optic, a column in Tabular display mode that displays any tags that match the specified tag or tag glob pattern.

8.3.6 Comparator

Short for Comparison Operator.

8.3.7 Comparison Operator

A symbol or set of symbols used in the Storm language to evaluate Node property values against one or more specified
values. Comparison operators can be grouped into standard and extended operators.

8.3.8 Comparison Operator, Standard

The set of common operator symbols used to evaluate (compare) values in Storm. Standard comparison operators
include equal to (=), greater than (>), less than (<), greater than or equal to (>=), and less than or equal to (<=).

8.3.9 Comparison Operator, Extended

The set of Storm-specific operator symbols or expressions used to evaluate (compare) values in Storm based on custom
or Storm-specific criteria. Extended comparison operators include regular expression (~=), time/interval (@=), set
membership (*in=), tag (#), and so on.

8.3.10 Composite Form

See Form, Composite.

8.3. C 453

Synapse Documentation, Release 2.141.0

8.3.11 Console Tool

See Tool, Console.

8.3.12 Constant

In Storm, a constant is a value that cannot be altered during normal execution, i.e., the value is constant.

Contrast with Variable. See also Runtsafe and Non-Runtsafe.

8.3.13 Constructor

Within Synapse, a constructor is code that defines how a Property value of a given Type can be constructed to ensure
that the value is well-formed for its type. Also known as a Ctor for short. Constructors support Type Normalization
and Type Enforcement.

8.3.14 Cortex

A Cortex is a Synapse Service that implements Synapse’s primary data store (as an individual Hypergraph). Cortex
features include scalability, key/value-based node properties, and a Data Model which facilitates normalization.

8.3.15 Cron

Within Synapse, cron jobs are used to create scheduled tasks, similar to the Linux/Unix “cron” utility. The task to be
executed by the cron job is specified using the Storm query language.

See the Storm command reference for the cron command and the Storm Reference - Automation document for additional
detail.

8.3.16 Ctor

Pronounced “see-tore”. Short for Constructor.

8.4 D

8.4.1 Daemon

Similar to a traditional Linux or Unix daemon, a Synapse daemon (“dmon”) is a long-running or recurring query or
process that runs continuously in the background. A dmon is typically implemented by a Storm Service and may be
used for tasks such as processing elements from a Queue. A dmon allows for non-blocking background processing of
non-critical tasks. Dmons are persistent and will restart if they exit.

454 Chapter 8. Synapse Glossary

Synapse Documentation, Release 2.141.0

8.4.2 Data Model

See Model, Data.

8.4.3 Data Model Explorer

In Optic, the Data Model Explorer (found in the Help Tool) documents and cross-references the current forms and
lightweight edges in the Synapse Data Model.

8.4.4 Deconflictable

Within Synapse, a term typically used with respect to Node creation. A node is deconflictable if, upon node creation,
Synapse can determine whether the node already exists within a Cortex (i.e., the node creation attempt is deconflicted
against existing nodes). For example, on attempting to create the node inet:fqdn=woot.com Synapse can deconflict
the node by checking whether a node of the same form with the same primary property already exists.

Most primary properties are sufficiently unique to be readily deconflictable. GUID forms (see Form, GUID) require
additional considerations for deconfliction. See the guid section of the Storm Reference - Type-Specific Storm Behavior
document for additional detail.

8.4.5 Depadd

Short for “dependent addition”. Within Synapse, when a node’s secondary property is set, if that secondary property is
of a type that is also a form, Synapse will automatically create the node with the corresponding primary property value
if it does not already exist. (You can look at this as the secondary property value being “dependent on” the existence
of the node with the corresponding primary property value.)

For example, creating the node inet:email=alice@mail.somecompany.org will set (via Autoadd) the sec-
ondary property inet:email:domain=mail.somecompany.org. Synapse will automatically create the node
inet:fqdn=mail.somecompany.org as a dependent addition if it does not exist.

(Note that limited recursion will occur between dependent additions (depadds) and automatic additions (au-
toadds). When inet:fqdn=mail.somecompany.org is created via depadd, Synapse will set (via au-
toadd) inet:fqdn:domain=somecompany.org, which will result in the creation (via depadd) of the node
inet:fqdn=somecompany.org if it does not exist, etc.)

See also the related concept Autoadd.

8.4.6 Derived Property

See Property, Derived.

8.4.7 Directed Edge

See Edge, Directed.

8.4. D 455

Synapse Documentation, Release 2.141.0

8.4.8 Directed Graph

See Graph, Directed.

8.4.9 Display Mode

In Optic, a means of visualizing data using the Research Tool. Optic supports four display modes, namely:

• Tabular mode, which displays data and tags in tables (rows of results with configurable columns).

• Force Graph mode, which projects data into a directed graph-like view of nodes and their interconnections.

• Statistics (stats) mode, which automatically summarizes data using histogram (bar) and sunburst charts.

• Geospatial mode, which can be used to plot geolocation data on a map projection.

8.4.10 Dmon

Short for Daemon.

8.5 E

8.5.1 Easy Permissions

In Synapse, easy permissions (“easy perms” for short) are a simplified means to grant common sets of permissions for
a particular object to users or roles. Easy perms specify four levels of access, each with a corresponding integer value:

• Deny = 0

• Read = 1

• Edit = 2

• Admin = 3

As an example, the $lib.macro.grant(name, scope, iden, level) Storm library can be used to assign easy perms to a
Macro. Contrast with Permission.

8.5.2 Edge

In a traditional Graph, an edge is used to connect exactly two nodes (vertexes). Compare with Hyperedge.

8.5.3 Edge, Directed

In a Directed Graph, a directed edge is used to connect exactly two nodes (vertexes) in a one-way (directional) rela-
tionship. Compare with Hyperedge.

456 Chapter 8. Synapse Glossary

Synapse Documentation, Release 2.141.0

8.5.4 Edge, Lightweight (Light)

In Synapse, a lightweight (light) edge is a mechanism that links two arbitrary forms via a user-defined verb that describes
the linking relationship. Light edges are not forms and so do not support secondary properties or tags. They are meant
to simplify performance, representation of data, and Synapse hypergraph navigation for many use cases. Contrast with
Form, Edge.

8.5.5 Embed Column

See Column, Embed.

8.5.6 Entity Resolution

Entity resolution is the process of determining whether different records or sets of data refer to the same real-world
entity.

A number of data model elements in Synapse are designed to support entity resolution. For example:

• A ps:contact node can capture “a set of observed contact data” for a person (ps:person) or organi-
zation (ou:org). You can link sets of contact data that you assess represent “the same” entity via their
ps:contact:person or ps:contact:org properties.

• A risk:threat node can capture “a set of reported data about a threat”. If you assess that multiple
sources are reporting on “the same” threat, you can link them to an authoritative threat organization via their
risk:threat:org property.

• An ou:industryname node can capture a term used to refer to a commercial industry. You can link variations
of a name (e.g., “finance”, “financial”, “financial services”, “banking and finance”) to a single ou:industry via
the ou:industry:name and ou:industry:names properties.

8.5.7 Extended Comparison Operator

See Comparison Operator, Extended.

8.5.8 Extended Form

See Form, Extended.

8.5.9 Extended Property

See Property, Extended.

8.5. E 457

Synapse Documentation, Release 2.141.0

8.6 F

8.6.1 Feed

A feed is an ingest API consisting of a set of ingest formats (e.g., file formats, record formats) used to parse records
directly into nodes. Feeds are typically used for bulk node creation, such as ingesting data from an external source or
system.

8.6.2 Filter

Within Synapse, one of the primary methods for interacting with data in a Cortex. A filter operation downselects a
subset of nodes from a set of results. Compare with Lift, Pivot, and Traverse.

See Storm Reference - Filtering for additional detail.

8.6.3 Filter, Subquery

Within Synapse, a subquery filter is a filter that consists of a Storm expression.

See Subquery Filters for additional detail.

8.6.4 Fork

Within Synapse, fork may refer to the process of forking a View, or to the forked view itself.

When you fork a view, you create a new, empty, writable Layer on top of the fork’s original view. The writable layer
from the original view becomes read-only with respect to the fork. Any changes made within a forked view are made
within the new writable layer. These changes can optionally be merged back into the original view (in whole or in
part), or discarded. (Note that any view-specific automation, such as triggers, dmons, or cron jobs, are not copied to
the forked view. However, depending on the automation, it may be activated if / when data is merged down into the
original view.

8.6.5 Form

A form is the definition of an object in the Synapse data model. A form acts as a “template” that specifies how to
create an object (Node) within a Cortex. A form consists of (at minimum) a Primary Property and its associated Type.
Depending on the form, it may also have various secondary properties with associated types.

See the Form section in the Data Model - Terminology document for additional detail.

8.6.6 Form, Composite

A category of form whose primary property is an ordered set of two or more comma-separated typed values. Examples
include DNS A records (inet:dns:a) and web-based accounts (inet:web:acct).

See also Form, Edge.

458 Chapter 8. Synapse Glossary

Synapse Documentation, Release 2.141.0

8.6.7 Form, Edge

A specialized composite form (Form, Composite) whose primary property consists of two Ndef values. Edge forms
can be used to link two arbitrary forms via a generic relationship where additional information needs to be captured
about that relationship (i.e., via secondary properties and/or tags). Contrast with Edge, Lightweight (Light).

8.6.8 Form, Extended

A custom form added outside of the base Synapse Data Model to represent specialized data. Extended forms can be
added with the $lib.model.ext libraries. Note that whenever possible, it is preferable to expand the base Synapse data
model to account for novel use cases instead of creating specialized extended forms.

8.6.9 Form, GUID

In the Synpase Data Model, a specialized case of a Simple Form whose primary property is a GUID. The GUID
can be either arbitrary or constructed from a specified set of values. GUID forms have additional considerations as
to whether or not they are Deconflictable in Synapse. Examples of GUID forms include file execution data (e.g.,
inet:file:exec:read) or articles (media:news).

8.6.10 Form, Simple

In the Synapse Data Model, a category of form whose primary property is a single typed value. Examples include
domains (inet:fqdn) or hashes (e.g., hash:md5).

8.6.11 Fused Knowledge

See Knowledge, Fused.

8.7 G

8.7.1 Gate

See Auth Gate.

8.7.2 Global Default Workspace

See Workspace, Global Default.

8.7. G 459

Synapse Documentation, Release 2.141.0

8.7.3 Globally Unique Identifier

See GUID.

8.7.4 Graph

A graph is a mathematical structure used to model pairwise relations between objects. Graphs consist of vertices (or
nodes) that represent objects and edges that connect exactly two vertices in some type of relationship. Nodes and edges
in a graph are typically represented by dots or circles connected by lines.

See Background - Graphs and Hypergraphs for additional detail on graphs and hypergraphs.

8.7.5 Graph, Directed

A directed graph is a Graph where the edges representing relationships between nodes have a “direction”. Given node
X and node Y connected by edge E, the relationship is valid for X -> E -> Y but not Y -> E -> X. For example, the
relationship “Fred owns bank account #01234567” is valid, but “bank account #01234567 owns Fred” is not. Nodes
and edges in a directed graph are typically represented by dots or circles connected by arrows.

See Background - Graphs and Hypergraphs for additional detail on graphs and hypergraphs.

8.7.6 GUID

Short for Globally Unique Identifier. Within Synapse, a GUID is a Type specified as a 128-bit value that is unique within
a given Cortex. GUIDs are used as primary properties for forms that cannot be uniquely represented by a specific value
or set of values.

8.7.7 GUID Form

See Form, GUID.

8.8 H

8.8.1 Help Tool

See Tool, Help.

8.8.2 Hive

The Hive is a key/value storage mechanism which is used to persist various data structures required for operating a
Synapse Cell.

460 Chapter 8. Synapse Glossary

Synapse Documentation, Release 2.141.0

8.8.3 Hyperedge

A hyperedge is an edge within a Hypergraph that can join any number of nodes (vs. a Graph or Directed Graph where
an edge joins exactly two nodes). A hyperedge joining an arbitrary number of nodes can be difficult to visualize in
flat, two-dimensional space; for this reason hyperedges are often represented as a line or “boundary” encircling a set
of nodes, thus “joining” those nodes into a related group.

See Background - Graphs and Hypergraphs for additional detail on graphs and hypergraphs.

8.8.4 Hypergraph

A hypergraph is a generalization of a Graph in which an edge can join any number of nodes. If a Directed Graph
where edges join exactly two nodes is two-dimensional, then a hypergraph where a Hyperedge can join any number
(n-number) of nodes is n-dimensional.

See Background - Graphs and Hypergraphs for additional detail on graphs and hypergraphs.

8.9 I

8.9.1 Iden

Short for Identifier. Within Synapse, the hexadecimal representation of a unique identifier (e.g., for a node, a task, a
trigger, etc.) The term “identifier” / “iden” is used regardless of how the specific identifier is generated.

8.9.2 Identifier

See Iden.

8.9.3 Ingest Tool

See Tool, Ingest.

8.9.4 Instance Knowledge

See Knowledge, Instance.

8.10 K

8.10.1 Knowledge, Fused

If a form within the Synapse data model has a “range” of time elements (i.e., an interval such as “first seen”/”last seen”),
the form typically represents fused knowledge – a period of time during which an object, relationship, or event was
known to exist. Forms representing fused knowledge can be thought of as combining n number of instance knowledge
observations. inet:dns:query, inet:dns:a, and inet:whois:email forms are examples of fused knowledge.

See Instance Knowledge vs. Fused Knowledge for a more detailed discussion.

8.9. I 461

Synapse Documentation, Release 2.141.0

8.10.2 Knowledge, Instance

If a form within the Synapse data model has a specific time element (i.e., a single date/time value), the form typically rep-
resents instance knowledge – a single instance or occurrence of an object, relationship, or event. inet:dns:request
and inet:whois:rec forms are examples of instance knowledge.

See Instance Knowledge vs. Fused Knowledge for a more detailed discussion.

8.11 L

8.11.1 Layer

Within Synapse, a layer is the substrate that contains node data and where permissions enforcement occurs. Viewed
another way, a layer is a storage and write permission boundary.

By default, a Cortex has a single layer and a single View, meaning that by default all nodes are stored in one layer and
all changes are written to that layer. However, multiple layers can be created for various purposes such as:

• separating data from different data sources (e.g., a read-only layer consisting of third-party data and associated
tags can be created underneath a “working” layer, so that the third-party data is visible but cannot be modified);

• providing users with a personal “scratch space” where they can make changes in their layer without affecting the
underlying main Cortex layer; or

• segregating data sets that should be visible/accessible to some users but not others.

Layers are closely related to views (see View). The order in which layers are instantiated within a view matters; in
a multi-layer view, typically only the topmost layer is writeable by that view’s users, with subsequent (lower) layers
read-only. Explicit actions can push upper-layer writes downward (merge) into lower layers.

8.11.2 Leaf Tag

See Tag, Leaf .

8.11.3 Lift

Within Synapse, one of the primary methods for interacting with data in a Cortex. A lift is a read operation that selects
a set of nodes from the Cortex. Compare with Pivot, Filter, and Traverse.

See Storm Reference - Lifting for additional detail.

8.11.4 Lightweight (Light) Edge

See Edge, Lightweight (Light).

462 Chapter 8. Synapse Glossary

Synapse Documentation, Release 2.141.0

8.12 M

8.12.1 Macro

A macro is a stored Storm query. Macros support the full range of Storm syntax and features.

See the Storm command reference for the macro command and the Storm Reference - Automation for additional detail.

8.12.2 Merge

Within Synapse, merge refers to the process of copying changes made within a forked (see Fork) View into the original
view.

8.12.3 Model

Within Synapse, a system or systems used to represent data and/or assertions in a structured manner. A well-designed
model allows efficient and meaningful exploration of the data to identify both known and potentially arbitrary or dis-
coverable relationships.

8.12.4 Model, Analytical

Within Synapse, the set of tags (Tag) representing analytical assessments or assertions that can be applied to objects in
a Cortex.

8.12.5 Model, Data

Within Synapse, the set of forms (Form) that define the objects that can be represented in a Cortex.

8.13 N

8.13.1 Ndef

Pronounced “en-deff”. Short for node definition. A node’s Form and associated value (i.e., <form> = <valu>)
represented as comma-separated elements enclosed in parentheses: (<form>,<valu>).

8.13.2 Node

A node is a unique object within a Cortex. Where a Form is a template that defines the charateristics of a given object,
a node is a specific instance of that type of object. For example, inet:fqdn is a form; inet:fqdn=woot.com is a
node.

See Node in the Data Model - Terminology document for additional detail.

8.12. M 463

Synapse Documentation, Release 2.141.0

8.13.3 Node Action

In Optic, a saved, named Storm query or command (action) that can be executed via a right-click context menu option
for specified forms (nodes).

8.13.4 Node Data

Node data is a named set of structured metadata that may optionally be stored on a node in Synapse. Node data may be
used for a variety of purposes. For example, a Power-Up may use node data to cache results returned by a third-party
API along with the timestamp when the data was retrieved. If the same API is queried again for the same node within
a specific time period, the Power-Up can use the cached node data instead of re-querying the API (helping to prevent
using up any API query limits by re-querying the same data).

Node data can be accessed using the node:data type.

8.13.5 Node Definition

See Ndef .

8.13.6 Node, Runt

Short for “runtime node”. A runt node is a node that does not persist within a Cortex but is created at runtime when a
Cortex is initiated. Runt nodes are commonly used to represent metadata associated with Synapse, such as data model
elements like forms (syn:form) and properties (syn:prop) or automation elements like triggers (syn:trigger) or
cron jobs (syn:cron).

8.13.7 Node, Storage

A storage node (“sode”) is a collection of data for a given node (i.e., the node’s primary property, secondary / universal
properties, tags, etc.) that is present in a specific Layer.

8.13.8 Non-Runtime Safe

See Non-Runtsafe.

8.13.9 Non-Runtsafe

Short for “non-runtime safe”. Non-runtsafe refers to the use of variables within Storm. A variable that is non-runtsafe
has a value that may change based on the specific node passing through the Storm pipeline. A variable whose value is
set to a node property, such as $fqdn = :fqdn is an example of a non-runtsafe variable (i.e., the value of the secondary
property :fqdn may be different for different nodes, so the value of the variable will be different based on the specific
node being operated on).

Contrast with Runtsafe.

464 Chapter 8. Synapse Glossary

https://synapse.docs.vertex.link/en/latest/synapse/autodocs/stormtypes_prims.html#node-data

Synapse Documentation, Release 2.141.0

8.14 O

8.14.1 Optic

The Synapse user interface (UI), available as part of the commercial Synapse offering.

8.15 P

8.15.1 Package

A package is a set of commands and library code used to implement a Storm Service. When a new Storm service is
loaded into a Cortex, the Cortex verifies that the service is legitimate and then requests the service’s packages in order
to load any extended Storm commands associated with the service and any library code used to implement the service.

8.15.2 Permission

Within Synapse, a permission is a string (such as node.add) used to control access. A permission is assigned (granted
or revoked) using a Rule.

Access to some objects in Synapse may be controlled by Easy Permissions.

8.15.3 Pivot

Within Synapse, one of the primary methods for interacting with data in a Cortex. A pivot moves from a set of nodes
with one or more properties with specified value(s) to a set of nodes with a property having the same value(s). Compare
with Lift, Filter, and Traverse.

See Storm Reference - Pivoting for additional detail.

8.15.4 Power-Up

Power-Ups provide specific add-on capabilities to Synapse. For example, Power-Ups may provide connectivity to
external databases or third-party data sources, or enable functionality such as the ability to manage YARA rules, scans,
and matches.

The term Power-Up is most commonly used to refer to Vertex-developed packages and services that are available as
part of the commercial Synapse offering (only a few Power-Ups are available with open-source Synapse). However,
many organizations write their own custom packages and services that may also be referred to as Power-Ups.

Vertex distinguishes between an Advanced Power-Up and a Rapid Power-Up.

8.14. O 465

Synapse Documentation, Release 2.141.0

8.15.5 Power-Up, Advanced

Advanced Power-Ups are implemented as Storm services (see Service, Storm). Vertex-developed Advanced Power-Ups
are implemented as Docker containers and may require DevOps support and additional resources to deploy.

8.15.6 Power-Up, Rapid

Rapid Power-Ups are implemented as Storm packages (see Package). Rapid Power-Ups are written entirely in Storm
and can be loaded directly into a Cortex.

8.15.7 Power-Ups Tool

See Tool, Power-Ups.

8.15.8 Primary Property

See Property, Primary.

8.15.9 Property

Within Synapse, properties are individual elements that define a Form or (along with their specific values) that comprise
a Node. Every property in Synapse must have a defined Type.

See the Property section in the Data Model - Terminology document for additional detail.

8.15.10 Property Column

See Column, Property.

8.15.11 Property, Derived

Within Synapse, a derived property is a secondary property that can be extracted (derived) from a node’s primary prop-
erty. For example, the domain inet:fqdn=www.google.com can be used to derive inet:fqdn:domain=google.
com and inet:fqdn:host=www; the DNS A record inet:dns:a=(woot.com, 1.2.3.4) can be used to derive
inet:dns:a:fqdn=woot.com and inet:dns:a:ipv4=1.2.3.4.

Synapse will automatically set (Autoadd) any secondary properties that can be derived from a node’s primary property.
Because derived properties are based on primary property values, derived secondary properties are always read-only
(i.e., cannot be modified once set).

466 Chapter 8. Synapse Glossary

https://www.docker.com/resources/what-container/

Synapse Documentation, Release 2.141.0

8.15.12 Property, Extended

Within Synapse, an extended property is a custom property added to an existing form to capture specialized data. For
example, extended properties may be added to the data model by a Power-Up in order to record vendor-specific data
(such as a “risk” score).

Extended properties can be added with the $lib.model.ext libraries. Note that we strongly recommend that any extended
properties be added within a custom namespace; specifically, that property names begin with an underscore and include
a vendor or source name (if appropriate) as the first namespace element.

An example of an extended property is the :_virustotal:reputation score added to some forms to account for
VirusTotal-specific data returned by that Power-Up (e.g., inet:fqdn:_virustotal:reputation).

8.15.13 Property, Primary

Within Synapse, a primary property is the property that defines a given Form in the data model. The primary property
of a form must be defined such that the value of that property is unique across all possible instances of that form.
Primary properties are always read-only (i.e., cannot be modified once set).

8.15.14 Property, Relative

Within Synapse, a relative property is a Secondary Property referenced using only the portion of the property’s names-
pace that is relative to the form’s Primary Property. For example, inet:dns:a:fqdn is the full name of the “domain”
secondary property of a DNS A record form (inet:dns:a). :fqdn is the relative property / relative property name
for that same property.

8.15.15 Property, Secondary

Within Synapse, secondary properties are optional properties that provide additional detail about a Form. Within the
data model, secondary properties may be defined with optional constraints, such as:

• Whether the property is read-only once set.

• Any normalization (outside of type-specific normalization) that should occur for the property (such as converting
a string to all lowercase).

8.15.16 Property, Universal

Within Synapse, a universal property is a Secondary Property that is applicable to all forms and may optionally be
set for any form where the property is applicable. For example, .created is a universal property whose value is the
date/time when the associated node was created in a Cortex.

8.16 Q

8.16.1 Queue

Within Synapse, a queue is a basic first-in, first-out (FIFO) data structure used to store and serve objects in a classic
pub/sub (publish/subscribe) manner. Any primitive (such as a node iden) can be placed into a queue and then consumed
from it. Queues can be used (for example) to support out-of-band processing by allowing non-critical tasks to be
executed in the background. Queues are persistent; i.e., if a Cortex is restarted, the queue and any objects in the queue
are retained.

8.16. Q 467

Synapse Documentation, Release 2.141.0

8.17 R

8.17.1 Rapid Power-Up

See Power-Up, Rapid.

8.17.2 Relative Property

See Property, Relative.

8.17.3 Repr

Short for “representation”. The repr of a Property defines how the property should be displayed in cases where the dis-
play format differs from the storage format. For example, date/time values in Synapse are stored in epoch milliseconds
but are displayed in human-friendly “yyyy/mm/dd hh:mm:ss.mmm” format.

8.17.4 Research Tool

See Tool, Research.

8.17.5 Role

In Synapse, a role is used to group users with similar authorization needs. You can assign a set of rules (see Rule) to a
role, and grant the role to users who need to perform those actions.

8.17.6 Root Tag

See Tag, Root.

8.17.7 Rule

Within Synapse, a rule is a structure used to assign (grant or prohibit) a specific Permission (e.g., node.tag or !view.
del). A rule is assigned to a User or a Role.

8.17.8 Runt Node

See Node, Runt.

468 Chapter 8. Synapse Glossary

Synapse Documentation, Release 2.141.0

8.17.9 Runtime Safe

See Runtsafe.

8.17.10 Runtsafe

Short for “runtime safe”. Runtsafe refers to the use of variables within Storm. A variable that is runtsafe has a value
that will not change based on the specific node passing through the Storm pipeline. A variable whose value is explcitly
set, such as $fqdn = woot.com is an example of a runtsafe varaible.

Contrast with Non-Runtsafe.

8.18 S

8.18.1 Secondary Property

See Property, Secondary.

8.18.2 Service

Synapse is designed as a modular set of services. Broadly speaking, a service can be thought of as a container used to
run an application. We may informally differentiate between a Synapse Service and a Storm Service.

8.18.3 Service, Storm

A Storm service is a registerable remote component that can provide packages (Package) and additional APIs to Storm
and Storm commands. A service resides on a Telepath API endpoint outside of the Cortex.

When the Cortex is connected to a service, the Cortex queries the endpoint to determine if the service is legitimate and,
if so, loads the associated package to implement the service.

An advantage of Storm services (over, say, additional Python modules) is that services can be restarted to reload their
service definitions and packages while a Cortex is still running – thus allowing a service to be updated without having
to restart the entire Cortex.

8.18.4 Service, Synapse

Synapse services make up the core Synapse architecture and include the Cortex (data store), Axon (file storage), and
the commercial Optic UI. Synapse services are built on the Cell object.

8.18. S 469

Synapse Documentation, Release 2.141.0

8.18.5 Simple Form

See Form, Simple.

8.18.6 Slab

A Slab is a core Synapse component which is used for persisting data on disk into a LMDB backed database. The Slab
interface offers an asyncio friendly interface to LMDB objects, while allowing users to largely avoid having to handle
native transactions themselves.

8.18.7 Splice

A splice is an atomic change made to data within a Cortex, such as node creation or deletion, adding or removing a
tag, or setting, modifying, or removing a property. All changes within a Cortex may be retrieved as individual splices
within the Cortex’s splice log.

8.18.8 Spotlight Tool

See Tool, Spotlight.

8.18.9 Standard Comparison Operator

See Comparison Operator, Standard.

8.18.10 Storage Node

See Node, Storage.

8.18.11 Stories Tool

See Tool, Stories.

8.18.12 Storm

Storm is the custom query language analysts use to interact with data in Synapse.

Storm can also be used as a programming language by advanced users and developers, though this level of expertise is
not required for normal use. Many of Synapse’s Power-Ups (see Power-Up) are written in Storm.

See Storm Reference - Introduction for additional detail.

470 Chapter 8. Synapse Glossary

Synapse Documentation, Release 2.141.0

8.18.13 Storm Editor

Also “Storm Editor Tool”. See Tool, Storm Editor.

8.18.14 Storm Service

See Service, Storm.

8.18.15 Subquery

Within Synapse, a subquery is a Storm query that is executed inside of another Storm query.

See Storm Reference - Subqueries for additional detail.

8.18.16 Subquery Filter

See Filter, Subquery.

8.18.17 Synapse Service

See Service, Synapse.

8.19 T

8.19.1 Tag

Within Synapse, a tag is a label applied to a node that provides additional context about the node. Tags typically
represent assessments or judgements about the data represented by the node.

See the Tag section in the Data Model - Terminology document for additional detail.

8.19.2 Tag, Base

Within Synapse, the lowest (rightmost) tag element in a tag hierarchy. For example, for the tag #foo.bar.baz, baz is
the base tag.

8.19.3 Tag, Leaf

The full tag path / longest tag in a given tag hierarchy. For example, for the tag #foo.bar.baz, foo.bar.baz is the
leaf tag.

8.19. T 471

Synapse Documentation, Release 2.141.0

8.19.4 Tag, Root

Within Synapse, the highest (leftmost) tag element in a tag hierarchy. For example, for the tag #foo.bar.baz, foo is
the root tag.

8.19.5 Tag Column

See Column, Tag.

8.19.6 Tag Explorer

In Optic, the Tag Explorer (found in the Help Tool) provides an expandable, tree-based listing of all tags in your Synapse
Cortex, along with their definitions (if present).

8.19.7 Tag Glob Column

See Column, Tag Glob.

8.19.8 Telepath

Telepath is a lightweight remote procedure call (RPC) protocol used in Synapse. See Telepath RPC in the Synapse
Architecture guide for additional detail.

8.19.9 Tool, Admin

In Optic, the Admin Tool provides a unified interface to perform basic management of users, roles, and permissions;
views and layers; and triggers and cron jobs.

8.19.10 Tool, Console

In Optic, the Console Tool provides a CLI-like interface to Synapse. It can be used to run Storm queries in a manner
similar to the Storm CLI (in the community version of Synapse). In Optic the Console Tool is more commonly used to
display status, error, warning, and debug messages, or to view help for built-in Storm commands (see Storm Reference
- Storm Commands) and / or Storm commands installed by Power-Ups.

8.19.11 Tool, Help

In Optic, the central repository for Synapse documentation and assistance. The Help Tool includes the Data Model
Explorer, Tag Explorer, documentation for any installed Power-Ups (see Power-Up), links to the public Synapse, Storm,
and Optic documents, and version / changelog information.

472 Chapter 8. Synapse Glossary

Synapse Documentation, Release 2.141.0

8.19.12 Tool, Ingest

In Optic, the primary tool used to load structured data in CSV, JSON, or JSONL format into Synapse using Storm. The
Ingest Tool can also be used to prototype and test more formal ingest code.

8.19.13 Tool, Power-Ups

In Optic, the tool used to view, install, update, and remove Power-Ups (see Power-Up).

8.19.14 Tool, Research

In Optic, the primary tool used to ingest, enrich, explore, visualize, and annotate Synapse data.

8.19.15 Tool, Spotlight

Also known as simply “Spotlight”. In Optic, a tool used to load and display PDF or HTML content, create an associated
media:news node, and easily extract and link relevant indicators or other nodes.

8.19.16 Tool, Stories

Also known as simply “Stories”. In Optic, a tool used to create, collaborate on, review, and publish finished reports.
Stories allows you to integrate data directly from the Research Tool into your report (“Story”).

8.19.17 Tool, Storm Editor

Also known as simply “Storm Editor”. In Optic, a tool used to compose, test, and store Storm queries (including macros
- see Macro). Storm Editor includes a number of integrated development environment (IDE) features, including syntax
highlighting, auto-indenting, and auto-completion (via ctrl-space) for the names of forms, properties, tags, and
libraries.

8.19.18 Tool, Workflows

In Optic, the tool used to access and work with Workflows (see Workflow).

8.19.19 Tool, Workspaces

In Optic, the tool used to configure and manage a user’s Workspaces (see Workspace).

8.19. T 473

Synapse Documentation, Release 2.141.0

8.19.20 Traverse

Within Synapse, one of the primary methods for interacting with data in a Cortex. Traversal refers to navigating the
data by crossing (“walking”) a lighweight (light) edge (Edge, Lightweight (Light)) betweeen nodes. Compare with Lift,
Pivot, and Filter.

See Traverse (Walk) Light Edges for additional detail.

8.19.21 Trigger

Within Synapse, a trigger is a Storm query that is executed automatically upon the occurrence of a specified event
within a Cortex (such as adding a node or applying a tag). “Trigger” refers collectively to the event and the query fired
(“triggered”) by the event.

See the Storm command reference for the trigger command and the Storm Reference - Automation for additional detail.

8.19.22 Type

Within Synapse, a type is the definition of a data element within the data model. A type describes what the element is
and enforces how it should look, including how it should be normalized.

See the Type section in the Data Model - Terminology document for additional detail.

8.19.23 Type, Base

Within Synapse, base types include standard types such as integers and strings, as well as common types defined within
or specific to Synapse, including globally unique identifiers (guid), date/time values (time), time intervals (ival), and
tags (syn:tag). Many forms within the Synapse data model are built upon (extensions of) a subset of common types.

8.19.24 Type, Model-Specific

Within Synapse, knowledge-domain-specific forms may themselves be specialized types. For example, an IPv4 address
(inet:ipv4) is its own specialized type. While an IPv4 address is ultimately stored as an integer, the type has additional
constraints, e.g., IPv4 values must fall within the allowable IPv4 address space.

8.19.25 Type Awareness

Type awareness is the feature of the Storm query language that facilitates and simplifies navigation through the Hyper-
graph when pivoting across nodes. Storm leverages knowledge of the Synapse Data Model (specifically knowledge of
the type of each node property) to allow pivoting between primary and secondary properties of the same type across
different nodes without the need to explicitly specify the properties involved in the pivot.

474 Chapter 8. Synapse Glossary

Synapse Documentation, Release 2.141.0

8.19.26 Type Enforcement

Within Synapse, the process by which property values are required to conform to value and format constraints defined
for that Type within the data model before they can be set. Type enforcement helps to limit bad data being entered in
to a Cortex by ensuring values entered make sense for the specified data type (e.g., that an IP address cannot be set
as the value of a property defined as a domain (inet:fqdn) type, and that the integer value of the IP falls within the
allowable set of values for IP address space).

8.19.27 Type Normalization

Within Synapse, the process by which properties of a particular type are standardized and formatted in order to ensure
consistency in the data model. Normalization may include processes such as converting user-friendly input into a
different format for storage (e.g., converting an IP address entered in dotted-decimal notation to an integer), converting
certain string-based values to all lowercase, and so on.

8.20 U

8.20.1 Universal Property

See Property, Universal.

8.20.2 User

In Synapse, a user is represented by an account in the Cortex. An account is required to authenticate (log in) to the
Cortex and is used for authorization (permissions) to access services and perform operations.

8.21 V

8.21.1 Variable

In Storm, a variable is an identifier with a value that can be defined and/or changed during normal execution, i.e., the
value is variable.

Contrast with Constant. See also Runtsafe and Non-Runtsafe.

See Storm Reference - Advanced - Variables for a more detailed discussion of variables.

8.21.2 View

Within Synapse, a view is a ordered set of layers (see Layer) and associated permissions that are used to synthesize
nodes from the Cortex, determining both the nodes that are visible to users via that view and where (i.e., in what layer)
any changes made by a view’s users are recorded. A default Cortex consists of a single layer and a single view, meaning
that by default all nodes are stored in one layer, all changes are written to that layer, and all users have the same visibility
(view) into Synapse’s data.

In multi-layer systems, a view consists of the set of layers that should be visible to users of that view, and the order in
which the layers should be instantiated for that view. Order matters because typically only the topmost layer is writeable
by that view’s users, with subsequent (lower) layers read-only. Explicit actions can push upper-layer writes downward
(merge) into lower layers.

8.20. U 475

Synapse Documentation, Release 2.141.0

8.22 W

8.22.1 Workflow

In Optic, a Workflow is a customized set of UI elements that provides an intuitive way to perform particular tasks.
Workflows may be installed by Synapse Power-Ups (see Power-Up) and give users a more tailored means (compared
to the Research Tool or Storm query bar) to work with Power-Up Storm commands or associated analysis tasks.

8.22.2 Workflows Tool

See Tool, Workflows.

8.22.3 Workspace

In Optic, a Workspace is a customizable user environment. Users may configure one or more Workspaces; different
Workspaces may be designed to support different analysis tasks.

8.22.4 Workspace, Global Default

In Optic, a Workspace that has been pre-configured with various custom settings and distributed for use. A Global
Default Workspace can be used to share a set of baseline Workspace customizations with a particular group or team.

8.22.5 Workspaces Tool

See Tool, Workspaces.

476 Chapter 8. Synapse Glossary

CHAPTER

NINE

SYNAPSE CONTRIBUTORS GUIDE

This Contributors Guide is written for people who will be working on the Synapse code base, contributing to it via
code patches, or maintaining written documentation.

The Contributors Guide is a living document and will continue to be updated and expanded. The current sections are:

9.1 Contributing to Synapse

• Project Style Guide.

• Git Hook & Syntax Checking.

• Contribution Process.

9.1.1 Project Style Guide

The following items should be considered when contributing to Synapse:

• The project is not currently strictly PEP8 compliant. Compliant sections include the following:

– Whitespace in Expressions and Statements.

– Programming Recommendations regarding singleton comparison (use ‘is’ instead of equality operators).

• Please keep line lengths under 120 characters.

• Use single quotes for string constants (including docstrings) unless double quotes are required.

Do this
foo = '1234'
NOT this
foo = "1234"

• Use a single line break between top level functions and class definitions, and class methods. This helps conserve
vertical space.

– Do this

import foo
import duck

def bar():
return True

(continues on next page)

477

https://www.python.org/dev/peps/pep-0008/#whitespace-in-expressions-and-statements
https://www.python.org/dev/peps/pep-0008/#programming-recommendations

Synapse Documentation, Release 2.141.0

(continued from previous page)

def baz():
return False

class Obj(object):

def __init__(self, a):
self.a = a

def gimmeA(self):
return self.a

∗ NOT this

import foo
import duck

def bar():
return True

def baz():
return False

class Obj(object):

def __init__(self, a):
self.a = a

def gimmeA(self):
return self.a

• Use Google style Python docstrings. This format is very readable and will allow type hinting for IDE users. See
the following notes below about our slight twist on this convention.

– Use ‘” quotes instead of “”” for starting/stoping doc strings.

– Google Style typically has the summary line after the opening ‘” marker. Place this summary value on the
new line following the opening ‘” marker.

– More information about Google Style docstrings (and examples) can be found at the examples here.

– We use Napoleon for parsing these doc strings. More info here.

– Synapse as a project is not written using the Napoleon format currently but all new modules should adhere
to that format.

– Synapse acceptable example:

def fooTheBar(param1, param2, **kwargs):
'''
Summary line goes first.

(continues on next page)

478 Chapter 9. Synapse Contributors Guide

http://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html
https://sphinxcontrib-napoleon.readthedocs.io

Synapse Documentation, Release 2.141.0

(continued from previous page)

Longer description lives here. It can be a bunch of stuff across
multiple blocks if necessary.

Example:
Examples should be given using either the ``Example`` section.
Sections support any reStructuredText formatting, including
literal blocks::

woah = fooTheBar('a', 'b', duck='quacker')

Section breaks are created by resuming unindented text. Section breaks
are also implicitly created anytime a new section starts.

`PEP 484`_ type annotations are supported. If attribute, parameter, and
return types are annotated according to `PEP 484`_, they do not need to be
included in the docstring:

Args:
param1 (int): The first parameter.
param2 (str): The second parameter.

Keyword Arguments:
duck (str): Optional keyword args which come in via **kwargs call␣

→˓conventions,
which modify function behavior, should be documented under␣

→˓the
Keyword Args section.

Returns:
bool: The return value. True for success, False otherwise.

The ``Returns`` section supports any reStructuredText formatting,
including literal blocks::

{
'param1': param1,
'param2': param2

}

Raises:
AttributeError: The ``Raises`` section is a list of all exceptions

that are relevant to the interface.
ValueError: If `param2` is equal to `param1`.

.. _PEP 484:
https://www.python.org/dev/peps/pep-0484/

'''
Do stuff the with args...

• Imports should first be sorted in order of shortest to longest import, then by alphabetical order (when lengths
match). Imports should be ordered starting from the Python standard library first, then any third party packages,

9.1. Contributing to Synapse 479

Synapse Documentation, Release 2.141.0

then any Synapse specific imports. The following example shows the recommended styling for imports:

Stdlib
import logging
import collections
Third Party Code
import barlib.duck as b_duck
import foolib.thing as f_thing
Synapse Code
import synapse.common as s_common
import synapse.cortex as s_cortex
import synapse.lib.config as s_config

• Previously we used * imports in the Synapse codebase (especially around synapse.exc and synapse.common).
If common functions or exceptions are needed, import synapse.common as noted above, and both the common
functions and the entirety of synapse.exc exceptions will be available. This provides a consistent manner for
referencing common functions and Synapse specific exception classes. New code should generally not use *
imports. Here is an example:

Do this
import synapse.common as s_common
tick = s_common.now()
if tick < 1000000000:
raise s_common.HitMaxTime(mesg='We have gone too far!')

NOT this
from synapse.common import *
tick = now()
if tick < 1000000000:
raise HitMaxTime(mesg='We have gone too far!')

• Function names should follow the mixedCase format for anything which is exposed as a externally facing API
on a object or module.

Do this
fooTheBar()
NOT this
foo_the_bar()

• Private methods should be marked as such with a proceeding underscore.

Do this
_internalThing()
NOT this
privateInternalThingDontUseMe()

– The corollary to this is that any function which is not private may be called arbitrarily at any time, so avoid
public API functions which are tightly bound to instance state. For example, if a processing routine is
broken into smaller subroutines for readability or testability, these routines are likely private and should not
be exposed to outside callers.

• Function calls with mandatory arguments should be called with positional arguments. Do not use keyword
arguments unless necessary.

480 Chapter 9. Synapse Contributors Guide

Synapse Documentation, Release 2.141.0

def foo(a, b, duck=None):
print(a, b, duck)

Do this
foo('a', 'b', duck='quacker')
Not this
foo(a='a', b='b', duck='quacker')

• Avoid the use of @property decorators. They do not reliably work over the telepath RMI.

• Logging should be setup on a per-module basis, with loggers created using calls to log-
ging.getLogger(__name__). This allows for module level control of loggers as neccesary.

– Logger calls should use logging string interpolation, instead of using % or .format() methods. See Python
Logging module docs for reference.

– Example:

Get the module level logger
logger = logging.getLogger(__name__)
Do this - it only forms the final string if the message is
actually going to be logged
logger.info('I am a message from %s about %s', 'bob', 'a duck')
NOT this - it performs the string format() call regardless of
whether or not the message is going to be logged.
logger.info('I am a message from {} about {}'.format('bob', 'a duck'))

• Convenience methods are available for unit tests, primarily through the SynTest class. This is a subclass of
unittest.TestCase and provides many short aliases for the assert* functions that TestCase provides.

– Ensure you are closing resources which may be open with test cases. Many Synapse objects may be used
as content managers which make this easy for test authors.

• Avoid the use of the built-in re module. Instead use the third-party regex module. regex is preferred due to
known bugs with unicode in the re module. Additionally, regex does provide some performance benefits over
re, especially when using pre-compiled regular expression statements.

• Whenever possible, regular expressions should be pre-compiled. String matches/comparisons should be per-
formed against the pre-compiled regex instance.

Do this
fqdnre = regex.compile(r'^[\w._-]+$', regex.U)

def checkValue(valu):
if not fqdnre.match(valu):

self._raiseBadValu(valu)

NOT this
def checkValue(valu):

if not regex.match(r'^[\w._-]+$', valu, regex.U)
self._raiseBadValu(valu)

• Return values should be preferred over raising exceptions. Functions/methods that return a value should return
None (or a default value) in the case of an error. The logic behind this is that it is much easier, cleaner, faster to
check a return value than to handle an exception.

Raising exceptions is reserved for “exceptional circumstances” and should not be used for normal program flow.

9.1. Contributing to Synapse 481

Synapse Documentation, Release 2.141.0

Do this
def getWidgetById(self, wid):

widget_hash = self._index.get(wid)
if widget_hash is None:

return None

widget = self._widgets.get(widget_hash)
return widget

NOT this
def getWidgetById(self, wid):

widget_hash = self._index.get(wid)
if widget_hash is None:

raise NotFoundError

widget = self._widgets.get(widget_hash)
if widget is None:

raise NotFoundError

return widget

Contributions to Synapse which do not follow the project style guidelines may not be accepted.

9.1.2 Git Hook & Syntax Checking

A set of helper scripts are available for doing python syntax checking. Basic syntax checking can be run with the
pycodestyle tool; while a a git pre-commit hook; and a script to run autopep8 on staged git files also exist to make
life easier.

The pre-commit hook does syntax checking on .py files which contain invalid syntax. The hook will ALSO run
nbstripout on .ipynb files to remove output data from cells. This results in cleaner diffs for .ipynb files over time.

1. An example of running the generic syntax check script is seen below:

~/git/synapse$ python -m pycodestyle
./synapse/tests/test_lib_types.py:397: [E226] missing whitespace around arithmetic␣
→˓operator
./synapse/tests/test_lib_types.py:398: [E226] missing whitespace around arithmetic␣
→˓operator

2. Installing the git hook is easy:

cp scripts/githooks/pre-commit .git/hooks/pre-commit
chmod +x .git/hooks/pre-commit

3. After installing the hook, attempting a commit with a syntax error will fail

~/git/synapse$ git commit -m "Demo commit"
PEP8 style violations have been detected. Please fix them
or force the commit with "git commit --no-verify".

./synapse/tests/test_lib_types.py:397: [E226] missing whitespace around arithmetic␣
→˓operator

(continues on next page)

482 Chapter 9. Synapse Contributors Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

./synapse/tests/test_lib_types.py:398: [E226] missing whitespace around arithmetic␣
→˓operator

4. This may be automatically fixed for you using the pep8_staged_files.py script. Note that most, but not all
syntax errors may be fixed with the helper script.

Run the pep8_staged_files.py script
~/git/synapse$./scripts/pep8_staged_files.py
Check the diff
~/git/synapse$ git diff synapse/tests/test_lib_types.py
diff --git a/synapse/tests/test_lib_types.py b/synapse/tests/test_lib_types.py
index 0e3a7498..b81575ef 100644
--- a/synapse/tests/test_lib_types.py
+++ b/synapse/tests/test_lib_types.py
class TypesTest(s_t_utils.SynTest):

def test_type(self):
@@ -397,8 +395,8 @@ class TypesTest(s_t_utils.SynTest):

self.eq({node.ndef[1] for node in nodes}, {'m'})
nodes = await alist(core.eval('testcomp +testcomp*range=((1024,␣

→˓grinch), (4096, zemeanone))'))
self.eq({node.ndef[1] for node in nodes}, {(2048, 'horton'), (4096,

→˓'whoville')})
- guid0 = 'B'*32
- guid1 = 'D'*32
+ guid0 = 'B' * 32
+ guid1 = 'D' * 32

nodes = await alist(core.eval(f'testguid +testguid*range=({guid0},
→˓{guid1})'))

self.eq({node.ndef[1] for node in nodes}, {'c' * 32})
nodes = await alist(core.eval('testint | noderefs |␣

→˓+testcomp*range=((1000, grinch), (4000, whoville))'))

Add the file and commit
~/git/synapse$ git add synapse/tests/test_lib_types.py
~/git/synapse$ git commit -m "Demo commit"
[some-branch f254f5bf] Demo commit
1 file changed, 3 insertions(+), 2 deletions(-)

9.1.3 Contribution Process

The Vertex Project welcomes contributions to the Synapse Hypergraph framework in order to continue its growth!

In order to contribute to the project, do the following:

1. Fork the Synapse repository from the Vertex Project. Make a new branch in git with a descriptive name for your
change. For example:

git checkout -b foohuman_new_widget

2. Make your changes. Changes should include the following information:

• Clear documentation for new features or changed behavior

9.1. Contributing to Synapse 483

Synapse Documentation, Release 2.141.0

• Unit tests for new features or changed behaviors

• If possible, unit tests should also show minimal use examples of new features.

3. Ensure that both your tests and existing Synapse tests successfully run. You can do that manually via the python
unittest module, or you can set up CircleCI to run tests for your fork (this is a exercise for the reader). The
following examples shows manual test runs:

pytest -v
pytest -v synapse/tests/your_test_file.py

If test coverage is desired, you can use the provided testrunner.sh shell script to run a test. This script will generate
HTML coverage reports and attempt to open those reports using xdg-open. This requires the pytest, pytest-cov,
pytest-xdist packages to be installed.

./scripts/testrunner.sh

./scripts/testrunner.sh synapse/tests/your_test_file.py

./scripts/testrunner.sh synapse/tests/your_test_file.py::YourTestClass

./scripts/testrunner.sh synapse/tests/your_test_file.py::YourTestClass::test_
→˓function

4. Rebase your feature branch on top of the latest master branch of the Vertex Project Synapse repository. This may
require you to add the Vertex Project repository to your git remotes. The following example of rebasing can be
followed:

Add the Vertex project repository as a remote named "upstream".
git remote add upstream https://github.com/vertexproject/synapse.git
Grab data from the upstream repository
git fetch --all
Change to your local git master branch
git checkout master
Merge changes from upstream/master to your local master
git merge upstream/master
Move back to your feature branch
git checkout foohuman_new_feature
Rebase your feature branch ontop of master.
This may require resolving merge conflicts.
git rebase master
Push your branch up to to your fork - this may require a --force
flag if you had previously pushed the branch prior to the rebase.
git push

5. Ensure your tests still pass with the rebased feature branch.

6. If your changes require extensive documentation, please very your API documentation builds properly and any
additional user or devops docs are created as needed. See Synapse Doc Mastering for documentation mastering
notes.

7. Create the Pull Request in Github, from your fork’s feature branch to the master branch of the Vertex Project
Synapse repository. Include a description and a reference to any open issues related to the PR.

484 Chapter 9. Synapse Contributors Guide

Synapse Documentation, Release 2.141.0

9.2 Synapse Doc Mastering

Documentation for creation and generation of documentation for Synapse.

9.2.1 Generating Docs Locally

API documentation is automatically generated from docstrings, and additional docs may also be added to Synapse as
well for more detailed discussions of Synapse subsystems. This is currently done via readthedocs.

In order to do local doc generation you can do the following steps:

1. Install the following packages (preferably in a virtualenv):

cd to your synapse checkout
cd synapse
Install additional packages - this assumes the environment already has
any additional packages required for executing synapse code in it.
python -m pip install -U -r requirements_doc.txt
Alternativly, you can install synapse directly in develop mode with pip
python -m pip install .[docs]

Install pandoc package, required for building HTML.
This may require sudo access depending on your environment.
apt install pandoc

2. Build the docs using sphinx. A makefile is provided which makes this easy.

Go to your synapse repo
cd synapse
Go to the docs folder
cd docs
Use the make command to build the HTML docs
make html

3. Now you can open the HTML docs for browsing them.

xdg-open _build/html/index.html

4. To rebuild documentation from scratch you can delete the _build directory and the api directories. Deleting the
api directory will cause the automatic Synapse API documentation to be rebuilt.

Delete the _build directory
make clean
Remove all old files and remove the autodocs directory
rm -rf synapse/autodocs

9.2. Synapse Doc Mastering 485

Synapse Documentation, Release 2.141.0

9.2.2 Mastering Docs

Synapse documents are mastered using either raw ReStructuredText (.rst) files or as Jupyter Notebooks (.ipynb). Note-
books should be used for documenting anything which may include Storm or code examples, so that the examples can
be written in a manner that can be asserted, so the documentation can be tested in the CI pipeline. Notebooks are also
executed during sphinx document build steps, so any output is current as of document build time. Text in Notebooks
should be mastered as RST using raw NbConvert cells.

In general, docs for Synapse fall into two categories: User guides and devops guides. User guides should be mastered
in ./docs/synapse/userguides and devops guides should be mastered in ./docs/synapse/devops. Additional
top level sections may be added over time.

In order to master Notebooks, you will need to setup the hide_code extension for Jupyter. That is used to selectively
hide code and output blocks as needed. For example, this allows use to hide the code used to run a Storm command
and show the output.

The following steps are a high level overview of the process to setup Jupyter and add or edit notebooks for documentation
purposes.

• Setup the hide_code extension:

Then install & enable the Jupyter hide-code extension
This only has to be run once.
jupyter nbextension install --py --user hide_code
jupyter nbextension enable --py --user hide_code
jupyter serverextension enable --py --user hide_code

• Launch Jupyter to run a local notebook server:

Go to your synapse repo
cd synapse
Launch the notebook server
jupyter notebook

• Navigate to the docs directory in Jupyter. Create a new notebook or open an existing notebook as needed. This
will likely be located under the docs/synapse/userguides or docs/synapse/devops directories.

• For Storm CLI integration, you can add the following code block into the first code cell in order to get some
Synapse Jupyter helpers:

import os, sys
try:

from synapse.lib.jupyter import *
except ImportError as e:

Insert the root path of the repository to sys.path.
This assumes the notebook is located three directories away
From the root synapse directory. It may need to be varied
synroot = os.path.abspath('../../../')
sys.path.insert(0, synroot)
from synapse.lib.jupyter import *

• You can use helpers to execute storm commands in the following fashion to get a CoreCmdr object, execute a
storm query printing the CLI ouput to screen, while asserting the number of nodes returned, and then closing
the object.

486 Chapter 9. Synapse Contributors Guide

Synapse Documentation, Release 2.141.0

Get a CoreCmdr object
corecmdr = await getTempCoreCmdr()
Execute the query and get the packed nodes.
podes = await corecmdr.eval('[inet:ipv4=1.2.3.4]',

num=1, cmdr=True)

cli> storm [inet:ipv4=1.2.3.4]
Executing query at 2023/07/12 15:13:45.126
...
inet:ipv4=1.2.3.4

.created = 2023/07/12 15:13:47.120
:type = unicast

complete. 1 nodes in 1995 ms (0/sec).

• We have a helper function available from the synapse.lib.jupyter imported earlier called getDocData(fn).
It will look for a given filename in the docs/docdata directory; and get its data. If the file ends with .json,
.jsonl, .yaml, or .mpk we will return the decoded data, otherwise we will return the raw bytes. This uses a
function called getDocPath(fn) which will find and return a file under the docs\docdata directory.

There is an example below showing the use of this to load a json file located at docs/docdata/
mastering_example_ingest.json, and adding the data to the Cortex via the addFeedData() function.

fn = 'mastering_example_ingest.json'
data = getDocData(fn)
await corecmdr.addFeedData('syn.nodes', data)
podes = await corecmdr.eval('#example', num=2, cmdr=True)

cli> storm #example
Executing query at 2023/07/12 15:13:47.173
inet:ipv4=0.0.0.1

.created = 2023/07/12 15:13:47.153
:type = private
#example

inet:fqdn=woot.com
.created = 2023/07/12 15:13:47.154
:domain = com
:host = woot
:issuffix = false
:iszone = true
:zone = woot.com
#example

complete. 2 nodes in 17 ms (117/sec).

• Since the Code cells are persistent, you can reuse the objects from earlier cells until a resource has been closed
(.fini()’d). The following example shows using the corecmdr object from the above code section to lift a
node and print it to the screen.

from pprint import pprint # We want to make our nodes pretty
podes = await(corecmdr.eval('inet:ipv4'))
for pode in podes:

pprint(pode)

9.2. Synapse Doc Mastering 487

Synapse Documentation, Release 2.141.0

(('inet:ipv4', 1),
{'iden': '2f70f448adcc6e9b9846aecfd034efc4f9d583e614f1b3489d1cf1d32fb64667',
'nodedata': {},
'path': {},
'props': {'.created': 1689174827153, 'type': 'private'},
'tagprops': {},
'tags': {'example': (None, None)}})

(('inet:ipv4', 16909060),
{'iden': '20153b758f9d5eaaa38e4f4a65c36da797c3e59e549620fa7c4895e1a920991f',
'nodedata': {},
'path': {},
'props': {'.created': 1689174827120, 'type': 'unicast'},
'tagprops': {},
'tags': {}})

• We can also execute a line of text in the CLI directly with the runCmdLine() function. For example, we can use
this to execute the help command and see all available commands to the raw CLI object. This will always print
the CLI output to the Jupyter cell output.

Run the help command.
text = 'help'
await corecmdr.runCmdLine(text)

cli> help
at - Adds a non-recurring cron job.
cron - Manages cron jobs in a cortex.
help - List commands and display help output.
hive - Manipulates values in a cell's Hive.
kill - Kill a running task/query within the cortex.
locs - List the current locals for a given CLI object.
log - Add a storm log to the local command session.
ps - List running tasks in the cortex.
quit - Quit the current command line interpreter.
storm - Execute a storm query.
trigger - Manipulate triggers in a cortex.

• In the above example, there is some Python syntax highlighting occuring. This may not be desired. In order to
disable that, add the following to the first line of the RST body of a document:

.. highlight:: none

This will disable all code highlighting in a given document, until another highlight directive is encountered.

• The following code and output will have their highlighting disabled, via the use of a pair of highlight directives
before and after the code cell. The first directive disabled highlighting, and the subsequent directive re-enabled
it for python3 highlighting.

Read the Sphinx Literal documentation for additional information about highlighting controls.

Run the help command again.
text = 'help'
await corecmdr.runCmdLine(text)

cli> help
at - Adds a non-recurring cron job.

(continues on next page)

488 Chapter 9. Synapse Contributors Guide

http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html#literal-blocks

Synapse Documentation, Release 2.141.0

(continued from previous page)

cron - Manages cron jobs in a cortex.
help - List commands and display help output.
hive - Manipulates values in a cell's Hive.
kill - Kill a running task/query within the cortex.
locs - List the current locals for a given CLI object.
log - Add a storm log to the local command session.
ps - List running tasks in the cortex.
quit - Quit the current command line interpreter.
storm - Execute a storm query.
trigger - Manipulate triggers in a cortex.

• When we are done with the CoreCmdr object, we should fini() is to remove any resources it may have created.
This is done below.

Close the object.
_ = await corecmdr.fini()

• You can enable the hide_code options by selecting the “View -> Cell Toolbar -> Hide code” option. This will
allow you to optionally hide code or output blocks.

• After adding text and code to a notebook, ensure that it runs properly and any produces the expected outputs.
You can then mark any code cells for hiding as necessary; then save your notebook. You can then follow the
earlier instructions for how to build and view the docs locally.

• Once new documents are made, they will needto be added to the appropriate toctree directive. There are three
index documents:

– index.rst - This controls top-level documentation ordering. It generally should not need to be edited unless
adding a new top level document or adding an additional section to the second level Synapse directory.

– synapse/userguide.rst - This controls the TOC ordering for user guides.

– synapse/devops.rst - The controls the TOC ordering for devops guides.

• Add notebooks to the repository using git add ..path/to/notebook.ipynb. You can then commit the
notebook using git commit. If you have the git pre-commit hook from scripts/githooks/pre-commit,
this will strip any output from the notebook upon commit time. This will result in cleaner git diff views over
time. See Git Hook & Syntax Checking

9.2.3 Under the hood

Docs are built from Notebooks using a custom conf.py file which executes the notebooks, converting them to RST and
using a custom template which looks for flags set by the hide_code extension in order to hide the blocks as needed.

9.3 Synapse Release Process

This doc details the release process we use for Synapse.

9.3. Synapse Release Process 489

Synapse Documentation, Release 2.141.0

9.3.1 Github Milestone Management

The current milestone and the next milestone should be created in github. For example, if the current release is v0.2.1,
we should have a v0.2.2 and v0.2.3 milestones created. When PRs are created or issues are addressed (via PR), they
should be added to the milestone. This allows us to easily pull stories and PRs for release note generation.

9.3.2 Release Notes Format

Release notes should be compiled from the issues and PRs assigned to the milestone being released. These can all be
obtained via a issue search in github. For example, if we’re releasing v0.2.2, we can pull all the stories via the following
query in github:

milestone:v0.2.2

Release notes should break things out by the following categories:

1. New Features in Synapse & Enhancements to existing features

2. Bugfixes

3. Major documentation updates

Short text form is fine for describing these.

9.3.3 Cutting the Release

This includes three parts:

1. Preparing the release notes/changelog information.

2. Tagging the release and pushing to github.

3. Close out the milestone in Github.

Preparing The Release Notes

Changelog notes are kept in the CHANGELOG.rst file. This allows us to keep a copy of the release notes in the repository,
as well as having them automatically built into our documentation. This file needs to be updated prior to the release
tagging. The formatting for adding the content to the file is the following:

<git tag> - YYYY-MM-DD
======================

Features and Enhancements

- Add new features (`#XXX <https://github.com/vertexproject/synapse/pull/XXX>`_)

Bugfixes

- Fix old bugs (`#XXX <https://github.com/vertexproject/synapse/pull/XXX>`_)

Improved Documentation

(continues on next page)

490 Chapter 9. Synapse Contributors Guide

Synapse Documentation, Release 2.141.0

(continued from previous page)

- Write awesome docs (`#XXX <https://github.com/vertexproject/synapse/pull/XXX>`_)

This also allows for machine parseable notes so that pyup.io can show our changelogs.

It is recommended that as new PRs are made, the PR includes an update to the CHANGELOG.rst file so that during
a release, notes don’t have to be updated. If that has been done; a simple double check of the issues in the Github
milestone should show anything missing.

When prepping the release, it is okay to add a blank template with the tag set to the next patch value and TBD date, so
that PRs have a place to put their changelogs as they come in.

Tagging the Release

Version tagging in Synapse is managed by bumpversion. This handles updating the .py files containing the version
number in them, as well as creating git tags and commit messages. There should not be a need to manually edit version
numbers or do git commits.

bumpversion is a python application, and can be installed via pip:

python -m pip install bumpversion

Warning: Do not use bump2version, the API compatible fork of bumpversion. It changed how tags are made
which are incompatible with our current CircleCI based workflows.

Bumpversion is designed for projects which do semantic versioning. This can be done via the following (assuming the
vertexproject/synapse remote is called ‘upstream’):

Ensure we're on master with the latest version
git checkout master && git fetch --all && git merge upstream/master
Do a dry-run to ensure that we're updating things properly
bumpversion --dry-run --verbose patch
Bump the patch version
bumpversion --verbose patch
Ensure that no erroneous changes were introduced by bumvpersion
git show HEAD
Push the new commit and tag up to github
git push upstream
Push the new tag up explicitly. Do not use --tags
git push upstream <the new tag>

Next, go to github at https://github.com/vertexproject/synapse/tags and edit the release notes for the tag that was pushed
up. Add a link to the release notes from the readthedocs changelog page for the current release.

9.3. Synapse Release Process 491

https://github.com/vertexproject/synapse/tags

Synapse Documentation, Release 2.141.0

Closing Milestone in Github

Close out the milestone associated with the just released version at the milestones page so no new issues are added to
it.

Publishing on Pypi

Publishing packages to PyPI is done via CircleCi configuration.

Updating Docker images

Publishing docker images to DockerHub is done via CircleCi configuration.

492 Chapter 9. Synapse Contributors Guide

https://github.com/vertexproject/synapse/milestones/

CHAPTER

TEN

SYNAPSE PYTHON API

10.1 synapse package

The synapse intelligence analysis framework.

10.1.1 Subpackages

synapse.cmds package

Submodules

synapse.cmds.boss module

class synapse.cmds.boss.KillCmd(cli, **opts)
Bases: Cmd

Kill a running task/query within the cortex.

Syntax:
kill <iden>

Users may specify a partial iden GUID in order to kill exactly one matching process based on the partial guid.

async runCmdOpts(opts)
Perform the command actions. Must be implemented by Cmd implementers.

Parameters
opts (dict) – Options dictionary.

class synapse.cmds.boss.PsCmd(cli, **opts)
Bases: Cmd

List running tasks in the cortex.

async runCmdOpts(opts)
Perform the command actions. Must be implemented by Cmd implementers.

Parameters
opts (dict) – Options dictionary.

493

Synapse Documentation, Release 2.141.0

synapse.cmds.cortex module

class synapse.cmds.cortex.Log(cli, **opts)
Bases: Cmd

Add a storm log to the local command session.

Notes

By default, the log file contains all messages received from the execution of a Storm query by the current CLI.
By default, these messages are saved to a file located in ~/.syn/stormlogs/storm_(date).(format).

Examples

Enable logging all messages to mpk files (default) log –on

Disable logging and close the current file log –off

Enable logging, but only log edits. Log them as jsonl instead of mpk. log –on –edits-only –format jsonl

Enable logging, but log to a custom path: log –on –path /my/aweome/log/directory/storm20010203.mpk

Log only the node messages which come back from a storm cmd execution. log –on –nodes-only –path
/my/awesome/log/directory/stormnodes20010203.mpk

closeLogFd()

encodeMsg(mesg)
Get byts for a message

onStormMesg(mesg)

openLogFd(opts)

queueLoop()

async runCmdOpts(opts)
Perform the command actions. Must be implemented by Cmd implementers.

Parameters
opts (dict) – Options dictionary.

save(mesg)

splicetypes = ('tag:add', 'tag:del', 'node:add', 'node:del', 'prop:set', 'prop:del',
'tag:prop:set', 'tag:prop:del')

class synapse.cmds.cortex.StormCmd(cli, **opts)
Bases: Cmd

Execute a storm query.

Syntax:
storm <query>

Parameters
query – The storm query

494 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Optional Arguments:
–hide-tags: Do not print tags. –hide-props: Do not print secondary properties. –hide-unknown: Do not
print messages which do not have known handlers. –show-nodeedits: Show full nodeedits (otherwise
printed as a single . per edit). –editformat <format>: What format of edits the server shall emit.

Options are

• nodeedits (default),

• splices (similar to < 2.0.0),

• count (just counts of nodeedits), or

• none (no such messages emitted).

–show-prov: Show provenance messages. –raw: Print the nodes in their raw format. This overrides –hide-
tags and –hide-props. –debug: Display cmd debug information along with nodes in raw format. This
overrides other display arguments. –path: Get path information about returned nodes. –show <names>:
Limit storm events (server-side) to the comma-separated list. –file <path>: Run the storm query specified
in the given file path. –optsfile <path>: Run the query with the given options from a JSON/YAML file.

Examples

storm inet:ipv4=1.2.3.4 storm –debug inet:ipv4=1.2.3.4

editformat_enums = ('nodeedits', 'splices', 'count', 'none')

printf(mesg, addnl=True, color=None)

async runCmdOpts(opts)
Perform the command actions. Must be implemented by Cmd implementers.

Parameters
opts (dict) – Options dictionary.

synapse.cmds.cron module

class synapse.cmds.cron.At(cli, **opts)
Bases: Cmd

Adds a non-recurring cron job.

It will execute a Storm query at one or more specified times.

List/details/deleting cron jobs created with ‘at’ use the same commands as other cron jobs: cron list/stat/del
respectively.

Syntax:
at (time|+time delta)+ {query}

10.1. synapse package 495

Synapse Documentation, Release 2.141.0

Notes

This command accepts one or more time specifications followed by exactly one storm query in curly braces.
Each time specification may be in synapse time delta format (e.g + 1 day) or synapse time format (e.g.
20501217030432101). Seconds will be ignored, as cron jobs’ granularity is limited to minutes.

All times are interpreted as UTC.

The other option for time specification is a relative time from now. This consists of a plus sign, a positive integer,
then one of ‘minutes, hours, days’.

Note that the record for a cron job is stored until explicitly deleted via “cron del”.

Examples

Run a storm query in 5 minutes at +5 minutes {[inet:ipv4=1]}

Run a storm query tomorrow and in a week at +1 day +7 days {[inet:ipv4=1]}

Run a query at the end of the year Zulu at 20181231Z2359 {[inet:ipv4=1]}

async runCmdOpts(opts)
Perform the command actions. Must be implemented by Cmd implementers.

Parameters
opts (dict) – Options dictionary.

class synapse.cmds.cron.Cron(cli, **opts)
Bases: Cmd

Manages cron jobs in a cortex.

Cron jobs are rules persistently stored in a cortex such that storm queries automatically run on a time schedule.

Cron jobs may be be recurring or one-time. Use the ‘at’ command to add one-time jobs.

A subcommand is required. Use ‘cron -h’ for more detailed help.

async runCmdOpts(opts)
Perform the command actions. Must be implemented by Cmd implementers.

Parameters
opts (dict) – Options dictionary.

synapse.cmds.hive module

class synapse.cmds.hive.HiveCmd(cli, **opts)
Bases: Cmd

Manipulates values in a cell’s Hive.

A Hive is a hierarchy persistent storage mechanism typically used for configuration data.

static parsepath(path)
Turn a slash-delimited path into a list that hive takes

async runCmdOpts(opts)
Perform the command actions. Must be implemented by Cmd implementers.

Parameters
opts (dict) – Options dictionary.

496 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

synapse.cmds.trigger module

class synapse.cmds.trigger.Trigger(cli, **opts)
Bases: Cmd

Manipulate triggers in a cortex.

Triggers are rules persistently stored in a cortex such that storm queries automatically run when a particular event
happens.

A subcommand is required. Use trigger -h for more detailed help.

async runCmdOpts(opts)
Perform the command actions. Must be implemented by Cmd implementers.

Parameters
opts (dict) – Options dictionary.

synapse.data package

synapse.data.get(name, defval=None)
Return an object from the embedded synapse data folder.

Example

for tld in synapse.data.get(‘iana.tlds’):
dostuff(tld)

NOTE: Files are named synapse/data/<name>.mpk

synapse.data.path(*names)

synapse.lib package

Subpackages

synapse.lib.crypto package

Submodules

synapse.lib.crypto.coin module

synapse.lib.crypto.coin.bch_check(match: Match)

synapse.lib.crypto.coin.btc_base58_check(match: Match)

synapse.lib.crypto.coin.btc_bech32_check(match: Match)

synapse.lib.crypto.coin.cardano_byron_check(match: Match)

synapse.lib.crypto.coin.cardano_shelly_check(match: Match)

synapse.lib.crypto.coin.eth_check(match: Match)

10.1. synapse package 497

Synapse Documentation, Release 2.141.0

synapse.lib.crypto.coin.ether_eip55(body: str)

synapse.lib.crypto.coin.logger = <Logger synapse.lib.crypto.coin (WARNING)>

synapse.lib.crypto.coin contains functions for verifying whether or not a given regex match containing a valu is
valid for a given type of coin.

these functions are intended to be used with synapse.lib.scrape.

synapse.lib.crypto.coin.substrate_check(match: Match)

synapse.lib.crypto.coin.xrp_check(match: Match)

synapse.lib.crypto.ecc module

class synapse.lib.crypto.ecc.PriKey(priv)
Bases: object

A helper class for using ECC private keys.

dump()

Get the private key bytes in DER/PKCS8 format.

Returns
The DER/PKCS8 encoded private key.

Return type
bytes

exchange(pubkey)
Perform a ECDH key exchange with a public key.

Parameters
pubkey (PubKey) – A PubKey to perform the ECDH with.

Returns
The ECDH bytes. This is deterministic for a given pubkey and private key.

Return type
bytes

static generate()

Generate a new ECC PriKey instance.

Returns
A new PriKey instance.

Return type
PriKey

iden()

Return a SHA256 hash for the public key (to be used as a GUID).

Returns
The SHA256 hash of the public key bytes.

Return type
str

498 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

static load(byts)
Create a PriKey instance from DER/PKCS8 encoded bytes.

Parameters
byts (bytes) – Bytes to load

Returns
A new PubKey instance.

Return type
PriKey

public()

Get the PubKey which corresponds to the ECC PriKey.

Returns
A new PubKey object whose key corresponds to the private key.

Return type
PubKey

sign(byts)
Compute the ECC signature for the given bytestream.

Parameters
byts (bytes) – The bytes to sign.

Returns
The RSA Signature bytes.

Return type
bytes

class synapse.lib.crypto.ecc.PubKey(publ)
Bases: object

A helper class for using ECC public keys.

dump()

Get the public key bytes in DER/SubjectPublicKeyInfo format.

Returns
The DER/SubjectPublicKeyInfo encoded public key.

Return type
bytes

iden()

Return a SHA256 hash for the public key (to be used as a GUID).

Returns
The SHA256 hash of the public key bytes.

Return type
str

static load(byts)
Create a PubKey instance from DER/PKCS8 encoded bytes.

Parameters
byts (bytes) – Bytes to load

10.1. synapse package 499

Synapse Documentation, Release 2.141.0

Returns
A new PubKey instance.

Return type
PubKey

verify(byts, sign)
Verify the signature for the given bytes using the ECC public key.

Parameters

• byts (bytes) – The data bytes.

• sign (bytes) – The signature bytes.

Returns
True if the data was verified, False otherwise.

Return type
bool

synapse.lib.crypto.ecc.doECDHE(statprv_u, statpub_v, ephmprv_u, ephmpub_v, length=64, salt=None,
info=None)

Perform one side of an Ecliptic Curve Diffie Hellman Ephemeral key exchange.

Parameters

• statprv_u (PriKey) – Static Private Key for U

• (PubKey (statpub_v) – Static Public Key for V

• ephmprv_u (PriKey) – Ephemeral Private Key for U

• ephmpub_v (PubKey) – Ephemeral Public Key for V

• length (int) – Number of bytes to return

• salt (bytes) – Salt to use when computing the key.

• info (bytes) – Additional information to use when computing the key.

Notes

This makes no assumption about the reuse of the Ephemeral keys passed to the function. It is the caller’s respon-
sibility to destroy the keys after they are used for doing key generation. This implementation is the dhHybrid1
scheme described in NIST 800-56A Revision 2.

Returns
The derived key.

Return type
bytes

500 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

synapse.lib.crypto.passwd module

async synapse.lib.crypto.passwd.checkShadowV2(passwd: AnyStr, shadow: Dict)→ bool
Check a password against a shadow dictionary.

Parameters

• passwd (str) – Password to check.

• shadow (dict) – Data to check the password against.

Returns
True if the password is valid, false otherwise.

Return type
bool

async synapse.lib.crypto.passwd.getPbkdf2(passwd: AnyStr)→ Dict

async synapse.lib.crypto.passwd.getShadowV2(passwd: AnyStr)→ Dict
Get the shadow dictionary for a given password.

Parameters

• passwd (str) – Password to hash.

• ptyp (str) – The password hash type.

Returns
A dictionary containing shadowed password information.

Return type
dict

async synapse.lib.crypto.passwd.verifyPbkdf2(passwd: AnyStr, shadow: Dict)→ bool

synapse.lib.crypto.rsa module

class synapse.lib.crypto.rsa.PriKey(priv)
Bases: object

A helper class for using RSA private keys.

Signing methods use RSA-PSS and MFG1 with sha256 hashing.

iden()

Return a SHA256 hash for the public key (to be used as a GUID).

Returns
The SHA256 hash of the public key bytes.

Return type
str

public()

Get the PubKey which corresponds to the RSA PriKey.

Returns
A new PubKey object whose key corresponds to the private key.

Return type
PubKey

10.1. synapse package 501

Synapse Documentation, Release 2.141.0

sign(byts)
Compute the RSA signature for the given bytestream.

Parameters
byts (bytes) – The bytes to sign.

Returns
The RSA Signature bytes.

Return type
bytes

signitem(item)

Compute the RSA signature for the given python primitive.

Parameters
item – The item to sign. This will be flattened and msgpacked prior to signing.

Returns
The RSA Signature bytes.

Return type
bytes

class synapse.lib.crypto.rsa.PubKey(publ)
Bases: object

A helper class for using RSA public keys.

dump()

Get the public key bytes in DER/SubjectPublicKeyInfo format.

Returns
The DER/SubjectPublicKeyInfo encoded public key.

Return type
bytes

iden()

Return a SHA256 hash for the public key (to be used as a GUID).

Returns
The SHA256 hash of the public key bytes.

Return type
str

static load(byts)
Create a PubKey instance from DER/PKCS8 encoded bytes.

Parameters
byts (bytes) – Bytes to load

Returns
A new PubKey instance.

Return type
PubKey

verify(byts, sign)
Verify the signature for the given bytes using the RSA public key.

Parameters

502 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

• byts (bytes) – The data bytes.

• sign (bytes) – The signature bytes.

Returns
True if the data was verified, False otherwise.

Return type
bool

verifyitem(item, sign)
Verify the signature for the given item with the RSA public key.

Parameters

• item – The Python primitive to verify.

• sign (bytes) – The signature bytes.

Returns
True if the data was verified, False otherwise.

Return type
bool

synapse.lib.crypto.tinfoil module

class synapse.lib.crypto.tinfoil.CryptSeq(rx_key, tx_key, initial_rx_seq=0, initial_tx_seq=0)
Bases: object

Applies and verifies sequence numbers of encrypted messages coming and going

Parameters

• rx_key (bytes) – TX key (used with TinFoilHat).

• tx_key (bytes) – RX key (used with TinFoilHat).

• initial_rx_seq (int) – Starting rx sequence number.

• initial_tx_seq (int) – Starting tx sequence number.

decrypt(ciphertext)
Decrypt a message, validating its sequence number is as we expect.

Parameters
ciphertext (bytes) – The message to decrypt and verify.

Returns
A mesg.

Return type
mesg

Raises
s_exc.CryptoErr – If the message decryption fails or the sequence number was unexpected.

encrypt(mesg)
Wrap a message with a sequence number and encrypt it.

Parameters
mesg – The mesg to encrypt.

10.1. synapse package 503

Synapse Documentation, Release 2.141.0

Returns
The encrypted message.

Return type
bytes

class synapse.lib.crypto.tinfoil.TinFoilHat(ekey)
Bases: object

The TinFoilHat class implements a GCM-AES encryption/decryption class.

Parameters

• ekey (bytes) – A 32 byte key used for doing encryption & decryption. It

• manner. (is assumed the caller has generated the key in a safe) –

dec(byts)
Decode an envelope dict and decrypt the given bytes.

Parameters
byts (bytes) – Bytes to decrypt.

Returns
Decrypted message.

Return type
bytes

enc(byts, asscd=None)
Encrypt the given bytes and return an envelope dict in msgpack form.

Parameters

• byts (bytes) – The message to be encrypted.

• asscd (bytes) – Extra data that needs to be authenticated (but not encrypted).

Returns
The encrypted message. This is a msgpacked dictionary containing the IV, ciphertext, and
associated data.

Return type
bytes

synapse.lib.crypto.tinfoil.newkey()

Generate a new, random 32 byte key.

Returns
32 random bytes

Return type
bytes

504 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

synapse.lib.platforms package

Home for platform specific code such as thishost info.

all platform modules must be importable from any platform.

(guard any platform specific code with appropriate conditionals)

Submodules

synapse.lib.platforms.common module

synapse.lib.platforms.common.daemonize()

For unix platforms, form a new process group using fork().

synapse.lib.platforms.common.getLibC()

Return a ctypes reference to libc

synapse.lib.platforms.common.getVolInfo(*paths)
Retrieve volume usage info for the given path.

synapse.lib.platforms.common.inet_ntop(afam, byts)

synapse.lib.platforms.common.inet_pton(afam, text)

synapse.lib.platforms.common.initHostInfo()

synapse.lib.platforms.common.setProcName(name)
Set the process title/name for process listing.

synapse.lib.platforms.darwin module

synapse.lib.platforms.darwin.initHostInfo()

synapse.lib.platforms.freebsd module

synapse.lib.platforms.freebsd.initHostInfo()

synapse.lib.platforms.linux module

synapse.lib.platforms.linux.getAvailableMemory()

Returns the available memory of the system

synapse.lib.platforms.linux.getCurrentLockedMemory()

Return the amount of memory this process has locked

synapse.lib.platforms.linux.getFileMappedRegion(filename)
Return a tuple of address and length of a particular file memory mapped into this process

synapse.lib.platforms.linux.getMaxLockedMemory()

Returns the maximum amount of memory this process can lock

10.1. synapse package 505

Synapse Documentation, Release 2.141.0

synapse.lib.platforms.linux.getTotalMemory()

Get the total amount of memory in the system.

Notes

This attempts to get information from cgroup data before falling back to /proc/meminfo data.

Returns
The number of bytes of memory available in the system.

Return type
int

synapse.lib.platforms.linux.initHostInfo()

synapse.lib.platforms.linux.maximizeMaxLockedMemory()

Remove any discretionary (i.e. soft) limits

synapse.lib.platforms.linux.mlock(address, length)
Lock a chunk of memory to prevent it from being swapped out, raising an OSError on error

synapse.lib.platforms.linux.mmap(address, length, prot, flags, fd, offset)
A simple mmap context manager that releases the GIL while mapping and unmapping. It raises an OSError on
error

synapse.lib.platforms.linux.munlock(address, length)
Unlock a chunk of memory, raising an OSError on error

synapse.lib.platforms.windows module

synapse.lib.platforms.windows.daemonize()

synapse.lib.platforms.windows.getLibC()

Override to account for python on windows not being able to find libc sometimes. . .

synapse.lib.platforms.windows.initHostInfo()

class synapse.lib.platforms.windows.sockaddr

Bases: Structure

ipv4

Structure/Union member

ipv6

Structure/Union member

sa_family

Structure/Union member

506 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

synapse.lib.stormlib package

Submodules

synapse.lib.stormlib.auth module

synapse.lib.stormlib.backup module

class synapse.lib.stormlib.backup.BackupLib(runt, name=())
Bases: Lib

A Storm Library for interacting with the backup APIs in the Cortex.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

synapse.lib.stormlib.basex module

class synapse.lib.stormlib.basex.BaseXLib(runt, name=())
Bases: Lib

A Storm library which implements helpers for encoding and decoding strings using an arbitrary charset.

async decode(text, charset)

async encode(byts, charset)

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

synapse.lib.stormlib.cell module

class synapse.lib.stormlib.cell.CellLib(runt, name=())
Bases: Lib

A Storm Library for interacting with the Cortex.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

10.1. synapse package 507

Synapse Documentation, Release 2.141.0

Return type
dict

synapse.lib.stormlib.cell.getMaxHotFixes()

synapse.lib.stormlib.compression module

class synapse.lib.stormlib.compression.Bzip2Lib(runt, name=())
Bases: Lib

A Storm library which implements helpers for bzip2 compression.

async en(valu)

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async un(valu)

class synapse.lib.stormlib.compression.GzipLib(runt, name=())
Bases: Lib

A Storm library which implements helpers for gzip compression.

async en(valu)

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async un(valu)

class synapse.lib.stormlib.compression.ZlibLib(runt, name=())
Bases: Lib

A Storm library which implements helpers for zlib compression.

async en(valu)

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async un(valu)

508 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

synapse.lib.stormlib.easyperm module

class synapse.lib.stormlib.easyperm.LibEasyPerm(runt, name=())
Bases: Lib

A Storm Library for interacting with easy perm dictionaries.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

synapse.lib.stormlib.ethereum module

class synapse.lib.stormlib.ethereum.EthereumLib(runt, name=())
Bases: Lib

A Storm library which implements helpers for Ethereum.

async eip55(addr)

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

synapse.lib.stormlib.gen module

class synapse.lib.stormlib.gen.LibGen(runt, name=())
Bases: Lib

A Storm Library for secondary property based deconfliction.

synapse.lib.stormlib.graph module

class synapse.lib.stormlib.graph.GraphLib(runt, name=())
Bases: Lib

A Storm Library for interacting with graph projections in the Cortex.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

10.1. synapse package 509

Synapse Documentation, Release 2.141.0

synapse.lib.stormlib.hashes module

class synapse.lib.stormlib.hashes.LibHashes(runt, name=())
Bases: Lib

A Storm Library for hashing bytes

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormlib.hashes.LibHmac(runt, name=())
Bases: Lib

A Storm library for computing RFC2104 HMAC values.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

synapse.lib.stormlib.hex module

class synapse.lib.stormlib.hex.HexLib(runt, name=())
Bases: Lib

A Storm library which implements helpers for hexadecimal encoded strings.

async decode(valu)

async encode(valu)

async fromint(valu, length, signed=False)

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async signext(valu, length)

async toint(valu, signed=False)

async trimext(valu)

510 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

synapse.lib.stormlib.imap module

class synapse.lib.stormlib.imap.ImapLib(runt, name=())
Bases: Lib

A Storm library to connect to an IMAP server.

async connect(host, port=993, timeout=30, ssl=True)

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormlib.imap.ImapServer(runt, imap_cli, path=None)
Bases: StormType

An IMAP server for retrieving email messages.

async delete(uid_set)

async fetch(uid)

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async list(reference_name='""', pattern='*')

async login(user, passwd)

async markSeen(uid_set)

async search(*args)

async select(mailbox='INBOX')

async synapse.lib.stormlib.imap.run_imap_coro(coro)
Raises or returns data.

synapse.lib.stormlib.infosec module

synapse.lib.stormlib.infosec.CVSS2_calc(vdict)

synapse.lib.stormlib.infosec.CVSS2_round(x)

synapse.lib.stormlib.infosec.CVSS3_0_calc(vdict)

10.1. synapse package 511

Synapse Documentation, Release 2.141.0

synapse.lib.stormlib.infosec.CVSS3_0_round(x)
Round up to the nearest one decimal place. From the JS reference implementation: https://www.first.org/cvss/
calculator/cvsscalc30.js

synapse.lib.stormlib.infosec.CVSS3_1_calc(vdict)

synapse.lib.stormlib.infosec.CVSS3_1_round(x)
Round up to the nearest one decimal place. From the JS reference implementation: https://www.first.org/cvss/
calculator/cvsscalc31.js

synapse.lib.stormlib.infosec.CVSS_get_coefficients(vdict, vers)

class synapse.lib.stormlib.infosec.CvssLib(runt, name=())
Bases: Lib

A Storm library which implements CVSS score calculations.

async calculate(node, save=True, vers='3.1')

async calculateFromProps(props, vers='3.1')

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async saveVectToNode(node, text)

async vectToProps(text)

async vectToScore(vect, vers=None)

synapse.lib.stormlib.infosec.roundup(x)

synapse.lib.stormlib.ipv6 module

class synapse.lib.stormlib.ipv6.LibIpv6(runt, name=())
Bases: Lib

A Storm Library for providing ipv6 helpers.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

512 Chapter 10. Synapse Python API

https://www.first.org/cvss/calculator/cvsscalc30.js
https://www.first.org/cvss/calculator/cvsscalc30.js
https://www.first.org/cvss/calculator/cvsscalc31.js
https://www.first.org/cvss/calculator/cvsscalc31.js

Synapse Documentation, Release 2.141.0

synapse.lib.stormlib.iters module

class synapse.lib.stormlib.iters.LibIters(runt, name=())
Bases: Lib

A Storm library for providing iterator helpers.

async enum(genr)

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

synapse.lib.stormlib.json module

class synapse.lib.stormlib.json.JsonLib(runt, name=())
Bases: Lib

A Storm Library for interacting with Json data.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormlib.json.JsonSchema(runt, schema, use_default=True)
Bases: StormType

A JsonSchema validation object for use in validating data structures in Storm.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async stormrepr()

synapse.lib.stormlib.json.compileJsSchema(schema, use_default=True)

synapse.lib.stormlib.json.runJsSchema(schema, item, use_default=True)

10.1. synapse package 513

Synapse Documentation, Release 2.141.0

synapse.lib.stormlib.log module

class synapse.lib.stormlib.log.LoggerLib(runt, name=())
Bases: Lib

A Storm library which implements server side logging. These messages are logged to the synapse.storm.log
logger.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

synapse.lib.stormlib.macro module

class synapse.lib.stormlib.macro.LibMacro(runt, name=())
Bases: Lib

A Storm Library for interacting with the Storm Macros in the Cortex.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormlib.macro.MacroExecCmd(runt, runtsafe)
Bases: Cmd

Execute a named macro.

Example

inet:ipv4#cno.threat.t80 | macro.exec enrich_foo

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

name = 'macro.exec'

514 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

synapse.lib.stormlib.math module

class synapse.lib.stormlib.math.MathLib(runt, name=())
Bases: Lib

A Storm library for performing math operations.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

synapse.lib.stormlib.mime module

class synapse.lib.stormlib.mime.LibMimeHtml(runt, name=())
Bases: Lib

A Storm library for manipulating HTML text.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async totext(html)

synapse.lib.stormlib.mime.htmlToText(html)

synapse.lib.stormlib.model module

class synapse.lib.stormlib.model.LibModel(runt, name=())
Bases: Lib

A Storm Library for interacting with the Data Model in the Cortex.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormlib.model.LibModelDeprecated(runt, name=())
Bases: Lib

A storm library for interacting with the model deprecation mechanism.

10.1. synapse package 515

Synapse Documentation, Release 2.141.0

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormlib.model.LibModelEdge(runt, name=())
Bases: Lib

A Storm Library for interacting with light edges and manipulating their key-value attributes.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

hivepath = ('cortex', 'model', 'edges')

validedgekeys = ('doc',)

class synapse.lib.stormlib.model.LibModelTags(runt, name=())
Bases: Lib

A Storm Library for interacting with tag specifications in the Cortex Data Model.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormlib.model.ModelForm(form, path=None)
Bases: Prim

Implements the Storm API for a Form.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

value()

class synapse.lib.stormlib.model.ModelProp(prop, path=None)
Bases: Prim

Implements the Storm API for a Property.

516 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

value()

class synapse.lib.stormlib.model.ModelTagProp(tagprop, path=None)
Bases: Prim

Implements the Storm API for a Tag Property.

value()

class synapse.lib.stormlib.model.ModelType(valu, path=None)
Bases: Prim

A Storm types wrapper around a lib.types.Type

value()

synapse.lib.stormlib.modelext module

class synapse.lib.stormlib.modelext.LibModelExt(runt, name=())
Bases: Lib

A Storm library for manipulating extended model elements.

async addForm(formname, basetype, typeopts, typeinfo)

async addFormProp(formname, propname, typedef, propinfo)

async addTagProp(propname, typedef, propinfo)

async addUnivProp(propname, typedef, propinfo)

async delForm(formname)

async delFormProp(formname, propname)

async delTagProp(propname)

async delUnivProp(propname)

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

synapse.lib.stormlib.notifications module

class synapse.lib.stormlib.notifications.NotifyLib(runt, name=())
Bases: Lib

A Storm library for a user interacting with their notifications.

async get(indx)

10.1. synapse package 517

Synapse Documentation, Release 2.141.0

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async list(size=None)

synapse.lib.stormlib.oauth module

class synapse.lib.stormlib.oauth.OAuthV1Client(runt, ckey, csecret, atoken, asecret, sigtype,
path=None)

Bases: StormType

A client for doing OAuth V1 Authentication from Storm.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormlib.oauth.OAuthV1Lib(runt, name=())
Bases: Lib

A Storm library to handle OAuth v1 authentication.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormlib.oauth.OAuthV2Lib(runt, name=())
Bases: Lib

A Storm library for managing OAuth V2 clients.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

518 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

synapse.lib.stormlib.project module

class synapse.lib.stormlib.project.LibProjects(runt, name=())
Bases: Lib

A Storm Library for interacting with Projects in the Cortex.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async iter()

class synapse.lib.stormlib.project.Project(runt, node, path=None)
Bases: Prim

Implements the Storm API for Project objects, which are used for managing a scrum style project in the Cortex

confirm(perm)

async nodes()

value()

class synapse.lib.stormlib.project.ProjectEpic(proj, node)
Bases: Prim

Implements the Storm API for a ProjectEpic

async nodes()

async value()

class synapse.lib.stormlib.project.ProjectEpics(proj)
Bases: Prim

Implements the Storm API for ProjectEpics objects, which are collections of ProjectEpic objects associated with
a particular Project

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async iter()

class synapse.lib.stormlib.project.ProjectSprint(proj, node)
Bases: Prim

Implements the Storm API for a ProjectSprint

async nodes()

10.1. synapse package 519

Synapse Documentation, Release 2.141.0

async value()

class synapse.lib.stormlib.project.ProjectSprints(proj)
Bases: Prim

Implements the Storm API for ProjectSprints objects, which are collections of sprints associated with a single
project

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async iter()

class synapse.lib.stormlib.project.ProjectTicket(proj, node)
Bases: Prim

Implements the Storm API for a ProjectTicket.

async nodes()

async value()

class synapse.lib.stormlib.project.ProjectTicketComment(ticket, node)
Bases: Prim

Implements the Storm API for a ProjectTicketComment

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async nodes()

async value()

class synapse.lib.stormlib.project.ProjectTicketComments(ticket)
Bases: Prim

Implements the Storm API for ProjectTicketComments objects, which are collections of comments associated
with a ticket.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

520 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async iter()

class synapse.lib.stormlib.project.ProjectTickets(proj)
Bases: Prim

Implements the Storm API for ProjectTickets objects, which are collections of tickets associated with a project

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async iter()

synapse.lib.stormlib.random module

class synapse.lib.stormlib.random.LibRandom(runt, name=())
Bases: Lib

A Storm library for generating random values.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

synapse.lib.stormlib.scrape module

class synapse.lib.stormlib.scrape.LibScrape(runt, name=())
Bases: Lib

A Storm Library for providing helpers for scraping nodes from text.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

10.1. synapse package 521

Synapse Documentation, Release 2.141.0

synapse.lib.stormlib.smtp module

class synapse.lib.stormlib.smtp.SmtpLib(runt, name=())
Bases: Lib

A Storm Library for sending email messages via SMTP.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async message()

class synapse.lib.stormlib.smtp.SmtpMessage(runt)
Bases: StormType

An SMTP message to compose and send.

async send(host, port=25, user=None, passwd=None, usetls=False, starttls=False, timeout=60)

synapse.lib.stormlib.stix module

class synapse.lib.stormlib.stix.LibStix(runt, name=())
Bases: Lib

A Storm Library for interacting with Stix Version 2.1 CS02.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async liftBundle(bundle)

async validateBundle(bundle)

class synapse.lib.stormlib.stix.LibStixExport(runt, name=())
Bases: Lib

A Storm Library for exporting to STIX version 2.1 CS02.

async bundle(config=None)

async config()

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

522 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Return type
dict

timestamp(tick)

class synapse.lib.stormlib.stix.LibStixImport(runt, name=())
Bases: Lib

A Storm Library for importing Stix Version 2.1 data.

async config()

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async ingest(bundle, config=None)

class synapse.lib.stormlib.stix.StixBundle(libstix, runt, config, path=None)
Bases: Prim

Implements the Storm API for creating and packing a STIX bundle for v2.1

async add(node, stixtype=None)

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

pack()

size()

async value()

synapse.lib.stormlib.stix.uuid4(valu=None)

synapse.lib.stormlib.stix.uuid5(valu=None)

synapse.lib.stormlib.stix.validateStix(bundle, version='2.1')

10.1. synapse package 523

Synapse Documentation, Release 2.141.0

synapse.lib.stormlib.storm module

class synapse.lib.stormlib.storm.LibStorm(runt, name=())
Bases: Lib

A Storm library for evaluating dynamic storm expressions.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

synapse.lib.stormlib.version module

class synapse.lib.stormlib.version.VersionLib(runt, name=())
Bases: Lib

A Storm Library for interacting with version information.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async matches(vertup, reqstr)

synapse.lib.stormlib.xml module

class synapse.lib.stormlib.xml.LibXml(runt, name=())
Bases: Lib

A Storm library for parsing XML.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async parse(valu)

class synapse.lib.stormlib.xml.XmlElement(runt, elem)

Bases: Prim

A Storm object for dealing with elements in an XML tree.

524 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async find(name, nested=True)

async get(name)

async iter()

synapse.lib.stormlib.yaml module

class synapse.lib.stormlib.yaml.LibYaml(runt, name=())
Bases: Lib

A Storm Library for saving/loading YAML data.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async load(valu)

async save(valu, sort_keys=True)

Submodules

synapse.lib.agenda module

class synapse.lib.agenda.Agenda

Bases: Base

Organize and execute all the scheduled storm queries in a cortex.

async add(cdef)
Persistently adds an appointment

Parameters
cdef (dict) – Dictionary containing the Cron definition.

Notes

The cron definition may contain the following keys:

creator (str)
Iden of the creating user.

iden (str)
Iden of the appointment.

storm (str)
The Storm query to run.

reqs (Union[None, Dict[TimeUnit, Union[int, Tuple[int]], List[. . .])
One or more dicts of the fixed aspects of the appointment. dict value may be a single or
multiple. May be an empty dict or None.

10.1. synapse package 525

Synapse Documentation, Release 2.141.0

incunit (Union[None, TimeUnit])
The unit that changes for recurring, or None for non-recurring. It is an error for this value to
match a key in reqdict.

incvals (Union[None, int, Iterable[int])
Count of units of incunit or explicit day of week or day of month. Not allowed for incunit ==
None, required for others (1 would be a typical value)

If the values for req and incvals are both lists, all combinations of all values (the product) are used.

Returns
Packed appointment definition

async delete(iden)
Delete an appointment

async disable(iden)

async enable(iden)

async get(iden)

list()

async mod(iden, query)
Change the query of an appointment

async move(croniden, viewiden)
Move a cronjob from one view to another

async start()

Enable cron jobs to start running, start the scheduler loop

Go through all the appointments, making sure the query is valid, and remove the ones that aren’t. (We can’t
evaluate queries until enabled because not all the modules are loaded yet.)

async stop()

Cancel the scheduler loop, and set self.enabled to False.

class synapse.lib.agenda.ApptRec(reqdict, incunit=None, incval=1)
Bases: object

Represents a single element of a single combination of an appointment

nexttime(lastts)
Returns next timestamp that meets requirements, incrementing by (self.incunit * incval) if not increasing,
or 0.0 if there are no future matches

pack()

Make ApptRec json/msgpack-friendly

classmethod unpack(val)
Convert from json/msgpack-friendly

class synapse.lib.agenda.TimeUnit(value, names=None, *, module=None, qualname=None, type=None,
start=1, boundary=None)

Bases: IntEnum

Unit of time that recurring and required parts of appointments are made of

526 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

DAY = 5

DAYOFMONTH = 3

DAYOFWEEK = 4

HOUR = 6

MINUTE = 7

MONTH = 2

NOW = 8

YEAR = 1

classmethod fromString(s)

synapse.lib.aha module

class synapse.lib.aha.AhaApi

Bases: CellApi

async addAhaSvc(name, info, network=None)
Register a service with the AHA discovery server.

NOTE: In order for the service to remain marked “up” a caller
must maintain the telepath link.

addAhaSvcProv(name, provinfo=None)
Provision the given relative service name within the configured network name.

addAhaUserEnroll(name, userinfo=None, again=False)
Create and return a one-time user enroll key.

async delAhaSvc(name, network=None)
Remove an AHA service entry.

delAhaSvcProv(iden)
Remove a previously added provisioning entry by iden.

delAhaUserEnroll(iden)
Remove a previously added enrollment entry by iden.

async genCaCert(network)

async getAhaSvc(name, filters=None)
Return an AHA service description dictionary for a service name.

async getAhaSvcMirrors(name)
Return list of AHA svcinfo dictionaries for mirrors of a service.

async getAhaSvcs(network=None)
Yield AHA svcinfo dictionaries.

Parameters
network (str) – Optionally specify a network to filter on.

10.1. synapse package 527

Synapse Documentation, Release 2.141.0

async getAhaUrls()

async getCaCert(network)

async modAhaSvcInfo(name, svcinfo)

async signHostCsr(csrtext, signas=None, sans=None)

async signUserCsr(csrtext, signas=None)

class synapse.lib.aha.AhaCell

Bases: Cell

async addAhaSvc(name, info, network=None)

async addAhaSvcProv(name, provinfo=None)

async addAhaUserEnroll(name, userinfo=None, again=False)

cellapi

alias of AhaApi

528 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

confbase = {'_log_conf': {'description': 'Opaque structure used for logging by
spawned processes.', 'hideconf': True, 'type': 'object'}, 'aha:admin':
{'description': 'An AHA client certificate CN to register as a local admin user.',
'type': 'string'}, 'aha:leader': {'description': 'The AHA service name to claim
as the active instance of a storm service.', 'type': 'string'}, 'aha:name':
{'description': 'The name of the cell service in the aha service registry.',
'type': 'string'}, 'aha:network': {'description': 'The AHA service network. This
makes aha:name/aha:leader relative names.', 'type': 'string'}, 'aha:provision':
{'description': 'The telepath URL of the aha provisioning service.', 'items':
{'type': 'string'}, 'type': ['string', 'array']}, 'aha:registry': {'description':
'The telepath URL of the aha service registry.', 'items': {'type': 'string'},
'type': ['string', 'array']}, 'aha:svcinfo': {'description': 'An AHA svcinfo
object. If set, this overrides self discovered Aha service information.',
'hidecmdl': True, 'hidedocs': True, 'properties': {'urlinfo': {'properties':
{'host': {'type': 'string'}, 'port': {'type': 'integer'}, 'schema': {'type':
'string'}}, 'required': ('host', 'port', 'scheme'), 'type': 'object'}},
'required': ('urlinfo',), 'type': 'object'}, 'aha:user': {'description': 'The
username of this service when connecting to others.', 'type': 'string'},
'auth:anon': {'description': 'Allow anonymous telepath access by mapping to the
given user name.', 'type': 'string'}, 'auth:conf': {'description': 'Extended
configuration to be used by an alternate auth constructor.', 'hideconf': True,
'type': 'object'}, 'auth:ctor': {'description': 'Allow the construction of the
cell auth object to be hooked at runtime.', 'hideconf': True, 'type': 'string'},
'auth:passwd': {'description': 'Set to <passwd> (local only) to bootstrap the root
user password.', 'type': 'string'}, 'backup:dir': {'description': 'A directory
outside the service directory where backups will be saved. Defaults to ./backups in
the service storage directory.', 'type': 'string'}, 'cell:ctor': {'description':
'An optional python path to the Cell class. Used by stemcell.', 'hideconf': True,
'type': 'string'}, 'cell:guid': {'description': 'An optional hard-coded GUID to
store as the permanent GUID for the service.', 'hideconf': True, 'type':
'string'}, 'dmon:listen': {'description': 'A config-driven way to specify the
telepath bind URL.', 'type': ['string', 'null']}, 'https:headers': {'description':
'Headers to add to all HTTPS server responses.', 'hidecmdl': True, 'type':
'object'}, 'https:parse:proxy:remoteip': {'default': False, 'description':
'Enable the HTTPS server to parse X-Forwarded-For and X-Real-IP headers to determine
requester IP addresses.', 'type': 'boolean'}, 'https:port': {'description': 'A
config-driven way to specify the HTTPS port.', 'type': ['integer', 'null']},
'inaugural': {'description': 'Data used to drive configuration of the service upon
first startup.', 'hidedocs': True, 'properties': {'roles': {'items':
{'additionalProperties': False, 'properties': {'name': {'pattern':
'^(?!all$).+$', 'type': 'string'}, 'rules': {'items': {'items': [{'type':
'boolean'}, {'type': 'array', 'items': {'type': 'string'}}], 'maxItems': 2,
'minItems': 2, 'type': 'array'}, 'type': 'array'}}, 'required': ['name'],
'type': 'object'}, 'type': 'array'}, 'users': {'items': {'additionalProperties':
False, 'properties': {'admin': {'default': False, 'type': 'boolean'}, 'email':
{'type': 'string'}, 'name': {'pattern': '^(?!root$).+$', 'type': 'string'},
'roles': {'items': {'type': 'string'}, 'type': 'array'}, 'rules': {'items':
{'items': [{'type': 'boolean'}, {'type': 'array', 'items': {'type':
'string'}}], 'maxItems': 2, 'minItems': 2, 'type': 'array'}, 'type': 'array'}},
'required': ['name'], 'type': 'object'}, 'type': 'array'}}, 'type': 'object'},
'limit:disk:free': {'default': 5, 'description': 'Minimum disk free space
percentage before setting the cell read-only.', 'maximum': 100, 'minimum': 0,
'type': ['integer', 'null']}, 'mirror': {'description': 'A telepath URL for our
upstream mirror (we must be a backup!).', 'hidecmdl': False, 'hidedocs': False,
'type': ['string', 'null']}, 'nexslog:async': {'default': False, 'description':
'(Experimental) Map the nexus log LMDB instance with map_async=True.', 'hidecmdl':
True, 'hidedocs': True, 'type': 'boolean'}, 'nexslog:en': {'default': False,
'description': 'Record all changes to a stream file on disk. Required for mirroring
(on both sides).', 'type': 'boolean'}, 'onboot:optimize': {'default': False,
'description': 'Delay startup to optimize LMDB databases during boot to recover
free space and increase performance. This may take a while.', 'type': 'boolean'}}

10.1. synapse package 529

Synapse Documentation, Release 2.141.0

confdefs = {'aha:urls': {'description': 'A list of all available AHA server
URLs.', 'items': {'type': 'string'}, 'type': ['string', 'array']},
'provision:listen': {'description': 'A telepath URL for the AHA provisioning
listener.', 'type': ['string', 'null']}}

async delAhaSvc(name, network=None)

async delAhaSvcProv(iden)

async delAhaUserEnroll(iden)

async genCaCert(network)

async getAhaSvc(name, filters=None)

async getAhaSvcMirrors(iden, network=None)

async getAhaSvcProv(iden)

async getAhaSvcs(network=None)

async getAhaUserEnroll(iden)

async getCaCert(network)

classmethod getEnvPrefix()

Get a list of envar prefixes for config resolution.

async initServiceNetwork()

async initServiceRuntime()

async initServiceStorage()

async modAhaSvcInfo(name, svcinfo)

async saveCaCert(name, cakey, cacert)

async saveHostCert(name, hostkey, hostcert)

async saveUserCert(name, userkey, usercert)

async setAhaSvcDown(name, linkiden, network=None)

async signHostCsr(csrtext, signas=None, sans=None)

async signUserCsr(csrtext, signas=None)

class synapse.lib.aha.AhaProvisionServiceV1(application: Application, request: HTTPServerRequest,
**kwargs: Any)

Bases: Handler

async post()

class synapse.lib.aha.EnrollApi(aha, userinfo)
Bases: object

async getCaCert()

530 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async getUserInfo()

async signUserCsr(byts)

class synapse.lib.aha.ProvApi(aha, provinfo)
Bases: object

async getCaCert()

async getProvInfo()

async signHostCsr(byts)

async signUserCsr(byts)

class synapse.lib.aha.ProvDmon

Bases: Daemon

synapse.lib.ast module

class synapse.lib.ast.AbsProp(astinfo, valu, kids=())
Bases: Const

class synapse.lib.ast.AbsPropCond(astinfo, kids=())
Bases: Cond

async getCondEval(runt)
Return a function that may be used to evaluate the boolean truth of the value expression using a runtime
and optional node path.

class synapse.lib.ast.AndCond(astinfo, kids=())
Bases: Cond

<cond> and <cond>

async getCondEval(runt)
Return a function that may be used to evaluate the boolean truth of the value expression using a runtime
and optional node path.

async getLiftHints(runt, path)

class synapse.lib.ast.ArgvQuery(astinfo, kids=())
Bases: Value

async compute(runt, path)

isRuntSafe(runt)

runtopaque = True

validate(runt)

class synapse.lib.ast.ArrayCond(astinfo, kids=())
Bases: Cond

async getCondEval(runt)
Return a function that may be used to evaluate the boolean truth of the value expression using a runtime
and optional node path.

10.1. synapse package 531

Synapse Documentation, Release 2.141.0

class synapse.lib.ast.AstNode(astinfo, kids=())
Bases: object

Base class for all nodes in the Storm abstract syntax tree.

addExcInfo(exc)

addKid(astn)

format(depth=0)

getAstText()

getPosInfo()

getRuntVars(runt)

hasAstClass(clss)

hasVarName(name)

init(core)

isRuntSafe(runt)

isRuntSafeAtom(runt)

iterright()

Yield “rightward” siblings until None.

optimize()

prepare()

repr()

reqRuntSafe(runt, mesg)

runtopaque = False

sibling(offs=1)
Return sibling node by relative offset from self.

validate(runt)

class synapse.lib.ast.Bool(astinfo, valu, kids=())
Bases: Const

class synapse.lib.ast.BreakOper(astinfo, kids=())
Bases: AstNode

async run(runt, genr)

class synapse.lib.ast.CallArgs(astinfo, kids=())
Bases: Value

async compute(runt, path)

class synapse.lib.ast.CallKwarg(astinfo, kids=())
Bases: CallArgs

532 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

class synapse.lib.ast.CallKwargs(astinfo, kids=())
Bases: CallArgs

class synapse.lib.ast.CaseEntry(astinfo, kids=())
Bases: AstNode

class synapse.lib.ast.CatchBlock(astinfo, kids=())
Bases: AstNode

async catches(name, runt, path=None)

errvar()

getRuntVars(runt)

async run(runt, genr)

class synapse.lib.ast.CmdOper(astinfo, kids=())
Bases: Oper

async run(runt, genr)

class synapse.lib.ast.Cmpr(astinfo, valu, kids=())
Bases: Const

class synapse.lib.ast.Cond(astinfo, kids=())
Bases: Value

A condition that is evaluated to filter nodes.

class synapse.lib.ast.Const(astinfo, valu, kids=())
Bases: Value

async compute(runt, path)

isRuntSafe(runt)

repr()

value()

class synapse.lib.ast.ContinueOper(astinfo, kids=())
Bases: AstNode

async run(runt, genr)

class synapse.lib.ast.DollarExpr(astinfo, kids=())
Bases: Value

Top level node for $(. . .) expressions

async compute(runt, path)

class synapse.lib.ast.Edit(astinfo, kids=())
Bases: Oper

class synapse.lib.ast.EditEdgeAdd(astinfo, kids=(), n2=False)
Bases: Edit

async run(runt, genr)

10.1. synapse package 533

Synapse Documentation, Release 2.141.0

class synapse.lib.ast.EditEdgeDel(astinfo, kids=(), n2=False)
Bases: Edit

async run(runt, genr)

class synapse.lib.ast.EditNodeAdd(astinfo, kids=())
Bases: Edit

async addFromPath(form, runt, path)
Add a node using the context from path.

NOTE: CALLER MUST CHECK PERMS

prepare()

async run(runt, genr)

class synapse.lib.ast.EditParens(astinfo, kids=())
Bases: Edit

async run(runt, genr)

class synapse.lib.ast.EditPropDel(astinfo, kids=())
Bases: Edit

async run(runt, genr)

class synapse.lib.ast.EditPropSet(astinfo, kids=())
Bases: Edit

async run(runt, genr)

class synapse.lib.ast.EditTagAdd(astinfo, kids=())
Bases: Edit

async run(runt, genr)

class synapse.lib.ast.EditTagDel(astinfo, kids=())
Bases: Edit

async run(runt, genr)

class synapse.lib.ast.EditTagPropDel(astinfo, kids=())
Bases: Edit

[-#foo.bar:baz]

async run(runt, genr)

class synapse.lib.ast.EditTagPropSet(astinfo, kids=())
Bases: Edit

[#foo.bar:baz=10]

async run(runt, genr)

class synapse.lib.ast.EditUnivDel(astinfo, kids=())
Bases: Edit

async run(runt, genr)

534 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

class synapse.lib.ast.EmbedQuery(astinfo, valu, kids=())
Bases: Const

async compute(runt, path)

getRuntVars(runt)

hasVarName(name)

runtopaque = True

validate(runt)

class synapse.lib.ast.Emit(astinfo, kids=())
Bases: Oper

async run(runt, genr)

class synapse.lib.ast.ExprAndNode(astinfo, kids=())
Bases: Value

async compute(runt, path)

class synapse.lib.ast.ExprDict(astinfo, kids=())
Bases: Value

async compute(runt, path)

prepare()

class synapse.lib.ast.ExprList(astinfo, kids=())
Bases: Value

async compute(runt, path)

prepare()

class synapse.lib.ast.ExprNode(astinfo, kids=())
Bases: Value

A binary (i.e. two argument) expression node

async compute(runt, path)

prepare()

class synapse.lib.ast.ExprOrNode(astinfo, kids=())
Bases: Value

async compute(runt, path)

class synapse.lib.ast.FiltByArray(astinfo, kids=())
Bases: FiltOper

+:foo*[^=visi]

class synapse.lib.ast.FiltOper(astinfo, kids=())
Bases: Oper

async getLiftHints(runt, path)

10.1. synapse package 535

Synapse Documentation, Release 2.141.0

async run(runt, genr)

class synapse.lib.ast.FiniBlock(astinfo, kids=())
Bases: AstNode

An AST node that runs only once after all nodes have been consumed.

Example

Using a fini block:

fini {
// stuff here runs *once* after the last node yield (even if there are no nodes)

}

Notes

A fini block must be runtsafe.

async run(runt, genr)

class synapse.lib.ast.ForLoop(astinfo, kids=())
Bases: Oper

getRuntVars(runt)

async run(runt, genr)

class synapse.lib.ast.FormName(astinfo, kids=())
Bases: Value

async compute(runt, path)

class synapse.lib.ast.FormPivot(astinfo, kids=(), isjoin=False)
Bases: PivotOper

-> foo:bar

async run(runt, genr)

class synapse.lib.ast.FormTagProp(astinfo, kids=())
Bases: Value

async compute(runt, path)

class synapse.lib.ast.FormatString(astinfo, kids=())
Bases: Value

async compute(runt, path)

prepare()

class synapse.lib.ast.FuncArgs(astinfo, kids=())
Bases: AstNode

Represents the function arguments in a function definition

536 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async compute(runt, path)

class synapse.lib.ast.FuncCall(astinfo, kids=())
Bases: Value

async compute(runt, path)

class synapse.lib.ast.Function(astinfo, kids=())
Bases: AstNode

(name, args, body)

// use args/kwargs syntax function bar(x, v=$(30)) { }

we auto-detect the behavior of the target function

return a value function bar(x, y) { return ($(x + y)) }

a function that produces nodes function bar(x, y) { [baz:faz=(x, y)] }

$foo = $bar(10, v=20)

async callfunc(runt, argdefs, args, kwargs)
Execute a function call using the given runtime.

This function may return a value / generator / async generator

getRuntVars(runt)

isRuntSafe(runt)

prepare()

async run(runt, genr)

runtopaque = True

validate(runt)

class synapse.lib.ast.HasAbsPropCond(astinfo, kids=())
Bases: Cond

async getCondEval(runt)
Return a function that may be used to evaluate the boolean truth of the value expression using a runtime
and optional node path.

class synapse.lib.ast.HasRelPropCond(astinfo, kids=())
Bases: Cond

async getCondEval(runt)
Return a function that may be used to evaluate the boolean truth of the value expression using a runtime
and optional node path.

async getLiftHints(runt, path)

async hasProp(node, runt, name)

class synapse.lib.ast.HasTagPropCond(astinfo, kids=())
Bases: Cond

10.1. synapse package 537

Synapse Documentation, Release 2.141.0

async getCondEval(runt)
Return a function that may be used to evaluate the boolean truth of the value expression using a runtime
and optional node path.

class synapse.lib.ast.IfClause(astinfo, kids=())
Bases: AstNode

class synapse.lib.ast.IfStmt(astinfo, kids=())
Bases: Oper

prepare()

async run(runt, genr)

class synapse.lib.ast.InitBlock(astinfo, kids=())
Bases: AstNode

An AST node that runs only once before yielding nodes.

Example

Using a init block:

init {
// stuff here runs *once* before the first node yield (even if there are no␣

→˓nodes)
}

async run(runt, genr)

class synapse.lib.ast.LiftByArray(astinfo, kids=())
Bases: LiftOper

:prop*[range=(200, 400)]

async lift(runt, path)

class synapse.lib.ast.LiftFormTag(astinfo, kids=())
Bases: LiftOper

async lift(runt, path)

class synapse.lib.ast.LiftFormTagProp(astinfo, kids=())
Bases: LiftOper

hehe:haha#foo.bar:baz [= x]

async lift(runt, path)

class synapse.lib.ast.LiftOper(astinfo, kids=())
Bases: Oper

async lift(runt, path)

async run(runt, genr)

class synapse.lib.ast.LiftProp(astinfo, kids=())
Bases: LiftOper

538 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async getRightHints(runt, path)

async lift(runt, path)

class synapse.lib.ast.LiftPropBy(astinfo, kids=())
Bases: LiftOper

async lift(runt, path)

class synapse.lib.ast.LiftTag(astinfo, kids=())
Bases: LiftOper

async lift(runt, path)

class synapse.lib.ast.LiftTagProp(astinfo, kids=())
Bases: LiftOper

#foo.bar:baz [= x]

async lift(runt, path)

class synapse.lib.ast.LiftTagTag(astinfo, kids=())
Bases: LiftOper

##foo.bar

async lift(runt, path)

class synapse.lib.ast.List(astinfo, kids=())
Bases: Value

async compute(runt, path)

repr()

class synapse.lib.ast.LookList(astinfo, kids=())
Bases: AstNode

class synapse.lib.ast.Lookup(astinfo, kids, autoadd=False)
Bases: Query

When storm input mode is “lookup”

async run(runt, genr)

class synapse.lib.ast.N1Walk(astinfo, kids=())
Bases: Oper

async run(runt, genr)

async walkNodeEdges(runt, node, verb=None)

class synapse.lib.ast.N1WalkNPivo(astinfo, kids=(), isjoin=False)
Bases: PivotOut

async run(runt, genr)

class synapse.lib.ast.N2Walk(astinfo, kids=())
Bases: N1Walk

10.1. synapse package 539

Synapse Documentation, Release 2.141.0

async walkNodeEdges(runt, node, verb=None)

class synapse.lib.ast.N2WalkNPivo(astinfo, kids=(), isjoin=False)
Bases: PivotIn

async run(runt, genr)

class synapse.lib.ast.NotCond(astinfo, kids=())
Bases: Cond

not <cond>

async getCondEval(runt)
Return a function that may be used to evaluate the boolean truth of the value expression using a runtime
and optional node path.

class synapse.lib.ast.Oper(astinfo, kids=())
Bases: AstNode

class synapse.lib.ast.OrCond(astinfo, kids=())
Bases: Cond

<cond> or <cond>

async getCondEval(runt)
Return a function that may be used to evaluate the boolean truth of the value expression using a runtime
and optional node path.

class synapse.lib.ast.PivotIn(astinfo, kids=(), isjoin=False)
Bases: PivotOper

<- *

async getPivsIn(runt, node, path)

async run(runt, genr)

class synapse.lib.ast.PivotInFrom(astinfo, kids=(), isjoin=False)
Bases: PivotOper

<- foo:edge

async run(runt, genr)

class synapse.lib.ast.PivotOper(astinfo, kids=(), isjoin=False)
Bases: Oper

repr()

class synapse.lib.ast.PivotOut(astinfo, kids=(), isjoin=False)
Bases: PivotOper

-> *

async getPivsOut(runt, node, path)

async run(runt, genr)

540 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

class synapse.lib.ast.PivotToTags(astinfo, kids=(), isjoin=False)
Bases: PivotOper

-> # pivot to all leaf tag nodes -> #* pivot to all tag nodes -> #cno.* pivot to all tag nodes which match cno.* ->
#foo.bar pivot to the tag node foo.bar if present

async run(runt, genr)

class synapse.lib.ast.PropName(astinfo, kids=())
Bases: Value

async compute(runt, path)

prepare()

class synapse.lib.ast.PropPivot(astinfo, kids=(), isjoin=False)
Bases: PivotOper

:foo -> bar:foo

async run(runt, genr)

class synapse.lib.ast.PropPivotOut(astinfo, kids=(), isjoin=False)
Bases: PivotOper

:prop -> *

async run(runt, genr)

class synapse.lib.ast.PropValue(astinfo, kids=())
Bases: Value

async compute(runt, path)

async getPropAndValu(runt, path)

isRuntSafe(runt)

isRuntSafeAtom(runt)

prepare()

class synapse.lib.ast.Query(astinfo, kids=())
Bases: AstNode

async iterNodePaths(runt, genr=None)

async run(runt, genr)

class synapse.lib.ast.RawPivot(astinfo, kids=(), isjoin=False)
Bases: PivotOper

-> { <varsfrompath> }

async run(runt, genr)

class synapse.lib.ast.RelProp(astinfo, kids=())
Bases: PropName

10.1. synapse package 541

Synapse Documentation, Release 2.141.0

class synapse.lib.ast.RelPropCond(astinfo, kids=())
Bases: Cond

(:foo:bar or .univ) <cmpr> <value>

async getCondEval(runt)
Return a function that may be used to evaluate the boolean truth of the value expression using a runtime
and optional node path.

async getLiftHints(runt, path)

class synapse.lib.ast.RelPropValue(astinfo, kids=())
Bases: PropValue

class synapse.lib.ast.Return(astinfo, kids=())
Bases: Oper

async run(runt, genr)

class synapse.lib.ast.Search(astinfo, kids=())
Bases: Query

async run(runt, genr)

class synapse.lib.ast.SetItemOper(astinfo, kids=())
Bases: Oper

$foo.bar = baz $foo.”bar baz” = faz $foo.$bar = baz

async run(runt, genr)

class synapse.lib.ast.SetVarOper(astinfo, kids=())
Bases: Oper

getRuntVars(runt)

async run(runt, genr)

class synapse.lib.ast.Stop(astinfo, kids=())
Bases: Oper

async run(runt, genr)

class synapse.lib.ast.SubGraph(rules)
Bases: object

An Oper like object which generates a subgraph.

Notes

The rules format for the subgraph is shaped like the following:

rules = {

'degrees': 1,

'edges': True,
'filterinput': True,

(continues on next page)

542 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

(continued from previous page)

'yieldfiltered': False,

'filters': [
'-(#foo or #bar)',
'-(foo:bar or baz:faz)',

],

'pivots': [
'-> * | limit 100',
'<- * | limit 100',

]

'forms': {

'inet:fqdn':{
'filters': [],
'pivots': [],

}

'*': {
'filters': [],
'pivots': [],

},
},

}

Nodes which were original seeds have path.meta(‘graph:seed’).

All nodes have path.meta(‘edges’) which is a list of (iden, info) tuples.

async omit(runt, node)

async pivots(runt, node, path)

async run(runt, genr)

class synapse.lib.ast.SubQuery(astinfo, kids=())
Bases: Oper

async compute(runt, path)
Use subquery as a value. It is error if the subquery used in this way doesn’t yield exactly one node or has a
return statement.

Its value is the primary property of the node yielded, or the returned value.

async compute_array(runt, path)
Use subquery as an array.

async inline(runt, genr)
Operate subquery as if it were inlined

async run(runt, genr)

class synapse.lib.ast.SubqCond(astinfo, kids=())
Bases: Cond

10.1. synapse package 543

Synapse Documentation, Release 2.141.0

async getCondEval(runt)
Return a function that may be used to evaluate the boolean truth of the value expression using a runtime
and optional node path.

class synapse.lib.ast.SwitchCase(astinfo, kids=())
Bases: Oper

prepare()

async run(runt, genr)

class synapse.lib.ast.TagCond(astinfo, kids=())
Bases: Cond

#foo.bar

async getCondEval(runt)
Return a function that may be used to evaluate the boolean truth of the value expression using a runtime
and optional node path.

async getLiftHints(runt, path)

class synapse.lib.ast.TagMatch(astinfo, kids=())
Bases: TagName

Like TagName, but can have asterisks

async compute(runt, path)

hasglob()

class synapse.lib.ast.TagName(astinfo, kids=())
Bases: Value

async compute(runt, path)

async computeTagArray(runt, path, excignore=())

prepare()

class synapse.lib.ast.TagProp(astinfo, kids=())
Bases: Value

async compute(runt, path)

class synapse.lib.ast.TagPropCond(astinfo, kids=())
Bases: Cond

async getCondEval(runt)
Return a function that may be used to evaluate the boolean truth of the value expression using a runtime
and optional node path.

class synapse.lib.ast.TagPropValue(astinfo, kids=())
Bases: Value

async compute(runt, path)

class synapse.lib.ast.TagValuCond(astinfo, kids=())
Bases: Cond

544 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async getCondEval(runt)
Return a function that may be used to evaluate the boolean truth of the value expression using a runtime
and optional node path.

class synapse.lib.ast.TagValue(astinfo, kids=())
Bases: Value

async compute(runt, path)

isRuntSafe(runt)

isRuntSafeAtom(runt)

class synapse.lib.ast.TryCatch(astinfo, kids=())
Bases: AstNode

async getCatchBlock(name, runt, path=None)

async getErrValu(e)

async run(runt, genr)

class synapse.lib.ast.UnaryExprNode(astinfo, kids=())
Bases: Value

A unary (i.e. single-argument) expression node

async compute(runt, path)

prepare()

class synapse.lib.ast.UnivProp(astinfo, kids=())
Bases: RelProp

async compute(runt, path)

class synapse.lib.ast.UnivPropValue(astinfo, kids=())
Bases: PropValue

class synapse.lib.ast.Value(astinfo, kids=())
Bases: AstNode

The base class for all values and value expressions.

async compute(runt, path)

async getCondEval(runt)
Return a function that may be used to evaluate the boolean truth of the value expression using a runtime
and optional node path.

async getLiftHints(runt, path)

isRuntSafe(runt)

class synapse.lib.ast.VarDeref(astinfo, kids=())
Bases: Value

async compute(runt, path)

10.1. synapse package 545

Synapse Documentation, Release 2.141.0

class synapse.lib.ast.VarEvalOper(astinfo, kids=())
Bases: Oper

Facilitate a stand-alone operator that evaluates a var. $foo.bar(“baz”)

async run(runt, genr)

class synapse.lib.ast.VarList(astinfo, valu, kids=())
Bases: Const

class synapse.lib.ast.VarListSetOper(astinfo, kids=())
Bases: Oper

getRuntVars(runt)

async run(runt, genr)

class synapse.lib.ast.VarValue(astinfo, kids=())
Bases: Value

async compute(runt, path)

hasVarName(name)

isRuntSafe(runt)

isRuntSafeAtom(runt)

prepare()

validate(runt)

class synapse.lib.ast.WhileLoop(astinfo, kids=())
Bases: Oper

async run(runt, genr)

class synapse.lib.ast.YieldValu(astinfo, kids=())
Bases: Oper

async run(runt, genr)

async yieldFromValu(runt, valu)

async synapse.lib.ast.expr_add(x, y)

async synapse.lib.ast.expr_div(x, y)

async synapse.lib.ast.expr_eq(x, y)

async synapse.lib.ast.expr_ge(x, y)

async synapse.lib.ast.expr_gt(x, y)

async synapse.lib.ast.expr_le(x, y)

async synapse.lib.ast.expr_lt(x, y)

async synapse.lib.ast.expr_mod(x, y)

546 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async synapse.lib.ast.expr_mul(x, y)

async synapse.lib.ast.expr_ne(x, y)

async synapse.lib.ast.expr_neg(x)

async synapse.lib.ast.expr_not(x)

async synapse.lib.ast.expr_pow(x, y)

async synapse.lib.ast.expr_prefix(x, y)

async synapse.lib.ast.expr_re(x, y)

async synapse.lib.ast.expr_sub(x, y)

synapse.lib.ast.parseNumber(x)

async synapse.lib.ast.pullone(genr)

synapse.lib.autodoc module

class synapse.lib.autodoc.RstHelp

Bases: object

addHead(name, lvl=0, link=None)

addLines(*lines)

getRstText()

synapse.lib.autodoc.docStormTypes(page, docinfo, linkprefix, islib=False, lvl=1, known_types=None,
types_prefix=None, types_suffix=None)

Process a list of StormTypes doc information to add them to a a RstHelp object.

Notes
This will create internal hyperlink link targets for each header item. The link prefix string must be given
with the linkprefix argument.

Parameters

• page (RstHelp) – The RST page to add .

• docinfo (dict) – A Stormtypes Doc.

• linkprefix (str) – The RST link prefix string to use.

• islib (bool) – Treat the data as a library. This will preface the header and attribute values
with $ and use full paths for attributes.

• lvl (int) – The base header level to use when adding headers to the page.

Returns
None

synapse.lib.autodoc.genCallsig(rtype)

synapse.lib.autodoc.getArgLines(rtype)

10.1. synapse package 547

Synapse Documentation, Release 2.141.0

synapse.lib.autodoc.getLink(sname, linkprefix, ref=False, suffix=None)

synapse.lib.autodoc.getReturnLines(rtype, known_types=None, types_prefix=None, suffix=None,
isstor=False)

synapse.lib.autodoc.getRtypeStr(rtype, known_types, types_prefix, suffix)

synapse.lib.autodoc.ljuster(ilines)
Helper to lstrip lines of whitespace an appropriate amount.

synapse.lib.autodoc.prepareRstLines(doc)
Prepare a desc string for RST lines.

synapse.lib.autodoc.scrubLines(lines)
Remove any empty lines until we encounter non-empty linee

synapse.lib.base module

class synapse.lib.base.Base

Bases: object

Base class for Synapse objects.

Acts as an observable, enables async init and fini.

Example

class Foo(Base):

async def __anit__(self, x, y):

await Base.__anit__(self)

await stuff(x, y)

foo = await Foo.anit(10)

Note: One should not create instances directly via its initializer, i.e. Base(). One shall always use the class
method anit.

async addSignalHandlers()

Register SIGTERM/SIGINT signal handlers with the ioloop to fini this object.

async classmethod anit(*args, **kwargs)

async dist(mesg)
Distribute an existing event tuple.

Parameters
mesg ((str,dict)) – An event tuple.

548 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Example

await base.dist((‘foo’,{‘bar’:’baz’}))

async enter_context(item)

Modeled on Python’s contextlib.ExitStack.enter_context. Enters a new context manager and adds its
__exit__() and __aexit__ method to its onfini handlers.

Returns
The result of item’s own __aenter__ or __enter__() method.

async fini()

Shut down the object and notify any onfini() coroutines.

Returns
Remaining ref count

async fire(evtname, **info)
Fire the given event name on the Base. Returns a list of the return values of each callback.

Example

for ret in d.fire(‘woot’,foo=’asdf’):
print(‘got: %r’ % (ret,))

incref()

Increment the reference count for this base. This API may be optionally used to control fini().

link(func)
Add a callback function to receive all events.

Example

base1 = Base() base2 = Base()

base1.link(base2.dist)

all events on base1 are also propagated on base2

async main()

Helper function to setup signal handlers for this base as the main object. (use base.waitfini() to block)

Note: This API may only be used when the ioloop is also the main thread.

off(evnt, func)
Remove a previously registered event handler function.

10.1. synapse package 549

Synapse Documentation, Release 2.141.0

Example

base.off(‘foo’, onFooFunc)

on(evnt, func, base=None)
Add an base function callback for a specific event with optional filtering. If the function returns a coroutine,
it will be awaited.

Parameters

• evnt (str) – An event name

• func (function) – A callback function to receive event tufo

Examples

Add a callback function and fire it:

async def baz(event):
x = event[1].get(‘x’) y = event[1].get(‘y’) return x + y

d.on(‘foo’, baz)

this fire triggers baz. . . await d.fire(‘foo’, x=10, y=20)

Return type
None

onWith(evnt, func)
A context manager which can be used to add a callback and remove it when using a with statement.

Parameters

• evnt (str) – An event name

• func (function) – A callback function to receive event tufo

onfini(func)
Add a function/coroutine/Base to be called on fini().

async postAnit()

Method called after self.__anit__() has completed, but before anit() returns the object to the caller.

schedCallSafe(func, *args, **kwargs)
Schedule a function to run as soon as possible on the same event loop that this Base is running on.

This function does not pend on the function completion.

Parameters

• func –

• *args –

• **kwargs –

550 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Notes

This method may be called from outside of the event loop on a different thread. This function will break
any task scoping done with synapse.lib.scope.

Returns
A Future representing the eventual function execution.

Return type
concurrent.futures.Future

schedCoro(coro)
Schedules a free-running coroutine to run on this base’s event loop. Kills the coroutine if Base is fini’d. It
does not pend on coroutine completion.

Parameters
coro – The coroutine to schedule.

Notes

This function is not threadsafe and must be run on the Base’s event loop. Tasks created by this function do
inherit the synapse.lib.scope Scope from the current task.

Returns
An asyncio.Task object.

Return type
asyncio.Task

schedCoroSafe(coro)
Schedules a coroutine to run as soon as possible on the same event loop that this Base is running on.

This function does not pend on coroutine completion.

Notes

This method may be run outside the event loop on a different thread. This function will break any task
scoping done with synapse.lib.scope.

Returns
A Future representing the eventual coroutine execution.

Return type
concurrent.futures.Future

schedCoroSafePend(coro)
Schedules a coroutine to run as soon as possible on the same event loop that this Base is running on

Note: This method may not be run inside an event loop

unlink(func)
Remove a callback function previously added with link()

10.1. synapse package 551

Synapse Documentation, Release 2.141.0

Example

base.unlink(callback)

waiter(count, *names)
Construct and return a new Waiter for events on this base.

Example

wait up to 3 seconds for 10 foo:bar events. . .

waiter = base.waiter(10,’foo:bar’)

.. fire task that will cause foo:bar events

events = await waiter.wait(timeout=3)

if events == None:
handle the timeout case. . .

for event in events:
parse the events if you need. . .

Note: Use this with caution. It’s easy to accidentally construct race conditions with this mechanism ;)

async waitfini(timeout=None)
Wait for the base to fini()

Returns
None if timed out, True if fini happened

Example

base.waitfini(timeout=30)

class synapse.lib.base.BaseRef

Bases: Base

An object for managing multiple Base instances by name.

async gen(name)
Atomically get/gen a Base and incref. (requires ctor during BaseRef init)

Parameters
name (str) – The name/iden of the Base instance.

get(name)
Retrieve a Base instance by name.

Parameters
name (str) – The name/iden of the Base

Returns
The Base instance (or None)

Return type
(Base)

552 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

items()

pop(name)
Remove and return a Base from the BaseRef.

Parameters
name (str) – The name/iden of the Base instance

Returns
The named base (or None)

Return type
(Base)

put(name, base)
Add a Base (or sub-class) to the BaseRef by name.

Parameters

• name (str) – The name/iden of the Base

• base (Base) – The Base instance

Returns
(None)

vals()

class synapse.lib.base.Waiter(base, count, *names)
Bases: object

A helper to wait for a given number of events on a Base.

fini()

async wait(timeout=None)
Wait for the required number of events and return them or None on timeout.

Example

evnts = waiter.wait(timeout=30)

if evnts == None:
handleTimedOut() return

for evnt in evnts:
doStuff(evnt)

async synapse.lib.base.main(coro)

async synapse.lib.base.schedGenr(genr, maxsize=100)
Schedule a generator to run on a separate task and yield results to this task (pipelined generator).

10.1. synapse package 553

Synapse Documentation, Release 2.141.0

synapse.lib.boss module

class synapse.lib.boss.Boss

Bases: Base

An object to track “promoted” async tasks.

async execute(coro, name, user, info=None, iden=None)
Create a synapse task from the given coroutine.

get(iden)

async promote(name, user, info=None, taskiden=None)
Promote the currently running task.

Parameters

• name (str) – The name of the task.

• user – The User who owns the task.

• taskiden – An optional GUID for the task.

• info – An optional information dictionary containing information about the task.

Returns
The Synapse Task object.

Return type
s_task.Task

ps()

synapse.lib.cache module

A few speed optimized (lockless) cache helpers. Use carefully.

class synapse.lib.cache.FixedCache(callback, size=10000)
Bases: object

async aget(key)

clear()

get(key)

pop(key)

put(key, val)

class synapse.lib.cache.LruDict(size=10000)
Bases: MutableMapping

Maintains the last n accessed keys

get(key, default=None)
Note: we override default impl from parent to avoid costly KeyError

items()→ a set-like object providing a view on D's items

554 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

values()→ an object providing a view on D's values

class synapse.lib.cache.TagGlobs

Bases: object

An object that manages multiple tag globs and values for caching.

add(name, valu, base=None)

get(name)

rem(name, valu)

synapse.lib.cache.getTagGlobRegx(name)

synapse.lib.cache.memoize(size=16384)

synapse.lib.cache.memoizemethod(size=16384)
A version of memoize that doesn’t cause GC cycles when applied to a method.

synapse.lib.cache.regexizeTagGlob(tag)

Returns
a regular expression string with ** and * interpreted as tag globs

Precondition:
tag is a valid tagmatch

Notes

A single asterisk will replace exactly one dot-delimited component of a tag A double asterisk will replace one or
more of any character.

The returned string does not contain a starting ‘^’ or trailing ‘$’.

synapse.lib.cell module

class synapse.lib.cell.Cell

Bases: Pusher, Aware

A Cell() implements a synapse micro-service.

A Cell has 5 phases of startup:

1. Universal cell data structures

2. Service specific storage/data (pre-nexs)

3. Nexus subsystem initialization

4. Service specific startup (with nexus)

5. Networking and mirror services

BACKUP_SPAWN_TIMEOUT = 60.0

COMMIT = ''

FREE_SPACE_CHECK_FREQ = 60.0

10.1. synapse package 555

Synapse Documentation, Release 2.141.0

VERSION = (2, 141, 0)

VERSTRING = '2.141.0'

addActiveCoro(func, iden=None, base=None)
Add a function callback to be run as a coroutine when the Cell is active.

Parameters

• func (coroutine function) – The function run as a coroutine.

• iden (str) – The iden to use for the coroutine.

• base (Optional[Base]) – if present, this active coro will be fini’d when the base is fini’d

Returns
A GUID string that identifies the coroutine for delActiveCoro()

Return type
str

Note: This will re-fire the coroutine if it exits and the Cell is still active.

addHealthFunc(func)
Register a callback function to get a HealthCheck object.

addHttpApi(path, ctor, info)

async addHttpSess(iden, info)

async addHttpsPort(port, host='0.0.0.0', sslctx=None)

async addRole(name)

async addRoleRule(iden, rule, indx=None, gateiden=None)

async addUser(name, passwd=None, email=None, iden=None)

async addUserRole(useriden, roleiden, indx=None)

async addUserRule(iden, rule, indx=None, gateiden=None)

async behold()

beholder()

cellapi

alias of CellApi

checkFreeSpace()

556 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

confbase = {'_log_conf': {'description': 'Opaque structure used for logging by
spawned processes.', 'hideconf': True, 'type': 'object'}, 'aha:admin':
{'description': 'An AHA client certificate CN to register as a local admin user.',
'type': 'string'}, 'aha:leader': {'description': 'The AHA service name to claim
as the active instance of a storm service.', 'type': 'string'}, 'aha:name':
{'description': 'The name of the cell service in the aha service registry.',
'type': 'string'}, 'aha:network': {'description': 'The AHA service network. This
makes aha:name/aha:leader relative names.', 'type': 'string'}, 'aha:provision':
{'description': 'The telepath URL of the aha provisioning service.', 'items':
{'type': 'string'}, 'type': ['string', 'array']}, 'aha:registry': {'description':
'The telepath URL of the aha service registry.', 'items': {'type': 'string'},
'type': ['string', 'array']}, 'aha:svcinfo': {'description': 'An AHA svcinfo
object. If set, this overrides self discovered Aha service information.',
'hidecmdl': True, 'hidedocs': True, 'properties': {'urlinfo': {'properties':
{'host': {'type': 'string'}, 'port': {'type': 'integer'}, 'schema': {'type':
'string'}}, 'required': ('host', 'port', 'scheme'), 'type': 'object'}},
'required': ('urlinfo',), 'type': 'object'}, 'aha:user': {'description': 'The
username of this service when connecting to others.', 'type': 'string'},
'auth:anon': {'description': 'Allow anonymous telepath access by mapping to the
given user name.', 'type': 'string'}, 'auth:conf': {'description': 'Extended
configuration to be used by an alternate auth constructor.', 'hideconf': True,
'type': 'object'}, 'auth:ctor': {'description': 'Allow the construction of the
cell auth object to be hooked at runtime.', 'hideconf': True, 'type': 'string'},
'auth:passwd': {'description': 'Set to <passwd> (local only) to bootstrap the root
user password.', 'type': 'string'}, 'backup:dir': {'description': 'A directory
outside the service directory where backups will be saved. Defaults to ./backups in
the service storage directory.', 'type': 'string'}, 'cell:ctor': {'description':
'An optional python path to the Cell class. Used by stemcell.', 'hideconf': True,
'type': 'string'}, 'cell:guid': {'description': 'An optional hard-coded GUID to
store as the permanent GUID for the service.', 'hideconf': True, 'type':
'string'}, 'dmon:listen': {'description': 'A config-driven way to specify the
telepath bind URL.', 'type': ['string', 'null']}, 'https:headers': {'description':
'Headers to add to all HTTPS server responses.', 'hidecmdl': True, 'type':
'object'}, 'https:parse:proxy:remoteip': {'default': False, 'description':
'Enable the HTTPS server to parse X-Forwarded-For and X-Real-IP headers to determine
requester IP addresses.', 'type': 'boolean'}, 'https:port': {'description': 'A
config-driven way to specify the HTTPS port.', 'type': ['integer', 'null']},
'inaugural': {'description': 'Data used to drive configuration of the service upon
first startup.', 'hidedocs': True, 'properties': {'roles': {'items':
{'additionalProperties': False, 'properties': {'name': {'pattern':
'^(?!all$).+$', 'type': 'string'}, 'rules': {'items': {'items': [{'type':
'boolean'}, {'type': 'array', 'items': {'type': 'string'}}], 'maxItems': 2,
'minItems': 2, 'type': 'array'}, 'type': 'array'}}, 'required': ['name'],
'type': 'object'}, 'type': 'array'}, 'users': {'items': {'additionalProperties':
False, 'properties': {'admin': {'default': False, 'type': 'boolean'}, 'email':
{'type': 'string'}, 'name': {'pattern': '^(?!root$).+$', 'type': 'string'},
'roles': {'items': {'type': 'string'}, 'type': 'array'}, 'rules': {'items':
{'items': [{'type': 'boolean'}, {'type': 'array', 'items': {'type':
'string'}}], 'maxItems': 2, 'minItems': 2, 'type': 'array'}, 'type': 'array'}},
'required': ['name'], 'type': 'object'}, 'type': 'array'}}, 'type': 'object'},
'limit:disk:free': {'default': 5, 'description': 'Minimum disk free space
percentage before setting the cell read-only.', 'maximum': 100, 'minimum': 0,
'type': ['integer', 'null']}, 'mirror': {'description': 'A telepath URL for our
upstream mirror (we must be a backup!).', 'hidecmdl': True, 'hidedocs': True,
'type': ['string', 'null']}, 'nexslog:async': {'default': False, 'description':
'(Experimental) Map the nexus log LMDB instance with map_async=True.', 'hidecmdl':
True, 'hidedocs': True, 'type': 'boolean'}, 'nexslog:en': {'default': False,
'description': 'Record all changes to a stream file on disk. Required for mirroring
(on both sides).', 'type': 'boolean'}, 'onboot:optimize': {'default': False,
'description': 'Delay startup to optimize LMDB databases during boot to recover
free space and increase performance. This may take a while.', 'type': 'boolean'}}

10.1. synapse package 557

Synapse Documentation, Release 2.141.0

confdefs = {}

async cullNexsLog(offs)

async delActiveCoro(iden)
Remove an Active coroutine previously added with addActiveCoro().

Parameters
iden (str) – The iden returned by addActiveCoro()

async delBackup(name)

async delHttpSess(iden)

async delRole(iden)

async delRoleRule(iden, rule, gateiden=None)

async delUser(iden)

async delUserRole(useriden, roleiden)

async delUserRule(iden, rule, gateiden=None)

async dyncall(iden, todo, gatekeys=())

async dyniter(iden, todo, gatekeys=())

async classmethod execmain(argv, outp=None)
The main entry point for running the Cell as an application.

Parameters

• argv (list) – A list of command line arguments to launch the Cell with.

• outp (s_ouput.OutPut) – Optional, an output object. No longer used in the default im-
plementation.

Notes

This coroutine waits until the Cell is fini’d or a SIGINT/SIGTERM signal is sent to the process.

Returns
None.

async feedBeholder(name, info, gates=None, perms=None)
Feed a named event onto the cell:beholder message bus that will sent to any listeners.

Parameters

• info (dict) – An information dictionary to be sent to any consumers.

• gates (list) – List of gate idens, whose details will be added to the outbound message(s).

• perms (list) – List of permission names, whose details will be added to the outbound
message(s).

Returns
None

558 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async fini()

Fini override that ensures locking teardown order.

async genHttpSess(iden)

async genUserOnepass(iden, duration=600000)

async getAhaInfo()

classmethod getArgParser(conf=None)
Get an argparse.ArgumentParser for the Cell.

Parameters
conf (s_config.Config) – Optional, a Config object which

Notes

Boot time configuration data is placed in the argument group called config. This adds default dirn,
--telepath, --https and --name arguements to the argparser instance. Configuration values which
have the hideconf or hidecmdl value set to True are not added to the argparser instance.

Returns
A ArgumentParser for the Cell.

Return type
argparse.ArgumentParser

async getAuthGate(iden)

async getAuthGates()

async getAuthRoles()

async getAuthUsers(archived=False)

async getBackupInfo()

Gets information about recent backup activity

async getBackups()

async getCellApi(link, user, path)
Get an instance of the telepath Client object for a given user, link and path.

Parameters

• link (s_link.Link) – The link object.

• user (s_hive.HiveUser) – The heavy user object.

• path (str) – The path requested.

10.1. synapse package 559

Synapse Documentation, Release 2.141.0

Notes

This defaults to the self.cellapi class. Implementors may override the default class attribute for cellapi to
share a different interface.

Returns
The shared object for this cell.

Return type
object

getCellIden()

async getCellInfo()

Return metadata specific for the Cell.

Notes

By default, this function returns information about the base Cell implementation, which reflects the base
information in the Synapse Cell.

It is expected that implementers override the following Class attributes in order to provide meaningful
version information:

COMMIT - A Git Commit VERSION - A Version tuple. VERSTRING - A Version string.

Returns
A Dictionary of metadata.

Return type
Dict

getCellNexsRoot()

async getCellRunId()

classmethod getCellType()

async getConfOpt(name)

async getDmonSessions()

classmethod getEnvPrefix()

Get a list of envar prefixes for config resolution.

async getHealthCheck()

async getHiveKey(path)
Get the value of a key in the cell default hive

async getHiveKeys(path)
Return a list of (name, value) tuples for nodes under the path.

async getHttpSessDict(iden)

getLocalProxy(share='*', user='root')

getLocalUrl(share='*', user='root')

560 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async getLogExtra(**kwargs)
Get an extra dictionary for structured logging which can be used as a extra argument for loggers.

Parameters
**kwargs – Additional key/value items to add to the log.

Returns
A dictionary

Return type
Dict

async getMirrorUrls()

async getNexsIndx()

async getNexusChanges(offs, tellready=False)

async getPermDef(perm)

async getPermDefs()

async getRoleDef(iden)

async getRoleDefByName(name)

async getRoleDefs()

getSpooledSet()

async getSystemInfo()

Get info about the system in which the cell is running

Returns

• volsize - Volume where cell is running total space

• volfree - Volume where cell is running free space

• backupvolsize - Backup directory volume total space

• backupvolfree - Backup directory volume free space

• cellstarttime - Cell start time in epoch milliseconds

• celluptime - Cell uptime in milliseconds

• cellrealdisk - Cell’s use of disk, equivalent to du

• cellapprdisk - Cell’s apparent use of disk, equivalent to ls -l

• osversion - OS version/architecture

• pyversion - Python version

• totalmem - Total memory in the system

• availmem - Available memory in the system

• cpucount - Number of CPUs on system

Return type
A dictionary with the following keys. All size values are in bytes

10.1. synapse package 561

Synapse Documentation, Release 2.141.0

async getTeleApi(link, mesg, path)
Return a shared object for this link. :param link: A network link. :type link: synapse.lib.link.Link :param
mesg: The tele:syn handshake message. :type mesg: (str,dict)

getTempDir()

async getUserDef(iden, packroles=True)

async getUserDefByName(name)

async getUserDefs()

getUserName(iden, defv='<unknown>')
Translate the user iden to a user name.

async getUserProfInfo(iden, name)

async getUserProfile(iden)

async getUserVarValu(iden, name)

async handoff(turl, timeout=30)
Hand off leadership to a mirror in a transactional fashion.

classmethod initCellConf(conf=None)
Create a Config object for the Cell.

Parameters
conf (s_config.Config) – An optional config structure. This has _opts_data taken from
it.

Notes

The Config object has a envar_prefix set according to the results of cls.getEnvPrefix().

Returns
A Config helper object.

Return type
s_config.Config

async classmethod initFromArgv(argv, outp=None)
Cell launcher which does automatic argument parsing, environment variable resolution and Cell creation.

Parameters

• argv (list) – A list of command line arguments to launch the Cell with.

• outp (s_ouput.OutPut) – Optional, an output object. No longer used in the default im-
plementation.

562 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Notes

This does the following items:

• Create a Config object from the Cell class.

• Creates an Argument Parser from the Cell class and Config object.

• Parses the provided arguments.

• Loads configuration data from the parsed options and environment variables.

• Sets logging for the process.

• Creates the Cell from the Cell Ctor.

• Adds a Telepath listener, HTTPs port listeners and Telepath share names.

• Returns the Cell.

Returns
This returns an instance of the Cell.

Return type
Cell

async initNexusSubsystem()

async initServiceActive()

async initServiceNetwork()

async initServicePassive()

async initServiceRuntime()

async initServiceStorage()

initSslCtx(certpath, keypath)

async isCellActive()

async isRoleAllowed(iden, perm, gateiden=None)

async isUserAllowed(iden, perm, gateiden=None)

async iterBackupArchive(name, user)

async iterNewBackupArchive(user, name=None, remove=False)

async iterUserVars(iden)

async kill(user, iden)

async listHiveKey(path=None)

async loadHiveTree(tree, path=(), trim=False)
Note: this is for expert emergency use only.

modCellConf(conf)
Modify the Cell’s ondisk configuration overrides file and runtime configuration.

Parameters
conf (dict) – A dictionary of items to set.

10.1. synapse package 563

Synapse Documentation, Release 2.141.0

Notes

This does require the data being set to be schema valid.

Returns
None.

popCellConf(name)
Remove a key from the Cell’s ondisk configuration overrides file and runtime configuration.

Parameters
name (str) – Name of the value to remove.

Notes

This does not modify the cell.yaml file. This does re-validate the configuration after removing the value,
so if the value removed had a default populated by schema, that default would be reset.

Returns
None

async popHiveKey(path)
Remove and return the value of a key in the cell default hive.

Note: this is for expert emergency use only.

async popUserProfInfo(iden, name, default=None)

async popUserVarValu(iden, name, default=None)

async promote(graceful=False)
Transform this cell from a passive follower to an active cell that writes changes locally.

async ps(user)

async readyToMirror()

async reqGateKeys(gatekeys)

async rotateNexsLog()

async runBackup(name=None, wait=True)

async saveHiveTree(path=())

async setCellActive(active)

async setHiveKey(path, valu)
Set or change the value of a key in the cell default hive

async setHttpSessInfo(iden, name, valu)

async setNexsIndx(indx)

async setRoleName(iden, name)

async setRoleRules(iden, rules, gateiden=None)

async setUserAdmin(iden, admin, gateiden=None)

564 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async setUserArchived(iden, archived)

async setUserEmail(useriden, email)

async setUserLocked(iden, locked)

async setUserName(useriden, name)

async setUserPasswd(iden, passwd)

async setUserProfInfo(iden, name, valu)

async setUserRoles(useriden, roleidens)

async setUserRules(iden, rules, gateiden=None)

async setUserVarValu(iden, name, valu)

async sync()

no-op mutable for testing purposes. If I am follower, when this returns, I have received and applied all the
writes that occurred on the leader before this call.

async trimNexsLog(consumers=None, timeout=30)

async tryUserPasswd(name, passwd)

async waitNexsOffs(offs, timeout=None)

class synapse.lib.cell.CellApi

Bases: Base

addAuthRole(name)

addAuthRule(name, rule, indx=None, gateiden=None)
This API is deprecated.

addRole(name)

addRoleRule(iden, rule, indx=None, gateiden=None)

addUser(name, passwd=None, email=None, iden=None)

addUserRole(useriden, roleiden, indx=None)

addUserRule(iden, rule, indx=None, gateiden=None)

async allowed(perm, default=None)
Check if the user has the requested permission.

Parameters

• perm – permission path components to check

• default – Value returned if no value stored

10.1. synapse package 565

Synapse Documentation, Release 2.141.0

Examples

Form a path and check the permission from a remote proxy:

perm = ('node', 'add', 'inet:ipv4')
allowed = await prox.allowed(perm)
if allowed:

dostuff()

Returns
True if the user has permission, False if explicitly denied, None if no entry

Return type
Optional[bool]

behold()

Yield Cell system messages

cullNexsLog(offs)
Remove Nexus log entries up to (and including) the given offset.

Note: If there are consumers of this cell’s nexus log they must be caught up to at least the offs argument
before culling.

Only rotated logs where the last index is less than the provided offset will be removed from disk.

Parameters
offs (int) – The offset to remove entries up to.

Returns
Whether the cull was executed

Return type
bool

delAuthRole(name)

delAuthRule(name, rule, gateiden=None)
This API is deprecated.

delAuthUser(name)

delBackup(name)
Delete a backup by name.

Parameters
name (str) – The name of the backup to delete.

delRole(iden)

delRoleRule(iden, rule, gateiden=None)

delUser(iden)

delUserRole(useriden, roleiden)

566 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

delUserRule(iden, rule, gateiden=None)

dyncall(iden, todo, gatekeys=())

dyniter(iden, todo, gatekeys=())

genUserOnepass(iden, duration=60000)

getAuthGate(iden)

getAuthGates()

getAuthInfo(name)
This API is deprecated.

getAuthRoles()

getAuthUsers(archived=False)

Parameters
archived (bool) – If true, list all users, else list non-archived users

getBackupInfo()

Get information about recent backup activity.

Returns

• currduration - If backup currently running, time in ms since backup started, otherwise None

• laststart - Last time (in epoch milliseconds) a backup started

• lastend - Last time (in epoch milliseconds) a backup ended

• lastduration - How long last backup took in ms

• lastsize - Disk usage of last backup completed

• lastupload - Time a backup was last completed being uploaded via
iter(New)BackupArchive

• lastexception - Tuple of exception information if last backup failed, otherwise None

Return type
(dict) It has the following keys

Note: these statistics are not persistent, i.e. they are not preserved between cell restarts.

getBackups()

Retrieve a list of backups.

Returns
A list of backup names.

Return type
list[str]

getCellIden()

async getCellInfo()

async getCellRunId()

getCellType()

10.1. synapse package 567

Synapse Documentation, Release 2.141.0

getCellUser()

getDiagInfo()

getDmonSessions()

getGcInfo()

For diagnostic purposes only!

NOTE: This API is not supported and can be removed at any time!

async getHealthCheck()

getHiveKey(path)

getHiveKeys(path)

getMirrorUrls()

getNexsIndx()

getNexusChanges(offs, tellready=False)

async getPermDef(perm)

Return a specific permission definition.

async getPermDefs()

Return a non-comprehensive list of perm definitions.

getRoleDef(iden)

getRoleDefByName(name)

getRoleDefs()

async getRoleInfo(name)

getSystemInfo()

Get info about the system in which the cell is running

Returns

• volsize - Volume where cell is running total space

• volfree - Volume where cell is running free space

• backupvolsize - Backup directory volume total space

• backupvolfree - Backup directory volume free space

• celluptime - Cell uptime in milliseconds

• cellrealdisk - Cell’s use of disk, equivalent to du

• cellapprdisk - Cell’s apparent use of disk, equivalent to ls -l

• osversion - OS version/architecture

• pyversion - Python version

• totalmem - Total memory in the system

• availmem - Available memory in the system

568 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Return type
A dictionary with the following keys. All size values are in bytes

getUserDef(iden, packroles=True)

getUserDefByName(name)

getUserDefs()

async getUserInfo(name)

getUserProfInfo(iden, name)

getUserProfile(iden)

handoff(turl, timeout=30)

async initCellApi()

async isCellActive()

Returns True if the cell is an active/leader cell.

isRoleAllowed(iden, perm, gateiden=None)

isUserAllowed(iden, perm, gateiden=None)

issue(nexsiden: str, event: str, args, kwargs, meta=None)

iterBackupArchive(name)
Retrieve a backup by name as a compressed stream of bytes.

Note: Compression and streaming will occur from a separate process.

Parameters
name (str) – The name of the backup to retrieve.

iterNewBackupArchive(name=None, remove=False)
Run a new backup and return it as a compressed stream of bytes.

Note: Compression and streaming will occur from a separate process.

Parameters

• name (str) – The name of the backup to retrieve.

• remove (bool) – Delete the backup after streaming.

async kill(iden)

listHiveKey(path=None)

popHiveKey(path)

popUserProfInfo(iden, name, default=None)

promote(graceful=False)

async ps()

readyToMirror()

10.1. synapse package 569

Synapse Documentation, Release 2.141.0

rotateNexsLog()

Rotate the Nexus log at the current offset.

Returns
The starting index of the active Nexus log

Return type
int

runBackup(name=None, wait=True)
Run a new backup.

Parameters

• name (str) – The optional name of the backup.

• wait (bool) – On True, wait for backup to complete before returning.

Returns
The name of the newly created backup.

Return type
str

runGcCollect(generation=2)
For diagnostic purposes only!

NOTE: This API is not supported and can be removed at any time!

saveHiveTree(path=())

setAuthAdmin(name, isadmin)
This API is deprecated.

setCellUser(iden)
Switch to another user (admin only).

This API allows remote admin/service accounts to impersonate a user. Used mostly by services that manage
their own authentication/sessions.

setHiveKey(path, valu)

setRoleRules(iden, rules, gateiden=None)

setUserAdmin(iden, admin, gateiden=None)

setUserArchived(useriden, archived)

setUserEmail(useriden, email)

setUserLocked(useriden, locked)

async setUserPasswd(iden, passwd)

setUserProfInfo(iden, name, valu)

setUserRoles(useriden, roleidens)

setUserRules(iden, rules, gateiden=None)

570 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

trimNexsLog(consumers=None, timeout=60)
Rotate and cull the Nexus log (and those of any consumers) at the current offset.

Note: If the consumers argument is provided they will first be checked if online before rotating and raise
otherwise. After rotation, all consumers must catch-up to the offset to cull at before executing the cull, and
will raise otherwise.

Parameters

• consumers (list or None) – Optional list of telepath URLs for downstream Nexus log
consumers.

• timeout (int) – Time in seconds to wait for downstream consumers to be caught up.

Returns
The offset that the Nexus log was culled up to and including.

Return type
int

tryUserPasswd(name, passwd)

waitNexsOffs(offs, timeout=None)
Wait for the Nexus log to write an offset.

Parameters

• offs (int) – The offset to wait for.

• timeout (int or None) – An optional timeout in seconds.

Returns
True if the offset was written, False if it timed out.

Return type
bool

synapse.lib.cell.SLAB_MAP_SIZE = 134217728

Base classes for the synapse “cell” microservice architecture.

synapse.lib.cell.adminapi(log=False)
Decorator for CellApi (and subclasses) for requiring a method to be called only by an admin user.

Parameters
log (bool) – If set to True, log the user, function and arguments.

synapse.lib.certdir module

class synapse.lib.certdir.CRL(certdir, name)
Bases: object

revoke(cert)
Revoke a certificate with the CRL.

Parameters
cert (cryto.X509) – The certificate to revoke.

10.1. synapse package 571

Synapse Documentation, Release 2.141.0

Returns
None

class synapse.lib.certdir.CertDir(path=None)
Bases: object

Certificate loading/generation/signing utilities.

Features:

• Locates and load certificates, keys, and certificate signing requests (CSRs).

• Generates keypairs for users, hosts, and certificate authorities (CAs), supports both signed and self-
signed.

• Generates certificate signing requests (CSRs) for users, hosts, and certificate authorities (CAs).

• Signs certificate signing requests (CSRs).

• Generates PKCS#12 archives for use in browser.

Parameters
path (str) – Optional path which can override the default path directory.

Notes

• All certificates will be loaded from and written to ~/.syn/certs by default. Set the environment variable
SYN_CERT_DIR to override.

• All certificate generation methods create 4096 bit RSA keypairs.

• All certificate signing methods use sha256 as the signature algorithm.

• CertDir does not currently support signing CA CSRs.

addCertPath(*path)

delCertPath(*path)

genCaCert(name, signas=None, outp=None, save=True)
Generates a CA keypair.

Parameters

• name (str) – The name of the CA keypair.

• signas (str) – The CA keypair to sign the new CA with.

• outp (synapse.lib.output.Output) – The output buffer.

Examples

Make a CA named “myca”:

mycakey, mycacert = cdir.genCaCert(‘myca’)

Returns
Tuple containing the private key and certificate objects.

Return type
((OpenSSL.crypto.PKey, OpenSSL.crypto.X509))

572 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

genCaCrl(name)
Get the CRL for a given CA.

Parameters
name (str) – The CA name.

Returns
The CRL object.

Return type
CRL

genClientCert(name, outp=None)
Generates a user PKCS #12 archive. Please note that the resulting file will contain private key material.

Parameters

• name (str) – The name of the user keypair.

• outp (synapse.lib.output.Output) – The output buffer.

Examples

Make the PKC12 object for user “myuser”:

myuserpkcs12 = cdir.genClientCert(‘myuser’)

Returns
The PKCS #12 archive.

Return type
OpenSSL.crypto.PKCS12

genCodeCert(name, signas=None, outp=None, save=True)
Generates a code signing keypair.

Parameters

• name (str) – The name of the code signing cert.

• signas (str) – The CA keypair to sign the new code keypair with.

• outp (synapse.lib.output.Output) – The output buffer.

Examples

Generate a code signing cert for the name “The Vertex Project”:

myuserkey, myusercert = cdir.genCodeCert(‘The Vertex Project’)

Returns
Tuple containing the key and certificate objects.

Return type
((OpenSSL.crypto.PKey, OpenSSL.crypto.X509))

genCrlPath(name)

10.1. synapse package 573

Synapse Documentation, Release 2.141.0

genHostCert(name, signas=None, outp=None, csr=None, sans=None, save=True)
Generates a host keypair.

Parameters

• name (str) – The name of the host keypair.

• signas (str) – The CA keypair to sign the new host keypair with.

• outp (synapse.lib.output.Output) – The output buffer.

• csr (OpenSSL.crypto.PKey) – The CSR public key when generating the keypair from a
CSR.

• sans (list) – List of subject alternative names.

Examples

Make a host keypair named “myhost”:

myhostkey, myhostcert = cdir.genHostCert(‘myhost’)

Returns
Tuple containing the private key and certificate objects.

Return type
((OpenSSL.crypto.PKey, OpenSSL.crypto.X509))

genHostCsr(name, outp=None)
Generates a host certificate signing request.

Parameters

• name (str) – The name of the host CSR.

• outp (synapse.lib.output.Output) – The output buffer.

Examples

Generate a CSR for the host key named “myhost”:

cdir.genHostCsr(‘myhost’)

Returns
The bytes of the CSR.

Return type
bytes

genUserCert(name, signas=None, outp=None, csr=None, save=True)
Generates a user keypair.

Parameters

• name (str) – The name of the user keypair.

• signas (str) – The CA keypair to sign the new user keypair with.

• outp (synapse.lib.output.Output) – The output buffer.

574 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

• csr (OpenSSL.crypto.PKey) – The CSR public key when generating the keypair from a
CSR.

Examples

Generate a user cert for the user “myuser”:

myuserkey, myusercert = cdir.genUserCert(‘myuser’)

Returns
Tuple containing the key and certificate objects.

Return type
((OpenSSL.crypto.PKey, OpenSSL.crypto.X509))

genUserCsr(name, outp=None)
Generates a user certificate signing request.

Parameters

• name (str) – The name of the user CSR.

• outp (synapse.lib.output.Output) – The output buffer.

Examples

Generate a CSR for the user “myuser”:

cdir.genUserCsr(‘myuser’)

Returns
The bytes of the CSR.

Return type
bytes

getCaCert(name)
Loads the X509 object for a given CA.

Parameters
name (str) – The name of the CA keypair.

Examples

Get the certificate for the CA “myca”

mycacert = cdir.getCaCert(‘myca’)

Returns
The certificate, if exists.

Return type
OpenSSL.crypto.X509

getCaCertBytes(name)

10.1. synapse package 575

Synapse Documentation, Release 2.141.0

getCaCertPath(name)
Gets the path to a CA certificate.

Parameters
name (str) – The name of the CA keypair.

Examples

Get the path to the CA certificate for the CA “myca”:

mypath = cdir.getCACertPath(‘myca’)

Returns
The path if exists.

Return type
str

getCaCerts()

Return a list of CA certs from the CertDir.

Returns
List of CA certificates.

Return type
[OpenSSL.crypto.X509]

getCaKey(name)
Loads the PKey object for a given CA keypair.

Parameters
name (str) – The name of the CA keypair.

Examples

Get the private key for the CA “myca”:

mycakey = cdir.getCaKey(‘myca’)

Returns
The private key, if exists.

Return type
OpenSSL.crypto.PKey

getCaKeyPath(name)
Gets the path to a CA key.

Parameters
name (str) – The name of the CA keypair.

576 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Examples

Get the path to the private key for the CA “myca”:

mypath = cdir.getCAKeyPath(‘myca’)

Returns
The path if exists.

Return type
str

getClientCert(name)
Loads the PKCS12 archive object for a given user keypair.

Parameters
name (str) – The name of the user keypair.

Examples

Get the PKCS12 object for the user “myuser”:

mypkcs12 = cdir.getClientCert(‘myuser’)

Notes

The PKCS12 archive will contain private key material if it was created with CertDir or the easycert tool

Returns
The PKCS12 archive, if exists.

Return type
OpenSSL.crypto.PKCS12

getClientCertPath(name)
Gets the path to a client certificate.

Parameters
name (str) – The name of the client keypair.

Examples

Get the path to the client certificate for “myuser”:

mypath = cdir.getClientCertPath(‘myuser’)

Returns
The path if exists.

Return type
str

getClientSSLContext(certname=None)
Returns an ssl.SSLContext appropriate for initiating a TLS session

10.1. synapse package 577

Synapse Documentation, Release 2.141.0

Parameters
certname – If specified, use the user certificate with the matching name to authenticate to
the remote service.

Returns
A SSLContext object.

Return type
ssl.SSLContext

getCodeCert(name)

getCodeCertPath(name)

getCodeKey(name)

getCodeKeyPath(name)

getCrlPath(name)

getHostCaPath(name)
Gets the path to the CA certificate that issued a given host keypair.

Parameters
name (str) – The name of the host keypair.

Examples

Get the path to the CA cert which issue the cert for “myhost”:

mypath = cdir.getHostCaPath(‘myhost’)

Returns
The path if exists.

Return type
str

getHostCert(name)
Loads the X509 object for a given host keypair.

Parameters
name (str) – The name of the host keypair.

Examples

Get the certificate object for the host “myhost”:

myhostcert = cdir.getHostCert(‘myhost’)

Returns
The certificate, if exists.

Return type
OpenSSL.crypto.X509

getHostCertHash(name)

578 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

getHostCertPath(name)
Gets the path to a host certificate.

Parameters
name (str) – The name of the host keypair.

Examples

Get the path to the host certificate for the host “myhost”:

mypath = cdir.getHostCertPath(‘myhost’)

Returns
The path if exists.

Return type
str

getHostKey(name)
Loads the PKey object for a given host keypair.

Parameters
name (str) – The name of the host keypair.

Examples

Get the private key object for the host “myhost”:

myhostkey = cdir.getHostKey(‘myhost’)

Returns
The private key, if exists.

Return type
OpenSSL.crypto.PKey

getHostKeyPath(name)
Gets the path to a host key.

Parameters
name (str) – The name of the host keypair.

Examples

Get the path to the host key for the host “myhost”:

mypath = cdir.getHostKeyPath(‘myhost’)

Returns
The path if exists.

Return type
str

10.1. synapse package 579

Synapse Documentation, Release 2.141.0

getServerSSLContext(hostname=None, caname=None)
Returns an ssl.SSLContext appropriate to listen on a socket

Parameters

• hostname – If None, the value from socket.gethostname is used to find the key in the
servers directory. This name should match the not-suffixed part of two files ending in .key
and .crt in the hosts subdirectory.

• caname – If not None, the given name is used to locate a CA certificate used to validate
client SSL certs.

Returns
A SSLContext object.

Return type
ssl.SSLContext

getUserCaPath(name)
Gets the path to the CA certificate that issued a given user keypair.

Parameters
name (str) – The name of the user keypair.

Examples

Get the path to the CA cert which issue the cert for “myuser”:

mypath = cdir.getUserCaPath(‘myuser’)

Returns
The path if exists.

Return type
str

getUserCert(name)
Loads the X509 object for a given user keypair.

Parameters
name (str) – The name of the user keypair.

Examples

Get the certificate object for the user “myuser”:

myusercert = cdir.getUserCert(‘myuser’)

Returns
The certificate, if exists.

Return type
OpenSSL.crypto.X509

580 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

getUserCertPath(name)
Gets the path to a user certificate.

Parameters
name (str) – The name of the user keypair.

Examples

Get the path for the user cert for “myuser”:

mypath = cdir.getUserCertPath(‘myuser’)

Returns
The path if exists.

Return type
str

getUserForHost(user, host)
Gets the name of the first existing user cert for a given user and host.

Parameters

• user (str) – The name of the user.

• host (str) – The name of the host.

Examples

Get the name for the “myuser” user cert at “cool.vertex.link”:

usercertname = cdir.getUserForHost(‘myuser’, ‘cool.vertex.link’)

Returns
The cert name, if exists.

Return type
str

getUserKey(name)
Loads the PKey object for a given user keypair.

Parameters
name (str) – The name of the user keypair.

Examples

Get the key object for the user key for “myuser”:

myuserkey = cdir.getUserKey(‘myuser’)

Returns
The private key, if exists.

Return type
OpenSSL.crypto.PKey

10.1. synapse package 581

Synapse Documentation, Release 2.141.0

getUserKeyPath(name)
Gets the path to a user key.

Parameters
name (str) – The name of the user keypair.

Examples

Get the path to the user key for “myuser”:

mypath = cdir.getUserKeyPath(‘myuser’)

Returns
The path if exists.

Return type
str

importFile(path, mode, outp=None)
Imports certs and keys into the Synapse cert directory

Parameters

• path (str) – The path of the file to be imported.

• mode (str) – The certdir subdirectory to import the file into.

Examples

Import CA certifciate ‘mycoolca.crt’ to the ‘cas’ directory.

certdir.importFile(‘mycoolca.crt’, ‘cas’)

Notes

importFile does not perform any validation on the files it imports.

Returns
None

isCaCert(name)
Checks if a CA certificate exists.

Parameters
name (str) – The name of the CA keypair.

582 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Examples

Check if the CA certificate for “myca” exists:

exists = cdir.isCaCert(‘myca’)

Returns
True if the certificate is present, False otherwise.

Return type
bool

isClientCert(name)
Checks if a user client certificate (PKCS12) exists.

Parameters
name (str) – The name of the user keypair.

Examples

Check if the client certificate “myuser” exists:

exists = cdir.isClientCert(‘myuser’)

Returns
True if the certificate is present, False otherwise.

Return type
bool

isHostCert(name)
Checks if a host certificate exists.

Parameters
name (str) – The name of the host keypair.

Examples

Check if the host cert “myhost” exists:

exists = cdir.isUserCert(‘myhost’)

Returns
True if the certificate is present, False otherwise.

Return type
bool

isUserCert(name)
Checks if a user certificate exists.

Parameters
name (str) – The name of the user keypair.

10.1. synapse package 583

Synapse Documentation, Release 2.141.0

Examples

Check if the user cert “myuser” exists:

exists = cdir.isUserCert(‘myuser’)

Returns
True if the certificate is present, False otherwise.

Return type
bool

loadCertByts(byts)
Load a X509 certificate from its PEM encoded bytes.

Parameters
byts (bytes) – The PEM encoded bytes of the certificate.

Returns
The X509 certificate.

Return type
OpenSSL.crypto.X509

Raises
BadCertBytes – If the certificate bytes are invalid.

saveCaCertByts(byts)

saveCertPem(cert, path)
Save a certificate in PEM format to a file outside the certdir.

saveHostCertByts(byts)

savePkeyPem(pkey, path)
Save a private key in PEM format to a file outside the certdir.

saveUserCertByts(byts)

selfSignCert(cert, pkey)
Self-sign a certificate.

Parameters

• cert (OpenSSL.crypto.X509) – The certificate to sign.

• pkey (OpenSSL.crypto.PKey) – The PKey with which to sign the certificate.

Examples

Sign a given certificate with a given private key:

cdir.selfSignCert(mycert, myotherprivatekey)

Returns
None

584 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

signCertAs(cert, signas)
Signs a certificate with a CA keypair.

Parameters

• cert (OpenSSL.crypto.X509) – The certificate to sign.

• signas (str) – The CA keypair name to sign the new keypair with.

Examples

Sign a certificate with the CA “myca”:

cdir.signCertAs(mycert, ‘myca’)

Returns
None

signHostCsr(xcsr, signas, outp=None, sans=None, save=True)
Signs a host CSR with a CA keypair.

Parameters

• xcsr (OpenSSL.crypto.X509Req) – The certificate signing request.

• signas (str) – The CA keypair name to sign the CSR with.

• outp (synapse.lib.output.Output) – The output buffer.

• sans (list) – List of subject alternative names.

Examples

Sign a host key with the CA “myca”:

cdir.signHostCsr(mycsr, ‘myca’)

Returns
Tuple containing the public key and certificate objects.

Return type
((OpenSSL.crypto.PKey, OpenSSL.crypto.X509))

signUserCsr(xcsr, signas, outp=None, save=True)
Signs a user CSR with a CA keypair.

Parameters

• xcsr (OpenSSL.crypto.X509Req) – The certificate signing request.

• signas (str) – The CA keypair name to sign the CSR with.

• outp (synapse.lib.output.Output) – The output buffer.

10.1. synapse package 585

Synapse Documentation, Release 2.141.0

Examples

cdir.signUserCsr(mycsr, ‘myca’)

Returns
Tuple containing the public key and certificate objects.

Return type
((OpenSSL.crypto.PKey, OpenSSL.crypto.X509))

valCodeCert(byts)
Verify a code cert is valid according to certdir’s available CAs and CRLs.

Parameters
byts (bytes) – The certificate bytes.

Returns
The certificate.

Return type
OpenSSL.crypto.X509

valUserCert(byts, cacerts=None)
Validate the PEM encoded x509 user certificate bytes and return it.

Parameters

• byts (bytes) – The bytes for the User Certificate.

• cacerts (tuple) – A tuple of OpenSSL.crypto.X509 CA Certificates.

Raises
BadCertVerify – If the certificate is not valid.

Returns
The certificate, if it is valid.

Return type
OpenSSL.crypto.X509

synapse.lib.certdir.addCertPath(path)

synapse.lib.certdir.delCertPath(path)

synapse.lib.certdir.getCertDir()→ CertDir
Get the singleton CertDir instance.

Returns
A certdir object.

Return type
CertDir

synapse.lib.certdir.getCertDirn()→ str
Get the expanded default path used by the singleton CertDir instance.

Returns
The path string.

Return type
str

586 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

synapse.lib.certdir.getServerSSLContext()→ SSLContext
Get a server SSLContext object.

This object has a minimum TLS version of 1.2, a subset of ciphers in use, and disabled client renegotiation.

This object has no certificates loaded in it.

Returns
The context object.

Return type
ssl.SSLContext

synapse.lib.certdir.iterFqdnUp(fqdn)

synapse.lib.chop module

synapse.lib.chop.TagMatchRe = regex.Regex('([\\w*]+\\.)*[\\w*]+', flags=regex.V0)

Shared primitive routines for chopping up strings and values.

synapse.lib.chop.cvss2_normalize(vect)
Helper function to normalize CVSS2 vectors

synapse.lib.chop.cvss3x_normalize(vect)
Helper function to normalize CVSS3.X vectors

synapse.lib.chop.cvss_normalize(vdict, vers)
Normalize CVSS vectors

synapse.lib.chop.cvss_validate(vect, vers)

Validate (as best as possible) the CVSS vector string. Look for issues such as:

• No duplicated metrics

• Invalid metrics

• Invalid metric values

• Missing mandatory metrics

Returns a dictionary with the parsed metric:value pairs.

synapse.lib.chop.digits(text)

synapse.lib.chop.hexstr(text)
Ensure a string is valid hex.

Parameters
text (str) – String to normalize.

10.1. synapse package 587

Synapse Documentation, Release 2.141.0

Examples

Norm a few strings:

hexstr(‘0xff00’) hexstr(‘ff00’)

Notes

Will accept strings prefixed by ‘0x’ or ‘0X’ and remove them.

Returns
Normalized hex string.

Return type
str

synapse.lib.chop.intstr(text)

synapse.lib.chop.onespace(text)

synapse.lib.chop.printables(text)

synapse.lib.chop.replaceUnicodeDashes(valu)
Replace unicode dashes in a string with regular dashes.

Parameters
valu (str) – A string.

Returns
A new string with replaced dashes.

Return type
str

synapse.lib.chop.stormstring(s)
Make a string storm safe by escaping backslashes and double quotes.

Parameters
s (str) – String to make storm safe.

Notes

This does not encapsulate a string in double quotes.

Returns
A string which can be embedded directly into a storm query.

Return type
str

synapse.lib.chop.tag(text)

synapse.lib.chop.tagpath(text)

synapse.lib.chop.tags(norm)

Divide a normalized tag string into hierarchical layers.

synapse.lib.chop.validateTagMatch(tag)
Raises an exception if tag is not a valid tagmatch (i.e. a tag that might have globs)

588 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

synapse.lib.cli module

class synapse.lib.cli.Cli

Bases: Base

A modular / event-driven CLI base object.

addCmdClass(ctor, **opts)
Add a Cmd subclass to this cli.

async addSignalHandlers()

Register SIGINT signal handler with the ioloop to cancel the currently running cmdloop task.

get(name, defval=None)

getCmdByName(name)
Return a Cmd instance by name.

getCmdNames()

Return a list of all the known command names for the CLI.

getCmdPrompt()

Get the command prompt.

Returns
Configured command prompt

Return type
str

histfile = 'cmdr_history'

initCmdClasses()

printf(mesg, addnl=True, color=None)

async prompt(text=None)
Prompt for user input from stdin.

async runCmdLine(line)
Run a single command line.

Parameters
line (str) – Line to execute.

Examples

Execute the ‘woot’ command with the ‘help’ switch:

await cli.runCmdLine(‘woot –help’)

Returns
Arbitrary data from the cmd class.

Return type
object

10.1. synapse package 589

Synapse Documentation, Release 2.141.0

async runCmdLoop()

Run commands from a user in an interactive fashion until fini() or EOFError is raised.

set(name, valu)

class synapse.lib.cli.Cmd(cli, **opts)
Bases: object

Base class for modular commands in the synapse CLI.

getCmdBrief()

Return the single-line description for this command.

getCmdDoc()

Return the help/doc output for this command.

getCmdItem()

Get a reference to the object we are commanding.

getCmdName()

getCmdOpts(text)
Use the _cmd_syntax def to split/parse/normalize the cmd line.

Parameters
text (str) – Command to process.

Notes

This is implemented independent of argparse (et al) due to the need for syntax aware argument splitting.
Also, allows different split per command type

Returns
An opts dictionary.

Return type
dict

printf(mesg, addnl=True, color=None)

async runCmdLine(line)
Run a line of command input for this command.

Parameters
line (str) – Line to execute

Examples

Run the foo command with some arguments:

await foo.runCmdLine(‘foo –opt baz woot.com’)

async runCmdOpts(opts)
Perform the command actions. Must be implemented by Cmd implementers.

Parameters
opts (dict) – Options dictionary.

590 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

class synapse.lib.cli.CmdHelp(cli, **opts)
Bases: Cmd

List commands and display help output.

Example

help foocmd

async runCmdOpts(opts)
Perform the command actions. Must be implemented by Cmd implementers.

Parameters
opts (dict) – Options dictionary.

class synapse.lib.cli.CmdLocals(cli, **opts)
Bases: Cmd

List the current locals for a given CLI object.

async runCmdOpts(opts)
Perform the command actions. Must be implemented by Cmd implementers.

Parameters
opts (dict) – Options dictionary.

class synapse.lib.cli.CmdQuit(cli, **opts)
Bases: Cmd

Quit the current command line interpreter.

Example

quit

async runCmdOpts(opts)
Perform the command actions. Must be implemented by Cmd implementers.

Parameters
opts (dict) – Options dictionary.

synapse.lib.cmd module

class synapse.lib.cmd.Parser(prog=None, outp=<synapse.lib.output.OutPut object>, **kwargs)
Bases: ArgumentParser

exit(status=0, message=None)
Argparse expects exit() to be a terminal function and not return. As such, this function must raise an
exception instead.

10.1. synapse package 591

Synapse Documentation, Release 2.141.0

synapse.lib.cmdr module

async synapse.lib.cmdr.getItemCmdr(cell, outp=None, color=False, **opts)
Construct and return a cmdr for the given remote cell.

Parameters

• cell – Cell proxy being commanded.

• outp – Output helper object.

• color (bool) – If true, enable colorized output.

• **opts – Additional options pushed into the Cmdr locs.

Examples

Get the cmdr for a proxy:

cmdr = await getItemCmdr(foo)

Returns
A Cli instance with Cmds loaeded into it.

Return type
s_cli.Cli

async synapse.lib.cmdr.runItemCmdr(item, outp=None, color=False, **opts)
Create a cmdr for the given item and run the cmd loop.

Parameters

• item – Cell proxy being commanded.

• outp – Output helper object.

• color (bool) – If true, enable colorized output.

• **opts – Additional options pushed into the Cmdr locs.

Notes

This function does not return while the command loop is run.

Examples

Run the Cmdr for a proxy:

await runItemCmdr(foo)

Returns
This function returns None.

Return type
None

592 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

synapse.lib.config module

class synapse.lib.config.Config(schema, conf=None, envar_prefixes=None)
Bases: MutableMapping

Synapse configuration helper based on JSON Schema.

Parameters

• schema (dict) – The JSON Schema (draft v7) which to validate configuration data against.

• conf (dict) – Optional, a set of configuration data to preload.

• envar_prefixes (list) – Optional, a list of prefix strings used when collecting configu-
ration data from environment variables.

Notes

This class implements the collections.abc.MutableMapping class, so it may be used where a dictionary would
otherwise be used.

The default values provided in the schema must be able to be recreated from the repr() of their Python value.

Default values are not loaded into the configuration data until the reqConfValid() method is called.

asDict()

Get a copy of configuration data.

Returns
A copy of the configuration data.

Return type
dict

getArgParseArgs()

getCmdlineMapping()

classmethod getConfFromCell(cell, conf=None, envar_prefixes=None)
Get a Config object from a Cell directly (either the ctor or the instance thereof).

Returns
A Config object.

Return type
Config

getEnvarMapping(prefix=None)
Get a mapping of config values to envars.

Configuration values which have the hideconf value set to True are not resolved from environment vari-
ables.

reqConfValid()

Validate that the loaded configuration data is valid according to the schema.

10.1. synapse package 593

Synapse Documentation, Release 2.141.0

Notes

The validation set does set any default values which are not currently set for configuration options.

Returns
This returns nothing.

Return type
None

reqConfValu(key)
Get a configuration value. If that value is not present in the schema or is not set, then raise an exception.

Parameters
key (str) – The key to require.

Returns
The requested value.

reqKeyValid(key, value)
Test if a key is valid for the provided schema it is associated with.

Parameters

• key (str) – Key to check.

• value – Value to check.

Raises

• BadArg – If the key has no associated schema.

• BadConfValu – If the data is not schema valid.

Returns
None when valid.

setConfFromEnvs()

Set configuration options from environment variables.

Notes

Environment variables are resolved from configuration options after doing the following transform:

• Replace : characters with _.

• Add a config provided prefix, if set.

• Uppercase the string.

• Resolve the environment variable

• If the environment variable is set, set the config value to the results of yaml.yaml_safeload() on
the value.

Configuration values which have the hideconf value set to True are not resolved from environment vari-
ables.

594 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Examples

For the configuration value auth:passwd, the environment variable is resolved as AUTH_PASSWD. With the
prefix cortex, the the environment variable is resolved as CORTEX_AUTH_PASSWD.

Returns
Returns a dictionary of values which were set from enviroment variables.

Return type
dict

setConfFromFile(path, force=False)
Set the opts for a conf object from YAML file path.

Parameters

• path (str) – Path to the yaml load. If it exists, it must represent a dictionary.

• force (bool) – Force the update instead of using setdefault() behavior.

Returns
None

setConfFromOpts(opts=None)
Set the opts for a conf object from a namespace object.

Parameters

• opts (argparse.Namespace) – A Namespace object made from parsing args with an
ArgumentParser

• getArgumentParser. (made with) –

Returns
Returns None.

Return type
None

synapse.lib.config.getJsSchema(confbase, confdefs)
Generate a Synapse JSON Schema for a Cell using a pair of confbase and confdef values.

Parameters

• confbase (dict) – A JSON Schema dictionary of properties for the object. This content
has precedence over the confdefs argument.

• confdefs (dict) – A JSON Schema dictionary of properties for the object.

Notes

This generated a JSON Schema draft 7 schema for a single object, which does not allow for additional properties
to be set on it. The data in confdefs is implementer controlled and is welcome to specify

Returns
A complete JSON schema.

Return type
dict

10.1. synapse package 595

Synapse Documentation, Release 2.141.0

synapse.lib.config.getJsValidator(schema, use_default=True)
Get a fastjsonschema callable.

Parameters

• schema (dict) – A JSON Schema object.

• use_default (bool) – Whether to insert “default” key arguments into the validated data
structure.

Returns
A callable function that can be used to validate data against the json schema.

Return type
callable

synapse.lib.config.make_envar_name(key, prefix=None)
Convert a colon delimited string into an uppercase, underscore delimited string.

Parameters

• key (str) – Config key to convert.

• prefix (str) – Optional string prefix to prepend the the config key.

Returns
The string to lookup against a envar.

Return type
str

synapse.lib.const module

synapse.lib.coro module

Async/Coroutine related utilities.

class synapse.lib.coro.Event

Bases: Event

async timewait(timeout=None)

class synapse.lib.coro.GenrHelp(genr)
Bases: object

async list()

async spin()

async synapse.lib.coro.agen(item)

Wrap an async_generator or generator in an async_generator.

596 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Notes

Do not use this for a synchronous generator which would cause non-blocking IO; otherwise that IO will block
the ioloop.

async synapse.lib.coro.event_wait(event: Event, timeout=None)
Wait on an an asyncio event with an optional timeout

Returns
true if the event got set, False if timed out

synapse.lib.coro.executor(func, *args, **kwargs)
Execute a non-coroutine function in the ioloop executor pool.

Parameters

• func – Function to execute.

• *args – Args for the function.

• **kwargs – Kwargs for the function.

Examples

Execute a blocking API call in the executor pool:

import requests

def block(url, params=None):
return requests.get(url, params=params).json()

fut = s_coro.executor(block, 'http://some.tld/thign')
resp = await fut

Returns
An asyncio future.

Return type
asyncio.Future

async synapse.lib.coro.forked(func, *args, **kwargs)
Execute a target function in the shared forked process pool and fallback to running in a spawned process if the
pool is unavailable.

Parameters

• func – The target function.

• *args – Function positional arguments.

• **kwargs – Function keyword arguments.

Returns
The target function return.

synapse.lib.coro.genrhelp(f)

synapse.lib.coro.iscoro(item)

10.1. synapse package 597

Synapse Documentation, Release 2.141.0

async synapse.lib.coro.ornot(func, *args, **kwargs)
Calls func and awaits it if a returns a coroutine.

Note: This is useful for implementing a function that might take a telepath proxy object or a local object, and
you must call a non-async method on that object.

This is also useful when calling a callback that might either be a coroutine function or a regular function.

Usage:
ok = await s_coro.ornot(maybeproxy.allowed, ‘path’)

synapse.lib.coro.set_pool_logging(logger_, logconf)

async synapse.lib.coro.spawn(todo, timeout=None, ctx=None, log_conf=None)
Run a todo (func, args, kwargs) tuple in a multiprocessing subprocess.

Parameters

• todo (tuple) – A tuple of function, *args, and **kwargs.

• timeout (int) – The timeout to wait for the todo function to finish.

• ctx (multiprocess.Context) – A optional multiprocessing context object.

• log_conf (dict) – An optional logging configuration for the spawned process.

Notes

The contents of the todo tuple must be able to be pickled for execution. This means that locally bound functions
are not eligible targets for spawn.

Returns
The return value of executing the todo function.

async synapse.lib.coro.waittask(task, timeout=None)
Await a task without cancelling it when you time out.

Returns
True if the task completed before the timeout.

Return type
boolean

synapse.lib.datfile module

Utilities for handling data files embedded within python packages.

synapse.lib.datfile.openDatFile(datpath)
Open a file-like object using a pkg relative path.

598 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Example

fd = openDatFile(‘foopkg.barpkg/wootwoot.bin’)

synapse.lib.dyndeps module

synapse.lib.dyndeps.getDynLocal(name)
Dynamically import a python module and return a local.

Example

cls = getDynLocal(‘foopkg.barmod.BlahClass’) blah = cls()

synapse.lib.dyndeps.getDynMeth(name)
Retrieve and return an unbound method by python path.

synapse.lib.dyndeps.getDynMod(name)
Dynamically import a python module and return a ref (or None).

Example

mod = getDynMod(‘foo.bar’)

synapse.lib.dyndeps.runDynTask(task)
Run a dynamic task and return the result.

Example

foo = runDynTask((‘baz.faz.Foo’, (), {}))

synapse.lib.dyndeps.tryDynFunc(name, *args, **kwargs)
Dynamically import a module and call a function or raise an exception.

synapse.lib.dyndeps.tryDynLocal(name)
Dynamically import a module and return a module local or raise an exception.

synapse.lib.dyndeps.tryDynMod(name)
Dynamically import a python module or exception.

synapse.lib.encoding module

synapse.lib.encoding.addFormat(name, fn, opts)
Add an additional ingest file format

synapse.lib.encoding.decode(name, byts, **opts)
Decode the given byts with the named decoder. If name is a comma separated list of decoders, loop through and
do them all.

10.1. synapse package 599

Synapse Documentation, Release 2.141.0

Example

byts = s_encoding.decode(‘base64’,byts)

Note: Decoder names may also be prefixed with +
to encode for that name/layer.

synapse.lib.encoding.encode(name, item, **opts)

synapse.lib.encoding.iterdata(fd, close_fd=True, **opts)
Iterate through the data provided by a file like object.

Optional parameters may be used to control how the data is deserialized.

Examples

The following example show use of the iterdata function.:

with open('foo.csv','rb') as fd:
for row in iterdata(fd, format='csv', encoding='utf8'):

dostuff(row)

Parameters

• fd (file) – File like object to iterate over.

• close_fd (bool) – Default behavior is to close the fd object. If this is not true, the fd will
not be closed.

• **opts (dict) – Ingest open directive. Causes the data in the fd to be parsed according to
the ‘format’ key and any additional arguments.

Yields
An item to process. The type of the item is dependent on the format parameters.

synapse.lib.gis module

synapse.lib.gis.bbox(lat, lon, dist)
Calculate a min/max bounding box for the circle defined by lalo/dist.

Parameters

• lat (float) – The latitude in degrees

• lon (float) – The longitude in degrees

• dist (int) – A distance in geo:dist base units (mm)

Returns
(latmin, latmax, lonmin, lonmax)

Return type
(float,float,float,float)

synapse.lib.gis.dms2dec(degs, mins, secs)
Convert degrees, minutes, seconds lat/long form to degrees float.

Parameters

600 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

• degs (int) – Degrees

• mins (int) – Minutes

• secs (int) – Seconds

Returns
Degrees

Return type
(float)

synapse.lib.gis.haversine(px, py, r=6371008800.0)
Calculate the haversine distance between two points defined by (lat,lon) tuples.

Parameters

• px ((float,float)) – lat/long position 1

• py ((float,float)) – lat/long position 2

• r (float) – Radius of sphere

Returns
Distance in mm.

Return type
(int)

synapse.lib.gis.latlong(text)
Chop a latlong string and return (float,float). Does not perform validation on the coordinates.

Parameters
text (str) – A longitude,latitude string.

Returns
A longitude, latitude float tuple.

Return type
(float,float)

synapse.lib.gis.near(point, dist, points)
Determine if the given point is within dist of any of points.

Parameters

• point ((float,float)) – A latitude, longitude float tuple.

• dist (int) – A distance in mm (base units)

• points (list) – A list of latitude, longitude float tuples to compare against.

synapse.lib.grammar module

synapse.lib.grammar.chop_float(text, off)

synapse.lib.grammar.isBasePropNoPivprop(name)

synapse.lib.grammar.isCmdName(name)

synapse.lib.grammar.isFormName(name)

10.1. synapse package 601

Synapse Documentation, Release 2.141.0

synapse.lib.grammar.isPropName(name)

synapse.lib.grammar.isUnivName(name)

synapse.lib.grammar.meh(txt, off, cset)

synapse.lib.grammar.nom(txt, off, cset, trim=True)
Consume chars in set from the string and return (subtxt,offset).

Example

text = “foo(bar)” chars = set(‘abcdefghijklmnopqrstuvwxyz’)

name,off = nom(text,0,chars)

Note:

This really shouldn’t be used for new code

synapse.lib.grammar.parse_float(text, off)

synapse.lib.hashitem module

synapse.lib.hashitem.hashitem(item)

Generate a uniq hash for the JSON compatible primitive data structure.

synapse.lib.hashitem.normdict(item)

synapse.lib.hashitem.normitem(item)

synapse.lib.hashitem.normiter(item)

synapse.lib.hashset module

class synapse.lib.hashset.HashSet

Bases: object

digests()

Get a list of (name, bytes) tuples for the hashes in the hashset.

eatfd(fd)
Consume all the bytes from a file like object.

Example

hset = HashSet() hset.eatfd(fd)

guid()

Use elements from this hash set to create a unique (re)identifier.

update(byts)
Update all the hashes in the set with the given bytes.

602 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

synapse.lib.health module

class synapse.lib.health.HealthCheck(iden)
Bases: object

getStatus()

pack()

setStatus(valu)

update(name, status, mesg='', data=None)
Append a new component to the Healcheck object.

Parameters

• name (str) – Name of the reported component.

• status (str) – nomdinal/degraded/failed status code.

• mesg (str) – Optional message about the component status.

• data (dict) – Optional arbitrary dictionary of additional metadata about the component.

Returns
None

synapse.lib.hive module

class synapse.lib.hive.Hive

Bases: Pusher, Aware

An optionally persistent atomically accessed tree which implements primitives for use in making dis-
tributed/clustered services.

async add(full, valu)
Atomically increments a node’s value.

async dict(full, nexs=False)
Open a HiveDict at the given full path.

Parameters
full (tuple) – A full path tuple.

Returns
A HiveDict for the full path.

Return type
HiveDict

dir(full)
List subnodes of the given Hive path.

Parameters
full (tuple) – A full path tuple.

10.1. synapse package 603

Synapse Documentation, Release 2.141.0

Notes

This returns None if there is not a node at the path.

Returns
A list of tuples. Each tuple contains the name, node value, and the number of children nodes.

Return type
list

async exists(full)
Returns whether the Hive path has already been created.

async get(full, defv=None)
Get the value of a node at a given path.

Parameters
full (tuple) – A full path tuple.

Returns
Arbitrary node value.

async getHiveAuth()

Retrieve a HiveAuth for hive standalone or non-cell uses.

Note: This is for the hive’s own auth, or for non-cell auth. It isn’t the same auth as for a cell

async getTeleApi(link, mesg, path)
Return a shared object for this link. :param link: A network link. :type link: synapse.lib.link.Link :param
mesg: The tele:syn handshake message. :type mesg: (str,dict)

async loadHiveTree(tree, path=(), trim=False)

async open(full)
Open and return a hive Node().

Parameters
full (tuple) – A full path tuple.

Returns
A Hive node.

Return type
Node

async pop(full, nexs=False)
Remove and return the value for the given node.

async rename(oldpath, newpath)
Moves a node at oldpath and all its descendant nodes to newpath. newpath must not exist

async saveHiveTree(path=())

async set(full, valu, nexs=False)
A set operation at the hive level (full path).

async storNodeDele(path)

604 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async storNodeValu(full, valu)

class synapse.lib.hive.HiveApi

Bases: Base

async addAndSync(path, valu, iden)

async edits()

async get(full)

async loadHiveTree(tree, path=(), trim=False)

async popAndSync(path, iden, nexs=False)

async saveHiveTree(path=())

async setAndSync(path, valu, iden, nexs=False)

async treeAndSync(path, iden)

class synapse.lib.hive.HiveDict

Bases: Base

get(name, default=None)

items()

pack()

async pop(name, default=None)

async set(name, valu, nexs=None)

setdefault(name, valu)

values()

class synapse.lib.hive.Node

Bases: Base

A single node within the Hive tree.

async add(valu)
Increments existing node valu

async dict(nexs=False)
Get a HiveDict for this Node.

Returns
A HiveDict for this Node.

Return type
HiveDict

dir()

get(name)

name()

10.1. synapse package 605

Synapse Documentation, Release 2.141.0

async open(path)
Open a child Node of the this Node.

Parameters
path (tuple) – A child path of the current node.

Returns
A Node at the child path.

Return type
Node

parent()

async pop(path=())

async set(valu)

class synapse.lib.hive.SlabHive

Bases: Hive

async storNodeDele(full)

async storNodeValu(full, valu)

class synapse.lib.hive.TeleHive

Bases: Hive

A Hive that acts as a consistent read cache for a telepath proxy Hive

async add(path, valu)
Atomically increments a node’s value.

async get(path)
Get the value of a node at a given path.

Parameters
full (tuple) – A full path tuple.

Returns
Arbitrary node value.

async open(path)
Open and return a hive Node().

Parameters
full (tuple) – A full path tuple.

Returns
A Hive node.

Return type
Node

async pop(path, nexs=False)
Remove and return the value for the given node.

async set(path, valu, nexs=False)
A set operation at the hive level (full path).

synapse.lib.hive.iterpath(path)

606 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async synapse.lib.hive.opendir(dirn, conf=None)

async synapse.lib.hive.openurl(url, **opts)

synapse.lib.hiveauth module

class synapse.lib.hiveauth.Auth

Bases: Pusher

Auth is a user authentication and authorization stored in a Hive. Users correspond to separate logins with different
passwords and potentially different privileges.

Users are assigned “rules”. These rules are evaluated in order until a rule matches. Each rule is a tuple of boolean,
and a rule path (a sequence of strings). Rules that are prefixes of a privilege match, i.e. a rule (‘foo’,) will match
(‘foo’, ‘bar’).

Roles are just collections of rules. When a user is “granted” a role those rules are assigned to that user. Unlike in
an RBAC system, users don’t explicitly assume a role; they are merely a convenience mechanism to easily assign
the same rules to multiple users.

Authgates are objects that manage their own authorization. Each AuthGate has roles and users subkeys which
contain rules specific to that user or role for that AuthGate. The roles and users of an AuthGate, called GateRole
and GateUser respectively, contain the iden of a role or user defined prior and rules specific to that role or user;
they do not duplicate the metadata of the role or user.

Node layout:

Auth root (passed into constructor)
roles

<role iden 1>
...
last role

users
<user iden 1>
...
last user

authgates
<iden 1>

roles
<role iden 1>
...
last role

users
<user iden 1>
...
last user

<iden 2>
...

... last authgate

async addAuthGate(iden, authgatetype)
Retrieve AuthGate by iden. Create if not present.

Note: Not change distributed

10.1. synapse package 607

Synapse Documentation, Release 2.141.0

Returns
(HiveAuthGate)

async addRole(name, iden=None)

async addUser(name, passwd=None, email=None, iden=None)
Add a User to the Hive.

Parameters

• name (str) – The name of the User.

• passwd (str) – A optional password for the user.

• email (str) – A optional email for the user.

• iden (str) – A optional iden to use as the user iden.

Returns
A Hive User.

Return type
HiveUser

async delAuthGate(iden)
Delete AuthGate by iden.

Note: Not change distributed

async delRole(iden)

async delUser(iden)

async feedBeholder(evnt, info, gateiden=None, logged=True)

getAuthGate(iden)

getAuthGates()

async getRoleByName(name)

async getUserByName(name)
Get a user by their username.

Parameters
name (str) – Name of the user to get.

Returns
A Hive User. May return None if there is no user by the requested name.

Return type
HiveUser

async getUserIdenByName(name)

reqAuthGate(iden)

async reqRole(iden)

async reqRoleByName(name)

608 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async reqUser(iden)

async reqUserByName(name)

async reqUserByNameOrIden(name)

role(iden)

roles()

async setRoleInfo(iden, name, valu, gateiden=None, logged=True, mesg=None)

async setRoleName(iden, name)

async setUserInfo(iden, name, valu, gateiden=None, logged=True, mesg=None)

async setUserName(iden, name)

user(iden)

users()

class synapse.lib.hiveauth.AuthGate

Bases: Base

The storage object for object specific rules for users/roles.

async delete()

async genRoleInfo(iden)

async genUserInfo(iden)

pack()

class synapse.lib.hiveauth.HiveRole

Bases: HiveRuler

A role within the Hive authorization subsystem.

A role in HiveAuth exists to bundle rules together so that the same set of rules can be applied to multiple users.

allowed(perm, default=None, gateiden=None)

clearAuthCache()

async genGateInfo(gateiden)

pack()

async setName(name)

class synapse.lib.hiveauth.HiveRuler

Bases: Base

A HiveNode that holds a list of rules. This includes HiveUsers, HiveRoles, and the AuthGate variants of those

async addRule(rule, indx=None, gateiden=None, nexs=True)

async delRule(rule, gateiden=None)

getRules(gateiden=None)

10.1. synapse package 609

Synapse Documentation, Release 2.141.0

async setRules(rules, gateiden=None, nexs=True, mesg=None)

class synapse.lib.hiveauth.HiveUser

Bases: HiveRuler

A user (could be human or computer) of the system within HiveAuth.

Cortex-wide rules are stored here. AuthGate-specific rules for this user are stored in an GateUser.

async allow(perm)

allowed(perm, default=None, gateiden=None)

clearAuthCache()

confirm(perm, default=None, gateiden=None)

async genGateInfo(gateiden)

getAllowedReason(perm, gateiden=None, default=False)
A non-optimized diagnostic routine which will return a tuple of (allowed, reason). This is implemented
separately for perf.

NOTE: This must remain in sync with any changes to _allowed()!

getRoles()

async grant(roleiden, indx=None)

hasRole(iden)

isAdmin(gateiden=None)

isLocked()

pack(packroles=False)

raisePermDeny(perm, gateiden=None)

async revoke(iden, nexs=True)

async setAdmin(admin, gateiden=None, logged=True)

async setArchived(archived)

async setLocked(locked, logged=True)

async setName(name)

async setPasswd(passwd, nexs=True)

async setRoles(roleidens)
Replace all the roles for a given user with a new list of roles.

Parameters
roleidens (list) – A list of roleidens.

610 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Notes

The roleiden for the “all” role must be present in the new list of roles. This replaces all existing roles that
the user has with the new roles.

Returns
None

async tryPasswd(passwd, nexs=True)

synapse.lib.hiveauth.getShadow(passwd)
This API is deprecated.

synapse.lib.hiveauth.textFromRule(rule)

synapse.lib.httpapi module

class synapse.lib.httpapi.ActiveV1(application: Application, request: HTTPServerRequest, **kwargs:
Any)

Bases: Handler

async get()

class synapse.lib.httpapi.AuthAddRoleV1(application: Application, request: HTTPServerRequest,
**kwargs: Any)

Bases: Handler

async post()

class synapse.lib.httpapi.AuthAddUserV1(application: Application, request: HTTPServerRequest,
**kwargs: Any)

Bases: Handler

async post()

class synapse.lib.httpapi.AuthDelRoleV1(application: Application, request: HTTPServerRequest,
**kwargs: Any)

Bases: Handler

async post()

class synapse.lib.httpapi.AuthGrantV1(application: Application, request: HTTPServerRequest, **kwargs:
Any)

Bases: Handler

/api/v1/auth/grant?user=iden&role=iden

async get()

async post()

class synapse.lib.httpapi.AuthRevokeV1(application: Application, request: HTTPServerRequest,
**kwargs: Any)

Bases: Handler

/api/v1/auth/grant?user=iden&role=iden

10.1. synapse package 611

Synapse Documentation, Release 2.141.0

async get()

async post()

class synapse.lib.httpapi.AuthRoleV1(application: Application, request: HTTPServerRequest, **kwargs:
Any)

Bases: Handler

async get(iden)

async post(iden)

class synapse.lib.httpapi.AuthRolesV1(application: Application, request: HTTPServerRequest, **kwargs:
Any)

Bases: Handler

async get()

class synapse.lib.httpapi.AuthUserPasswdV1(application: Application, request: HTTPServerRequest,
**kwargs: Any)

Bases: Handler

async post(iden)

class synapse.lib.httpapi.AuthUserV1(application: Application, request: HTTPServerRequest, **kwargs:
Any)

Bases: Handler

async get(iden)

async post(iden)

class synapse.lib.httpapi.AuthUsersV1(application: Application, request: HTTPServerRequest, **kwargs:
Any)

Bases: Handler

async get()

class synapse.lib.httpapi.BeholdSockV1(application: Application, request: HTTPServerRequest,
**kwargs: Any)

Bases: WebSocket

async onInitMessage(byts)

async on_message(byts)
Handle incoming messages on the WebSocket

This method must be overridden.

Changed in version 4.5: on_message can be a coroutine.

class synapse.lib.httpapi.CoreInfoV1(application: Application, request: HTTPServerRequest, **kwargs:
Any)

Bases: Handler

/api/v1/core/info

async get()

612 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

class synapse.lib.httpapi.FeedV1(application: Application, request: HTTPServerRequest, **kwargs: Any)
Bases: Handler

/api/v1/feed

Examples

Example data:

{
'name': 'syn.nodes',
'view': null,
'items': [...],

}

async post()

class synapse.lib.httpapi.Handler(application: Application, request: HTTPServerRequest, **kwargs: Any)
Bases: HandlerBase, RequestHandler

on_connection_close()

Called in async handlers if the client closed the connection.

Override this to clean up resources associated with long-lived connections. Note that this method is called
only if the connection was closed during asynchronous processing; if you need to do cleanup after every
request override on_finish instead.

Proxies may keep a connection open for a time (perhaps indefinitely) after the client has gone away, so this
method may not be called promptly after the end user closes their connection.

prepare()

Called at the beginning of a request before get/post/etc.

Override this method to perform common initialization regardless of the request method.

Asynchronous support: Use async def or decorate this method with .gen.coroutine to make it asyn-
chronous. If this method returns an Awaitable execution will not proceed until the Awaitable is done.

New in version 3.1: Asynchronous support.

class synapse.lib.httpapi.HandlerBase

Bases: object

async allowed(perm, gateiden=None)
Check if the authenticated user has the given permission.

Parameters

• perm (tuple) – The permission tuple to check.

• gateiden (str) – The gateiden to check the permission against.

10.1. synapse package 613

Synapse Documentation, Release 2.141.0

Notes

This API sets up HTTP response values if it returns False.

Returns
True if the user has the requested permission.

Return type
bool

async authenticated()

Check if the request has an authenticated user or not.

Returns
True if the request has an authenticated user, false otherwise.

Return type
bool

check_origin(origin)

getAuthCell()

Return a reference to the cell used for auth operations.

getCustomHeaders()

getJsonBody(validator=None)

async getUseridenBody(validator=None)
Helper function to confirm that there is an auth user and a valid JSON body in the request.

Parameters
validator – Validator function run on the deserialized JSON body.

Returns
The user definition and body of the request as deserialized JSON, or a tuple of
s_common.novalu objects if there was no user or json body.

Return type
(str, object)

async handleBasicAuth()

Handle basic authentication in the handler.

Notes

Implementors may override this to disable or implement their own basic auth schemes. This is expected to
set web_useriden and web_username upon successful authentication.

Returns
The user iden of the logged in user.

Return type
str

initialize(cell)

isOrigHost(origin)

614 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async isUserAdmin()

Check if the current authenticated user is an admin or not.

Returns
True if the user is an admin, false otherwise.

Return type
bool

loadJsonMesg(byts, validator=None)

options()

async reqAuthAdmin()

Require the current authenticated user to be an admin.

Notes

If this returns False, an error message has already been sent and no additional processing for the request
should be done.

Returns
True if the user is an admin, false otherwise.

Return type
bool

async reqAuthUser()

sendAuthRequired()

sendRestErr(code, mesg)

sendRestExc(e)

sendRestRetn(valu)

async sess(gen=True)
Get the heavy Session object for the request.

Parameters
gen (bool) – If set to True, generate a new session if there is no sess cookie.

Notes

This stores the identifier in the sess cookie for with a 14 day expiration, stored in the Cell. Valid requests
with that sess cookie will resolve to the same Session object.

Returns
A heavy session object. If the sess cookie is invalid or gen is false, this returns None.

Return type
Sess

set_default_headers()

10.1. synapse package 615

Synapse Documentation, Release 2.141.0

async useriden()

Get the user iden of the current session user.

Note: This function will pull the iden from the current session, or attempt to resolve the useriden with
basic authentication.

Returns
The iden of the current session user.

Return type
str

class synapse.lib.httpapi.HealthCheckV1(application: Application, request: HTTPServerRequest,
**kwargs: Any)

Bases: Handler

async get()

class synapse.lib.httpapi.LoginV1(application: Application, request: HTTPServerRequest, **kwargs: Any)
Bases: Handler

async post()

class synapse.lib.httpapi.ModelNormV1(application: Application, request: HTTPServerRequest, **kwargs:
Any)

Bases: Handler

async get()

async post()

class synapse.lib.httpapi.ModelV1(application: Application, request: HTTPServerRequest, **kwargs: Any)
Bases: Handler

async get()

class synapse.lib.httpapi.OnePassIssueV1(application: Application, request: HTTPServerRequest,
**kwargs: Any)

Bases: Handler

/api/v1/auth/onepass/issue

async post()

class synapse.lib.httpapi.ReqValidStormV1(application: Application, request: HTTPServerRequest,
**kwargs: Any)

Bases: StormHandler

async get()

async post()

class synapse.lib.httpapi.RobotHandler(application: Application, request: HTTPServerRequest,
**kwargs: Any)

Bases: HandlerBase, RequestHandler

616 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async get()

class synapse.lib.httpapi.Sess

Bases: Base

addWebSock(sock)

delWebSock(sock)

async login(user)

async logout()

async set(name, valu)

class synapse.lib.httpapi.StormCallV1(application: Application, request: HTTPServerRequest, **kwargs:
Any)

Bases: StormHandler

async get()

async post()

class synapse.lib.httpapi.StormExportV1(application: Application, request: HTTPServerRequest,
**kwargs: Any)

Bases: StormHandler

async get()

async post()

class synapse.lib.httpapi.StormHandler(application: Application, request: HTTPServerRequest,
**kwargs: Any)

Bases: Handler

getCore()

class synapse.lib.httpapi.StormNodesV1(application: Application, request: HTTPServerRequest,
**kwargs: Any)

Bases: StormHandler

async get()

async post()

class synapse.lib.httpapi.StormV1(application: Application, request: HTTPServerRequest, **kwargs: Any)
Bases: StormHandler

async get()

async post()

class synapse.lib.httpapi.StormVarsGetV1(application: Application, request: HTTPServerRequest,
**kwargs: Any)

Bases: Handler

async get()

10.1. synapse package 617

Synapse Documentation, Release 2.141.0

class synapse.lib.httpapi.StormVarsPopV1(application: Application, request: HTTPServerRequest,
**kwargs: Any)

Bases: Handler

async post()

class synapse.lib.httpapi.StormVarsSetV1(application: Application, request: HTTPServerRequest,
**kwargs: Any)

Bases: Handler

async post()

class synapse.lib.httpapi.StreamHandler(application: Application, request: HTTPServerRequest,
**kwargs: Any)

Bases: Handler

Subclass for Tornado streaming uploads.

Notes

• Async method prepare() is called after headers are read but before body processing.

• Sync method on_finish() can be used to cleanup after a request.

• Sync method on_connection_close() can be used to cleanup after a client disconnect.

• Async methods post(), put(), etc are called after the streaming has completed.

async data_received(chunk)
Implement this method to handle streamed request data.

Requires the .stream_request_body decorator.

May be a coroutine for flow control.

class synapse.lib.httpapi.WatchSockV1(application: Application, request: HTTPServerRequest, **kwargs:
Any)

Bases: WebSocket

A web-socket based API endpoint for distributing cortex tag events.

Deprecated.

async onWatchMesg(byts)

async on_message(byts)
Handle incoming messages on the WebSocket

This method must be overridden.

Changed in version 4.5: on_message can be a coroutine.

class synapse.lib.httpapi.WebSocket(application: Application, request: HTTPServerRequest, **kwargs:
Any)

Bases: HandlerBase, WebSocketHandler

async xmit(name, **info)

618 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

synapse.lib.ingest module

synapse.lib.interval module

A few utilities for dealing with intervals.

synapse.lib.interval.fold(*vals)
Initialize a new (min,max) tuple interval from values.

Parameters
*vals ([int,...]) – A list of values (or Nones)

Returns
A (min,max) interval tuple or None

Return type
((int,int))

synapse.lib.interval.overlap(ival0, ival1)
Determine if two interval tuples have overlap.

Parameters

• ival0 ((int,int)) – An interval tuple

• ival1 ((int,int)) –

Returns
True if the intervals overlap, otherwise False

Return type
(bool)

synapse.lib.interval.parsetime(text)
Parse an interval time string and return a (min,max) tuple.

Parameters
text (str) – A time interval string

Returns
A epoch millis epoch time string

Return type
((int,int))

synapse.lib.jsonstor module

class synapse.lib.jsonstor.JsonStor

Bases: Base

A filesystem like storage mechanism that allows hirarchical lookup of reference counted “objects” that have
individually editable properties.

#TODO json validation by path glob matches? (persists?) #TODO GUID ACCESS with index generation by
type #TODO registered types jsonschema with optional write-back validation

async cmpDelPathObjProp(path, prop, valu)

async copyPathObj(oldp, newp)

10.1. synapse package 619

Synapse Documentation, Release 2.141.0

async copyPathObjs(paths)

async delPathObj(path)
Remove a path and decref the object it references.

async delPathObjProp(path, prop)

async getPathList(path)

async getPathObj(path)

async getPathObjProp(path, prop)

async getPathObjs(path)

async hasPathObj(path)

async popPathObjProp(path, prop, defv=None)

async setPathLink(srcpath, dstpath)
Add a link from the given srcpath to the dstpath. NOTE: This causes the item at dstpath to be incref’d

async setPathObj(path, item)

Set (and/or reinitialize) the object at the given path.

NOTE: This will break any links by creating a new object.

async setPathObjProp(path, prop, valu)

class synapse.lib.jsonstor.JsonStorApi

Bases: CellApi

async addQueue(name, info)

addUserNotif(useriden, mesgtype, mesgdata=None)

async cmpDelPathObjProp(path, name, valu)

async copyPathObj(oldp, newp)

async copyPathObjs(paths)

async cullQueue(name, offs)

async delPathObj(path)

async delPathObjProp(path, name)

async delQueue(name)

delUserNotif(indx)

async getPathList(path)

async getPathObj(path)

async getPathObjProp(path, prop)

async getPathObjs(path)

getUserNotif(indx)

620 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async getsQueue(name, offs, size=None, cull=True, wait=True)

async hasPathObj(path)

iterUserNotifs(useriden, size=None)

async popPathObjProp(path, prop)

async putsQueue(name, items)

async setPathLink(srcpath, dstpath)

async setPathObj(path, item)

async setPathObjProp(path, prop, valu)

watchAllUserNotifs(offs=None)

class synapse.lib.jsonstor.JsonStorCell

Bases: Cell

async addQueue(name, info)

async addUserNotif(useriden, mesgtype, mesgdata=None)

cellapi

alias of JsonStorApi

async cmpDelPathObjProp(path, name, valu)

async copyPathObj(oldp, newp)

async copyPathObjs(paths)

async cullQueue(name, offs)

async delPathObj(path)

async delPathObjProp(path, name)

async delQueue(name)

async delUserNotif(indx)

classmethod getEnvPrefix()

Get a list of envar prefixes for config resolution.

async getPathList(path)

async getPathObj(path)

async getPathObjProp(path, prop)

async getPathObjs(path)

async getUserNotif(indx)

async getsQueue(name, offs, size=None, cull=True, wait=True)

async hasPathObj(path)

10.1. synapse package 621

Synapse Documentation, Release 2.141.0

async initServiceStorage()

async iterUserNotifs(useriden, size=None)

async popPathObjProp(path, prop)

async putsQueue(name, items)

async setPathLink(srcpath, dstpath)

async setPathObj(path, item)

async setPathObjProp(path, prop, valu)

async watchAllUserNotifs(offs=None)

synapse.lib.jupyter module

class synapse.lib.jupyter.CmdrCore

Bases: Base

A helper for jupyter/cmdr CLI interaction

async addFeedData(name, items, *, viewiden=None)
Add feed data to the cortex.

async eval(text, opts=None, num=None, cmdr=False)
A helper for executing a storm command and getting a list of packed nodes.

Parameters

• text (str) – Storm command to execute.

• opts (dict) – Opt to pass to the cortex during execution.

• num (int) – Number of nodes to expect in the output query. Checks that with an assert
statement.

• cmdr (bool) – If True, executes the line via the Cmdr CLI and will send output to outp.

Notes

The opts dictionary will not be used if cmdr=True.

Returns
A list of packed nodes.

Return type
list

async runCmdLine(text)
Run a line of text directly via cmdr.

async storm(text, opts=None, num=None, cmdr=False, suppress_logging=False)
A helper for executing a storm command and getting a list of storm messages.

Parameters

• text (str) – Storm command to execute.

622 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

• opts (dict) – Opt to pass to the cortex during execution.

• num (int) – Number of nodes to expect in the output query. Checks that with an assert
statement.

• cmdr (bool) – If True, executes the line via the Cmdr CLI and will send output to outp.

• suppress_logging (bool) – If True, suppresses some logging related to Storm runtime
exceptions.

Notes

The opts dictionary will not be used if cmdr=True.

Returns
A list of storm messages.

Return type
list

suppress_logging(suppress)
Context manager to suppress specific loggers.

class synapse.lib.jupyter.StormCore

Bases: Base

A helper for jupyter/storm CLI interaction

async runCmdLine(text, opts=None)
Run a line of text directly via storm cli.

async storm(text, opts=None, num=None, cli=False, suppress_logging=False)
A helper for executing a storm command and getting a list of storm messages.

Parameters

• text (str) – Storm command to execute.

• opts (dict) – Opt to pass to the cortex during execution.

• num (int) – Number of nodes to expect in the output query. Checks that with an assert
statement.

• cli (bool) – If True, executes the line via the Storm CLI and will send output to outp.

• suppress_logging (bool) – If True, suppresses some logging related to Storm runtime
exceptions.

Notes

The opts dictionary will not be used if cmdr=True.

Returns
A list of storm messages.

Return type
list

suppress_logging(suppress)
Context manager to suppress specific loggers.

10.1. synapse package 623

Synapse Documentation, Release 2.141.0

synapse.lib.jupyter.genTempCoreProxy(mods=None)
Get a temporary cortex proxy.

synapse.lib.jupyter.genTempStormsvcProxy(cmdrcore, svcname, svcctor, conf=None)

synapse.lib.jupyter.getDocData(fp, root=None)

Parameters

• fp (str) – Name of the file to retrieve the data of.

• root (str) – Optional root path to look for a docdata directory in.

Notes

Will detect json/jsonl/yaml/mpk extensions and automatically decode that data if found; otherwise it returns
bytes.

Defaults to looking for the docdata directory in the current working directory. This behavior works fine for
notebooks nested in the docs directory of synapse; but this root directory that is looked for may be overridden
by providing an alternative root.

Returns
May be deserialized data or bytes.

Return type
data

Raises
ValueError if the file does not exist or directory traversal attempted..
–

synapse.lib.jupyter.getDocPath(fn, root=None)
Helper for getting a documentation data file paths.

Parameters

• fn (str) – Name of the file to retrieve the full path for.

• root (str) – Optional root path to look for a docdata in.

Notes

Defaults to looking for the docdata directory in the current working directory. This behavior works fine for
notebooks nested in the docs directory of synapse; but this root directory that is looked for may be overridden
by providing an alternative root.

Returns
A file path.

Return type
str

Raises
ValueError if the file does not exist or directory traversal attempted..
–

async synapse.lib.jupyter.getItemCmdr(prox, outp=None, locs=None)
Get a Cmdr instance with prepopulated locs

624 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async synapse.lib.jupyter.getItemStorm(prox, outp=None)
Get a Storm CLI instance with prepopulated locs

async synapse.lib.jupyter.getTempCoreCmdr(mods=None, outp=None)
Get a CmdrCore instance which is backed by a temporary Cortex.

Parameters

• mods (list) – A list of additional CoreModules to load in the Cortex.

• outp – A output helper. Will be used for the Cmdr instance.

Notes

The CmdrCore returned by this should be fini()’d to tear down the temporary Cortex.

Returns
A CmdrCore instance.

Return type
CmdrCore

async synapse.lib.jupyter.getTempCoreCmdrStormsvc(svcname, svcctor, svcconf=None, outp=None)
Get a proxy to a Storm service and a CmdrCore instance backed by a temporary Cortex with the service added.

Parameters

• svcname (str) – Storm service name

• svcctor – Storm service constructor (e.g. Example.anit)

• svcconf – Optional conf for the Storm service

• outp – A output helper for the Cmdr instance

Notes

Both the CmdrCore and Storm service proxy should be fini()’d for proper teardown

Returns
A CmdrCore instance and proxy to the Storm service

Return type
(CmdrCore, Proxy)

async synapse.lib.jupyter.getTempCoreProx(mods=None)
Get a Telepath Proxt to a Cortex instance which is backed by a temporary Cortex.

Parameters
mods (list) – A list of additional CoreModules to load in the Cortex.

10.1. synapse package 625

Synapse Documentation, Release 2.141.0

Notes

The Proxy returned by this should be fini()’d to tear down the temporary Cortex.

Returns
s_telepath.Proxy

async synapse.lib.jupyter.getTempCoreStorm(mods=None, outp=None)
Get a StormCore instance which is backed by a temporary Cortex.

Parameters

• mods (list) – A list of additional CoreModules to load in the Cortex.

• outp – A output helper. Will be used for the Cmdr instance.

Notes

The StormCore returned by this should be fini()’d to tear down the temporary Cortex.

Returns
A StormCore instance.

Return type
StormCore

async synapse.lib.jupyter.getTempCoreStormStormsvc(svcname, svcctor, svcconf=None, outp=None)
Get a proxy to a Storm service and a StormCore instance backed by a temporary Cortex with the service added.

Parameters

• svcname (str) – Storm service name

• svcctor – Storm service constructor (e.g. Example.anit)

• svcconf – Optional conf for the Storm service

• outp – A output helper for the Cmdr instance

Notes

Both the StormCore and Storm service proxy should be fini()’d for proper teardown

Returns
A StormCore instance and proxy to the Storm service

Return type
(StormCore, Proxy)

synapse.lib.jupyter.suppress_logging(suppress)
Context manager to suppress specific loggers.

626 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

synapse.lib.layer module

The Layer 2.0 archtecture introduces several optimized node/message serialization formats used by the layers to opti-
mize returning primitives and facilitate efficient node construction:

Note: This interface is subject to change between minor revisions.

Storage Types (<stortype>)

In Layers 2.0, each node property from the model has an associated “storage type”. Each storage type
determines how the data is indexed and represented within the Layer. This formalizes the separation of
“data model” from “storage model”. Each data model type has a “stortype” property which coresponds
to one of the STOR_TYPE_XXX values. The knowledge of the mapping of data model types to storage
types is the responsibility of the data model, making the Layer implementation fully decoupled from the
data model.

Node Edits / Edits

A node edit consists of a (<buid>, <form>, [edits]) tuple. An edit is Tuple of (<type>, <info>,
List[NodeEdits]) where the first element is an int that matches to an EDIT_* constant below, the info
is a tuple that varies depending on the first element, and the third element is a list of dependent NodeEdits
that will only be applied if the edit actually makes a change.

Storage Node (<sode>)

A storage node is a layer/storage optimized node representation which is similar to a “packed node”. A
storage node may be partial (as it is produced by a given layer) and are joined by the view/snap into “full”
storage nodes which are used to construct Node() instances.

Sode format:

(<buid>, {

'ndef': (<formname>, <formvalu>),

'props': {
<propname>: <propvalu>,

}

'tags': {
<tagname>: <tagvalu>,

}

'tagprops: {
<tagname>: {

<propname>: <propvalu>,
},

}

changes that were *just* made.
'edits': [

<edit>
]

}),

10.1. synapse package 627

Synapse Documentation, Release 2.141.0

class synapse.lib.layer.IndxBy(layr, abrv, db)
Bases: object

IndxBy sub-classes encapsulate access methods and encoding details for various types of properties within the
layer to be lifted/compared by storage types.

buidsByDups(indx)

buidsByPref(indx=b'')

buidsByRange(minindx, maxindx)

buidsByRangeBack(minindx, maxindx)

getNodeValu(buid)

hasIndxBuid(indx, buid)

keyBuidsByDups(indx)

keyBuidsByPref(indx=b'')

keyBuidsByRange(minindx, maxindx)

keyBuidsByRangeBack(minindx, maxindx)
Yields backwards from maxindx to minindx

scanByDups(indx)

scanByPref(indx=b'')

scanByRange(minindx, maxindx)

class synapse.lib.layer.IndxByForm(layr, form)

Bases: IndxBy

getNodeValu(buid)

class synapse.lib.layer.IndxByProp(layr, form, prop)
Bases: IndxBy

getNodeValu(buid)

class synapse.lib.layer.IndxByPropArray(layr, form, prop)
Bases: IndxBy

getNodeValu(buid)

class synapse.lib.layer.IndxByTag(layr, form, tag)
Bases: IndxBy

getNodeValuForm(buid)

class synapse.lib.layer.IndxByTagProp(layr, form, tag, prop)
Bases: IndxBy

getNodeValu(buid)

628 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

class synapse.lib.layer.Layer

Bases: Pusher

The base class for a cortex layer.

async clone(newdirn)
Copy the contents of this layer to a new layer

async delete()

Delete the underlying storage

getAbrvProp(abrv)

async getEdgeVerbs()

async getEdges(verb=None)

async getEditIndx()

Returns what will be the next (i.e. 1 past the last) nodeedit log index.

async getEditOffs()

Return the offset of the last recorded log entry. Returns -1 if nodeedit log is disabled or empty.

async getEditSize()

async getFormCounts()

getFormProps()

getIdenFutu(iden=None)

async getLayerSize()

Get the total storage size for the layer.

async getMirrorStatus()

async getModelVers()

async getNodeData(buid, name)
Return a single element of a buid’s node data

getNodeEditWindow()

async getNodeForm(buid)

async getNodeTag(buid, tag)

async getNodeValu(buid, prop=None)
Retrieve either the form valu or a prop valu for the given node by buid.

getPropAbrv(form, prop)

async getPropCount(formname, propname=None, maxsize=None)
Return the number of property rows in the layer for the given form/prop.

getStorIndx(stortype, valu)

async getStorNode(buid)

10.1. synapse package 629

Synapse Documentation, Release 2.141.0

async getStorNodes()

Yield (buid, sode) tuples for all the nodes with props/tags/tagprops stored in this layer.

async getTagCount(tagname, formname=None)
Return the number of tag rows in the layer for the given tag/form.

getTagPropAbrv(*args)

getTagProps()

async getUnivPropCount(propname, maxsize=None)
Return the number of universal property rows in the layer for the given prop.

async hasNodeData(buid, name)

async hasNodeEdge(buid1, verb, buid2)

async hasTagProp(name)

async initLayerActive()

async initLayerPassive()

async initUpstreamSync(url)

async iterFormRows(form, stortype=None, startvalu=None)
Yields buid, valu tuples of nodes of a single form, optionally (re)starting at startvalu.

Parameters

• form (str) – A form name.

• stortype (Optional[int]) – a STOR_TYPE_* integer representing the type of
form:prop

• startvalu (Any) – The value to start at. May only be not None if stortype is not None.

Returns
AsyncIterator[Tuple(buid, valu)]

async iterLayerNodeEdits()

Scan the full layer and yield artificial sets of nodeedits.

async iterNodeData(buid)
Return a generator of all a buid’s node data

async iterNodeDataKeys(buid)
Return a generator of all a buid’s node data keys

async iterNodeEdgesN1(buid, verb=None)

async iterNodeEdgesN2(buid, verb=None)

async iterNodeEditLog(offs=0)
Iterate the node edit log and yield (offs, edits, meta) tuples.

async iterNodeEditLogBack(offs=0)
Iterate the node edit log and yield (offs, edits, meta) tuples in reverse.

630 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async iterPropRows(form, prop, stortype=None, startvalu=None)
Yields buid, valu tuples of nodes with a particular secondary property, optionally (re)starting at startvalu.

Parameters

• form (str) – A form name.

• prop (str) – A universal property name.

• stortype (Optional[int]) – a STOR_TYPE_* integer representing the type of
form:prop

• startvalu (Any) – The value to start at. May only be not None if stortype is not None.

Returns
AsyncIterator[Tuple(buid, valu)]

async iterTagPropRows(tag, prop, form=None, stortype=None, startvalu=None)
Yields (buid, valu) that match a tag:prop, optionally (re)starting at startvalu.

Parameters

• tag (str) – tag name

• prop (str) – prop name

• form (Optional[str]) – optional form name

• stortype (Optional[int]) – a STOR_TYPE_* integer representing the type of
form:prop

• startvalu (Any) – The value to start at. May only be not None if stortype is not None.

Returns
AsyncIterator[Tuple(buid, valu)]

async iterTagRows(tag, form=None, starttupl=None)
Yields (buid, (valu, form)) values that match a tag and optional form, optionally (re)starting at starttupl.

Parameters

• tag (str) – the tag to match

• form (Optional[str]) – if present, only yields buids of nodes that match the form.

• starttupl (Optional[Tuple[buid, form]]) – if present, (re)starts the stream of val-
ues there.

Returns
AsyncIterator[Tuple(buid, (valu, form))]

Note: This yields (buid, (tagvalu, form)) instead of just buid, valu in order to allow resuming an interrupted
call by feeding the last value retrieved into starttupl

async iterUnivRows(prop, stortype=None, startvalu=None)
Yields buid, valu tuples of nodes with a particular universal property, optionally (re)starting at startvalu.

Parameters

• prop (str) – A universal property name.

• stortype (Optional[int]) – a STOR_TYPE_* integer representing the type of
form:prop

10.1. synapse package 631

tag:prop

Synapse Documentation, Release 2.141.0

• startvalu (Any) – The value to start at. May only be not None if stortype is not None.

Returns
AsyncIterator[Tuple(buid, valu)]

async iterWipeNodeEdits()

async liftByDataName(name)

async liftByFormValu(form, cmprvals)

async liftByProp(form, prop)

async liftByPropArray(form, prop, cmprvals)

async liftByPropValu(form, prop, cmprvals)

async liftByTag(tag, form=None)

async liftByTagProp(form, tag, prop)

async liftByTagPropValu(form, tag, prop, cmprvals)
Note: form may be None

async liftByTagValu(tag, cmpr, valu, form=None)

async liftTagProp(name)

async makeSplices(offs, nodeedits, meta, reverse=False)
Flatten a set of nodeedits into splices.

mayDelBuid(buid, sode)

nodeeditctor

alias of SlabSeqn

async pack()

async saveNodeEdits(edits, meta)
Save node edits to the layer and return a tuple of (nexsoffs, changes).

Note: nexsoffs will be None if there are no changes.

async setLayerInfo(name, valu)
Set a mutable layer property.

async setModelVers(vers)

setPropAbrv(form, prop)

setSodeDirty(buid, sode, form)

setTagPropAbrv(*args)

async splices(offs=None, size=None)
This API is deprecated.

Yield (offs, splice) tuples from the nodeedit log starting from the given offset.

Nodeedits will be flattened into splices before being yielded.

632 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async splicesBack(offs=None, size=None)

async stat()

async storNodeEdits(nodeedits, meta)

async storNodeEditsNoLift(nodeedits, meta)
Execute a series of node edit operations.

Does not return the updated nodes.

async syncIndexEvents(offs, matchdef, wait=True)
Yield (offs, (buid, form, ETYPE, VALS, META)) tuples from the nodeedit log starting from the given
offset. Only edits that match the filter in matchdef will be yielded.

Notes

ETYPE is an constant EDIT_* above. VALS is a tuple whose format depends on ETYPE, outlined in the
comment next to the constant. META is a dict that may contain keys ‘user’ and ‘time’ to represent the iden
of the user that initiated the change, and the time that it took place, respectively.

Additionally, every 1000 entries, an entry (offs, (None, None, EDIT_PROGRESS, (), ())) message is emit-
ted.

The matchdef dict may contain the following keys: forms, props, tags, tagprops. The value must be a
sequence of strings. Each key/val combination is treated as an “or”, so each key and value yields more
events. forms: EDIT_NODE_ADD and EDIT_NODE_DEL events. Matches events for nodes with forms
in the value list. props: EDIT_PROP_SET and EDIT_PROP_DEL events. Values must be in form:prop or
.universal form tags: EDIT_TAG_SET and EDIT_TAG_DEL events. Values must be the raw tag with no
#. tagprops: EDIT_TAGPROP_SET and EDIT_TAGPROP_DEL events. Values must be just the prop or
tag:prop.

Will not yield any values if this layer was not created with logedits enabled

Parameters

• offs (int) – starting nexus/editlog offset

• matchdef (Dict[str, Sequence[str]]) – a dict describing which events are yielded

• wait (bool) – whether to pend and stream value until this layer is fini’d

async syncNodeEdits(offs, wait=True)
Identical to syncNodeEdits2, but doesn’t yield meta

async syncNodeEdits2(offs, wait=True)
Once caught up with storage, yield them in realtime.

Returns
Tuple of offset(int), nodeedits, meta(dict)

async truncate()

Nuke all the contents in the layer, leaving an empty layer NOTE: This internal API is deprecated but is kept
for Nexus event backward compatibility

async verify(config=None)

async verifyAllBuids(scanconf=None)

10.1. synapse package 633

Synapse Documentation, Release 2.141.0

async verifyAllProps(scanconf=None)

async verifyAllTagProps(scanconf=None)

async verifyAllTags(scanconf=None)

async verifyBuidTag(buid, formname, tagname, tagvalu)

async verifyByBuid(buid, sode)

async verifyByProp(form, prop, autofix=None)

async verifyByPropArray(form, prop, autofix=None)

async verifyByTag(tag, autofix=None)

async verifyByTagProp(form, tag, prop, autofix=None)

async waitEditOffs(offs, timeout=None)
Wait for the node edit log to write an entry at/past the given offset.

async waitForHot()

Wait for the layer’s slab to be prefaulted and locked into memory if lockmemory is true, otherwise return.

async waitUpstreamOffs(iden, offs)

class synapse.lib.layer.LayerApi

Bases: CellApi

async getEditIndx()

Returns what will be the next nodeedit log index.

async getEditSize()

Return the total number of (edits, meta) pairs in the layer changelog.

async getIden()

async iterLayerNodeEdits()

Scan the full layer and yield artificial nodeedit sets.

saveNodeEdits(edits, meta)
Save node edits to the layer and return a tuple of (nexsoffs, changes).

Note: nexsoffs will be None if there are no changes.

async splices(offs=None, size=None)
This API is deprecated.

Yield (offs, splice) tuples from the nodeedit log starting from the given offset.

Nodeedits will be flattened into splices before being yielded.

async storNodeEdits(nodeedits, meta=None)

async storNodeEditsNoLift(nodeedits, meta=None)

async syncNodeEdits(offs, wait=True)
Yield (offs, nodeedits) tuples from the nodeedit log starting from the given offset.

Once caught up with storage, yield them in realtime.

634 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async syncNodeEdits2(offs, wait=True)

class synapse.lib.layer.StorType(layr, stortype)
Bases: object

decodeIndx(valu)

indx(valu)

async indxBy(liftby, cmpr, valu)

async indxByForm(form, cmpr, valu)

async indxByProp(form, prop, cmpr, valu)

async indxByPropArray(form, prop, cmpr, valu)

async indxByTagProp(form, tag, prop, cmpr, valu)

async verifyBuidProp(buid, form, prop, valu)

class synapse.lib.layer.StorTypeFloat(layr, stortype, size=8)
Bases: StorType

FloatPackNegMax = b'\x80\x00\x00\x00\x00\x00\x00\x00'

FloatPackNegMin = b'\xff\xf0\x00\x00\x00\x00\x00\x00'

FloatPackPosMax = b'\x7f\xf0\x00\x00\x00\x00\x00\x00'

FloatPackPosMin = b'\x00\x00\x00\x00\x00\x00\x00\x00'

FloatPacker = <_struct.Struct object>

decodeIndx(bytz)

fpack()

S.pack(v1, v2, . . .) -> bytes

Return a bytes object containing values v1, v2, . . . packed according to the format string S.format. See
help(struct) for more on format strings.

indx(valu)

class synapse.lib.layer.StorTypeFqdn(layr)
Bases: StorTypeUtf8

decodeIndx(bytz)

indx(norm)

class synapse.lib.layer.StorTypeGuid(layr)
Bases: StorType

decodeIndx(bytz)

indx(valu)

class synapse.lib.layer.StorTypeHier(layr, stortype, sepr='.')
Bases: StorType

10.1. synapse package 635

Synapse Documentation, Release 2.141.0

decodeIndx(bytz)

getHierIndx(valu)

indx(valu)

class synapse.lib.layer.StorTypeHugeNum(layr, stortype)
Bases: StorType

decodeIndx(bytz)

getHugeIndx(norm)

indx(norm)

class synapse.lib.layer.StorTypeInt(layr, stortype, size, signed)
Bases: StorType

decodeIndx(bytz)

getIntIndx(valu)

indx(valu)

class synapse.lib.layer.StorTypeIpv6(layr)
Bases: StorType

decodeIndx(bytz)

getIPv6Indx(valu)

indx(valu)

class synapse.lib.layer.StorTypeIval(layr)
Bases: StorType

decodeIndx(bytz)

indx(valu)

class synapse.lib.layer.StorTypeLatLon(layr)
Bases: StorType

decodeIndx(bytz)

indx(valu)

class synapse.lib.layer.StorTypeLoc(layr)
Bases: StorTypeHier

class synapse.lib.layer.StorTypeMsgp(layr)
Bases: StorType

indx(valu)

class synapse.lib.layer.StorTypeTag(layr)
Bases: StorTypeHier

static getTagFilt(cmpr, valu)

636 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

class synapse.lib.layer.StorTypeTime(layr)
Bases: StorTypeInt

class synapse.lib.layer.StorTypeUtf8(layr)
Bases: StorType

decodeIndx(bytz)

indx(valu)

synapse.lib.layer.getFlatEdits(nodeedits)

synapse.lib.layer.getNodeEditPerms(nodeedits)
Yields (offs, perm) tuples that can be used in user.allowed()

synapse.lib.link module

class synapse.lib.link.Link

Bases: Base

A Link() is created to wrap a socket reader/writer.

feed(byts)
Used by Plex() to unpack bytes.

get(name, defval=None)
Get a property from the Link info.

getAddrInfo()

Get a summary of address information related to the link.

async getSpawnInfo()

getTlsPeerCn()

async recv(size)

async recvsize(size)

async rx()

async send(byts)

set(name, valu)
Set a property in the Link info.

async tx(mesg)
Async transmit routine which will wait for writer drain().

txfini()

async synapse.lib.link.connect(host, port, ssl=None, hostname=None, linkinfo=None)
Async connect and return a Link().

async synapse.lib.link.fromspawn(spawninfo)

async synapse.lib.link.linkfile(mode='wb')
Connect a socketpair to a file-object and return (link, file).

10.1. synapse package 637

Synapse Documentation, Release 2.141.0

async synapse.lib.link.linksock(forceclose=False)
Connect a Link, socket pair.

async synapse.lib.link.listen(host, port, onlink, ssl=None)
Listen on the given host/port and fire onlink(Link).

Returns a server object that contains the listening sockets

async synapse.lib.link.unixconnect(path)
Connect to a PF_UNIX server listening on the given path.

async synapse.lib.link.unixlisten(path, onlink)
Start an PF_UNIX server listening on the given path.

synapse.lib.lmdbslab module

class synapse.lib.lmdbslab.GuidStor(slab, name)
Bases: object

async del_(iden)

async dict(iden)

gen(iden)

set(iden, name, valu)

class synapse.lib.lmdbslab.Hist(slab, name)
Bases: object

A class for storing items in a slab by time.

Each added item is inserted into the specified db within the slab using the current epoch-millis time stamp as the
key.

add(item, tick=None)

carve(tick, tock=None)

class synapse.lib.lmdbslab.HotCount

Bases: HotKeyVal

Like HotKeyVal, but optimized for integer/count vals

static DecFunc(b)
Decode a signed 64-bit int from 8 byte big-endian

static EncFunc(i)
Encode a signed 64-bit int into 8 byte big-endian bytes

get(name: str, defv=0)

inc(name: str, valu=1)

set(name: str, valu)

638 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

class synapse.lib.lmdbslab.HotKeyVal

Bases: Base

A hot-loop capable keyval that only syncs on commit.

static DecFunc(byts, use_list=False)
Use msgpack to de-serialize a python object.

Parameters
byts (bytes) – The bytes to de-serialize

Notes

String objects are decoded using utf8 encoding. In order to handle potentially malformed input,
unicode_errors='surrogatepass' is set to allow decoding bad input strings.

Returns
The de-serialized object

Return type
obj

static EncFunc(item)

Use msgpack to serialize a compatible python object.

Parameters
item (obj) – The object to serialize

Notes

String objects are encoded using utf8 encoding. In order to handle potentially malformed input,
unicode_errors='surrogatepass' is set to allow encoding bad input strings.

Returns
The serialized bytes in msgpack format.

Return type
bytes

delete(name: str)

get(name: str, defv=None)

pack()

set(name: str, valu)

sync()

class synapse.lib.lmdbslab.LmdbBackup

Bases: Base

async saveto(dstdir)

class synapse.lib.lmdbslab.MultiQueue

Bases: Base

Allows creation/consumption of multiple durable queues in a slab.

10.1. synapse package 639

Synapse Documentation, Release 2.141.0

async add(name, info)

async cull(name, offs)
Remove up-to (and including) the queue entry at offs.

async dele(name, minoffs, maxoffs)
Remove queue entries from minoffs, up-to (and including) the queue entry at maxoffs.

exists(name)

async get(name, offs, wait=False, cull=True)
Return (nextoffs, item) tuple or (-1, None) for the given offset.

async gets(name, offs, size=None, cull=False, wait=False)
Yield (offs, item) tuples from the message queue.

list()

offset(name)

async pop(name, offs)
Pop a single entry from the named queue by offset.

async put(name, item, reqid=None)

async puts(name, items, reqid=None)

async rem(name)

async sets(name, offs, items)
Overwrite queue entries with the values in items, starting at offs.

size(name)

status(name)

class synapse.lib.lmdbslab.Scan(slab, db)
Bases: object

A state-object used by Slab. Not to be instantiated directly.

Parameters

• slab (Slab) – which slab the scan is over

• db (str) – name of open database on the slab

bump()

first()

isatitem()

Returns if the cursor is at the value in atitem

iterfunc()

iternext()

resume()

set_key(lkey)

640 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

set_range(lkey, valu=None)

class synapse.lib.lmdbslab.ScanBack(slab, db)
Bases: Scan

A state-object used by Slab. Not to be instantiated directly.

Scans backwards.

first()

iterfunc()

resume()

set_key(lkey)

set_range(lkey)

class synapse.lib.lmdbslab.ScanKeys(slab, db)
Bases: Scan

An iterator over the keys of the database. If the database is dupsort, a key with multiple values with be yielded
once for each value.

isatitem()

Returns if the cursor is at the value in atitem

iterfunc()

iternext()

resume()

class synapse.lib.lmdbslab.Slab

Bases: Base

A “monolithic” LMDB instance for use in a asyncio loop thread.

COMMIT_PERIOD = 0.2

DEFAULT_GROWSIZE = None

DEFAULT_MAPSIZE = 1073741824

WARN_COMMIT_TIME_MS = 1000

addResizeCallback(callback)

allslabs = {}

copydb(sourcedbname, destslab, destdbname=None, progresscb=None)
Copy an entire database in this slab to a new database in potentially another slab.

Parameters

• sourcedbname (str) – name of the db in the source environment

• destslab (LmdbSlab) – which slab to copy rows to

• destdbname (str) – the name of the database to copy rows to in destslab

10.1. synapse package 641

Synapse Documentation, Release 2.141.0

• progresscb (Callable[int]) – if not None, this function will be periodically called
with the number of rows completed

Returns
the number of rows copied

Return type
(int)

Note: If any rows already exist in the target database, this method returns an error. This means that one
cannot use destdbname=None unless there are no explicit databases in the destination slab.

async copyslab(dstpath, compact=True)

async countByPref(byts, db=None, maxsize=None)
Return the number of rows in the given db with the matching prefix bytes.

dbexists(name)
The DB exists already if there’s a key in the default DB with the name of the database

delete(lkey, val=None, db=None)

dropdb(name)
Deletes an entire database (i.e. a table), losing all data.

async fini()

Shut down the object and notify any onfini() coroutines.

Returns
Remaining ref count

firstkey(db=None)
Return the first key or None from the given db.

forcecommit()

Note: This method may raise a MapFullError

get(lkey, db=None)

async getHotCount(name)

async getMultiQueue(name, nexsroot=None)

getNameAbrv(name)

getSeqn(name)

async classmethod getSlabStats()

classmethod getSlabsInDir(dirn)
Returns all open slabs under a directory

has(lkey, db=None)

hasdup(lkey, lval, db=None)

642 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async classmethod initSyncLoop(inst)

initdb(name, dupsort=False, integerkey=False, dupfixed=False)

last(db=None)
Return the last key/value pair from the given db.

lastkey(db=None)
Return the last key or None from the given db.

pop(lkey, db=None)

prefexists(byts, db=None)
Returns True if a prefix exists in the db.

put(lkey, lval, dupdata=False, overwrite=True, append=False, db=None)

putmulti(kvpairs, dupdata=False, append=False, db=None)

Returns
Tuple of number of items consumed, number of items added

rangeexists(lmin, lmax=None, db=None)
Returns True if at least one key exists in the range.

replace(lkey, lval, db=None)
Like put, but returns the previous value if existed

scanByDups(lkey, db=None)

scanByDupsBack(lkey, db=None)

scanByFull(db=None)

scanByFullBack(db=None)

scanByPref(byts, startkey=None, startvalu=None, db=None)

Parameters

• byts (bytes) – prefix to match on

• startkey (Optional[bytes]) – if present, will start scanning at key=byts+startkey

• startvalu (Optional[bytes]) – if present, will start scanning at (key+startkey, start-
valu)

Notes

startvalu only makes sense if byts+startkey matches an entire key. startvalu is only value for dupsort=True
dbs

scanByPrefBack(byts, db=None)

scanByRange(lmin, lmax=None, db=None)

scanByRangeBack(lmax, lmin=None, db=None)

scanKeys(db=None)

10.1. synapse package 643

Synapse Documentation, Release 2.141.0

scanKeysByPref(byts, db=None)

stat(db=None)

statinfo()

async sync()

async classmethod syncLoopOnce()

async classmethod syncLoopTask()

syncevnt = None

synctask = None

async trash()

Deletes underlying storage

class synapse.lib.lmdbslab.SlabAbrv(slab, name)
Bases: object

A utility for translating arbitrary bytes into fixed with id bytes

abrvToByts(abrv)

abrvToName(byts)

bytsToAbrv(byts)

keys()

nameToAbrv(name)

names()

setBytsToAbrv(byts)

class synapse.lib.lmdbslab.SlabDict(slab, db=None, pref=b'')
Bases: object

A dictionary-like object which stores its props in a slab via a prefix.

It is assumed that only one SlabDict with a given prefix exists at any given time, but it is up to the caller to cache
them.

get(name, defval=None)
Get a name from the SlabDict.

Parameters

• name (str) – The key name.

• defval (obj) – The default value to return.

Returns
The return value, or None.

Return type
(obj)

inc(name, valu=1)

644 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

items()

Return a tuple of (prop, valu) tuples from the SlabDict.

Returns
Tuple of (name, valu) tuples.

Return type
(((str, object), . . .))

keys()

pop(name, defval=None)
Pop a name from the SlabDict.

Parameters

• name (str) – The name to remove.

• defval (obj) – The default value to return if the name is not present.

Returns
The object stored in the SlabDict, or defval if the object was not present.

Return type
object

set(name, valu)
Set a name in the SlabDict.

Parameters

• name (str) – The key name.

• valu (obj) – A msgpack compatible value.

Returns
None

synapse.lib.modelrev module

class synapse.lib.modelrev.ModelRev(core)
Bases: object

async revCoreLayers()

async revModel20210126(layers)

async revModel20210312(layers)

async revModel20210528(layers)

async revModel20210801(layers)

async revModel20211112(layers)

async revModel20220307(layers)

async revModel20220315(layers)

async revModel20220509(layers)

10.1. synapse package 645

Synapse Documentation, Release 2.141.0

async revModel20220706(layers)

async revModel20220803(layers)

async revModel20220901(layers)

async revModel20221025(layers)

async revModel20221123(layers)

async revModel20221212(layers)

async revModel20221220(layers)

async revModel20230209(layers)

async revModel_0_2_18(layers)

async revModel_0_2_19(layers)

async revModel_0_2_20(layers)

async revModel_0_2_21(layers)

async runStorm(text, opts=None)
Run storm code in a schedcoro and log the output messages.

Parameters

• text (str) – Storm query to execute.

• opts – Storm opts.

Returns
None

synapse.lib.module module

class synapse.lib.module.CoreModule(core, conf=None)
Bases: object

confdefs = ()

getConfPath()

Get the path to the module specific config file (conf.yaml).

Notes

This creates the parent directory for the conf.yaml file if it does not exist. This API exists to allow a
implementor to get the conf path during initCoreModule and drop a example config if needed. One use
case of that is for missing configuration values, an example config can be written to the file and a exception
raised.

Returns
Path to where the conf file is located at.

Return type
str

646 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

getModDir()

Get the path to the module specific directory.

Notes

This creates the directory if it did not previously exist.

Returns
The filepath to the module specific directory.

Return type
str

getModName()

Return the lowercased name of this module.

Notes

This pulls the mod_name attribute on the class. This allows an implementer to set a arbitrary name for the
module. If this attribute is not set, it defaults to self.__class__.__name__.lower() and sets mod_name
to that value.

Returns
The module name.

Return type
(str)

getModPath(*paths)
Construct a path relative to this module’s working directory.

Parameters
*paths – A list of path strings

Notes

This creates the module specific directory if it does not exist.

Returns
The full path (or None if no cortex dir is configured).

Return type
(str)

getModelDefs()

getStormCmds()

Module implementers may override this to provide a list of Storm commands which will be loaded into the
Cortex.

Returns
A list of Storm Command classes (not instances).

Return type
list

10.1. synapse package 647

Synapse Documentation, Release 2.141.0

async initCoreModule()

Module implementers may override this method to initialize the module after the Cortex has completed and
is accessible to perform storage operations.

Notes

This is the preferred function to override for implementing custom code that needs to be executed during
Cortex startup.

Any exception raised within this method will remove the module from the list of currently loaded modules.

This is called for modules after getModelDefs() and getStormCmds() has been called, in order to allow for
model loading and storm command loading prior to code execution offered by initCoreModule.

A failure during initCoreModule will not unload data model or storm commands registered by the module.

Returns
None

mod_name = None

async preCoreModule()

Module implementers may override this method to execute code immediately after a module has been
loaded.

Notes

The initCoreModule function is preferred for overriding instead of preCoreModule().

No Cortex layer/storage operations will function in preCoreModule.

Any exception raised within this method will halt additional loading of the module.

Returns
None

synapse.lib.modules module

Module which implements the synapse module API/convention.

synapse.lib.msgpack module

class synapse.lib.msgpack.Unpk

Bases: object

An extension of the msgpack streaming Unpacker which reports sizes.

648 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Notes

String objects are decoded using utf8 encoding. In order to handle potentially malformed input,
unicode_errors='surrogatepass' is set to allow decoding bad input strings.

feed(byts)
Feed bytes to the unpacker and return completed objects.

Parameters
byts (bytes) – Bytes to unpack.

Notes

It is intended that this function is called multiple times with bytes from some sort of a stream, as it will
unpack and return objects as they are available.

Returns
List of tuples containing the item size and the unpacked item.

Return type
list

synapse.lib.msgpack.deepcopy(item, use_list=False)
Copy a msgpack serializable by packing then unpacking it. For complex primitives, this runs in about 1/3 the
time of copy.deepcopy()

synapse.lib.msgpack.dumpfile(item, path)
Dump an object to a file by path.

Parameters

• item (object) – The object to serialize.

• path (str) – The file path to save.

Returns
None

synapse.lib.msgpack.en(item)

Use msgpack to serialize a compatible python object.

Parameters
item (obj) – The object to serialize

Notes

String objects are encoded using utf8 encoding. In order to handle potentially malformed input,
unicode_errors='surrogatepass' is set to allow encoding bad input strings.

Returns
The serialized bytes in msgpack format.

Return type
bytes

synapse.lib.msgpack.getvars(varz)

synapse.lib.msgpack.isok(item)

Returns True if the item can be msgpacked (by testing packing).

10.1. synapse package 649

Synapse Documentation, Release 2.141.0

synapse.lib.msgpack.iterfd(fd)
Generator which unpacks a file object of msgpacked content.

Parameters
fd – File object to consume data from.

Notes

String objects are decoded using utf8 encoding. In order to handle potentially malformed input,
unicode_errors='surrogatepass' is set to allow decoding bad input strings.

Yields
Objects from a msgpack stream.

synapse.lib.msgpack.iterfile(path, since=-1)
Generator which yields msgpack objects from a file path.

Parameters
path – File path to open and consume data from.

Notes

String objects are decoded using utf8 encoding. In order to handle potentially malformed input,
unicode_errors='surrogatepass' is set to allow decoding bad input strings.

Yields
Objects from a msgpack stream.

synapse.lib.msgpack.loadfile(path)
Load and upack the msgpack bytes from a file by path.

Parameters
path (str) – The file path to a message pack file.

Raises
msgpack.exceptions.ExtraData – If the file contains multiple objects.

Returns
The decoded python object.

Return type
(obj)

synapse.lib.msgpack.un(byts, use_list=False)
Use msgpack to de-serialize a python object.

Parameters
byts (bytes) – The bytes to de-serialize

650 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Notes

String objects are decoded using utf8 encoding. In order to handle potentially malformed input,
unicode_errors='surrogatepass' is set to allow decoding bad input strings.

Returns
The de-serialized object

Return type
obj

synapse.lib.multislabseqn module

class synapse.lib.multislabseqn.MultiSlabSeqn

Bases: Base

An append-optimized sequence of byte blobs stored across multiple slabs for fast rotating/culling

async add(item: Any, indx=None)→ int
Add a single item to the sequence.

async cull(offs: int)→ bool
Remove entries up to (and including) the given offset.

async get(offs: int)→ Any
Retrieve a single row by offset

getOffsetEvent(offs: int)→ Event
Returns an asyncio Event that will be set when the particular offset is written. The event will be set if the
offset has already been reached.

async gets(offs, wait=True)→ AsyncIterator[Tuple[int, Any]]
Just like iter, but optionally waits for new entries once the end is reached.

index()→ int
Return the current index to be used

async iter(offs: int)→ AsyncIterator[Tuple[int, Any]]
Iterate over items in a sequence from a given offset.

Parameters
offs (int) – The offset to begin iterating from.

Yields
(indx, valu) – The index and valu of the item.

async last()→ Tuple[int, Any] | None

async rotate()→ int
Rotate the Nexus log at the current index.

Note: After this executes the tailseqn will be empty. Waiting for this indx to be written will indicate when
it is possible to cull 1 minus the return value such that the rotated seqn is deleted.

Returns
The starting index of the new seqn

10.1. synapse package 651

Synapse Documentation, Release 2.141.0

Return type
int

setIndex(indx: int)→ None

static slabFilename(dirn: str, indx: int)

async waitForOffset(offs: int, timeout=None)→ bool

Returns
true if the event got set, False if timed out

synapse.lib.nexus module

class synapse.lib.nexus.ChangeDist

Bases: Base

A utility class to distribute new change entries to mirrors/followers

update()→ bool

class synapse.lib.nexus.NexsRoot

Bases: Base

async cull(offs)

async eat(nexsiden, event, args, kwargs, meta)
Actually mutate for the given nexsiden instance.

async enNexsLog()

getChangeDist(offs: int)→ AsyncIterator[ChangeDist]

async index()

async isNexsReady()

async issue(nexsiden, event, args, kwargs, meta=None)
If I’m not a follower, mutate, otherwise, ask the leader to make the change and wait for the follower loop
to hand me the result through a future.

async iter(offs: int, tellready=False)→ AsyncIterator[Any]
Returns an iterator of change entries in the log

async promote()

async recover()→ None
Replays the last entry in the nexus log in case we crashed between writing the log and applying it.

652 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Notes

This must be called at cell startup after subsystems are initialized but before any write transactions might
happen.

The log can only have recorded 1 entry ahead of what is applied. All log actions are idempotent, so replaying
the last action that (might have) already happened is harmless.

async rotate()

async runMirrorLoop(proxy)

async setNexsReady(status)

async setindex(indx)

async startup()

async waitOffs(offs, timeout=None)

class synapse.lib.nexus.Pusher

Bases: Base

A mixin-class to manage distributing changes where one might plug in mirroring or consensus protocols

classmethod onPush(event: str, passitem=False)→ Callable
Decorator that registers a method to be a handler for a named event

Parameters

• event – string that distinguishes one handler from another. Must be unique per Pusher
subclass

• passitem – whether to pass the (offs, mesg) tuple to the handler as “nexsitem”

classmethod onPushAuto(event: str, passitem=False)→ Callable
Decorator that does the same as onPush, except automatically creates the top half method

Parameters

• event – string that distinguishes one handler from another. Must be unique per Pusher
subclass

• passitem – whether to pass the (offs, mesg) tuple to the handler as “nexsitem”

async saveToNexs(name, *args, **kwargs)

setNexsRoot(nexsroot)

class synapse.lib.nexus.RegMethType(name: str, bases: List[type], attrs: Dict[str, Any])
Bases: type

Metaclass that collects all methods in class with _regme prop into a class member called _regclstupls

10.1. synapse package 653

Synapse Documentation, Release 2.141.0

synapse.lib.node module

class synapse.lib.node.Node(snap, sode, bylayer=None)
Bases: object

A Cortex hypergraph node.

NOTE: This object is for local Cortex use during a single Xact.

async addEdge(verb, n2iden)

async addTag(tag, valu=(None, None))
Add a tag to a node.

Parameters

• tag (str) – The tag to add to the node.

• valu – The optional tag value. If specified, this must be a value that norms as a valid time
interval as an ival.

Returns
This returns None.

Return type
None

async delEdge(verb, n2iden)

async delTag(tag, init=False)
Delete a tag from the node.

async delTagProp(tag, name)

async delete(force=False)
Delete a node from the cortex.

The following tear-down operations occur in order:

• validate that you have permissions to delete the node

• validate that you have permissions to delete all tags

• validate that there are no remaining references to the node.

• delete all the tags (bottom up)

– fire onDelTag() handlers

– delete tag properties from storage

– log tag:del splices

• delete all secondary properties

– fire onDelProp handler

– delete secondary property from storage

– log prop:del splices

• delete the primary property

– fire onDel handlers for the node

– delete primary property from storage

654 Chapter 10. Synapse Python API

tag:del

Synapse Documentation, Release 2.141.0

– log node:del splices

async filter(runt, text, opts=None, path=None)

get(name)
Return a secondary property value from the Node.

Parameters
name (str) – The name of a secondary property.

Returns
The secondary property value or None.

Return type
(obj)

getByLayer()

Return a dictionary that translates the node’s bylayer dict to a primitive.

async getData(name, defv=None)

async getEmbeds(embeds)
Return a dictionary of property embeddings.

getNodeRefs()

Return a list of (prop, (form, valu)) refs out for the node.

async getStorNodes()

Return a list of the raw storage nodes for each layer.

getTag(name, defval=None)

getTagProp(tag, prop, defval=None)
Return the value (or defval) of the given tag property.

getTagProps(tag)

getTags(leaf=False)

has(name)

async hasData(name)

hasTag(name)

hasTagProp(tag, prop)
Check if a #foo.bar:baz tag property exists on the node.

iden()

async iterData()

async iterDataKeys()

async iterEdgesN1(verb=None)

async iterEdgesN2(verb=None)

10.1. synapse package 655

Synapse Documentation, Release 2.141.0

pack(dorepr=False)
Return the serializable/packed version of the node.

Parameters
dorepr (bool) – Include repr information for human readable versions of properties.

Returns
An (ndef, info) node tuple.

Return type
(tuple)

async pop(name, init=False)
Remove a property from a node and return the value

async popData(name)

repr(name=None, defv=None)

reprs()

Return a dictionary of repr values for props whose repr is different than the system mode value.

async seen(tick, source=None)
Update the .seen interval and optionally a source specific seen node.

async set(name, valu, init=False)
Set a property on the node.

Parameters

• name (str) – The name of the property.

• valu (obj) – The value of the property.

• init (bool) – Set to True to disable read-only enforcement

Returns
True if the property was changed.

Return type
(bool)

async setData(name, valu)

async setTagProp(tag, name, valu)
Set the value of the given tag property.

async storm(runt, text, opts=None, path=None)

Parameters
path (Path) – If set, then vars from path are copied into the new runtime, and vars are copied
back out into path at the end

Note: If opts is not None and opts[‘vars’] is set and path is not None, then values of path vars take precedent

tagpropreprs()

Return a dictionary of repr values for tagprops whose repr is different than the system mode value.

656 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

class synapse.lib.node.Path(vars, nodes)
Bases: object

A path context tracked through the storm runtime.

clone()

finiframe()

Pop a scope frame from the path, restoring runt if at the top :param runt: A storm runtime to restore if we’re
at the top :type runt: Runtime :param merge: Set to true to merge vars back up into the next frame :type
merge: bool

fork(node)

getVar(name, defv=<synapse.common.NoValu object>)

initframe(initvars=None)

meta(name, valu)
Add node specific metadata to be returned with the node.

async pack(path=False)

async popVar(name)

async setVar(name, valu)

synapse.lib.node.iden(pode)
Return the iden (buid) of the packed node.

Parameters
pode (tuple) – A packed node.

Returns
The node iden.

Return type
str

synapse.lib.node.ndef(pode)
Return a node definition (<form>,<valu>) tuple from the node.

Parameters
pode (tuple) – A packed node.

Returns
The (<form>,<valu>) tuple for the node

Return type
((str,obj))

synapse.lib.node.prop(pode, prop)
Return the valu of a given property on the node.

Parameters

• pode (tuple) – A packed node.

• prop (str) – Property to retrieve.

10.1. synapse package 657

Synapse Documentation, Release 2.141.0

Notes

The prop argument may be the full property name (foo:bar:baz), relative property name (:baz) , or the unadorned
property name (baz).

Returns:

synapse.lib.node.props(pode)
Get the props from the node.

Parameters
pode (tuple) – A packed node.

Notes

This will include any universal props present on the node.

Returns
A dictionary of properties.

Return type
dict

synapse.lib.node.reprNdef(pode)
Get the ndef of the pode with a human readable value.

Parameters
pode (tuple) – A packed node.

Notes

The human readable value is only available if the node came from a storm query execution where the repr key
was passed into the opts argument with a True value.

Returns
A tuple of form and the human readable value.

Return type
(str, str)

synapse.lib.node.reprProp(pode, prop)
Get the human readable value for a secondary property from the pode.

Parameters

• pode (tuple) – A packed node.

• prop –

658 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Notes

The human readable value is only available if the node came from a storm query execution where the repr key
was passed into the opts argument with a True value.

The prop argument may be the full property name (foo:bar:baz), relative property name (:baz) , or the unadorned
property name (baz).

Returns
The human readable property value. If the property is not present, returns None.

Return type
str

synapse.lib.node.reprTag(pode, tag)
Get the human readable value for the tag timestamp from the pode.

Parameters

• pode (tuple) – A packed node.

• tag (str) – The tag to get the value for.

Notes

The human readable value is only available if the node came from a storm query execution where the repr key
was passed into the opts argument with a True value.

If the tag does not have a timestamp, this returns a empty string.

Returns
The human readable value for the tag. If the tag is not present, returns None.

Return type
str

synapse.lib.node.reprTagProps(pode, tag)
Get the human readable values for any tagprops on a tag for a given node.

Parameters

• pode (tuple) – A packed node.

• tag (str) – The tag to get the tagprops reprs for.

Notes

The human readable value is only available if the node came from a storm query execution where the repr key
was passed into the opts argument with a True value.

If the tag does not have any tagprops associated with it, this returns an empty list.

Returns
A list of tuples, containing the name of the tagprop and the repr value.

Return type
list

10.1. synapse package 659

Synapse Documentation, Release 2.141.0

synapse.lib.node.tagged(pode, tag)
Check if a packed node has a given tag.

Parameters

• pode (tuple) – A packed node.

• tag (str) – The tag to check.

Examples

Check if a node is tagged with “woot” and dostuff if it is.

if s_node.tagged(node,’woot’):
dostuff()

Notes

If the tag starts with #, this is removed prior to checking.

Returns
True if the tag is present. False otherwise.

Return type
bool

synapse.lib.node.tags(pode, leaf=False)
Get all the tags for a given node.

Parameters

• pode (tuple) – A packed node.

• leaf (bool) – If True, only return leaf tags

Returns
A list of tag strings.

Return type
list

synapse.lib.node.tagsnice(pode)
Get all the leaf tags and the tags that have values or tagprops.

Parameters
pode (tuple) – A packed node.

Returns
A list of tag strings.

Return type
list

660 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

synapse.lib.oauth module

class synapse.lib.oauth.OAuthMixin

Bases: Pusher

Mixin for Cells to organize and execute OAuth token refreshes.

async addOAuthProvider(conf)

async clearOAuthAccessToken(provideriden, useriden)
Remove a client access token by clearing the configuration. This will prevent further refreshes (if sched-
uled), and a new auth code will be required the next time an access token is requested.

async delOAuthProvider(iden)

async getOAuthAccessToken(provideriden, useriden)

async getOAuthClient(provideriden, useriden)

async getOAuthProvider(iden)

listOAuthClients()

Returns
List of (provideriden, useriden, conf) for each client.

Return type
list

async listOAuthProviders()

async setOAuthAuthCode(provideriden, useriden, authcode, code_verifier=None)
Typically set as the end result of a successful OAuth flow. An initial access token and refresh token will be
immediately requested, and the client will be loaded into the schedule to be background refreshed.

synapse.lib.oauth.normOAuthTokenData(issued_at, data)
Normalize timestamps to be in epoch millis and set expires_at/refresh_at.

synapse.lib.output module

Tools for easily hookable output from cli-like tools.

class synapse.lib.output.OutPut

Bases: object

printf(mesg, addnl=True)

class synapse.lib.output.OutPutBytes

Bases: OutPutFd

class synapse.lib.output.OutPutFd(fd, enc='utf8')
Bases: OutPut

class synapse.lib.output.OutPutStr

Bases: OutPut

10.1. synapse package 661

Synapse Documentation, Release 2.141.0

synapse.lib.parser module

class synapse.lib.parser.AstConverter(text)
Bases: Transformer

Convert AST from parser into synapse AST, depth first.

If a method with a name that matches the current rule exists, that will be called, otherwise __default__ will be
used

cmdrargs(meta, kids)

embedquery(meta, kids)

evalvalu(meta, kids)

exprdict(meta, kids)

exprlist(meta, kids)

funcargs(meta, kids)
A list of function parameters (as part of a function definition)

funccall(meta, kids)

metaToAstInfo(meta, isterm=False)

operrelprop_join(meta, kids)

operrelprop_pivot(meta, kids, isjoin=False)

raiseBadSyntax(mesg, astinfo)

stormcmdargs(meta, kids)

subquery(meta, kids)

switchcase(meta, kids)

varderef(meta, kids)

varlist(meta, kids)

yieldvalu(meta, kids)

class synapse.lib.parser.AstInfo(text, soff, eoff, sline, eline, scol, ecol, isterm)

Bases: tuple

ecol

Alias for field number 6

eline

Alias for field number 4

eoff

Alias for field number 2

isterm

Alias for field number 7

662 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

scol

Alias for field number 5

sline

Alias for field number 3

soff

Alias for field number 1

text

Alias for field number 0

class synapse.lib.parser.CmdStringer(visit_tokens: bool = True)
Bases: Transformer

alist(meta, kids)

cmdstring(meta, kids)

valu(meta, kids)

class synapse.lib.parser.Parser(text, offs=0)
Bases: object

Storm query parser

cmdrargs()

Parse command args that might have storm queries as arguments

eval()

lookup()

query()

Parse the storm query

Returns (s_ast.Query): instance of parsed query

search()

synapse.lib.parser.format_unescape(valu)

synapse.lib.parser.massage_vartokn(astinfo, x)

synapse.lib.parser.parseEval(text)

synapse.lib.parser.parseQuery(text, mode='storm')
Parse a storm query and return the Lark AST. Cached here to speed up unit tests

synapse.lib.parser.parse_cmd_string(text, off)
Parse a command line string which may be quoted.

synapse.lib.parser.unescape(valu)
Parse a string for backslash-escaped characters and omit them. The full list of escaped characters can be found
at https://docs.python.org/3/reference/lexical_analysis.html#string-and-bytes-literals

10.1. synapse package 663

https://docs.python.org/3/reference/lexical_analysis.html#string-and-bytes-literals

Synapse Documentation, Release 2.141.0

synapse.lib.provenance module

synapse.lib.provenance.claim(typ, **info)
Add an entry to the provenance stack for the duration of the context

synapse.lib.provenance.dupstack(newtask)
Duplicate the current provenance stack onto another task

synapse.lib.provenance.get()

Returns
A tuple of (stack iden (or None if not set), the current provenance stack)

synapse.lib.provenance.reset()

Reset the stack to its initial state

For testing purposes

synapse.lib.provenance.setiden(iden, waswritten)
Sets the cached stack iden, waswritten for the current provenance stack. We use waswritten to cache whether
we’ve written the stack and so we can tell the snap whether to fire a prov:new event

synapse.lib.queue module

class synapse.lib.queue.AQueue

Bases: Base

An async queue with chunk optimized sync compatible consumer.

put(item)

Add an item to the queue.

async slice()

class synapse.lib.queue.Queue(maxsize=None)
Bases: object

An asyncio Queue with batch methods and graceful close.

async close()

async put(item)

async puts(items)

async size()

async slice(size=1000)

async slices(size=1000)

class synapse.lib.queue.Window

Bases: Base

A Queue like object which yields added items. If the queue ever reaches its maxsize, it will be fini()d. On fini(),
the Window will continue to yield results until empty and then return.

664 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async put(item)

Add a single item to the Window.

async puts(items)
Add multiple items to the window.

synapse.lib.ratelimit module

class synapse.lib.ratelimit.RateLimit(rate, per)
Bases: object

A RateLimit class may be used to detect/enforce rate limits.

Example

allow 20 uses per 10 sec (2/sec) rlimit = RateLimit(20,10)

Notes

It is best (even in a “calls per day” type config) to specify a smaller “per” to force rate “smoothing”.

allows()

Returns True if the rate limit has not been reached.

Example

if not rlimit.allows():
rasie RateExceeded()

ok to go. . .

synapse.lib.reflect module

synapse.lib.reflect.getClsNames(item)

Return a list of “fully qualified” class names for an instance.

Example

for name in getClsNames(foo):
print(name)

synapse.lib.reflect.getItemLocals(item)

Iterate the locals of an item and yield (name,valu) pairs.

10.1. synapse package 665

Synapse Documentation, Release 2.141.0

Example

for name,valu in getItemLocals(item):
dostuff()

synapse.lib.reflect.getMethName(meth)
Return a fully qualified string for the <mod>.<class>.<func> name of a given method.

synapse.lib.reflect.getShareInfo(item)

Get a dictionary of special annotations for a Telepath Proxy.

Parameters
item – Item to inspect.

Notes

This will set the _syn_telemeth attribute on the item and the items class, so this data is only computed once.

Returns
A dictionary of methods requiring special handling by the proxy.

Return type
dict

synapse.lib.rstorm module

class synapse.lib.rstorm.OutPutRst

Bases: OutPutStr

Rst specific helper for output intended to be indented in RST text as a literal block.

prefix = ' '

printf(mesg, addnl=True)

class synapse.lib.rstorm.StormCliOutput

Bases: StormCli

async handleErr(mesg)

printf(mesg, addnl=True, color=None)

async runRstCmdLine(text, ctx, stormopts=None)

class synapse.lib.rstorm.StormOutput(core, ctx, stormopts=None, opts=None)
Bases: StormCmd

Produce standard output from a stream of storm runtime messages. Must be instantiated for a single query with
a rstorm context.

printf(mesg, addnl=True, color=None)

async runCmdLine(line)
Run a line of command input for this command.

Parameters
line (str) – Line to execute

666 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Examples

Run the foo command with some arguments:

await foo.runCmdLine(‘foo –opt baz woot.com’)

async runCmdOpts(opts)
Perform the command actions. Must be implemented by Cmd implementers.

Parameters
opts (dict) – Options dictionary.

class synapse.lib.rstorm.StormRst

Bases: Base

async run()

Parses the specified RST file with Storm directive handling.

Returns
List of line strings for the RST output

Return type
list

synapse.lib.rstorm.getCell(ctor, conf)

synapse.lib.scope module

class synapse.lib.scope.Scope(*frames, **vals)
Bases: object

The Scope object assists in creating nested varible scopes.

Example

with Scope() as scope:

scope.set(‘foo’,10)

with scope:
scope.set(‘foo’,20) dostuff(scope) # ‘foo’ is 20. . .

dostuff(scope) # ‘foo’ is 10 again. . .

add(name, *vals)
Add values as iter() compatible items in the current scope frame.

copy()

Create a shallow copy of the current Scope.

Returns
A new scope which is a copy of the current scope.

Return type
Scope

enter(vals=None)
Add an additional scope frame.

10.1. synapse package 667

Synapse Documentation, Release 2.141.0

get(name, defval=None)
Retrieve a value from the closest scope frame.

iter(name)
Iterate through values added with add() from each scope frame.

leave()

Pop the current scope frame.

pop(name, defval=None)
Pop and return a value (from the last frame) of the scope.

Parameters
name (str) – The name of the scope variable.

Returns
The scope variable value or None

Return type
obj

set(name, valu)
Set a value in the current scope frame.

update(vals)
Set multiple values in the current scope frame.

synapse.lib.scope.clone(task: Task)→ None
Clone the current task Scope onto the provided task.

Parameters
task (asyncio.Task) – The task object to attach the scope too.

Notes

This must be run from an asyncio IO loop.

If the current task does not have a scope, we clone the default global Scope.

This will enter() the scope, and add a task callback to leave() the scope.

Returns
None

synapse.lib.scope.ctor(name, func, *args, **kwargs)
Add a ctor callback to the global scope.

synapse.lib.scope.enter(vals=None)
Return the task’s local scope for use in a with block

synapse.lib.scope.get(name, defval=None)
Access this task’s scope with default values from glob.

synapse.lib.scope.pop(name)
Pop and return a task scope variable. :param name: The task scope variable name. :type name: str

Returns
The scope value or None

668 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Return type
obj

synapse.lib.scope.set(name, valu)
Set a value in the current frame of the local task scope.

synapse.lib.scope.update(vals)

synapse.lib.scrape module

synapse.lib.scrape.contextScrape(text, form=None, refang=True, first=False)
Scrape types from a blob of text and yield info dictionaries.

Parameters

• text (str) – Text to scrape.

• form (str) – Optional form to scrape. If present, only scrape items which match the provided
form.

• refang (bool) – Whether to remove de-fanging schemes from text before scraping.

• first (bool) – If true, only yield the first item scraped.

Notes

The dictionaries yielded by this function contains the following keys:

match
The raw matching text found in the input text.

offset
The offset into the text where the match was found.

valu
The resulting value.

form
The corresponding form for the valu.

Returns
Yield info dicts of results.

Return type
(dict)

synapse.lib.scrape.cve_check(match: Match)

synapse.lib.scrape.fqdn_check(match: Match)

synapse.lib.scrape.fqdn_prefix_check(match: Match)

synapse.lib.scrape.genFangRegex(fangs, flags=RegexFlag.I)

synapse.lib.scrape.genMatches(text: str, regx: compile, opts: dict)
Generate regular expression matches for a blob of text.

Parameters

10.1. synapse package 669

Synapse Documentation, Release 2.141.0

• text (str) – The text to generate matches for.

• regx (regex.Regex) – A compiled regex object. The regex must contained a named match
group for valu.

• opts (dict) – An options dictionary.

Notes

The dictionaries yielded by this function contains the following keys:

raw_valu
The raw matching text found in the input text.

offset
The offset into the text where the match was found.

valu
The resulting value - this may be altered by callbacks.

The options dictionary can contain a callback key. This function is expected to take a single argument, a
regex.Match object, and return a tuple of the new valu and info dictionary. The new valu is used as the valu key
in the returned dictionary, and any other information in the info dictionary is pushed into the return dictionary
as well.

Yields
dict – A dictionary of match results.

synapse.lib.scrape.getForms()

Get a list of forms recognized by the scrape APIs.

Returns
A list of form values.

Return type
list

synapse.lib.scrape.refang_text(txt)
Remove address de-fanging in text blobs, .e.g. example[.]com to example.com

Matches to keys in FANGS is case-insensitive, but replacement will always be with the lowercase version of the
re-fanged value. For example, HXXP://FOO.COM will be returned as http://FOO.COM

Returns
Re-fanged text blob

Return type
(str)

670 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

synapse.lib.scrape.refang_text2(txt: str, re: compile =
regex.Regex('fxp:|fxps:|hxxp:|hxxps:|fxp\\[s\\]:|hxxp\\[s\\]:|ftp\\[:\\]|fxp\\[:\\]|ftps\\[:\\]|fxps\\[:\\]|http\\[:\\]|hxxp\\[:\\]|https\\[:\\]|hxxps\\[:\\]|ftp\\[://\\]|fxp\\[://\\]|ftps\\[://\\]|fxps\\[://\\]|http\\[://\\]|hxxp\\[://\\]|https\\[://\\]|hxxps\\[://\\]|ftp\\[:|fxp\\[:|ftps\\[:|fxps\\[:|http\\[:|hxxp\\[:|https\\[:|hxxps\\[:|ftp\\(:\\)|fxp\\(:\\)|ftps\\(:\\)|fxps\\(:\\)|http\\(:\\)|hxxp\\(:\\)|https\\(:\\)|hxxps\\(:\\)|\\[\\.\\]|\\.\\]|\\[\\.|\\[\\]|\\[\\]|\\[\\]|\\(\\.\\)|\\(\\)|\\(\\)|\\(\\)|\\[dot\\]|\\[:\\]|\\[at\\]|\\[@\\]|\\\\\\.',
flags=regex.I | regex.V0), fangs: dict = {'(.)': '.', '()': '', '()': '', '()': '', '.]': '.',
'[.': '.', '[.]': '.', '[:]': ':', '[@]': '@', '[at]': '@', '[dot]': '.', '[]': '', '[]': '', '[]':
'', '\\.': '.', 'ftp(:)': 'ftp:', 'ftp[:': 'ftp:', 'ftp[://]': 'ftp://', 'ftp[:]': 'ftp:', 'ftps(:)':
'ftps:', 'ftps[:': 'ftps:', 'ftps[://]': 'ftps://', 'ftps[:]': 'ftps:', 'fxp(:)': 'ftp:',
'fxp:': 'ftp:', 'fxp[:': 'ftp:', 'fxp[://]': 'ftp://', 'fxp[:]': 'ftp:', 'fxp[s]:': 'ftps:',
'fxps(:)': 'ftps:', 'fxps:': 'ftps:', 'fxps[:': 'ftps:', 'fxps[://]': 'ftps://', 'fxps[:]':
'ftps:', 'http(:)': 'http:', 'http[:': 'http:', 'http[://]': 'http://', 'http[:]': 'http:',
'https(:)': 'https:', 'https[:': 'https:', 'https[://]': 'https://', 'https[:]': 'https:',
'hxxp(:)': 'http:', 'hxxp:': 'http:', 'hxxp[:': 'http:', 'hxxp[://]': 'http://',
'hxxp[:]': 'http:', 'hxxp[s]:': 'https:', 'hxxps(:)': 'https:', 'hxxps:': 'https:',
'hxxps[:': 'https:', 'hxxps[://]': 'https://', 'hxxps[:]': 'https:'})

Remove address de-fanging in text blobs, .e.g. example[.]com to example.com

Notes

Matches to keys in FANGS is case-insensitive, but replacement will always be with the lowercase version of the
re-fanged value. For example, HXXP://FOO.COM will be returned as http://FOO.COM

Parameters
txt (str) – The text to re-fang.

Returns
A tuple containing the new text, and a dictionary containing offset information where the new
text was altered with respect to the original text.

Return type
tuple(str, dict)

synapse.lib.scrape.scrape(text, ptype=None, refang=True, first=False)
Scrape types from a blob of text and return node tuples.

Parameters

• text (str) – Text to scrape.

• ptype (str) – Optional ptype to scrape. If present, only scrape items which match the
provided type.

• refang (bool) – Whether to remove de-fanging schemes from text before scraping.

• first (bool) – If true, only yield the first item scraped.

Returns
Yield tuples of node ndef values.

Return type
(str, object)

10.1. synapse package 671

Synapse Documentation, Release 2.141.0

synapse.lib.share module

class synapse.lib.share.Share

Bases: Base

Class to wrap a dynamically shared object.

synapse.lib.slaboffs module

class synapse.lib.slaboffs.SlabOffs(slab: Slab, db: str)
Bases: object

A helper for storing offset integers by iden.

As with all slab objects, this is meant for single-thread async loop use.

delete(iden)

get(iden)

set(iden, offs)

synapse.lib.slabseqn module

class synapse.lib.slabseqn.SlabSeqn(slab, name: str)
Bases: object

An append optimized sequence of byte blobs.

Parameters

• lenv (lmdb.Environment) – The LMDB Environment.

• name (str) – The name of the sequence.

add(item, indx=None)
Add a single item to the sequence.

async aiter(offs, wait=False, timeout=None)
Iterate over items in a sequence from a given offset.

Parameters

• offs (int) – The offset to begin iterating from.

• wait (boolean) – Once caught up, yield new results in realtime.

• timeout (int) – Max time to wait for a new item.

Yields
(indx, valu) – The index and valu of the item.

async cull(offs)
Remove entries up to (and including) the given offset.

first()

get(offs)
Retrieve a single row by offset

672 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

getByIndxByts(indxbyts)

getOffsetEvent(offs)
Returns an asyncio Event that will be set when the particular offset is written. The event will be set if the
offset has already been reached.

getraw(byts)

async gets(offs, wait=True)
Returns an async generator of indx/valu tuples, optionally waiting and continuing to yield them as new
entries are added

Parameters

• offs (int) – The offset to begin iterating from.

• wait (bool) – Whether to continue yielding tupls when it hits the end of the sequence.

Yields
(indx, valu) – The index and valu of the item.

index()

Return the current index to be used

iter(offs)
Iterate over items in a sequence from a given offset.

Parameters
offs (int) – The offset to begin iterating from.

Yields
(indx, valu) – The index and valu of the item.

iterBack(offs)
Iterate backwards over items in a sequence from a given offset.

Parameters
offs (int) – The offset to begin iterating from.

Yields
(indx, valu) – The index and valu of the item.

last()

nextindx()

Determine the next insert offset according to storage.

Returns
The next insert offset.

Return type
int

pop(offs)
Pop a single entry at the given offset.

rows(offs)
Iterate over raw indx, bytes tuples from a given offset.

10.1. synapse package 673

Synapse Documentation, Release 2.141.0

save(items)
Save a series of items to a sequence.

Parameters
items (tuple) – The series of items to save into the sequence.

Returns
The index of the first item

slice(offs, size)

sliceBack(offs, size)

stat()

trim(offs)
Delete entries starting at offset and moving forward.

async waitForOffset(offs, timeout=None)

Returns
true if the event got set, False if timed out

synapse.lib.snap module

class synapse.lib.snap.ProtoNode(ctx, buid, form, valu, node)
Bases: object

A prototype node used for staging node adds using a SnapEditor.

TODO: This could eventually fully mirror the synapse.lib.node.Node API and be used
to slipstream into sections of the pipeline to facilitate a bulk edit / transaction

async addEdge(verb, n2iden)

async addTag(tag, valu=(None, None), tagnode=None)

async delEdge(verb, n2iden)

get(name)

async getData(name)

getNodeEdit()

getTag(tag)

getTagProp(tag, name)

iden()

async set(name, valu, norminfo=None)

async setData(name, valu)

async setTagProp(tag, name, valu)

class synapse.lib.snap.Scrubber(rules)
Bases: object

674 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

scrub(pode)

class synapse.lib.snap.Snap

Bases: Base

A “snapshot” is a transaction across multiple Cortex layers.

The Snap object contains the bulk of the Cortex API to facilitate performance through careful use of transaction
boundaries.

Transactions produce the following EventBus events:

(. . . any splice. . .) (‘log’, {‘level’: ‘mesg’: }) (‘print’, {}),

async addFeedData(name, items)

async addFeedNodes(name, items)
Call a feed function and return what it returns (typically yields Node()s).

Parameters

• name (str) – The name of the feed record type.

• items (list) – A list of records of the given feed type.

Returns
The return value from the feed function. Typically Node() generator.

Return type
(object)

async addNode(name, valu, props=None, norminfo=None)
Add a node by form name and value with optional props.

Parameters

• name (str) – The form of node to add.

• valu (obj) – The value for the node.

• props (dict) – Optional secondary properties for the node.

Notes

If a props dictionary is provided, it may be mutated during node construction.

Returns
A Node object. It may return None if the snap is unable to add or lift the node.

Return type
s_node.Node

async addNodes(nodedefs)
Add/merge nodes in bulk.

The addNodes API is designed for bulk adds which will also set properties, add tags, add edges, and set
nodedata to existing nodes. Nodes are specified as a list of the following tuples:

((form, valu), {‘props’:{}, ‘tags’:{}})

Parameters
nodedefs (list) – A list of nodedef tuples.

10.1. synapse package 675

Synapse Documentation, Release 2.141.0

Returns
A list of xact messages.

Return type
(list)

async addStormRuntime(query, opts=None, user=None)

async applyNodeEdit(edit)

async applyNodeEdits(edits)
Sends edits to the write layer and evaluates the consequences (triggers, node object updates)

buidcachesize = 100000

async clearCache()

clearCachedNode(buid)

disableTriggers()

eval(text, opts=None, user=None)
Run a storm query and yield Node() objects.

getEditor()

async getNodeByBuid(buid)
Retrieve a node tuple by binary id.

Parameters
buid (bytes) – The binary ID for the node.

Returns
The node object or None.

Return type
Optional[s_node.Node]

async getNodeByNdef(ndef)
Return a single Node by (form,valu) tuple.

Parameters

• ndef ((str,obj)) – A (form,valu) ndef tuple. valu must be

• normalized. –

Returns
The Node or None.

Return type
(synapse.lib.node.Node)

async getNodeData(buid, name, defv=None)
Get nodedata from closest to write layer, no merging involved

getNodeEditor(node)

async getRuntNodes(full, valu=None, cmpr=None)

676 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async getSnapMeta()

Retrieve snap metadata to store along side nodeEdits.

getStormRuntime(query, opts=None, user=None)

async getTagNode(name)
Retrieve a cached tag node. Requires name is normed. Does not add.

async getTagNorm(tagname)

async hasNodeData(buid, name)
Return True if the buid has nodedata set on it under the given name False otherwise

async hasNodeEdge(buid1, verb, buid2)

async iterNodeData(buid)
Returns: Iterable[Tuple[str, Any]]

async iterNodeDataKeys(buid)
Yield each data key from the given node by buid.

async iterNodeEdgesN1(buid, verb=None)

async iterNodeEdgesN2(buid, verb=None)

async iterStormPodes(text, opts, user=None)
Yield packed node tuples for the given storm query text.

async nodes(text, opts=None, user=None)

async nodesByDataName(name)

async nodesByProp(full)

async nodesByPropArray(full, cmpr, valu)

async nodesByPropTypeValu(name, valu)

async nodesByPropValu(full, cmpr, valu)

async nodesByTag(tag, form=None)

async nodesByTagProp(form, tag, name)

async nodesByTagPropValu(form, tag, name, cmpr, valu)

async nodesByTagValu(tag, cmpr, valu, form=None)

async printf(mesg)

async saveNodeEdits(edits, meta)

storm(text, opts=None, user=None)
Execute a storm query and yield (Node(), Path()) tuples.

tagcachesize = 1000

async warn(mesg, log=True, **info)

async warnonce(mesg, log=True, **info)

10.1. synapse package 677

Synapse Documentation, Release 2.141.0

class synapse.lib.snap.SnapEditor(snap)
Bases: object

A SnapEditor allows tracking node edits with subs/deps as a transaction.

async addNode(formname, valu, props=None, norminfo=None)

async getNodeByBuid(buid)

getNodeEdits()

loadNode(node)

synapse.lib.spooled module

class synapse.lib.spooled.Dict

Bases: Spooled

get(key, defv=None)

has(key)

items()

keys()

async set(key, val)

class synapse.lib.spooled.Set

Bases: Spooled

A minimal set-like implementation that will spool to a slab on large growth.

async add(valu)

discard(valu)

class synapse.lib.spooled.Spooled

Bases: Base

A Base class that can be used to implement objects which fallback to lmdb.

These objects are intended to fallback from Python to lmbd slabs, which aligns them together. Under memory
pressure, these objects have a better shot of getting paged out.

synapse.lib.storm module

class synapse.lib.storm.BackgroundCmd(runt, runtsafe)
Bases: Cmd

Execute a query pipeline as a background task. NOTE: Variables are passed through but nodes are not

async execStormCmd(runt, genr)
Abstract base method

async execStormTask(query, opts)

678 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

getArgParser()

name = 'background'

class synapse.lib.storm.BatchCmd(runt, runtsafe)
Bases: Cmd

Run a query with batched sets of nodes.

The batched query will have the set of inbound nodes available in the variable $nodes.

This command also takes a conditional as an argument. If the conditional evaluates to true, the nodes returned
by the batched query will be yielded, if it evaluates to false, the inbound nodes will be yielded after executing
the batched query.

NOTE: This command is intended to facilitate use cases such as queries to external
APIs with aggregate node values to reduce quota consumption. As this command interrupts the node
stream, it should be used carefully to avoid unintended slowdowns in the pipeline.

Example

// Execute a query with batches of 5 nodes, then yield the inbound nodes batch $lib.false –size 5 {
$lib.print($nodes) }

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

name = 'batch'

class synapse.lib.storm.Cmd(runt, runtsafe)
Bases: object

A one line description of the command.

Command usage details and long form description.

Example

cmd –help

Notes

Python Cmd implementers may override the forms attribute with a dictionary to provide information about
Synapse forms which are possible input and output nodes that a Cmd may recognize. A list of (key, form) tuples
may also be added to provide information about forms which may have additional nodedata added to them by the
Cmd.

Example:

{
'input': (

'inet:ipv4',
'tel:mob:telem',

),
(continues on next page)

10.1. synapse package 679

Synapse Documentation, Release 2.141.0

(continued from previous page)

'output': (
'geo:place',

),
'nodedata': (

('foodata', 'inet:http:request'),
('bardata', 'inet:ipv4'),

),
}

asroot = False

async execStormCmd(runt, genr)
Abstract base method

forms = {}

getArgParser()

classmethod getCmdBrief()

getDescr()

getName()

classmethod getStorNode(form)

isReadOnly()

name = 'cmd'

pkgname = ''

readonly = False

async setArgv(argv)

svciden = ''

class synapse.lib.storm.CopyToCmd(runt, runtsafe)
Bases: Cmd

Copy nodes from the current view into another view.

Examples

// Copy all nodes tagged with #cno.mal.redtree to the target view.

#cno.mal.redtree | copyto 33c971ac77943da91392dadd0eec0571

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

name = 'copyto'

680 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

class synapse.lib.storm.CountCmd(runt, runtsafe)
Bases: Cmd

Iterate through query results, and print the resulting number of nodes which were lifted. This does not yield the
nodes counted, unless the –yield switch is provided.

Example

Count the number of IPV4 nodes with a given ASN. inet:ipv4:asn=20 | count

Count the number of IPV4 nodes with a given ASN and yield them. inet:ipv4:asn=20 | count –yield

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

name = 'count'

readonly = True

class synapse.lib.storm.DelNodeCmd(runt, runtsafe)
Bases: Cmd

Delete nodes produced by the previous query logic.

(no nodes are returned)

Example

inet:fqdn=vertex.link | delnode

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

name = 'delnode'

class synapse.lib.storm.DiffCmd(runt, runtsafe)
Bases: Cmd

Generate a list of nodes with changes in the top layer of the current view.

Examples

// Lift all nodes with any changes

diff

// Lift ou:org nodes that were added in the top layer.

diff –prop ou:org

// Lift inet:ipv4 nodes with the :asn property modified in the top layer.

diff –prop inet:ipv4:asn

// Lift the nodes with the tag #cno.mal.redtree added in the top layer.

diff –tag cno.mal.redtree

10.1. synapse package 681

Synapse Documentation, Release 2.141.0

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

name = 'diff'

readonly = True

class synapse.lib.storm.DivertCmd(runt, runtsafe)
Bases: Cmd

Either consume a generator or yield it’s results based on a conditional.

NOTE: This command is purpose built to facilitate the –yield convention
common to storm commands.

NOTE: The genr argument must not be a function that returns, else it will
be invoked for each inbound node.

Example

divert $cmdopts.yield $fooBarBaz()

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

name = 'divert'

class synapse.lib.storm.DmonManager

Bases: Base

Manager for StormDmon objects.

async addDmon(iden, ddef)

getDmon(iden)

getDmonDef(iden)

getDmonDefs()

getDmonRunlog(iden)

async popDmon(iden)
Remove the dmon and fini it if its exists.

async start()

Start all the dmons.

async stop()

Stop all the dmons.

class synapse.lib.storm.EdgesDelCmd(runt, runtsafe)
Bases: Cmd

Bulk delete light edges from input nodes.

682 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Examples

Delete all “foo” light edges from an inet:ipv4 inet:ipv4=1.2.3.4 | edges.del foo

Delete light edges with any verb from a node inet:ipv4=1.2.3.4 | edges.del *

Delete all “foo” light edges to an inet:ipv4 inet:ipv4=1.2.3.4 | edges.del foo –n2

async delEdges(node, verb, n2=False)

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

name = 'edges.del'

class synapse.lib.storm.GraphCmd(runt, runtsafe)
Bases: Cmd

Generate a subgraph from the given input nodes and command line options.

Example

Using the graph command:

inet:fqdn | graph
--degrees 2
--filter { -#nope }
--pivot { <- meta:seen <- meta:source }
--form-pivot inet:fqdn {<- * | limit 20}
--form-pivot inet:fqdn {-> * | limit 20}
--form-filter inet:fqdn {-inet:fqdn:issuffix=1}
--form-pivot syn:tag {-> *}
--form-pivot * {-> #}

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

name = 'graph'

class synapse.lib.storm.HelpCmd(runt, runtsafe)
Bases: Cmd

List available commands and a brief description for each.

10.1. synapse package 683

Synapse Documentation, Release 2.141.0

Examples

// Get all available commands and their brief descriptions.

help

// Only get commands which have “model” in the name.

help model

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

name = 'help'

class synapse.lib.storm.IdenCmd(runt, runtsafe)
Bases: Cmd

Lift nodes by iden.

Example

iden b25bc9eec7e159dce879f9ec85fb791f83b505ac55b346fcb64c3c51e98d1175 | count

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

name = 'iden'

readonly = True

class synapse.lib.storm.IntersectCmd(runt, runtsafe)
Bases: Cmd

Yield an intersection of the results of running inbound nodes through a pivot.

Note: This command must consume the entire inbound stream to produce the intersection. This type of stream
consuming before yielding results can cause the query to appear laggy in comparison with normal incremental
stream operations.

Examples

// Show the it:mitre:attack:technique nodes common to several groups

it:mitre:attack:group*in=(G0006, G0007) | intersect { -> it:mitre:attack:technique }

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

name = 'intersect'

684 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

class synapse.lib.storm.LiftByVerb(runt, runtsafe)
Bases: Cmd

Lift nodes from the current view by an light edge verb.

Examples

Lift all the n1 nodes for the light edge “foo” lift.byverb “foo”

Lift all the n2 nodes for the light edge “foo” lift.byverb –n2 “foo”

Notes

Only a single instance of a node will be yielded from this command when that node is lifted via the light edge
membership.

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

async iterEdgeNodes(verb, idenset, n2=False)

name = 'lift.byverb'

class synapse.lib.storm.LimitCmd(runt, runtsafe)
Bases: Cmd

Limit the number of nodes generated by the query in the given position.

Example

inet:ipv4 | limit 10

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

name = 'limit'

readonly = True

class synapse.lib.storm.MaxCmd(runt, runtsafe)
Bases: Cmd

Consume nodes and yield only the one node with the highest value for an expression.

10.1. synapse package 685

Synapse Documentation, Release 2.141.0

Examples

// Yield the file:bytes node with the highest :size property file:bytes#foo.bar | max :size

// Yield the file:bytes node with the highest value for $tick file:bytes#foo.bar +.seen ($tick, $tock) = .seen | max
$tick

// Yield the it:dev:str node with the longest length it:dev:str | max $lib.len($node.value())

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

name = 'max'

readonly = True

class synapse.lib.storm.MergeCmd(runt, runtsafe)
Bases: Cmd

Merge edits from the incoming nodes down to the next layer.

NOTE: This command requires the current view to be a fork.

NOTE: The arguments for including/excluding tags can accept tag glob
expressions for specifying tags. For more information on tag glob expressions, check the Synapse docu-
mentation for $node.globtags().

Examples

// Having tagged a new #cno.mal.redtree subgraph in a forked view. . .

#cno.mal.redtree | merge –apply

// Print out what the merge command would do but dont.

#cno.mal.redtree | merge

// Merge any org nodes with changes in the top layer.

diff | +ou:org | merge –apply

// Merge all tags other than cno.* from ou:org nodes with edits in the // top layer.

diff | +ou:org | merge –only-tags –exclude-tags cno.** –apply

// Merge only tags rep.vt.* and rep.whoxy.* from ou:org nodes with edits // in the top layer.

diff | +ou:org | merge –include-tags rep.vt.* rep.whoxy.* –apply

// Lift only inet:ipv4 nodes with a changed :asn property in top layer // and merge all changes.

diff –prop inet:ipv4:asn | merge –apply

// Lift only nodes with an added #cno.mal.redtree tag in the top layer and merge them.

diff –tag cno.mal.redtree | merge –apply

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

686 Chapter 10. Synapse Python API

file:bytes
file:bytes#foo.bar
file:bytes
file:bytes#foo.bar

Synapse Documentation, Release 2.141.0

name = 'merge'

class synapse.lib.storm.MinCmd(runt, runtsafe)
Bases: Cmd

Consume nodes and yield only the one node with the lowest value for an expression.

Examples

// Yield the file:bytes node with the lowest :size property file:bytes#foo.bar | min :size

// Yield the file:bytes node with the lowest value for $tick file:bytes#foo.bar +.seen ($tick, $tock) = .seen | min
$tick

// Yield the it:dev:str node with the shortest length it:dev:str | min $lib.len($node.value())

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

name = 'min'

readonly = True

class synapse.lib.storm.MoveNodesCmd(runt, runtsafe)
Bases: Cmd

Move storage nodes between layers.

Storage nodes will be removed from the source layers and the resulting storage node in the destination layer will
contain the merged values (merged in bottom up layer order by default).

Examples

// Move storage nodes for ou:org nodes to the top layer

ou:org | movenodes –apply

// Print out what the movenodes command would do but dont.

ou:org | movenodes

// In a view with many layers, only move storage nodes from the bottom layer // to the top layer.

$layers = $lib.view.get().layers $top = $layers.0.iden $bot = $layers.”-1”.iden

ou:org | movenodes –srclayers $bot –destlayer $top

// In a view with many layers, move storage nodes to the top layer and // prioritize values from the bottom layer
over the other layers.

$layers = $lib.view.get().layers $top = $layers.0.iden $mid = $layers.1.iden $bot = $layers.2.iden

ou:org | movenodes –precedence $bot $top $mid

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

10.1. synapse package 687

file:bytes
file:bytes#foo.bar
file:bytes
file:bytes#foo.bar

Synapse Documentation, Release 2.141.0

name = 'movenodes'

class synapse.lib.storm.MoveTagCmd(runt, runtsafe)
Bases: Cmd

Rename an entire tag tree and preserve time intervals.

Example

movetag foo.bar baz.faz.bar

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

name = 'movetag'

class synapse.lib.storm.OnceCmd(runt, runtsafe)
Bases: Cmd

The once command ensures that a node makes it through the once command but a single time, even across
independent queries. The gating is keyed by a required name parameter to the once command, so a node can be
run through different queries, each a single time, so long as the names differ.

For example, to run an enrichment command on a set of nodes just once:

file:bytes#my.files | once enrich:foo | enrich.foo

If you insert the once command with the same name on the same nodes, they will be dropped from the pipeline.
So in the above example, if we run it again, the enrichment will not run a second time, as all the nodes will be
dropped from the pipeline before reaching the enrich.foo portion of the pipeline.

Simlarly, running this:

file:bytes#my.files | once enrich:foo

Also yields no nodes. And even though the rest of the pipeline is different, this query:

file:bytes#my.files | once enrich:foo | enrich.bar

would not run the enrich.bar command, as the name “enrich:foo” has already been seen to occur on the file:bytes
passing through the once command, so all of the nodes will be dropped from the pipeline.

However, this query:

file:bytes#my.files | once look:at:my:nodes

Would yield all the file:bytes tagged with #my.files, as the name parameter given to the once command differs
from the original “enrich:foo”.

The once command utilizes a node’s nodedata cache, and you can use the –asof parameter to update the named
action’s timestamp in order to bypass/update the once timestamp. So this command:

inet:ipv4#my.addresses | once node:enrich –asof now | my.enrich.command

Will yield all the enriched nodes the first time around. The second time that command is run, all of those nodes
will be re-enriched, as the asof timestamp will be greater the second time around, so no nodes will be dropped.

As state tracking data for the once command is stored as nodedata, it is stored in your view’s write layer, making
it view-specific. So if you have two views, A and B, and they do not share any layers between them, and you
execute this query in view A:

688 Chapter 10. Synapse Python API

file:bytes#my.files
file:bytes#my.files
file:bytes#my.files
file:bytes#my.files
file:bytes

Synapse Documentation, Release 2.141.0

inet:ipv4=8.8.8.8 | once enrich:address | enrich.baz

And then you run it in view B, the node will still pass through the once command to the enrich.baz portion of
the pipeline, as the nodedata for the once command does not yet exist in view B.

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

name = 'once'

class synapse.lib.storm.ParallelCmd(runt, runtsafe)
Bases: Cmd

Execute part of a query pipeline in parallel. This can be useful to minimize round-trip delay during enrichments.

Examples

inet:ipv4#foo | parallel { $place = $lib.import(foobar).lookup(:latlong) [:place=$place] }

NOTE: Storm variables set within the parallel query pipelines do not interact.

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

name = 'parallel'

async nextitem(inq)

async pipeline(runt, query, inq, outq)

readonly = True

class synapse.lib.storm.Parser(prog=None, descr=None, root=None)
Bases: object

add_argument(*names, **opts)

help(mesg=None)

parse_args(argv)

set_inputs(idefs)

class synapse.lib.storm.PureCmd(cdef, runt, runtsafe)
Bases: Cmd

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

getDescr()

getName()

readonly = True

10.1. synapse package 689

Synapse Documentation, Release 2.141.0

class synapse.lib.storm.ReIndexCmd(runt, runtsafe)
Bases: Cmd

Use admin privileges to re index/normalize node properties.

NOTE: Currently does nothing but is reserved for future use.

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

name = 'reindex'

class synapse.lib.storm.RunAsCmd(runt, runtsafe)
Bases: Cmd

Execute a storm query as a specified user.

NOTE: This command requires admin privileges.

Examples

// Create a node as another user. runas someuser { [inet:fqdn=foo.com] }

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

name = 'runas'

class synapse.lib.storm.Runtime

Bases: Base

A Runtime represents the instance of a running query.

The runtime should maintain a firm API boundary using the snap. Parallel query execution requires that the snap
be treated as an opaque object which is called through, but not dereferenced.

addInput(node)
Add a Node() object as input to the query runtime.

allowed(perms, gateiden=None, default=False)

cancel()

confirm(perms, gateiden=None, default=False)
Raise AuthDeny if user doesn’t have global permissions and write layer permissions

async coreDynCall(todo, perm=None)

async dyncall(iden, todo, gatekeys=())

async dyniter(iden, todo, gatekeys=())

async emit(item)

async emitter()

690 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async execute(genr=None)

getCmdRuntime(query, opts=None)
Yield a runtime with proper scoping for use in executing a pure storm command.

getGraph()

async getInput()

async getModRuntime(query, opts=None)
Construct a non-context managed runtime for use in module imports.

async getOneNode(propname, valu, filt=None, cmpr='=')
Return exactly 1 node by <prop> <cmpr> <valu>

getOpt(name, defval=None)

getScopeVars()

Return a dict of all the vars within this and all parent scopes.

async getStormQuery(text)

getSubRuntime(query, opts=None)
Yield a runtime with shared scope that will populate changes upward.

async getTeleProxy(url, **opts)

getVar(name, defv=None)

initPath(node)

async initSubRuntime(query, opts=None)
Construct and return sub-runtime with a shared scope. (caller must fini)

isAdmin(gateiden=None)

isRuntVar(name)

layerConfirm(perms)

async popVar(name)

async printf(mesg)

async reqGateKeys(gatekeys)

async reqUserCanReadLayer(layriden)

setGraph(gdef)

setOpt(name, valu)

async setVar(name, valu)

async storm(text, opts=None, genr=None)
Execute a storm runtime which inherits from this storm runtime.

tick()

async warn(mesg, **info)

10.1. synapse package 691

Synapse Documentation, Release 2.141.0

async warnonce(mesg, **info)

class synapse.lib.storm.ScrapeCmd(runt, runtsafe)
Bases: Cmd

Use textual properties of existing nodes to find other easily recognizable nodes.

Examples

Scrape properties from inbound nodes and create standalone nodes. inet:search:query | scrape

Scrape properties from inbound nodes and make refs light edges to the scraped nodes. inet:search:query |
scrape –refs

Scrape only the :engine and :text props from the inbound nodes. inet:search:query | scrape :text :engine

Scrape properties inbound nodes and yield newly scraped nodes. inet:search:query | scrape –yield

Skip re-fanging text before scraping. inet:search:query | scrape –skiprefang

Limit scrape to specific forms. inet:search:query | scrape –forms (inet:fqdn, inet:ipv4)

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

name = 'scrape'

class synapse.lib.storm.SleepCmd(runt, runtsafe)
Bases: Cmd

Introduce a delay between returning each result for the storm query.

NOTE: This is mostly used for testing / debugging.

Example

#foo.bar | sleep 0.5

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

name = 'sleep'

readonly = True

class synapse.lib.storm.SpinCmd(runt, runtsafe)
Bases: Cmd

Iterate through all query results, but do not yield any. This can be used to operate on many nodes without
returning any.

692 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Example

foo:bar:size=20 [+#hehe] | spin

async execStormCmd(runt, genr)
Abstract base method

name = 'spin'

readonly = True

class synapse.lib.storm.SpliceListCmd(runt, runtsafe)
Bases: Cmd

Deprecated command to retrieve a list of splices backwards from the end of the splicelog.

Examples

Show the last 10 splices. splice.list | limit 10

Show splices after a specific time. splice.list –mintime “2020/01/06 15:38:10.991”

Show splices from a specific timeframe. splice.list –mintimestamp 1578422719360 –maxtimestamp
1578422719367

Notes

If both a time string and timestamp value are provided for a min or max, the timestamp will take precedence over
the time string value.

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

name = 'splice.list'

readonly = True

class synapse.lib.storm.SpliceUndoCmd(runt, runtsafe)
Bases: Cmd

Deprecated command to reverse the actions of syn:splice runt nodes.

Examples

Undo the last 5 splices. splice.list | limit 5 | splice.undo

Undo splices after a specific time. splice.list –mintime “2020/01/06 15:38:10.991” | splice.undo

Undo splices from a specific timeframe. splice.list –mintimestamp 1578422719360 –maxtimestamp
1578422719367 | splice.undo

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

10.1. synapse package 693

Synapse Documentation, Release 2.141.0

name = 'splice.undo'

async undoNodeAdd(runt, splice, node)

async undoNodeDel(runt, splice, node)

async undoPropDel(runt, splice, node)

async undoPropSet(runt, splice, node)

async undoTagAdd(runt, splice, node)

async undoTagDel(runt, splice, node)

async undoTagPropDel(runt, splice, node)

async undoTagPropSet(runt, splice, node)

class synapse.lib.storm.StormDmon

Bases: Base

A background storm runtime which is restarted by the cortex.

async bump()

async dmonloop()

pack()

async run()

async stop()

class synapse.lib.storm.SudoCmd(runt, runtsafe)
Bases: Cmd

Deprecated sudo command.

Left in for 2.x.x so that Storm command with it are still valid to execute.

async execStormCmd(runt, genr)
Abstract base method

name = 'sudo'

class synapse.lib.storm.TagPruneCmd(runt, runtsafe)
Bases: Cmd

Prune a tag (or tags) from nodes.

This command will delete the tags specified as parameters from incoming nodes, as well as all of their parent
tags that don’t have other tags as children.

For example, given a node with the tags:

#parent #parent.child #parent.child.grandchild

Pruning the parent.child.grandchild tag would remove all tags. If the node had the tags:

#parent #parent.child #parent.child.step #parent.child.grandchild

Pruning the parent.child.grandchild tag will only remove the parent.child.grandchild tag as the parent tags still
have other children.

694 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Examples

Prune the parent.child.grandchild tag inet:ipv4=1.2.3.4 | tag.prune parent.child.grandchild

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

hasChildTags(node, tag)

name = 'tag.prune'

class synapse.lib.storm.TeeCmd(runt, runtsafe)
Bases: Cmd

Execute multiple Storm queries on each node in the input stream, joining output streams together.

Commands are executed in order they are given; unless the --parallel switch is provided.

Examples

Perform a pivot out and pivot in on a inet:ivp4 node inet:ipv4=1.2.3.4 | tee { -> * } { <- * }

Also emit the inbound node inet:ipv4=1.2.3.4 | tee –join { -> * } { <- * }

Execute multiple enrichment queries in parallel. inet:ipv4=1.2.3.4 | tee -p { enrich.foo } { enrich.bar } {
enrich.baz }

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

name = 'tee'

async pipeline(runt, outq, genr=None)

readonly = True

class synapse.lib.storm.TreeCmd(runt, runtsafe)
Bases: Cmd

Walk elements of a tree using a recursive pivot.

Examples

pivot upward yielding each FQDN inet:fqdn=www.vertex.link | tree { :domain -> inet:fqdn }

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

name = 'tree'

readonly = True

10.1. synapse package 695

Synapse Documentation, Release 2.141.0

class synapse.lib.storm.UniqCmd(runt, runtsafe)
Bases: Cmd

Filter nodes by their uniq iden values. When this is used a Storm pipeline, only the first instance of a given node
is allowed through the pipeline.

A relative property or variable may also be specified, which will cause this command to only allow through the
first node with a given value for that property or value rather than checking the node iden.

Examples

Filter duplicate nodes after pivoting from inet:ipv4 nodes tagged with #badstuff #badstuff +inet:ipv4 ->* | uniq

Unique inet:ipv4 nodes by their :asn property #badstuff +inet:ipv4 | uniq :asn

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

name = 'uniq'

readonly = True

class synapse.lib.storm.ViewExecCmd(runt, runtsafe)
Bases: Cmd

Execute a storm query in a different view.

NOTE: Variables are passed through but nodes are not

Examples

// Move some tagged nodes to another view inet:fqdn#foo.bar $fqdn=$node.value() | view.exec
95d5f31f0fb414d2b00069d3b1ee64c6 { [inet:fqdn=$fqdn] }

async execStormCmd(runt, genr)
Abstract base method

getArgParser()

name = 'view.exec'

readonly = True

synapse.lib.storm_format module

class synapse.lib.storm_format.StormLexer(parser)
Bases: Lexer

get_tokens_unprocessed(text)
This method should process the text and return an iterable of (index, tokentype, value) tuples where
index is the starting position of the token within the input text.

It must be overridden by subclasses. It is recommended to implement it as a generator to maximize effec-
tiveness.

696 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

synapse.lib.storm_format.highlight_storm(parser, text)
Prints a storm query with syntax highlighting

synapse.lib.stormctrl module

exception synapse.lib.stormctrl.StormBreak(item=None)
Bases: StormCtrlFlow

exception synapse.lib.stormctrl.StormContinue(item=None)
Bases: StormCtrlFlow

exception synapse.lib.stormctrl.StormCtrlFlow(item=None)
Bases: Exception

exception synapse.lib.stormctrl.StormExit(item=None)
Bases: StormCtrlFlow

exception synapse.lib.stormctrl.StormReturn(item=None)
Bases: StormCtrlFlow

exception synapse.lib.stormctrl.StormStop(item=None)
Bases: StormCtrlFlow

synapse.lib.stormhttp module

class synapse.lib.stormhttp.HttpResp(valu, path=None)
Bases: Prim

Implements the Storm API for a HTTP response.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormhttp.LibHttp(runt, name=())
Bases: Lib

A Storm Library exposing an HTTP client API.

async codereason(code)

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async inetHttpConnect(url, headers=None, ssl_verify=True, timeout=300, params=None, proxy=None)

10.1. synapse package 697

Synapse Documentation, Release 2.141.0

strify(item)

async urldecode(text)

async urlencode(text)

class synapse.lib.stormhttp.WebSocket

Bases: Base, StormType

Implements the Storm API for a Websocket.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async rx(timeout=None)

async tx(mesg)

synapse.lib.stormsvc module

class synapse.lib.stormsvc.StormSvc

Bases: object

The StormSvc mixin class used to make a remote storm service with commands.

async getStormSvcInfo()

async getStormSvcPkgs()

class synapse.lib.stormsvc.StormSvcClient

Bases: Base

A StormService is a wrapper for a telepath proxy to a service accessible from the storm runtime.

synapse.lib.stormtypes module

class synapse.lib.stormtypes.Bool(valu, path=None)
Bases: Prim

Implements the Storm API for a boolean instance.

class synapse.lib.stormtypes.Bytes(valu, path=None)
Bases: Prim

Implements the Storm API for a Bytes object.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

698 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Return type
dict

async slice(start, end=None)

async unpack(fmt, offset=0)

class synapse.lib.stormtypes.CmdOpts(valu, path=None)
Bases: Dict

A dictionary like object that holds a reference to a command options namespace. (This allows late-evaluation
of command arguments rather than forcing capture)

async deref(name)

async iter()

async setitem(name, valu)

async stormrepr()

async value()

class synapse.lib.stormtypes.CronJob(runt, cdef, path=None)
Bases: Prim

Implements the Storm api for a cronjob instance.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormtypes.Dict(valu, path=None)
Bases: Prim

Implements the Storm API for a Dictionary object.

async deref(name)

async iter()

async setitem(name, valu)

async stormrepr()

async value()

class synapse.lib.stormtypes.Gate(runt, valu, path=None)
Bases: Prim

Implements the Storm API for an AuthGate.

class synapse.lib.stormtypes.Layer(runt, ldef, path=None)
Bases: Prim

Implements the Storm api for a layer instance.

10.1. synapse package 699

Synapse Documentation, Release 2.141.0

async getEdges()

async getEdgesByN1(nodeid)

async getEdgesByN2(nodeid)

async getMirrorStatus()

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async getStorNode(nodeid)

async getStorNodes()

async liftByProp(propname, propvalu=None, propcmpr='=')

async liftByTag(tagname, formname=None)

async verify(config=None)

class synapse.lib.stormtypes.Lib(runt, name=())
Bases: StormType

A collection of storm methods under a name

addLibFuncs()

async deref(name)

async dyncall(iden, todo, gatekeys=())

async dyniter(iden, todo, gatekeys=())

async initLibAsync()

async stormrepr()

class synapse.lib.stormtypes.LibAuth(runt, name=())
Bases: Lib

A Storm Library for interacting with Auth in the Cortex.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async getPermDef(perm)

async getPermDefs()

700 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

static ruleFromText(text)

async textFromRule(rule)

class synapse.lib.stormtypes.LibAxon(runt, name=())
Bases: Lib

A Storm library for interacting with the Cortex’s Axon.

async csvrows(sha256, dialect='excel', **fmtparams)

async del_(sha256)

async dels(sha256s)

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async jsonlines(sha256)

async list(offs=0, wait=False, timeout=None)

async metrics()

async readlines(sha256)

strify(item)

async urlfile(*args, **kwargs)

async wget(url, headers=None, params=None, method='GET', json=None, body=None, ssl=True,
timeout=None, proxy=None)

async wput(sha256, url, headers=None, params=None, method='PUT', ssl=True, timeout=None,
proxy=None)

class synapse.lib.stormtypes.LibBase(runt, name=())
Bases: Lib

The Base Storm Library. This mainly contains utility functionality.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async trycast(name, valu)

class synapse.lib.stormtypes.LibBase64(runt, name=())
Bases: Lib

A Storm Library for encoding and decoding base64 data.

10.1. synapse package 701

Synapse Documentation, Release 2.141.0

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormtypes.LibBytes(runt, name=())
Bases: Lib

A Storm Library for interacting with bytes storage.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormtypes.LibCron(runt, name=())
Bases: Lib

A Storm Library for interacting with Cron Jobs in the Cortex.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormtypes.LibCsv(runt, name=())
Bases: Lib

A Storm Library for interacting with csvtool.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormtypes.LibDmon(runt, name=())
Bases: Lib

A Storm Library for interacting with StormDmons.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

702 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Return type
dict

class synapse.lib.stormtypes.LibExport(runt, name=())
Bases: Lib

A Storm Library for exporting data.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async toaxon(query, opts=None)

class synapse.lib.stormtypes.LibFeed(runt, name=())
Bases: Lib

A Storm Library for interacting with Cortex feed functions.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormtypes.LibGates(runt, name=())
Bases: Lib

A Storm Library for interacting with Auth Gates in the Cortex.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormtypes.LibGlobals(runt, name)
Bases: Lib

A Storm Library for interacting with global variables which are persistent across the Cortex.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

10.1. synapse package 703

Synapse Documentation, Release 2.141.0

class synapse.lib.stormtypes.LibJsonStor(runt, name=())
Bases: Lib

Implements cortex JSON storage.

addLibFuncs()

async cacheget(path, key, asof='now', envl=False)

async cacheset(path, key, valu)

async get(path, prop=None)

async has(path)

async iter(path=None)

async set(path, valu, prop=None)

class synapse.lib.stormtypes.LibLayer(runt, name=())
Bases: Lib

A Storm Library for interacting with Layers in the Cortex.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormtypes.LibLift(runt, name=())
Bases: Lib

A Storm Library for interacting with lift helpers.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormtypes.LibPipe(runt, name=())
Bases: Lib

A Storm library for interacting with non-persistent queues.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

704 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

class synapse.lib.stormtypes.LibPkg(runt, name=())
Bases: Lib

A Storm Library for interacting with Storm Packages.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormtypes.LibPs(runt, name=())
Bases: Lib

A Storm Library for interacting with running tasks on the Cortex.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormtypes.LibQueue(runt, name=())
Bases: Lib

A Storm Library for interacting with persistent Queues in the Cortex.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormtypes.LibRegx(runt, name=())
Bases: Lib

A Storm library for searching/matching with regular expressions.

async findall(pattern, text, flags=0)

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async matches(pattern, text, flags=0)

async replace(pattern, replace, text, flags=0)

10.1. synapse package 705

Synapse Documentation, Release 2.141.0

async search(pattern, text, flags=0)

class synapse.lib.stormtypes.LibRoles(runt, name=())
Bases: Lib

A Storm Library for interacting with Auth Roles in the Cortex.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormtypes.LibService(runt, name=())
Bases: Lib

A Storm Library for interacting with Storm Services.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormtypes.LibStats(runt, name=())
Bases: Lib

A Storm Library for statistics related functionality.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async tally()

class synapse.lib.stormtypes.LibStr(runt, name=())
Bases: Lib

A Storm Library for interacting with strings.

async concat(*args)

async format(text, **kwargs)

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

706 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async join(sepr, items)

class synapse.lib.stormtypes.LibTags(runt, name=())
Bases: Lib

Storm utility functions for tags.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async prefix(names, prefix, ispart=False)

class synapse.lib.stormtypes.LibTelepath(runt, name=())
Bases: Lib

A Storm Library for making Telepath connections to remote services.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormtypes.LibTime(runt, name=())
Bases: Lib

A Storm Library for interacting with timestamps.

async day(tick)

async dayofmonth(tick)

async dayofweek(tick)

async dayofyear(tick)

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async hour(tick)

async minute(tick)

async month(tick)

async monthofyear(tick)

10.1. synapse package 707

Synapse Documentation, Release 2.141.0

async second(tick)

async toUTC(tick, timezone)

async year(tick)

class synapse.lib.stormtypes.LibTrigger(runt, name=())
Bases: Lib

A Storm Library for interacting with Triggers in the Cortex.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormtypes.LibUser(runt, name=())
Bases: Lib

A Storm Library for interacting with data about the current user.

addLibFuncs()

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormtypes.LibUsers(runt, name=())
Bases: Lib

A Storm Library for interacting with Auth Users in the Cortex.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormtypes.LibVars(runt, name=())
Bases: Lib

A Storm Library for interacting with runtime variables.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

708 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

class synapse.lib.stormtypes.LibView(runt, name=())
Bases: Lib

A Storm Library for interacting with Views in the Cortex.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormtypes.List(valu, path=None)
Bases: Prim

Implements the Storm API for a List instance.

async extend(valu)

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async iter()

async setitem(name, valu)

async slice(start, end=None)

async stormrepr()

async value()

class synapse.lib.stormtypes.Node(node, path=None)
Bases: Prim

Implements the Storm api for a node instance.

getByLayer()

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async getStorNodes()

class synapse.lib.stormtypes.NodeData(node, path=None)
Bases: Prim

A Storm Primitive representing the NodeData stored for a Node.

10.1. synapse package 709

Synapse Documentation, Release 2.141.0

async cacheget(name, asof='now')

async cacheset(name, valu)

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormtypes.NodeProps(node, path=None)
Bases: Prim

A Storm Primitive representing the properties on a Node.

async get(name)

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async iter()

async list()

async set(prop, valu)

async setitem(name, valu)
Set a property on a Node.

Parameters

• name (str) – The name of the property to set.

• valu – The value being set.

Raises

• s_exc – NoSuchProp: If the property being set is not valid for the node.

• s_exc.BadTypeValu – If the value of the property fails to normalize.

value()

class synapse.lib.stormtypes.Number(valu, path=None)
Bases: Prim

Implements the Storm API for a Number instance.

Storm Numbers are high precision fixed point decimals corresponding to the the hugenum storage type.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

710 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Return type
dict

async stormrepr()

class synapse.lib.stormtypes.Path(node, path=None)
Bases: Prim

Implements the Storm API for the Path object.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormtypes.PathMeta(path)
Bases: Prim

Put the storm deref/setitem/iter convention on top of path meta information.

async deref(name)

async iter()

async setitem(name, valu)

class synapse.lib.stormtypes.PathVars(path)
Bases: Prim

Put the storm deref/setitem/iter convention on top of path variables.

async deref(name)

async iter()

async setitem(name, valu)

class synapse.lib.stormtypes.Pipe(runt, size)
Bases: StormType

A Storm Pipe provides fast ephemeral queues.

async close()

Close the pipe for writing. This will cause the slice()/slices() API to return once drained.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormtypes.Prim(valu, path=None)
Bases: StormType

The base type for all Storm primitive values.

10.1. synapse package 711

Synapse Documentation, Release 2.141.0

async bool()

async iter()

async nodes()

async stormrepr()

value()

class synapse.lib.stormtypes.Proxy(runt, proxy, path=None)
Bases: StormType

Implements the Storm API for a Telepath proxy.

These can be created via $lib.telepath.open(). Storm Service objects are also Telepath proxy objects.

Methods called off of these objects are executed like regular Telepath RMI calls.

An example of calling a method which returns data:

$prox = $lib.telepath.open($url)
$result = $prox.doWork($data)
return ($result)

An example of calling a method which is a generator:

$prox = $lib.telepath.open($url)
for $item in = $prox.genrStuff($data) {

$doStuff($item)
}

async deref(name)

async stormrepr()

class synapse.lib.stormtypes.ProxyGenrMethod(meth, path=None)
Bases: StormType

async stormrepr()

class synapse.lib.stormtypes.ProxyMethod(runt, meth, path=None)
Bases: StormType

async stormrepr()

class synapse.lib.stormtypes.Query(text, varz, runt, path=None)
Bases: Prim

A storm primitive representing an embedded query.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

712 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async iter()

async nodes()

async stormrepr()

class synapse.lib.stormtypes.Queue(runt, name, info)
Bases: StormType

A StormLib API instance of a named channel in the Cortex multiqueue.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async stormrepr()

class synapse.lib.stormtypes.Role(runt, valu, path=None)
Bases: Prim

Implements the Storm API for a Role.

async gates()

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async getRules(gateiden=None)

async stormrepr()

async value()

class synapse.lib.stormtypes.Service(runt, ssvc)
Bases: Proxy

async deref(name)

class synapse.lib.stormtypes.Set(valu, path=None)
Bases: Prim

Implements the Storm API for a Set object.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

10.1. synapse package 713

Synapse Documentation, Release 2.141.0

async iter()

async stormrepr()

class synapse.lib.stormtypes.StatTally(path=None)
Bases: Prim

A tally object.

An example of using it:

$tally = $lib.stats.tally()

$tally.inc(foo)

for $name, $total in $tally {
$doStuff($name, $total)

}

async get(name)

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async inc(name, valu=1)

async iter()

async sorted(byname=False, reverse=False)

value()

class synapse.lib.stormtypes.StormHiveDict(runt, info)
Bases: Prim

A Storm Primitive representing a HiveDict.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async iter()

value()

class synapse.lib.stormtypes.StormType(path=None)
Bases: object

The base type for storm runtime value objects.

714 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async deref(name)

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

ismutable()

async setitem(name, valu)

class synapse.lib.stormtypes.StormTypesRegistry

Bases: object

addStormLib(path, ctor)

addStormType(path, ctor)

base_undefined_types = ('any', 'int', 'lib', 'null', 'time', 'prim', 'undef',
'float', 'generator')

delStormLib(path)

delStormType(path)

getLibDocs()

getTypeDocs()

iterLibs()

iterTypes()

known_types = {'auth:gate', 'auth:role', 'auth:user', 'auth:user:json',
'auth:user:profile', 'auth:user:vars', 'boolean', 'bytes', 'cmdopts', 'cronjob',
'dict', 'hive:dict', 'inet:http:oauth:v1:client', 'inet:http:resp',
'inet:http:socket', 'inet:imap:server', 'inet:smtp:message', 'json:schema', 'layer',
'list', 'model:form', 'model:property', 'model:tagprop', 'model:type', 'node',
'node:data', 'node:path', 'node:path:meta', 'node:path:vars', 'node:props',
'number', 'pipe', 'proj:comment', 'proj:comments', 'proj:epic', 'proj:epics',
'proj:project', 'proj:sprint', 'proj:sprints', 'proj:ticket', 'proj:tickets',
'queue', 'set', 'stat:tally', 'stix:bundle', 'storm:query', 'str', 'telepath:proxy',
'text', 'trigger', 'view', 'xml:element'}

registerLib(ctor)
Decorator to register a StormLib

registerType(ctor)
Decorator to register a StormPrim

rtypes = {}

undefined_types = {'any', 'float', 'generator', 'int', 'lib', 'null', 'prim',
'time', 'undef'}

10.1. synapse package 715

Synapse Documentation, Release 2.141.0

class synapse.lib.stormtypes.Str(valu, path=None)
Bases: Prim

Implements the Storm API for a String object.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormtypes.Text(valu, path=None)
Bases: Prim

A mutable text type for simple text construction.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

class synapse.lib.stormtypes.Trigger(runt, tdef)
Bases: Prim

Implements the Storm API for a Trigger.

async deref(name)

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async move(viewiden)

async pack()

async set(name, valu)

class synapse.lib.stormtypes.Undef

Bases: object

class synapse.lib.stormtypes.User(runt, valu, path=None)
Bases: Prim

Implements the Storm API for a User.

async gates()

async getAllowedReason(permname, gateiden=None, default=False)

716 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async getRules(gateiden=None)

async stormrepr()

async value()

class synapse.lib.stormtypes.UserJson(runt, valu)
Bases: Prim

Implements per-user JSON storage.

async get(path, prop=None)

async has(path)

async iter(path=None)

async set(path, valu, prop=None)

class synapse.lib.stormtypes.UserProfile(runt, valu, path=None)
Bases: Prim

The Storm deref/setitem/iter convention on top of User profile information.

async deref(name)

async iter()

async setitem(name, valu)

async value()

class synapse.lib.stormtypes.UserVars(runt, valu, path=None)
Bases: Prim

The Storm deref/setitem/iter convention on top of User vars information.

async deref(name)

async iter()

async setitem(name, valu)

class synapse.lib.stormtypes.View(runt, vdef, path=None)
Bases: Prim

Implements the Storm api for a View instance.

async addNode(form, valu, props=None)

10.1. synapse package 717

Synapse Documentation, Release 2.141.0

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

async viewDynCall(todo, perm)

async viewDynIter(todo, perm)

synapse.lib.stormtypes.allowed(perm, gateiden=None)

synapse.lib.stormtypes.confirm(perm, gateiden=None)

synapse.lib.stormtypes.fromprim(valu, path=None, basetypes=True)

synapse.lib.stormtypes.getCallSig(func)→ Signature
Get the callsig of a function, stripping self if present.

synapse.lib.stormtypes.getDoc(obj, errstr)
Helper to get __doc__

synapse.lib.stormtypes.intify(x)

synapse.lib.stormtypes.ismutable(valu)

async synapse.lib.stormtypes.kwarg_format(_text, **kwargs)
Replaces instances curly-braced argument names in text with their values

synapse.lib.stormtypes.ruleFromText(text)
Get a rule tuple from a text string.

Parameters
text (str) – The string to process.

Returns
A tuple containing a bool and a list of permission parts.

Return type
(bool, tuple)

synapse.lib.stormtypes.stormfunc(readonly=False)

async synapse.lib.stormtypes.tobool(valu, noneok=False)

async synapse.lib.stormtypes.tobuidhex(valu, noneok=False)

async synapse.lib.stormtypes.tocmprvalu(valu)

async synapse.lib.stormtypes.toint(valu, noneok=False)

async synapse.lib.stormtypes.toiter(valu, noneok=False)

async synapse.lib.stormtypes.tonumber(valu, noneok=False)

async synapse.lib.stormtypes.toprim(valu, path=None)

async synapse.lib.stormtypes.torepr(valu, usestr=False)

718 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async synapse.lib.stormtypes.tostor(valu)

async synapse.lib.stormtypes.tostr(valu, noneok=False)

synapse.lib.stormwhois module

class synapse.lib.stormwhois.LibWhois(runt, name=())
Bases: Lib

A Storm Library for providing a consistent way to generate guids for WHOIS / Registration Data in Storm.

getObjLocals()

Get the default list of key-value pairs which may be added to the object .locls dictionary.

Returns
A key/value pairs.

Return type
dict

synapse.lib.structlog module

class synapse.lib.structlog.JsonFormatter(*args, **kwargs)
Bases: Formatter

format(record: LogRecord)
Format the specified record as text.

The record’s attribute dictionary is used as the operand to a string formatting operation which yields the
returned string. Before formatting the dictionary, a couple of preparatory steps are carried out. The message
attribute of the record is computed using LogRecord.getMessage(). If the formatting string uses the time
(as determined by a call to usesTime(), formatTime() is called to format the event time. If there is exception
information, it is formatted using formatException() and appended to the message.

synapse.lib.task module

class synapse.lib.task.Task

Bases: Base

The synapse Task object implements concepts similar to process trees for asyncio.Task instances.

async kill()

pack()

async worker(coro, name='worker')

synapse.lib.task.current()

Return the current synapse task.

async synapse.lib.task.executor(func, *args, **kwargs)
Execute a function in an executor thread.

Parameters
todo ((func,args,kwargs)) – A todo tuple.

10.1. synapse package 719

Synapse Documentation, Release 2.141.0

synapse.lib.task.loop()

synapse.lib.task.user()

Return the current task user.

synapse.lib.task.username()

Return the current task user name.

synapse.lib.task.vardefault(name, func)
Add a default constructor for a particular task-local variable

All future calls to taskVarGet with the same name will return the result of calling func

synapse.lib.task.varget(name, defval=None, task=None)
Access a task local variable by name

Precondition:
If task is None, this must be called from task context

synapse.lib.task.varinit(task=None)
Initializes (or re-initializes for testing purposes) all of a task’s task-local variables

Precondition:
If task is None, this must be called from task context

synapse.lib.task.varset(name, valu, task=None)
Set a task-local variable

Parameters
task – If task is None, uses current task

Precondition:
If task is None, this must be called from task context

synapse.lib.thishost module

synapse.lib.thishost.get(prop)
Retrieve a property from the hostinfo dictionary.

Example

import synapse.lib.thishost as s_thishost

if s_thishost.get(‘platform’) == ‘windows’:
dostuff()

synapse.lib.thishost.hostaddr(dest='8.8.8.8')
Retrieve the ipv4 address for this host (optionally as seen from dest). .. rubric:: Example

addr = s_socket.hostaddr()

720 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

synapse.lib.thisplat module

synapse.lib.threads module

synapse.lib.threads.current()

synapse.lib.threads.iden()

synapse.lib.time module

Time related utilities for synapse “epoch millis” time values.

synapse.lib.time.day(tick)

synapse.lib.time.dayofmonth(tick)

synapse.lib.time.dayofweek(tick)

synapse.lib.time.dayofyear(tick)

synapse.lib.time.delta(text)
Parse a simple time delta string and return the delta.

synapse.lib.time.hour(tick)

synapse.lib.time.ival(*times)

synapse.lib.time.minute(tick)

synapse.lib.time.month(tick)

synapse.lib.time.parse(text, base=None, chop=False)
Parse a time string into an epoch millis value.

Parameters

• text (str) – Time string to parse

• base (int or None) – Milliseconds to offset the time from

• chop (bool) – Whether to chop the digit-only string to 17 chars

Returns
Epoch milliseconds

Return type
int

synapse.lib.time.parsetz(text)
Parse timezone from time string, with UTC as the default.

Parameters
text (str) – Time string

Returns
A tuple of text with tz chars removed and base milliseconds to offset time.

Return type
tuple

10.1. synapse package 721

Synapse Documentation, Release 2.141.0

synapse.lib.time.repr(tick, pack=False)
Return a date string for an epoch-millis timestamp.

Parameters
tick (int) – The timestamp in milliseconds since the epoch.

Returns
A date time string

Return type
(str)

synapse.lib.time.second(tick)

synapse.lib.time.toUTC(tick, fromzone)

synapse.lib.time.wildrange(text)
Parse an interval from a wild card time stamp: 2021/10/31*

synapse.lib.time.year(tick)

synapse.lib.trigger module

class synapse.lib.trigger.Trigger(view, tdef)
Bases: object

async execute(node, vars=None, view=None)
Actually execute the query

get(name)

getStorNode(form)

pack()

async set(name, valu)
Set one of the dynamic elements of the trigger definition.

class synapse.lib.trigger.Triggers(view)
Bases: object

Manages “triggers”, conditions where changes in data result in new storm queries being executed.

Note: These methods should not be called directly under normal circumstances. Use the owning “View” object
to ensure that mirrors/clusters members get the same changes.

get(iden)

list()

async load(tdef)

pop(iden)

async runNodeAdd(node, view=None)

722 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async runNodeDel(node, view=None)

async runPropSet(node, prop, oldv, view=None)

async runTagAdd(node, tag, view=None)

async runTagDel(node, tag, view=None)

synapse.lib.trigger.reqValidTdef(conf)

synapse.lib.types module

class synapse.lib.types.Array(modl, name, info, opts)
Bases: Type

isarray = True

postTypeInit()

repr(valu)
Return a printable representation for the value. This may return a string or a tuple of values for display
purposes.

class synapse.lib.types.Bool(modl, name, info, opts)
Bases: Type

postTypeInit()

repr(valu)
Return a printable representation for the value. This may return a string or a tuple of values for display
purposes.

stortype: int = 2

class synapse.lib.types.Comp(modl, name, info, opts)
Bases: Type

getCompOffs(name)
If this type is a compound, return the field offset for the given property name or None.

postTypeInit()

repr(valu)
Return a printable representation for the value. This may return a string or a tuple of values for display
purposes.

stortype: int = 13

class synapse.lib.types.Data(modl, name, info, opts)
Bases: Type

norm(valu)
Normalize the value for a given type.

Parameters
valu (obj) – The value to normalize.

10.1. synapse package 723

Synapse Documentation, Release 2.141.0

Returns
The normalized valu, info tuple.

Return type
((obj,dict))

Notes

The info dictionary uses the following key conventions:
subs (dict): The normalized sub-fields as name: valu entries.

postTypeInit()

stortype: int = 13

class synapse.lib.types.Duration(modl, name, info, opts)
Bases: IntBase

postTypeInit()

repr(valu)
Return a printable representation for the value. This may return a string or a tuple of values for display
purposes.

stortype: int = 5

class synapse.lib.types.Edge(modl, name, info, opts)
Bases: Type

getCompOffs(name)
If this type is a compound, return the field offset for the given property name or None.

postTypeInit()

repr(norm)

Return a printable representation for the value. This may return a string or a tuple of values for display
purposes.

stortype: int = 13

class synapse.lib.types.FieldHelper(modl, tname, fields)
Bases: defaultdict

Helper for Comp types. Performs Type lookup/creation upon first use.

class synapse.lib.types.Float(modl, name, info, opts)
Bases: Type

postTypeInit()

repr(norm)

Return a printable representation for the value. This may return a string or a tuple of values for display
purposes.

stortype: int = 22

class synapse.lib.types.Guid(modl, name, info, opts)
Bases: Type

724 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

postTypeInit()

stortype: int = 10

class synapse.lib.types.Hex(modl, name, info, opts)
Bases: Type

postTypeInit()

stortype: int = 1

class synapse.lib.types.HugeNum(modl, name, info, opts)
Bases: Type

norm(valu)
Normalize the value for a given type.

Parameters
valu (obj) – The value to normalize.

Returns
The normalized valu, info tuple.

Return type
((obj,dict))

Notes

The info dictionary uses the following key conventions:
subs (dict): The normalized sub-fields as name: valu entries.

stortype: int = 23

class synapse.lib.types.Int(modl, name, info, opts)
Bases: IntBase

merge(oldv, newv)
Allow types to “merge” data from two sources based on value precedence.

Parameters

• valu (object) – The current value.

• newv (object) – The updated value.

Returns
The merged value.

Return type
(object)

postTypeInit()

repr(norm)

Return a printable representation for the value. This may return a string or a tuple of values for display
purposes.

class synapse.lib.types.IntBase(modl, name, info, opts)
Bases: Type

10.1. synapse package 725

Synapse Documentation, Release 2.141.0

class synapse.lib.types.Ival(modl, name, info, opts)
Bases: Type

An interval, i.e. a range, of times

merge(oldv, newv)
Allow types to “merge” data from two sources based on value precedence.

Parameters

• valu (object) – The current value.

• newv (object) – The updated value.

Returns
The merged value.

Return type
(object)

postTypeInit()

repr(norm)

Return a printable representation for the value. This may return a string or a tuple of values for display
purposes.

stortype: int = 12

class synapse.lib.types.Loc(modl, name, info, opts)
Bases: Type

postTypeInit()

repr(norm)

Return a printable representation for the value. This may return a string or a tuple of values for display
purposes.

stems(valu)

stortype: int = 15

class synapse.lib.types.Ndef(modl, name, info, opts)
Bases: Type

postTypeInit()

repr(norm)

Return a printable representation for the value. This may return a string or a tuple of values for display
purposes.

stortype: int = 13

class synapse.lib.types.NodeProp(modl, name, info, opts)
Bases: Type

postTypeInit()

stortype: int = 13

class synapse.lib.types.Range(modl, name, info, opts)
Bases: Type

726 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

postTypeInit()

repr(norm)

Return a printable representation for the value. This may return a string or a tuple of values for display
purposes.

stortype: int = 13

class synapse.lib.types.Str(modl, name, info, opts)
Bases: Type

postTypeInit()

repr(norm)

Return a printable representation for the value. This may return a string or a tuple of values for display
purposes.

stortype: int = 1

class synapse.lib.types.Tag(modl, name, info, opts)
Bases: Str

postTypeInit()

class synapse.lib.types.TagPart(modl, name, info, opts)
Bases: Str

postTypeInit()

class synapse.lib.types.Taxon(modl, name, info, opts)
Bases: Str

postTypeInit()

class synapse.lib.types.Taxonomy(modl, name, info, opts)
Bases: Str

postTypeInit()

repr(norm)

Return a printable representation for the value. This may return a string or a tuple of values for display
purposes.

class synapse.lib.types.Time(modl, name, info, opts)
Bases: IntBase

getTickTock(vals)
Get a tick, tock time pair.

Parameters
vals (list) – A pair of values to norm.

Returns
A ordered pair of integers.

Return type
(int, int)

10.1. synapse package 727

Synapse Documentation, Release 2.141.0

merge(oldv, newv)
Allow types to “merge” data from two sources based on value precedence.

Parameters

• valu (object) – The current value.

• newv (object) – The updated value.

Returns
The merged value.

Return type
(object)

postTypeInit()

repr(valu)
Return a printable representation for the value. This may return a string or a tuple of values for display
purposes.

stortype: int = 11

class synapse.lib.types.TimeEdge(modl, name, info, opts)
Bases: Edge

getCompOffs(name)
If this type is a compound, return the field offset for the given property name or None.

postTypeInit()

repr(norm)

Return a printable representation for the value. This may return a string or a tuple of values for display
purposes.

stortype: int = 13

class synapse.lib.types.Type(modl, name, info, opts)
Bases: object

clone(opts)
Create a new instance of this type with the specified options.

Parameters
opts (dict) – The type specific options for the new instance.

cmpr(val1, name, val2)
Compare the two values using the given type specific comparator.

extend(name, opts, info)
Extend this type to construct a sub-type.

Parameters

• name (str) – The name of the new sub-type.

• opts (dict) – The type options for the sub-type.

• info (dict) – The type info for the sub-type.

Returns
A new sub-type instance.

728 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Return type
(synapse.types.Type)

getCmprCtor(name)

getCompOffs(name)
If this type is a compound, return the field offset for the given property name or None.

getLiftHintCmpr(valu, cmpr)

getLiftHintCmprCtor(name)

getStorCmprs(cmpr, valu)

getStorNode(form)

getTypeDef()

getTypeVals(valu)

isarray = False

merge(oldv, newv)
Allow types to “merge” data from two sources based on value precedence.

Parameters

• valu (object) – The current value.

• newv (object) – The updated value.

Returns
The merged value.

Return type
(object)

norm(valu)
Normalize the value for a given type.

Parameters
valu (obj) – The value to normalize.

Returns
The normalized valu, info tuple.

Return type
((obj,dict))

Notes

The info dictionary uses the following key conventions:
subs (dict): The normalized sub-fields as name: valu entries.

pack()

postTypeInit()

10.1. synapse package 729

Synapse Documentation, Release 2.141.0

repr(norm)

Return a printable representation for the value. This may return a string or a tuple of values for display
purposes.

setCmprCtor(name, func)
Set a comparator ctor for a given named comparison operation.

Parameters

• name (str) – Name of the comparison operation.

• func – Function which returns a comparator.

Notes

Comparator ctors should expect to get the right-hand-side of the comparison as their argument, and the
returned function should expect to get the left hand side of the comparison and return a boolean from there.

setLiftHintCmprCtor(name, func)

setNormFunc(typo, func)
Register a normalizer function for a given python type.

Parameters

• typo (type) – A python type/class to normalize.

• func (function) – A callback which normalizes a python value.

stortype: int = None

class synapse.lib.types.Velocity(modl, name, info, opts)
Bases: IntBase

oflight = 299792458000

postTypeInit()

stortype: int = 9

synapse.lib.urlhelp module

synapse.lib.urlhelp.chopurl(url)
A sane “stand alone” url parser.

Example

info = chopurl(url)

synapse.lib.urlhelp.sanitizeUrl(url)
Returns a URL with the password (if present) replaced with ****

RFC 3986 3.2.1 ‘Applications should not render as clear text any data after the first colon (“:”) character found
within a userinfo subcomponent unless the data after the colon is the empty string (indicating no password)’

Essentially, replace everything between the 2nd colon (if it exists) and the first succeeding at sign. Return the
original string otherwise.

730 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Note: this depends on this being a reasonably-well formatted URI that starts with a scheme (e.g. http) and ‘//:’
Failure of this condition yields the original string.

synapse.lib.version module

Synapse utilites for dealing with Semvar versioning. This includes the Synapse version information.

synapse.lib.version.fmtVersion(*vsnparts)
Join a string of parts together with a . separator.

Parameters
*vsnparts –

Returns:

synapse.lib.version.matches(vers, cmprvers)
Check if a version string matches a version comparison string.

synapse.lib.version.packVersion(major, minor=0, patch=0)
Pack a set of major/minor/patch integers into a single integer for storage.

Parameters

• major (int) – Major version level integer.

• minor (int) – Minor version level integer.

• patch (int) – Patch version level integer.

Returns
System normalized integer value to represent a software version.

Return type
int

synapse.lib.version.parseSemver(text)
Parse a Semantic Version string into is component parts.

Parameters

• text (str) – A text string to parse into semver components. This string has whitespace and
leading ‘v’

• it. (characters stripped off of) –

Examples

Parse a string into it semvar parts:

parts = parseSemver('v1.2.3')

Returns
The dictionary will contain the keys ‘major’, ‘minor’ and ‘patch’ pointing to integer values. The
dictionary may also contain keys for ‘build’ and ‘pre’ information if that data is parsed out of a
semver string. None is returned if the string is not a valid Semver string.

Return type
dict

10.1. synapse package 731

Synapse Documentation, Release 2.141.0

synapse.lib.version.parseVersionParts(text, seps=('.', '-', '_', '+'))
Extract a list of major/minor/version integer strings from a string.

Parameters

• text (str) – String to parse

• seps (tuple) – A tuple or list of separators to use when parsing the version string.

Examples

Parse a simple version string into a major and minor parts:

parts = parseVersionParts('1.2')

Parse a complex version string into a major and minor parts:

parts = parseVersionParts('wowsoft_1.2')

Parse a simple version string into a major, minor and patch parts. Parts after the “3.” are dropped from the results:

parts = parseVersionParts('1.2.3.4.5')

Notes

This attempts to brute force out integers from the version string by stripping any leading ascii letters and part
separators, and then regexing out numeric parts optionally followed by part separators. It will stop at the first
mixed-character part encountered. For example, “1.2-3a” would only parse out the “1” and “2” from the string.

Returns
Either a empty dictionary or dictionary containing up to three keys, ‘major’, ‘minor’ and ‘patch’.

Return type
dict

synapse.lib.version.reqVersion(valu, reqver, exc=<class 'synapse.exc.BadVersion'>, mesg='Provided
version does not match required version.')

Require a given version tuple is valid for a given requirements string.

Parameters

• Optional[Tuple[int (valu) – Major, minor and patch value to check.

• int – Major, minor and patch value to check.

• int]] – Major, minor and patch value to check.

• reqver (str) – A requirements version string.

• exc (s_exc.SynErr) – The synerr class to raise.

• mesg (str) – The message to pass in the exception.

Returns
If the value is in bounds of minver and maxver.

Return type
None

732 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Raises
s_exc.BadVersion – If a precondition is incorrect or a version value is out of bounds.

synapse.lib.version.unpackVersion(ver)
Unpack a system normalized integer representing a softare version into its component parts.

Parameters
ver (int) – System normalized integer value to unpack into a tuple.

Returns
A tuple containing the major, minor and patch values shifted out of the integer.

Return type
(int, int, int)

synapse.lib.view module

class synapse.lib.view.View

Bases: Pusher

A view represents a cortex as seen from a specific set of layers.

The view class is used to implement Copy-On-Write layers as well as interact with a subset of the layers configured
in a Cortex.

async addLayer(layriden, indx=None)

async addNode(form, valu, props=None, user=None)

async addNodeEdits(edits, meta)
A telepath compatible way to apply node edits to a view.

NOTE: This does cause trigger execution.

async addTrigQueue(triginfo, nexsitem)

async addTrigger(tdef)
Adds a trigger to the view.

async callStorm(text, opts=None)

async callStormIface(name, todo)

async delTrigQueue(offs)

async delTrigger(iden)

async delete()

Delete the metadata for this view.

Note: this does not delete any layer storage.

async eval(text, opts=None)
Evaluate a storm query and yield Nodes only.

async finiTrigTask()

10.1. synapse package 733

Synapse Documentation, Release 2.141.0

async fork(ldef=None, vdef=None)
Make a new view inheriting from this view with the same layers and a new write layer on top

Parameters

• ldef – layer parameter dict

• vdef – view parameter dict

• cortex.addLayer (Passed through to) –

Returns
new view object, with an iden the same as the new write layer iden

async getEdgeVerbs()

async getEdges(verb=None)

async getFormCounts()

async getStorNodes(buid)
Return a list of storage nodes for the given buid in layer order.

async getTrigger(iden)

init2()

We have a second round of initialization so the views can get a handle to their parents which might not be
initialized yet

async initTrigTask()

isForkOf(viewiden)

isafork()

async iterStormPodes(text, opts=None)

async listTriggers()

List all the triggers in the view.

async merge(useriden=None, force=False)
Merge this view into its parent. All changes made to this view will be applied to the parent. Parent’s triggers
will be run.

async mergeAllowed(user=None, force=False)
Check whether a user can merge a view into its parent.

async mergeStormIface(name, todo)
Allow an interface which specifies a generator use case to yield (priority, value) tuples and merge results
from multiple generators yielded in ascending priority order.

async nodes(text, opts=None)
A simple non-streaming way to return a list of nodes.

async pack()

async runNodeAdd(node, view=None)

async runNodeDel(node, view=None)

734 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async runPropSet(node, prop, oldv, view=None)
Handle when a prop set trigger event fired

async runTagAdd(node, tag, valu, view=None)

async runTagDel(node, tag, valu, view=None)

async scrapeIface(text, unique=False, refang=True)

async setLayers(layers)
Set the view layers from a list of idens. NOTE: view layers are stored “top down” (the write layer is
self.layers[0])

async setTriggerInfo(iden, name, valu)

async setViewInfo(name, valu)
Set a mutable view property.

async snap(user)

async classmethod snapctor(*args, **kwargs)

async storNodeEdits(edits, meta)

async storm(text, opts=None)
Evaluate a storm query and yield result messages. :Yields: ((str,dict)) – Storm messages.

async stormlist(text, opts=None)

async wipeAllowed(user=None)
Check whether a user can wipe the write layer in the current view.

async wipeLayer(useriden=None)
Delete the data in the write layer by generating del nodeedits. Triggers will be run.

class synapse.lib.view.ViewApi

Bases: CellApi

async getCellIden()

async getEditSize()

saveNodeEdits(edits, meta)

async storNodeEdits(edits, meta)

async syncNodeEdits2(offs, wait=True)

synapse.lookup package

Submodules

synapse.lookup.cvss module

synapse.lookup.iana module

10.1. synapse package 735

Synapse Documentation, Release 2.141.0

synapse.lookup.iso3166 module

Provides data for the ISO 3166-1 Country codes.

Reference:
https://en.wikipedia.org/wiki/ISO_3166

synapse.lookup.iso3166.makeColLook(rows, scol, dcol)

synapse.lookup.macho module

synapse.lookup.macho.getLoadCmdTypes()

synapse.lookup.macho.getSectionTypes()

synapse.lookup.pe module

synapse.lookup.pe.getLangCodes()

synapse.lookup.pe.getRsrcTypes()

synapse.lookup.phonenum module

synapse.lookup.phonenum.formPhoneNode(node, valu)

synapse.lookup.phonenum.getPhoneInfo(numb)
Walk the phone info tree to find the best-match info for the given number.

Example

info = getPhoneInfo(17035551212) country = info.get(‘cc’)

synapse.lookup.phonenum.initPhoneTree()

synapse.lookup.phonenum.phnode(valu)

synapse.models package

Subpackages

synapse.models.gov package

Submodules

synapse.models.gov.cn module

class synapse.models.gov.cn.GovCnModule(core, conf=None)
Bases: CoreModule

getModelDefs()

736 Chapter 10. Synapse Python API

https://en.wikipedia.org/wiki/ISO_3166

Synapse Documentation, Release 2.141.0

synapse.models.gov.intl module

class synapse.models.gov.intl.GovIntlModule(core, conf=None)
Bases: CoreModule

getModelDefs()

synapse.models.gov.us module

class synapse.models.gov.us.GovUsModule(core, conf=None)
Bases: CoreModule

getModelDefs()

Submodules

synapse.models.auth module

class synapse.models.auth.AuthModule(core, conf=None)
Bases: CoreModule

getModelDefs()

synapse.models.base module

class synapse.models.base.BaseModule(core, conf=None)
Bases: CoreModule

getModelDefs()

synapse.models.belief module

class synapse.models.belief.BeliefModule(core, conf=None)
Bases: CoreModule

getModelDefs()

synapse.models.biz module

class synapse.models.biz.BizModule(core, conf=None)
Bases: CoreModule

getModelDefs()

10.1. synapse package 737

Synapse Documentation, Release 2.141.0

synapse.models.crypto module

class synapse.models.crypto.CryptoModule(core, conf=None)
Bases: CoreModule

getModelDefs()

synapse.models.dns module

class synapse.models.dns.DnsModule(core, conf=None)
Bases: CoreModule

getModelDefs()

class synapse.models.dns.DnsName(modl, name, info, opts)
Bases: Str

postTypeInit()

synapse.models.economic module

class synapse.models.economic.EconModule(core, conf=None)
Bases: CoreModule

getModelDefs()

synapse.models.files module

class synapse.models.files.FileBase(modl, name, info, opts)
Bases: Str

postTypeInit()

class synapse.models.files.FileBytes(modl, name, info, opts)
Bases: Str

postTypeInit()

class synapse.models.files.FileModule(core, conf=None)
Bases: CoreModule

getModelDefs()

async initCoreModule()

Module implementers may override this method to initialize the module after the Cortex has completed and
is accessible to perform storage operations.

738 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Notes

This is the preferred function to override for implementing custom code that needs to be executed during
Cortex startup.

Any exception raised within this method will remove the module from the list of currently loaded modules.

This is called for modules after getModelDefs() and getStormCmds() has been called, in order to allow for
model loading and storm command loading prior to code execution offered by initCoreModule.

A failure during initCoreModule will not unload data model or storm commands registered by the module.

Returns
None

class synapse.models.files.FilePath(modl, name, info, opts)
Bases: Str

postTypeInit()

synapse.models.geopol module

class synapse.models.geopol.PolModule(core, conf=None)
Bases: CoreModule

getModelDefs()

synapse.models.geospace module

class synapse.models.geospace.Area(modl, name, info, opts)
Bases: Int

postTypeInit()

repr(norm)

Return a printable representation for the value. This may return a string or a tuple of values for display
purposes.

class synapse.models.geospace.Dist(modl, name, info, opts)
Bases: Int

postTypeInit()

repr(norm)

Return a printable representation for the value. This may return a string or a tuple of values for display
purposes.

class synapse.models.geospace.GeoModule(core, conf=None)
Bases: CoreModule

getModelDefs()

class synapse.models.geospace.LatLong(modl, name, info, opts)
Bases: Type

postTypeInit()

10.1. synapse package 739

Synapse Documentation, Release 2.141.0

repr(norm)

Return a printable representation for the value. This may return a string or a tuple of values for display
purposes.

stortype: int = 14

synapse.models.inet module

class synapse.models.inet.Addr(modl, name, info, opts)
Bases: Str

postTypeInit()

class synapse.models.inet.Cidr4(modl, name, info, opts)
Bases: Str

postTypeInit()

class synapse.models.inet.Cidr6(modl, name, info, opts)
Bases: Str

postTypeInit()

class synapse.models.inet.Email(modl, name, info, opts)
Bases: Str

postTypeInit()

class synapse.models.inet.Fqdn(modl, name, info, opts)
Bases: Type

postTypeInit()

repr(valu)
Return a printable representation for the value. This may return a string or a tuple of values for display
purposes.

stortype: int = 17

class synapse.models.inet.HttpCookie(modl, name, info, opts)
Bases: Str

getTypeVals(valu)

class synapse.models.inet.IPv4(modl, name, info, opts)
Bases: Type

The base type for an IPv4 address.

getCidrRange(text)

getNetRange(text)

getTypeVals(valu)

postTypeInit()

740 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

repr(norm)

Return a printable representation for the value. This may return a string or a tuple of values for display
purposes.

stortype: int = 4

class synapse.models.inet.IPv4Range(modl, name, info, opts)
Bases: Range

postTypeInit()

class synapse.models.inet.IPv6(modl, name, info, opts)
Bases: Type

getCidrRange(text)

getNetRange(text)

getTypeVals(valu)

postTypeInit()

stortype: int = 18

class synapse.models.inet.IPv6Range(modl, name, info, opts)
Bases: Range

postTypeInit()

class synapse.models.inet.InetModule(core, conf=None)
Bases: CoreModule

getModelDefs()

async initCoreModule()

Module implementers may override this method to initialize the module after the Cortex has completed and
is accessible to perform storage operations.

Notes

This is the preferred function to override for implementing custom code that needs to be executed during
Cortex startup.

Any exception raised within this method will remove the module from the list of currently loaded modules.

This is called for modules after getModelDefs() and getStormCmds() has been called, in order to allow for
model loading and storm command loading prior to code execution offered by initCoreModule.

A failure during initCoreModule will not unload data model or storm commands registered by the module.

Returns
None

class synapse.models.inet.Rfc2822Addr(modl, name, info, opts)
Bases: Str

An RFC 2822 compatible email address parser

postTypeInit()

10.1. synapse package 741

Synapse Documentation, Release 2.141.0

class synapse.models.inet.Url(modl, name, info, opts)
Bases: Str

postTypeInit()

synapse.models.inet.getAddrType(ip)

synapse.models.infotech module

class synapse.models.infotech.Cpe22Str(modl, name, info, opts)
Bases: Str

CPE 2.2 Formatted String https://cpe.mitre.org/files/cpe-specification_2.2.pdf

class synapse.models.infotech.Cpe23Str(modl, name, info, opts)
Bases: Str

CPE 2.3 Formatted String

https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir7695.pdf

(Section 6.2)

cpe:2.3: part : vendor : product : version : update : edition :
language : sw_edition : target_sw : target_hw : other

* = "any"
- = N/A

class synapse.models.infotech.ItModule(core, conf=None)
Bases: CoreModule

bruteVersionStr(valu)
This API is deprecated.

Brute force the version out of a string.

Parameters
valu (str) – String to attempt to get version information for.

Notes

This first attempts to parse strings using the it:semver normalization before attempting to extract version
parts out of the string.

Returns
The system normalized version integer and a subs dictionary.

Return type
int, dict

getModelDefs()

async initCoreModule()

Module implementers may override this method to initialize the module after the Cortex has completed and
is accessible to perform storage operations.

742 Chapter 10. Synapse Python API

https://cpe.mitre.org/files/cpe-specification_2.2.pdf

Synapse Documentation, Release 2.141.0

Notes

This is the preferred function to override for implementing custom code that needs to be executed during
Cortex startup.

Any exception raised within this method will remove the module from the list of currently loaded modules.

This is called for modules after getModelDefs() and getStormCmds() has been called, in order to allow for
model loading and storm command loading prior to code execution offered by initCoreModule.

A failure during initCoreModule will not unload data model or storm commands registered by the module.

Returns
None

class synapse.models.infotech.SemVer(modl, name, info, opts)
Bases: Int

Provides support for parsing a semantic version string into its component parts. This normalizes a version string
into an integer to allow version ordering. Prerelease information is disregarded for integer comparison purposes,
as we cannot map an arbitrary pre-release version into a integer value

Major, minor and patch levels are represented as integers, with a max width of 20 bits. The comparable integer
value representing the semver is the bitwise concatenation of the major, minor and patch levels.

Prerelease and build information will be parsed out and available as strings if that information is present.

postTypeInit()

repr(valu)
Return a printable representation for the value. This may return a string or a tuple of values for display
purposes.

synapse.models.infotech.chopCpe22(text)
CPE 2.2 Formatted String https://cpe.mitre.org/files/cpe-specification_2.2.pdf

synapse.models.infotech.cpesplit(text)

synapse.models.infotech.zipCpe22(parts)

synapse.models.language module

class synapse.models.language.LangModule(core, conf=None)
Bases: CoreModule

getModelDefs()

synapse.models.material module

A data model focused on material objects.

class synapse.models.material.MatModule(core, conf=None)
Bases: CoreModule

getModelDefs()

10.1. synapse package 743

https://cpe.mitre.org/files/cpe-specification_2.2.pdf

Synapse Documentation, Release 2.141.0

synapse.models.media module

class synapse.models.media.MediaModule(core, conf=None)
Bases: CoreModule

getModelDefs()

synapse.models.orgs module

class synapse.models.orgs.OuModule(core, conf=None)
Bases: CoreModule

getModelDefs()

synapse.models.person module

class synapse.models.person.PsModule(core, conf=None)
Bases: CoreModule

getModelDefs()

synapse.models.proj module

class synapse.models.proj.ProjectModule(core, conf=None)
Bases: CoreModule

getModelDefs()

async initCoreModule()

Module implementers may override this method to initialize the module after the Cortex has completed and
is accessible to perform storage operations.

Notes

This is the preferred function to override for implementing custom code that needs to be executed during
Cortex startup.

Any exception raised within this method will remove the module from the list of currently loaded modules.

This is called for modules after getModelDefs() and getStormCmds() has been called, in order to allow for
model loading and storm command loading prior to code execution offered by initCoreModule.

A failure during initCoreModule will not unload data model or storm commands registered by the module.

Returns
None

744 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

synapse.models.risk module

class synapse.models.risk.CvssV2(modl, name, info, opts)
Bases: Str

class synapse.models.risk.CvssV3(modl, name, info, opts)
Bases: Str

class synapse.models.risk.RiskModule(core, conf=None)
Bases: CoreModule

getModelDefs()

synapse.models.syn module

class synapse.models.syn.SynModule(core, conf=None)
Bases: CoreModule

getModelDefs()

initCoreModule()

Module implementers may override this method to initialize the module after the Cortex has completed and
is accessible to perform storage operations.

Notes

This is the preferred function to override for implementing custom code that needs to be executed during
Cortex startup.

Any exception raised within this method will remove the module from the list of currently loaded modules.

This is called for modules after getModelDefs() and getStormCmds() has been called, in order to allow for
model loading and storm command loading prior to code execution offered by initCoreModule.

A failure during initCoreModule will not unload data model or storm commands registered by the module.

Returns
None

synapse.models.telco module

class synapse.models.telco.Imei(modl, name, info, opts)
Bases: Int

postTypeInit()

class synapse.models.telco.Imsi(modl, name, info, opts)
Bases: Int

postTypeInit()

class synapse.models.telco.Phone(modl, name, info, opts)
Bases: Str

10.1. synapse package 745

Synapse Documentation, Release 2.141.0

postTypeInit()

repr(valu)
Return a printable representation for the value. This may return a string or a tuple of values for display
purposes.

class synapse.models.telco.TelcoModule(core, conf=None)
Bases: CoreModule

getModelDefs()

synapse.models.telco.chop_imei(imei)

synapse.models.telco.digits(text)

synapse.models.telco.imeicsum(text)
Calculate the imei check byte.

synapse.models.transport module

class synapse.models.transport.TransportModule(core, conf=None)
Bases: CoreModule

getModelDefs()

synapse.servers package

Submodules

synapse.servers.aha module

synapse.servers.axon module

synapse.servers.cell module

async synapse.servers.cell.main(argv, outp=<synapse.lib.output.OutPut object>)

synapse.servers.cortex module

synapse.servers.cryotank module

synapse.servers.jsonstor module

synapse.servers.stemcell module

synapse.servers.stemcell.getStemCell(dirn)

async synapse.servers.stemcell.main(argv, outp=<synapse.lib.output.OutPut object>)

746 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

synapse.tests package

Submodules

synapse.tests.nopmod module

A python module used for testing dmon dynamic module loading.

synapse.tests.utils module

This contains the core test helper code used in Synapse.

This gives the opportunity for third-party users of Synapse to test their code using some of the same helpers used to
test Synapse.

The core class, synapse.tests.utils.SynTest is a subclass of unittest.TestCase, with several wrapper functions to allow
for easier calls to assert* functions, with less typing. There are also Synapse specific helpers, to load Cortexes and
whole both multi-component environments into memory.

Since SynTest is built from unittest.TestCase, the use of SynTest is compatible with the unittest, nose and pytest frame-
works. This does not lock users into a particular test framework; while at the same time allowing base use to be invoked
via the built-in Unittest library, with one important exception: due to an unfortunate design approach, you cannot use
the unittest module command line to run a single async unit test. pytest works fine though.

class synapse.tests.utils.AsyncStreamEvent(*args, **kwargs)
Bases: StringIO, Event

A combination of a io.StringIO object and an asyncio.Event object.

setMesg(mesg)
Clear the internal event and set a new message that is used to set the event.

Parameters
mesg (str) – The string to monitor for.

Returns
None

async wait(timeout=None)
Block until the internal flag is true.

If the internal flag is true on entry, return True immediately. Otherwise, block until another coroutine calls
set() to set the flag to true, then return True.

write(s)
Write string to file.

Returns the number of characters written, which is always equal to the length of the string.

class synapse.tests.utils.CmdGenerator(cmds)
Bases: object

addCmd(cmd)
Add a command to the end of the list of commands returned by the CmdGenerator.

Parameters
cmd (str) – Command to add to the list of commands to return.

10.1. synapse package 747

Synapse Documentation, Release 2.141.0

class synapse.tests.utils.DeprModule(core, conf=None)
Bases: CoreModule

getModelDefs()

class synapse.tests.utils.HttpReflector(application: Application, request: HTTPServerRequest,
**kwargs: Any)

Bases: Handler

Test handler which reflects get/post data back to the caller

async get()

async head()

async post()

class synapse.tests.utils.LibTst(runt, name=())
Bases: Lib

LibTst for testing!

addLibFuncs()

async beep(valu)
Example storm func

class synapse.tests.utils.PickleableMagicMock(*args, **kw)
Bases: MagicMock

class synapse.tests.utils.StormPkgTest(*args, **kwargs)
Bases: SynTest

assetdir = None

getTestCore(conf=None, dirn=None)
Get a simple test Cortex as an async context manager.

Returns
A Cortex object.

Return type
s_cortex.Cortex

async initTestCore(core)

pkgprotos = ()

vcr = None

class synapse.tests.utils.StreamEvent(*args, **kwargs)
Bases: StringIO, Event

A combination of a io.StringIO object and a threading.Event object.

setMesg(mesg)
Clear the internal event and set a new message that is used to set the event.

Parameters
mesg (str) – The string to monitor for.

748 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Returns
None

write(s)
Write string to file.

Returns the number of characters written, which is always equal to the length of the string.

class synapse.tests.utils.SynTest(*args, **kwargs)
Bases: TestCase

Mark all async test methods as s_glob.synchelp decorated.

Note: This precludes running a single unit test via path using the unittest module.

async addCreatorDeleterRoles(core)
Add two roles to a Cortex proxy, the creator and deleter roles. Creator allows for node:add, prop:set and
tag:add actions. Deleter allows for node:del, prop:del and tag:del actions.

Parameters
core – Auth enabled cortex.

addSvcToAha(aha, svcname, ctor, conf=None, dirn=None, provinfo=None)
Creates as service and provision it in a Aha network via the provisioning API.

This assumes the Aha cell has a provision:listen and aha:urls set.

Parameters

• aha (s_aha.AhaCell) – Aha cell.

• svcname (str) – Service name.

• ctor – Service class to add.

• conf (dict) – Optional service conf.

• dirn (str) – Optional directory.

• provinfo (dict)) – Optional provisioning info.

Notes

The config data for the cell is pushed into dirn/cell.yaml. The cells are created with the ctor.anit()
function.

async addSvcToCore(svc, core, svcname='svc')
Add a service to a Cortex using telepath over tcp.

async agenlen(x, obj, msg=None)
Assert that the async generator produces x items

async agenraises(exc, gfunc)
Helper to validate that an async generator will throw an exception.

Parameters

• exc – Exception class to catch

• gfunc – async Generator

10.1. synapse package 749

Synapse Documentation, Release 2.141.0

async asyncraises(exc, coro)

checkNode(node, expected)

async checkNodes(core, ndefs)

eq(x, y, msg=None)
Assert X is equal to Y

eqOrNan(x, y, msg=None)
Assert X is equal to Y or they are both NaN (needed since NaN != NaN)

eqish(x, y, places=6, msg=None)
Assert X is equal to Y within places decimal places

async execToolMain(func, argv)

extendOutpFromPatch(outp, patch)
Extend an Outp with lines from a magicMock object from withCliPromptMock.

Parameters

• outp (TstOutPut) – The outp to extend.

• patch (mock.MagicMock) – The patch object.

Returns
Returns none.

Return type
None

false(x, msg=None)
Assert X is False

ge(x, y, msg=None)
Assert that X is greater than or equal to Y

genraises(exc, gfunc, *args, **kwargs)
Helper to validate that a generator function will throw an exception.

Parameters

• exc – Exception class to catch

• gfunc – Generator function to call.

• *args – Args passed to the generator function.

• **kwargs – Kwargs passed to the generator function.

Notes

Wrap a generator function in a list() call and execute that in a bound local using self.raises(exc,
boundlocal). The list() will consume the generator until complete or an exception occurs.

getAsyncLoggerStream(logname, mesg='')
Async version of getLoggerStream.

Parameters

• logname (str) – Name of the logger to get.

750 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

• mesg (str) – A string which, if provided, sets the StreamEvent event if a message contain-
ing the string is written to the log.

Notes

The event object mixed in for the AsyncStreamEvent is a asyncio.Event object. This requires the user to
await the Event specific calls as neccesary.

Examples

Do an action and wait for a specific log message to be written:

with self.getAsyncLoggerStream('synapse.foo.bar',
'big badda boom happened') as stream:

Do something that triggers a log message
await doSomething()
Wait for the mesg to be written to the stream
await stream.wait(timeout=10)

stream.seek(0)
mesgs = stream.read()
Do something with messages

Returns
An AsyncStreamEvent object.

Return type
AsyncStreamEvent

getHttpSess(auth=None, port=None)
Get an aiohttp ClientSession with a CookieJar.

Parameters

• auth (str, str) – A tuple of username and password information for http auth.

• port (int) – Port number to connect to.

Notes

If auth and port are provided, the session will login to a Synapse cell hosted at localhost:port.

Returns
An aiohttp.ClientSession object.

Return type
aiohttp.ClientSession

getLoggerStream(logname, mesg='')
Get a logger and attach a io.StringIO object to the logger to capture log messages.

Parameters

• logname (str) – Name of the logger to get.

• mesg (str) – A string which, if provided, sets the StreamEvent event if a message

10.1. synapse package 751

Synapse Documentation, Release 2.141.0

• log. (containing the string is written to the) –

Examples

Do an action and get the stream of log messages to check against:

with self.getLoggerStream('synapse.foo.bar') as stream:
Do something that triggers a log message
doSomething()

stream.seek(0)
mesgs = stream.read()
Do something with messages

Do an action and wait for a specific log message to be written:

with self.getLoggerStream('synapse.foo.bar', 'big badda boom happened') as␣
→˓stream:
Do something that triggers a log message
doSomething()
stream.wait(timeout=10) # Wait for the mesg to be written to the stream

stream.seek(0)
mesgs = stream.read()
Do something with messages

You can also reset the message and wait for another message to occur:

with self.getLoggerStream('synapse.foo.bar', 'big badda boom happened') as␣
→˓stream:
Do something that triggers a log message
doSomething()
stream.wait(timeout=10)
stream.setMesg('yo dawg') # This will now wait for the 'yo dawg' string to␣

→˓be written.
stream.wait(timeout=10)

stream.seek(0)
mesgs = stream.read()
Do something with messages

Notes

This only captures logs for the current process.

Yields
StreamEvent – A StreamEvent object

getMagicPromptColors(patch)
Get the colored lines from a MagicMock object from withCliPromptMock.

Parameters
patch (mock.MagicMock) – The MagicMock object from withCliPromptMock.

752 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Returns
A list of tuples, containing color and line data.

Return type
list

getMagicPromptLines(patch)
Get the text lines from a MagicMock object from withCliPromptMock.

Parameters
patch (mock.MagicMock) – The MagicMock object from withCliPromptMock.

Returns
A list of lines.

Return type
list

getRegrAxon(vers, conf=None)

getRegrCore(vers, conf=None)

getRegrDir(*path)

getStructuredAsyncLoggerStream(logname, mesg='')
Async version of getLoggerStream which uses structured logging.

Parameters

• logname (str) – Name of the logger to get.

• mesg (str) – A string which, if provided, sets the StreamEvent event if a message contain-
ing the string is written to the log.

Notes

The event object mixed in for the AsyncStreamEvent is a asyncio.Event object. This requires the user to
await the Event specific calls as needed. The messages written to the stream will be JSON lines.

Examples

Do an action and wait for a specific log message to be written:

with self.getStructuredAsyncLoggerStream('synapse.foo.bar',
'"some JSON string"') as stream:

Do something that triggers a log message
await doSomething()
Wait for the mesg to be written to the stream
await stream.wait(timeout=10)

data = stream.getvalue()
raw_mesgs = [m for m in data.split('\n') if m]
msgs = [json.loads(m) for m in raw_mesgs]
Do something with messages

Returns
An AsyncStreamEvent object.

10.1. synapse package 753

Synapse Documentation, Release 2.141.0

Return type
AsyncStreamEvent

getTestAha(conf=None, dirn=None)

getTestAhaProv(conf=None, dirn=None)
Get an Aha cell that is configured for provisioning on aha.loop.vertex.link.

Parameters

• conf – Optional configuraiton information for the Aha cell.

• dirn – Optional path to create the Aha cell in.

Returns
The provisioned Aha cell.

Return type
s_aha.AhaCell

getTestAxon(dirn=None, conf=None)
Get a test Axon as an async context manager.

Returns
A Axon object.

Return type
s_axon.Axon

getTestCell(ctor, conf=None, dirn=None)
Get a test Cell.

getTestCertDir(dirn)
Patch the synapse.lib.certdir.certdir singleton and supporting functions with a CertDir instance backed by
the provided directory.

Parameters
dirn (str) – The directory used to back the new CertDir singleton.

Returns
The patched CertDir object that is the current singleton.

Return type
s_certdir.CertDir

getTestConfDir(name, conf=None)

getTestCore(conf=None, dirn=None)
Get a simple test Cortex as an async context manager.

Returns
A Cortex object.

Return type
s_cortex.Cortex

getTestCoreAndProxy(conf=None, dirn=None)
Get a test Cortex and the Telepath Proxy to it.

Returns
The Cortex and a Proxy representing a CoreApi object.

754 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Return type
(s_cortex.Cortex, s_cortex.CoreApi)

getTestCoreProxSvc(ssvc, ssvc_conf=None, core_conf=None)
Get a test Cortex, the Telepath Proxy to it, and a test service instance.

Parameters

• ssvc – Ctor to the Test Service.

• ssvc_conf – Service configuration.

• core_conf – Cortex configuration.

Returns
The Cortex, Proxy, and service instance.

Return type
(s_cortex.Cortex, s_cortex.CoreApi, testsvc)

getTestCryo(dirn=None, conf=None)
Get a simple test Cryocell as an async context manager.

Returns
Test cryocell.

Return type
s_cryotank.CryoCell

getTestCryoAndProxy(dirn=None)
Get a test Cryocell and the Telepath Proxy to it.

Returns
CryoCell, s_cryotank.CryoApi): The CryoCell and a Proxy representing a CryoApi object.

Return type
(s_cryotank

getTestDir(mirror=None, copyfrom=None, chdir=False, startdir=None)
Get a temporary directory for test purposes. This destroys the directory afterwards.

Parameters

• mirror (str) – A Synapse test directory to mirror into the test directory.

• copyfrom (str) – An arbitrary directory to copy into the test directory.

• chdir (boolean) – If true, chdir the current process to that directory. This is undone when
the context manager exits.

• startdir (str) – The directory under which to place the temporary directory

Notes

The mirror argument is normally used to mirror test directory under synapse/tests/files. This is
accomplished by passing in the name of the directory (such as testcore) as the mirror argument.

If the mirror argument is an absolute directory, that directory will be copied to the test directory.

Returns
The path to a temporary directory.

10.1. synapse package 755

Synapse Documentation, Release 2.141.0

Return type
str

getTestDmon()

getTestFilePath(*names)

getTestHive()

getTestHiveDmon()

getTestHiveFromDirn(dirn)

getTestJsonStor(dirn=None, conf=None)

getTestOutp()

Get a Output instance with a expects() function.

Returns
A TstOutPut instance.

Return type
TstOutPut

getTestProxy(dmon, name, **kwargs)

getTestReadWriteCores(conf=None, dirn=None)
Get a read/write core pair.

Notes

By default, this returns the same cortex. It is expected that a test which needs two distinct Cortexes imple-
ments the bridge themselves.

Returns
A tuple of Cortex objects.

Return type
(s_cortex.Cortex, s_cortex.Cortex)

getTestSynDir()

Combines getTestDir() and setSynDir() into one.

getTestTeleHive()

getTestUrl(dmon, name, **opts)

gt(x, y, msg=None)
Assert that X is greater than Y

isin(member, container, msg=None)
Assert a member is inside of a container.

isinstance(obj, cls, msg=None)
Assert a object is the instance of a given class or tuple of classes.

istufo(obj)
Check to see if an object is a tufo.

Parameters
obj (object) – Object being inspected.

756 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Notes

This does not make any assumptions about the contents of the dictionary. This validates the object to be a
tuple of length two, containing a str or None as the first value, and a dict as the second value.

Returns
None

le(x, y, msg=None)
Assert that X is less than or equal to Y

len(x, obj, msg=None)
Assert that the length of an object is equal to X

lt(x, y, msg=None)
Assert that X is less than Y

ne(x, y)
Assert X is not equal to Y

nn(x, msg=None)
Assert X is not None

none(x, msg=None)
Assert X is None

noprop(info, prop)
Assert a property is not present in a dictionary.

notin(member, container, msg=None)
Assert a member is not inside of a container.

printed(msgs, text)

raises(*args, **kwargs)
Assert a function raises an exception.

redirectStdin(new_stdin)
Temporary replace stdin.

Parameters
new_stdin (file-like object) – file-like object.

Examples

Patch stdin with a string buffer:

inp = io.StringIO('stdin stuff\nanother line\n')
with self.redirectStdin(inp):

main()

Here’s a way to use this for code that’s expecting the stdin buffer to have bytes:

inp = Mock()
inp.buffer = io.BytesIO(b'input data')
with self.redirectStdin(inp):

main()

10.1. synapse package 757

Synapse Documentation, Release 2.141.0

Returns
None

async runCoreNodes(core, query, opts=None)
Run a storm query through a Cortex as a SchedCoro and return the results.

setSynDir(dirn)
Sets s_common.syndir to a specific directory and then unsets it afterwards.

Parameters
dirn (str) – Directory to set syndir to.

Notes

This is to be used as a context manager.

setTstEnvars(**props)
Set Environment variables for the purposes of running a specific test.

Parameters

• **props – A kwarg list of envars to set. The values set are run

• strings. (through str() to ensure we're setting) –

Examples

Run a test while a envar is set:

with self.setEnvars(magic='haha') as nop:
ret = dostuff()
self.true(ret)

Notes

This helper explicitly sets and unsets values in os.environ, as os.putenv does not automatically updates the
os.environ object.

Yields
None. This context manager yields None. Upon exiting, envars are either removed from
os.environ or reset to their previous values.

skip(mesg)

skipIfNexusReplay()

Allow skipping a test if SYNDEV_NEXUS_REPLAY envar is set.

Raises
unittest.SkipTest if SYNDEV_NEXUS_REPLAY envar is set to true value. –

skipIfNoInternet()

Allow skipping a test if SYN_TEST_SKIP_INTERNET envar is set.

Raises
unittest.SkipTest if SYN_TEST_SKIP_INTERNET envar is set to a integer
greater than 1. –

758 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

skipIfNoPath(path, mesg=None)
Allows skipping a test if the test/files path does not exist.

Parameters

• path (str) – Path to check.

• mesg (str) – Optional additional message.

Raises
unittest.SkipTest if the path does not exist. –

skipLongTest()

Allow skipping a test if SYN_TEST_SKIP_LONG envar is set.

Raises
unittest.SkipTest if SYN_TEST_SKIP_LONG envar is set to a integer
greater than 1. –

sorteq(x, y, msg=None)
Assert two sorted sequences are the same.

stablebuid(valu=None)
A stable buid generation for testing purposes

stableguid(valu=None)
A stable guid generation for testing purposes

stormHasNoErr(mesgs)
Raise an AssertionError if there is a message of type “err” in the list.

Parameters
mesgs (list) – A list of storm messages.

stormHasNoWarnErr(mesgs)
Raise an AssertionError if there is a message of type “err” or “warn” in the list.

Parameters
mesgs (list) – A list of storm messages.

stormIsInErr(mesg, mesgs)
Check if a string is present in all of the error messages from a stream of storm messages.

Parameters

• mesg (str) – A string to check.

• mesgs (list) – A list of storm messages.

stormIsInPrint(mesg, mesgs, deguid=False)
Check if a string is present in all of the print messages from a stream of storm messages.

Parameters

• mesg (str) – A string to check.

• mesgs (list) – A list of storm messages.

stormIsInWarn(mesg, mesgs)
Check if a string is present in all of the warn messages from a stream of storm messages.

Parameters

• mesg (str) – A string to check.

10.1. synapse package 759

Synapse Documentation, Release 2.141.0

• mesgs (list) – A list of storm messages.

stormNotInPrint(mesg, mesgs)
Assert a string is not present in all of the print messages from a stream of storm messages.

Parameters

• mesg (str) – A string to check.

• mesgs (list) – A list of storm messages.

thisHostMust(**props)
Requires a host having a specific property.

Parameters
**props –

Raises
unittest.SkipTest if the required property is missing. –

thisHostMustNot(**props)
Requires a host to not have a specific property.

Parameters
**props –

Raises
unittest.SkipTest if the required property is missing. –

true(x, msg=None)
Assert X is True

withCliPromptMock()

Context manager to mock our use of Prompt Toolkit’s print_formatted_text function.

Returns
Yields a mock.MagikMock object.

Return type
mock.MagicMock

withCliPromptMockExtendOutp(outp)
Context manager to mock our use of Prompt Toolkit’s print_formatted_text function and extend the lines
to an an output object.

Parameters
outp (TstOutPut) – The outp to extend.

Notes

This extends the outp with the lines AFTER the context manager has exited.

Returns
Yields a mock.MagicMock object.

Return type
mock.MagicMock

760 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

withNexusReplay(replay=False)
Patch so that the Nexus apply log is applied twice. Useful to verify idempotency.

Parameters
replay (bool) – Set the default value of resolving the existence of SYN-
DEV_NEXUS_REPLAY variable. This can be used to force the apply patch without
using the environment variable.

Notes

This is applied if the environment variable SYNDEV_NEXUS_REPLAY is set to a non zero value or the
replay argument is set to True.

Returns
An exitstack object.

Return type
contextlib.ExitStack

withSetLoggingMock()

Context manager to mock calls to the setlogging function to avoid unittests calling logging.basicconfig.

Returns
Yields a mock.MagicMock object.

Return type
mock.MagicMock

withStableUids()

A context manager that generates guids and buids in sequence so that successive test runs use the same data

withTestCmdr(cmdg)

class synapse.tests.utils.TestCmd(runt, runtsafe)
Bases: Cmd

A test command

async execStormCmd(runt, genr)
Abstract base method

forms = {'input': ['test:str', 'inet:ipv6'], 'nodedata': [('foo', 'inet:ipv4'),
('bar', 'inet:fqdn')], 'output': ['inet:fqdn']}

getArgParser()

name = 'testcmd'

class synapse.tests.utils.TestModule(core, conf=None)
Bases: CoreModule

async addTestRecords(snap, items)

getModelDefs()

getStormCmds()

Module implementers may override this to provide a list of Storm commands which will be loaded into the
Cortex.

10.1. synapse package 761

Synapse Documentation, Release 2.141.0

Returns
A list of Storm Command classes (not instances).

Return type
list

async initCoreModule()

Module implementers may override this method to initialize the module after the Cortex has completed and
is accessible to perform storage operations.

Notes

This is the preferred function to override for implementing custom code that needs to be executed during
Cortex startup.

Any exception raised within this method will remove the module from the list of currently loaded modules.

This is called for modules after getModelDefs() and getStormCmds() has been called, in order to allow for
model loading and storm command loading prior to code execution offered by initCoreModule.

A failure during initCoreModule will not unload data model or storm commands registered by the module.

Returns
None

testguid = '8f1401de15918358d5247e21ca29a814'

class synapse.tests.utils.TestRunt(name, **kwargs)
Bases: object

getStorNode(form)

class synapse.tests.utils.TestSubType(modl, name, info, opts)
Bases: Type

norm(valu)
Normalize the value for a given type.

Parameters
valu (obj) – The value to normalize.

Returns
The normalized valu, info tuple.

Return type
((obj,dict))

Notes

The info dictionary uses the following key conventions:
subs (dict): The normalized sub-fields as name: valu entries.

repr(norm)

Return a printable representation for the value. This may return a string or a tuple of values for display
purposes.

stortype: int = 4

762 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

class synapse.tests.utils.TestType(modl, name, info, opts)
Bases: Type

postTypeInit()

stortype: int = 1

class synapse.tests.utils.ThreeType(modl, name, info, opts)
Bases: Type

norm(valu)
Normalize the value for a given type.

Parameters
valu (obj) – The value to normalize.

Returns
The normalized valu, info tuple.

Return type
((obj,dict))

Notes

The info dictionary uses the following key conventions:
subs (dict): The normalized sub-fields as name: valu entries.

repr(valu)
Return a printable representation for the value. This may return a string or a tuple of values for display
purposes.

stortype: int = 2

class synapse.tests.utils.TstEnv

Bases: object

add(name, item, fini=False)

async fini()

class synapse.tests.utils.TstOutPut

Bases: OutPutStr

clear()

expect(substr, throw=True)
Check if a string is present in the messages captured by the OutPutStr object.

Parameters

• substr (str) – String to check for the existence of.

• throw (bool) – If True, a missing substr results in a Exception being thrown.

Returns
True if the string is present; False if the string is not present and throw is False.

Return type
bool

10.1. synapse package 763

Synapse Documentation, Release 2.141.0

async synapse.tests.utils.alist(coro)

synapse.tests.utils.deguidify(x)

synapse.tests.utils.norm(z)

synapse.tools package

Subpackages

synapse.tools.aha package

Subpackages

synapse.tools.aha.provision package

Submodules

synapse.tools.aha.provision.service module

async synapse.tools.aha.provision.service.main(argv, outp=<synapse.lib.output.OutPut object>)

synapse.tools.aha.provision.user module

async synapse.tools.aha.provision.user.main(argv, outp=<synapse.lib.output.OutPut object>)

Submodules

synapse.tools.aha.easycert module

synapse.tools.aha.easycert.getArgParser()

async synapse.tools.aha.easycert.main(argv, outp=None)

synapse.tools.aha.enroll module

async synapse.tools.aha.enroll.main(argv, outp=<synapse.lib.output.OutPut object>)

764 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

synapse.tools.aha.list module

async synapse.tools.aha.list.main(argv, outp=None)

synapse.tools.cryo package

Submodules

synapse.tools.cryo.cat module

async synapse.tools.cryo.cat.main(argv, outp=<synapse.lib.output.OutPut object>)

synapse.tools.cryo.list module

async synapse.tools.cryo.list.main(argv, outp=<synapse.lib.output.OutPut object>)

synapse.tools.hive package

Submodules

synapse.tools.hive.load module

async synapse.tools.hive.load.main(argv, outp=<synapse.lib.output.OutPut object>)

synapse.tools.hive.save module

async synapse.tools.hive.save.main(argv, outp=<synapse.lib.output.OutPut object>)

Submodules

synapse.tools.autodoc module

class synapse.tools.autodoc.DocHelp(ctors, types, forms, props, univs)
Bases: object

Helper to pre-compute all doc strings hierarchically

async synapse.tools.autodoc.docConfdefs(ctor)

async synapse.tools.autodoc.docModel(outp, core)

async synapse.tools.autodoc.docStormTypes()

async synapse.tools.autodoc.docStormpkg(pkgpath)

async synapse.tools.autodoc.docStormsvc(ctor)

10.1. synapse package 765

Synapse Documentation, Release 2.141.0

async synapse.tools.autodoc.main(argv, outp=None)

synapse.tools.autodoc.makeargparser()

synapse.tools.autodoc.processCtors(rst, dochelp, ctors)

Parameters

• rst (RstHelp) –

• dochelp (DocHelp) –

• ctors (list) –

Returns
None

synapse.tools.autodoc.processFormsProps(rst, dochelp, forms, univ_names)

async synapse.tools.autodoc.processStormCmds(rst, pkgname, commands)

Parameters

• rst (RstHelp) –

• pkgname (str) –

• commands (list) –

Returns
None

synapse.tools.autodoc.processTypes(rst, dochelp, types)

Parameters

• rst (RstHelp) –

• dochelp (DocHelp) –

• ctors (list) –

Returns
None

synapse.tools.autodoc.processUnivs(rst, dochelp, univs)

synapse.tools.axon2axon module

async synapse.tools.axon2axon.main(argv, outp=<synapse.lib.output.OutPut object>)

synapse.tools.backup module

synapse.tools.backup.backup(srcdir, dstdir, skipdirs=None)
Create a backup of a Synapse application.

Parameters

• srcdir (str) – Path to the directory to backup.

• dstdir (str) – Path to backup target directory.

766 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

• skipdirs (list or None) – Optional list of relative directory name glob patterns to ex-
clude from the backup.

Note: Running this method from the same process as a running user of the directory may lead to a segmentation
fault

synapse.tools.backup.backup_lmdb(env, dstdir, txn=None)

synapse.tools.backup.capturelmdbs(srcdir, skipdirs=None, onlydirs=None)
A context manager that opens all the lmdb files under a srcdir and makes a read transaction. All transactions are
aborted and environments closed when the context is exited.

Yields
Dict[str, Tuple[lmdb.Environment, lmdb.Transaction]] – Maps path to environment, transaction

synapse.tools.backup.main(argv)

synapse.tools.backup.parse_args(argv)

synapse.tools.backup.txnbackup(lmdbinfo, srcdir, dstdir, skipdirs=None)
Create a backup of a Synapse application under a (hopefully consistent) set of transactions.

Parameters

• lmdbinfo (Dict[str, Tuple[lmdb.Environment, lmdb.Transaction]]) – Maps
of path to environment, transaction

• srcdir (str) – Path to the directory to backup.

• dstdir (str) – Path to backup target directory.

• skipdirs (list or None) – Optional list of relative directory name glob patterns to ex-
clude from the backup.

Note: Running this method from the same process as a running user of the directory may lead to a segmentation
fault

synapse.tools.cellauth module

async synapse.tools.cellauth.handleList(opts)

async synapse.tools.cellauth.handleModify(opts)

async synapse.tools.cellauth.main(argv, outprint=None)

synapse.tools.cellauth.makeargparser()

async synapse.tools.cellauth.printuser(user, details=False, cell=None)

synapse.tools.cellauth.reprrule(rule)

10.1. synapse package 767

Synapse Documentation, Release 2.141.0

synapse.tools.cmdr module

async synapse.tools.cmdr.main(argv)

async synapse.tools.cmdr.runcmdr(argv, item)

synapse.tools.csvtool module

async synapse.tools.csvtool.main(argv, outp=<synapse.lib.output.OutPut object>)

synapse.tools.csvtool.makeargparser(outp)

async synapse.tools.csvtool.runCsvExport(opts, outp, text, stormopts)

async synapse.tools.csvtool.runCsvImport(opts, outp, text, stormopts)

synapse.tools.easycert module

synapse.tools.easycert.main(argv, outp=None)

synapse.tools.feed module

async synapse.tools.feed.addFeedData(core, outp, feedformat, debug=False, *paths, chunksize=1000,
offset=0, viewiden=None)

synapse.tools.feed.getItems(*paths)

async synapse.tools.feed.main(argv, outp=None)

synapse.tools.feed.makeargparser()

synapse.tools.genpkg module

synapse.tools.genpkg.getStormStr(fn)

synapse.tools.genpkg.loadOpticFiles(pkgdef, path)

synapse.tools.genpkg.loadOpticWorkflows(pkgdef, path)

synapse.tools.genpkg.loadPkgProto(path, opticdir=None, no_docs=False, readonly=False)
Get a Storm Package definition from disk.

Parameters

• path (str) – Path to the package .yaml file on disk.

• opticdir (str) – Path to optional Optic module code to add to the Storm Package.

• no_docs (bool) – If true, omit inline documentation content if it is not present on disk.

• readonly (bool) – If set, open files in read-only mode. If files are missing, that will raise
a NoSuchFile exception.

768 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Returns
A Storm package definition.

Return type
dict

async synapse.tools.genpkg.main(argv, outp=<synapse.lib.output.OutPut object>)

synapse.tools.genpkg.tryLoadPkgProto(fp, opticdir=None, readonly=False)
Try to get a Storm Package prototype from disk with or without inline documentation.

Parameters

• fp (str) – Path to the package .yaml file on disk.

• opticdir (str) – Path to optional Optic module code to add to the Storm Package.

• readonly (bool) – If set, open files in read-only mode. If files are missing, that will raise
a NoSuchFile exception.

Returns
A Storm package definition.

Return type
dict

synapse.tools.guid module

synapse.tools.guid.main(argv, outp=None)

synapse.tools.healthcheck module

synapse.tools.healthcheck.format_component(e, mesg: str)→ dict

async synapse.tools.healthcheck.main(argv, outp=<synapse.lib.output.OutPut object>)

synapse.tools.healthcheck.makeargparser()

synapse.tools.healthcheck.serialize(ret)

synapse.tools.json2mpk module

synapse.tools.json2mpk.getArgParser()

synapse.tools.json2mpk.main(argv, outp=None)

10.1. synapse package 769

Synapse Documentation, Release 2.141.0

synapse.tools.livebackup module

async synapse.tools.livebackup.main(argv, outp=<synapse.lib.output.OutPut object>)

synapse.tools.modrole module

async synapse.tools.modrole.main(argv, outp=<synapse.lib.output.OutPut object>)

synapse.tools.moduser module

async synapse.tools.moduser.main(argv, outp=<synapse.lib.output.OutPut object>)

synapse.tools.promote module

async synapse.tools.promote.main(argv, outp=<synapse.lib.output.OutPut object>)

synapse.tools.pullfile module

async synapse.tools.pullfile.main(argv, outp=None)

synapse.tools.pullfile.setup()

synapse.tools.pushfile module

async synapse.tools.pushfile.main(argv, outp=None)

synapse.tools.pushfile.makeargparser()

synapse.tools.rstorm module

async synapse.tools.rstorm.main(argv, outp=<synapse.lib.output.OutPut object>)

synapse.tools.storm module

class synapse.tools.storm.ExportCmd(cli, **opts)
Bases: StormCliCmd

Export the results of a storm query into a nodes file.

770 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Example

// Export nodes to a file !export dnsa.nodes { inet:fqdn#mynodes -> inet:dns:a }

// Export nodes to a file and only include specific tags !export fqdn.nodes { inet:fqdn#mynodes } –include-tags
footag

getArgParser()

async runCmdOpts(opts)
Perform the command actions. Must be implemented by Cmd implementers.

Parameters
opts (dict) – Options dictionary.

class synapse.tools.storm.HelpCmd(cli, **opts)
Bases: CmdHelp

List interpreter extended commands and display help output.

Example

!help foocmd

class synapse.tools.storm.PullFileCmd(cli, **opts)
Bases: StormCliCmd

Download a file by sha256 and store it locally.

Example

!pullfile c00adfcc316f8b00772cdbce2505b9ea539d74f42861801eceb1017a44344ed3 /path/to/savefile

getArgParser()

async runCmdOpts(opts)
Perform the command actions. Must be implemented by Cmd implementers.

Parameters
opts (dict) – Options dictionary.

class synapse.tools.storm.PushFileCmd(cli, **opts)
Bases: StormCliCmd

Upload a file and create a file:bytes node.

Example

!pushfile /path/to/file

getArgParser()

async runCmdOpts(opts)
Perform the command actions. Must be implemented by Cmd implementers.

Parameters
opts (dict) – Options dictionary.

10.1. synapse package 771

file:bytes

Synapse Documentation, Release 2.141.0

class synapse.tools.storm.QuitCmd(cli, **opts)
Bases: CmdQuit

Quit the current command line interpreter.

Example

!quit

class synapse.tools.storm.RunFileCmd(cli, **opts)
Bases: StormCliCmd

Run a local storm file.

Example

!runfile /path/to/file.storm

getArgParser()

async runCmdOpts(opts)
Perform the command actions. Must be implemented by Cmd implementers.

Parameters
opts (dict) – Options dictionary.

class synapse.tools.storm.StormCli

Bases: Cli

async handleErr(mesg)

histfile = 'storm_history'

initCmdClasses()

printf(mesg, addnl=True, color=None)

async runCmdLine(line, opts=None)
Run a single command line.

Parameters
line (str) – Line to execute.

Examples

Execute the ‘woot’ command with the ‘help’ switch:

await cli.runCmdLine(‘woot –help’)

Returns
Arbitrary data from the cmd class.

Return type
object

async storm(text, opts=None)

772 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

class synapse.tools.storm.StormCliCmd(cli, **opts)
Bases: Cmd

getArgParser()

getCmdOpts(text)
Use the _cmd_syntax def to split/parse/normalize the cmd line.

Parameters
text (str) – Command to process.

Notes

This is implemented independent of argparse (et al) due to the need for syntax aware argument splitting.
Also, allows different split per command type

Returns
An opts dictionary.

Return type
dict

synapse.tools.storm.getArgParser()

async synapse.tools.storm.main(argv, outp=<synapse.lib.output.OutPut object>)

synapse.utils package

Subpackages

synapse.utils.stormcov package

synapse.utils.stormcov.coverage_init(reg, options)

Submodules

synapse.utils.stormcov.plugin module

class synapse.utils.stormcov.plugin.PivotTracer(parent)
Bases: FileTracer

PARSE_METHODS = {'getNodeByNdef', 'nodesByPropArray', 'nodesByPropValu',
'nodesByTag'}

dynamic_source_filename(filename, frame)
Get a dynamically computed source file name.

Some plug-ins need to compute the source file name dynamically for each frame.

This function will not be invoked if has_dynamic_source_filename() returns False.

Returns the source file name for this frame, or None if this frame shouldn’t be measured.

10.1. synapse package 773

Synapse Documentation, Release 2.141.0

has_dynamic_source_filename()

Does this FileTracer have dynamic source file names?

FileTracers can provide dynamically determined file names by implementing
dynamic_source_filename(). Invoking that function is expensive. To determine whether
to invoke it, coverage.py uses the result of this function to know if it needs to bother invoking
dynamic_source_filename().

See CoveragePlugin.file_tracer() for details about static and dynamic file names.

Returns True if dynamic_source_filename() should be called to get dynamic source file names.

line_number_range(frame)
Get the range of source line numbers for a given a call frame.

The call frame is examined, and the source line number in the original file is returned. The return value
is a pair of numbers, the starting line number and the ending line number, both inclusive. For example,
returning (5, 7) means that lines 5, 6, and 7 should be considered executed.

This function might decide that the frame doesn’t indicate any lines from the source file were executed.
Return (-1, -1) in this case to tell coverage.py that no lines should be recorded for this frame.

class synapse.utils.stormcov.plugin.StormCtrlTracer(parent)
Bases: FileTracer

dynamic_source_filename(filename, frame)
Get a dynamically computed source file name.

Some plug-ins need to compute the source file name dynamically for each frame.

This function will not be invoked if has_dynamic_source_filename() returns False.

Returns the source file name for this frame, or None if this frame shouldn’t be measured.

has_dynamic_source_filename()

Does this FileTracer have dynamic source file names?

FileTracers can provide dynamically determined file names by implementing
dynamic_source_filename(). Invoking that function is expensive. To determine whether
to invoke it, coverage.py uses the result of this function to know if it needs to bother invoking
dynamic_source_filename().

See CoveragePlugin.file_tracer() for details about static and dynamic file names.

Returns True if dynamic_source_filename() should be called to get dynamic source file names.

line_number_range(frame)
Get the range of source line numbers for a given a call frame.

The call frame is examined, and the source line number in the original file is returned. The return value
is a pair of numbers, the starting line number and the ending line number, both inclusive. For example,
returning (5, 7) means that lines 5, 6, and 7 should be considered executed.

This function might decide that the frame doesn’t indicate any lines from the source file were executed.
Return (-1, -1) in this case to tell coverage.py that no lines should be recorded for this frame.

class synapse.utils.stormcov.plugin.StormPlugin(options)
Bases: CoveragePlugin, FileTracer

PARSE_METHODS = {'compute', 'getPivsIn', 'getPivsOut', 'lift', 'once'}

774 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

dynamic_source_filename(filename, frame, force=False)
Get a dynamically computed source file name.

Some plug-ins need to compute the source file name dynamically for each frame.

This function will not be invoked if has_dynamic_source_filename() returns False.

Returns the source file name for this frame, or None if this frame shouldn’t be measured.

file_reporter(filename)
Get the FileReporter class to use for a file.

Plug-in type: file tracer.

This will only be invoked if filename returns non-None from file_tracer(). It’s an error to return None
from this method.

Returns a FileReporter object to use to report on filename, or the string “python” to have coverage.py
treat the file as Python.

file_tracer(filename)
Get a FileTracer object for a file.

Plug-in type: file tracer.

Every Python source file is offered to your plug-in to give it a chance to take responsibility for tracing the
file. If your plug-in can handle the file, it should return a FileTracer object. Otherwise return None.

There is no way to register your plug-in for particular files. Instead, this method is invoked for all files as
they are executed, and the plug-in decides whether it can trace the file or not. Be prepared for filename to
refer to all kinds of files that have nothing to do with your plug-in.

The file name will be a Python file being executed. There are two broad categories of behavior for a plug-in,
depending on the kind of files your plug-in supports:

• Static file names: each of your original source files has been converted into a distinct Python file. Your
plug-in is invoked with the Python file name, and it maps it back to its original source file.

• Dynamic file names: all of your source files are executed by the same Python file. In this case, your
plug-in implements FileTracer.dynamic_source_filename() to provide the actual source file
for each execution frame.

filename is a string, the path to the file being considered. This is the absolute real path to the file. If you are
comparing to other paths, be sure to take this into account.

Returns a FileTracer object to use to trace filename, or None if this plug-in cannot trace this file.

find_executable_files(src_dir)
Yield all of the executable files in src_dir, recursively.

Plug-in type: file tracer.

Executability is a plug-in-specific property, but generally means files which would have been considered
for coverage analysis, had they been included automatically.

Returns or yields a sequence of strings, the paths to files that could have been executed, including files that
had been executed.

find_storm_files(dirn)

find_subqueries(tree, path)

10.1. synapse package 775

Synapse Documentation, Release 2.141.0

has_dynamic_source_filename()

Does this FileTracer have dynamic source file names?

FileTracers can provide dynamically determined file names by implementing
dynamic_source_filename(). Invoking that function is expensive. To determine whether
to invoke it, coverage.py uses the result of this function to know if it needs to bother invoking
dynamic_source_filename().

See CoveragePlugin.file_tracer() for details about static and dynamic file names.

Returns True if dynamic_source_filename() should be called to get dynamic source file names.

line_number_range(frame)
Get the range of source line numbers for a given a call frame.

The call frame is examined, and the source line number in the original file is returned. The return value
is a pair of numbers, the starting line number and the ending line number, both inclusive. For example,
returning (5, 7) means that lines 5, 6, and 7 should be considered executed.

This function might decide that the frame doesn’t indicate any lines from the source file were executed.
Return (-1, -1) in this case to tell coverage.py that no lines should be recorded for this frame.

class synapse.utils.stormcov.plugin.StormReporter(filename, parser)
Bases: FileReporter

lines()

Get the executable lines in this file.

Your plug-in must determine which lines in the file were possibly executable. This method returns a set of
those line numbers.

Returns a set of line numbers.

source()

Get the source for the file.

Returns a Unicode string.

The base implementation simply reads the self.filename file and decodes it as UTF-8. Override this method
if your file isn’t readable as a text file, or if you need other encoding support.

10.1.2 Submodules

10.1.3 synapse.axon module

class synapse.axon.Axon

Bases: Cell

byterange = False

cellapi

alias of AxonApi

confdefs = {'http:proxy': {'description': 'An aiohttp-socks compatible proxy URL
to use in the wget API.', 'type': 'string'}, 'max:bytes': {'description': 'The
maximum number of bytes that can be stored in the Axon.', 'hidecmdl': True,
'minimum': 1, 'type': 'integer'}, 'max:count': {'description': 'The maximum
number of files that can be stored in the Axon.', 'hidecmdl': True, 'minimum': 1,
'type': 'integer'}, 'tls:ca:dir': {'description': 'An optional directory of CAs
which are added to the TLS CA chain for wget and wput APIs.', 'type': 'string'}}

776 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async csvrows(sha256, dialect='excel', **fmtparams)

async del_(sha256)
Remove the given bytes from the Axon by sha256.

Parameters
sha256 (bytes) – The sha256, in bytes, to remove from the Axon.

Returns
True if the file is removed; false if the file is not present.

Return type
boolean

async dels(sha256s)
Given a list of sha256 hashes, delete the files from the Axon.

Parameters
sha256s (list) – A list of sha256 hashes in bytes form.

Returns
A list of booleans, indicating if the file was deleted or not.

Return type
list

async get(sha256, offs=None, size=None)
Get bytes of a file.

Parameters

• sha256 (bytes) – The sha256 hash of the file in bytes.

• offs (int) – The offset to start reading from.

• size (int) – The total number of bytes to read.

Examples

Get the bytes from an Axon and process them:

buf = b''
async for bytz in axon.get(sha256):

buf =+ bytz

await dostuff(buf)

Yields
bytes – Chunks of the file bytes.

Raises
synapse.exc.NoSuchFile – If the file does not exist.

async getCellInfo()

Return metadata specific for the Cell.

10.1. synapse package 777

Synapse Documentation, Release 2.141.0

Notes

By default, this function returns information about the base Cell implementation, which reflects the base
information in the Synapse Cell.

It is expected that implementers override the following Class attributes in order to provide meaningful
version information:

COMMIT - A Git Commit VERSION - A Version tuple. VERSTRING - A Version string.

Returns
A Dictionary of metadata.

Return type
Dict

async has(sha256)
Check if the Axon has a file.

Parameters
sha256 (bytes) – The sha256 hash of the file in bytes.

Returns
True if the Axon has the file; false otherwise.

Return type
boolean

async hashes(offs, wait=False, timeout=None)
Yield hash rows for files that exist in the Axon in added order starting at an offset.

Parameters

• offs (int) – The index offset.

• wait (boolean) – Wait for new results and yield them in realtime.

• timeout (int) – Max time to wait for new results.

Yields
(int, (bytes, int)) – An index offset and the file SHA-256 and size.

Note: If the same hash was deleted and then added back, the same hash will be yielded twice.

async hashset(sha256)
Calculate additional hashes for a file in the Axon.

Parameters
sha256 (bytes) – The sha256 hash of the file in bytes.

Returns
A dictionary containing hashes of the file.

Return type
dict

async history(tick, tock=None)
Yield hash rows for files that existing in the Axon after a given point in time.

Parameters

• tick (int) – The starting time (in epoch milliseconds).

778 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

• tock (int) – The ending time to stop iterating at (in epoch milliseconds).

Yields
(int, (bytes, int)) – A tuple containing time of the hash was added and the file SHA-256 and
size.

holdHashLock(hashbyts)
A context manager that synchronizes edit access to a blob.

Parameters
hashbyts (bytes) – The blob to hold the lock for.

async initServiceRuntime()

async initServiceStorage()

async iterMpkFile(sha256)
Yield items from a MsgPack (.mpk) file in the Axon.

Parameters
sha256 (str) – The sha256 hash of the file as a string.

Yields
Unpacked items from the bytes.

async jsonlines(sha256)

async metrics()

Get the runtime metrics of the Axon.

Returns
A dictionary of runtime data about the Axon.

Return type
dict

async postfiles(fields, url, params=None, headers=None, method='POST', ssl=True, timeout=None,
proxy=None)

Send files from the axon as fields in a multipart/form-data HTTP request.

Parameters

• fields (list) – List of dicts containing the fields to add to the request as form-data.

• url (str) – The URL to retrieve.

• params (dict) – Additional parameters to add to the URL.

• headers (dict) – Additional HTTP headers to add in the request.

• method (str) – The HTTP method to use.

• ssl (bool) – Perform SSL verification.

• timeout (int) – The timeout of the request, in seconds.

• proxy (bool|str|null) – Use a specific proxy or disable proxy use.

10.1. synapse package 779

Synapse Documentation, Release 2.141.0

Notes

The dictionaries in the fields list may contain the following values:

{
'name': <str> - Name of the field.
'sha256': <str> - SHA256 hash of the file to submit for this field.
'value': <str> - Value for the field. Ignored if a sha256 has been␣

→˓specified.
'filename': <str> - Optional filename for the field.
'content_type': <str> - Optional content type for the field.
'content_transfer_encoding': <str> - Optional content-transfer-encoding␣

→˓header for the field.
}

The dictionary returned by this may contain the following values:

{
'ok': <boolean> - False if there were exceptions retrieving the URL.
'err': <str> - An error message if there was an exception when retrieving␣

→˓the URL.
'url': <str> - The URL retrieved (which could have been redirected)
'code': <int> - The response code.
'body': <bytes> - The response body.
'headers': <dict> - The response headers as a dictionary.

}

Returns
An information dictionary containing the results of the request.

Return type
dict

async put(byts)
Store bytes in the Axon.

Parameters
byts (bytes) – The bytes to store in the Axon.

Notes

This API should not be used for files greater than 128 MiB in size.

Returns
A tuple with the file size and sha256 hash of the bytes.

Return type
tuple(int, bytes)

async puts(files)
Store a set of bytes in the Axon.

Parameters
files (list) – A list of bytes to store in the Axon.

780 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Notes

This API should not be used for storing more than 128 MiB of bytes at once.

Returns
A list containing tuples of file size and sha256 hash of the saved bytes.

Return type
list(tuple(int, bytes))

async readlines(sha256)

async save(sha256, genr, size)
Save a generator of bytes to the Axon.

Parameters

• sha256 (bytes) – The sha256 hash of the file in bytes.

• genr – The bytes generator function.

Returns
The size of the bytes saved.

Return type
int

async size(sha256)
Get the size of a file in the Axon.

Parameters
sha256 (bytes) – The sha256 hash of the file in bytes.

Returns
The size of the file, in bytes. If not present, None is returned.

Return type
int

async upload()

Get an Upload object.

Notes

The UpLoad object should be used to manage uploads greater than 128 MiB in size.

Examples

Use an UpLoad object to upload a file to the Axon:

async with await axon.upload() as upfd:
Assumes bytesGenerator yields bytes
async for byts in bytsgenerator():

await upfd.write(byts)
await upfd.save()

Use a single UpLoad object to save multiple files:

10.1. synapse package 781

Synapse Documentation, Release 2.141.0

async with await axon.upload() as upfd:
for fp in file_paths:

Assumes bytesGenerator yields bytes
async for byts in bytsgenerator(fp):

await upfd.write(byts)
await upfd.save()

Returns
An Upload manager object.

Return type
UpLoad

async wants(sha256s)
Get a list of sha256 values the axon does not have from a input list.

Parameters
sha256s (list) – A list of sha256 values as bytes.

Returns
A list of bytes containing the sha256 hashes the Axon does not have.

Return type
list

async wget(url, params=None, headers=None, json=None, body=None, method='GET', ssl=True,
timeout=None, proxy=None)

Stream a file download directly into the Axon.

Parameters

• url (str) – The URL to retrieve.

• params (dict) – Additional parameters to add to the URL.

• headers (dict) – Additional HTTP headers to add in the request.

• json – A JSON body which is included with the request.

• body – The body to be included in the request.

• method (str) – The HTTP method to use.

• ssl (bool) – Perform SSL verification.

• timeout (int) – The timeout of the request, in seconds.

• proxy (bool|str|null) – Use a specific proxy or disable proxy use.

Notes

The response body will be stored, regardless of the response code. The ok value in the reponse does not
reflect that a status code, such as a 404, was encountered when retrieving the URL.

The dictionary returned by this may contain the following values:

{
'ok': <boolean> - False if there were exceptions retrieving the URL.
'url': <str> - The URL retrieved (which could have been redirected). This␣

(continues on next page)

782 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

(continued from previous page)

→˓is a url-decoded string.
'code': <int> - The response code.
'mesg': <str> - An error message if there was an exception when retrieving␣

→˓the URL.
'headers': <dict> - The response headers as a dictionary.
'size': <int> - The size in bytes of the response body.
'hashes': {

'md5': <str> - The MD5 hash of the response body.
'sha1': <str> - The SHA1 hash of the response body.
'sha256': <str> - The SHA256 hash of the response body.
'sha512': <str> - The SHA512 hash of the response body.

},
'request': {

'url': The request URL. This is a url-decoded string.
'headers': The request headers.
'method': The request method.

}
'history': A sequence of response bodies to track any redirects, not␣

→˓including hashes.
}

Returns
An information dictionary containing the results of the request.

Return type
dict

async wput(sha256, url, params=None, headers=None, method='PUT', ssl=True, timeout=None,
filename=None, filemime=None, proxy=None)

Stream a blob from the axon as the body of an HTTP request.

class synapse.axon.AxonApi

Bases: CellApi, Share

async csvrows(sha256, dialect='excel', **fmtparams)
Yield CSV rows from a CSV file.

Parameters

• sha256 (bytes) – The sha256 hash of the file.

• dialect (str) – The CSV dialect to use.

• **fmtparams – The CSV dialect format parameters.

10.1. synapse package 783

Synapse Documentation, Release 2.141.0

Notes

The dialect and fmtparams expose the Python csv.reader() parameters.

Examples

Get the rows from a CSV file and process them:

async for row in axon.csvrows(sha256):
await dostuff(row)

Get the rows from a tab separated file and process them:

async for row in axon.csvrows(sha256, delimiter=' '):
await dostuff(row)

Yields
list – Decoded CSV rows.

async del_(sha256)
Remove the given bytes from the Axon by sha256.

Parameters
sha256 (bytes) – The sha256, in bytes, to remove from the Axon.

Returns
True if the file is removed; false if the file is not present.

Return type
boolean

async dels(sha256s)
Given a list of sha256 hashes, delete the files from the Axon.

Parameters
sha256s (list) – A list of sha256 hashes in bytes form.

Returns
A list of booleans, indicating if the file was deleted or not.

Return type
list

async get(sha256, offs=None, size=None)
Get bytes of a file.

Parameters

• sha256 (bytes) – The sha256 hash of the file in bytes.

• offs (int) – The offset to start reading from.

• size (int) – The total number of bytes to read.

784 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Examples

Get the bytes from an Axon and process them:

buf = b''
async for bytz in axon.get(sha256):

buf =+ bytz

await dostuff(buf)

Yields
bytes – Chunks of the file bytes.

Raises
synapse.exc.NoSuchFile – If the file does not exist.

async has(sha256)
Check if the Axon has a file.

Parameters
sha256 (bytes) – The sha256 hash of the file in bytes.

Returns
True if the Axon has the file; false otherwise.

Return type
boolean

async hashes(offs, wait=False, timeout=None)
Yield hash rows for files that exist in the Axon in added order starting at an offset.

Parameters

• offs (int) – The index offset.

• wait (boolean) – Wait for new results and yield them in realtime.

• timeout (int) – Max time to wait for new results.

Yields
(int, (bytes, int)) – An index offset and the file SHA-256 and size.

async hashset(sha256)
Calculate additional hashes for a file in the Axon.

Parameters
sha256 (bytes) – The sha256 hash of the file in bytes.

Returns
A dictionary containing hashes of the file.

Return type
dict

async history(tick, tock=None)
Yield hash rows for files that existing in the Axon after a given point in time.

Parameters

• tick (int) – The starting time (in epoch milliseconds).

• tock (int) – The ending time to stop iterating at (in epoch milliseconds).

10.1. synapse package 785

Synapse Documentation, Release 2.141.0

Yields
(int, (bytes, int)) – A tuple containing time of the hash was added and the file SHA-256 and
size.

async iterMpkFile(sha256)
Yield items from a MsgPack (.mpk) file in the Axon.

Parameters
sha256 (bytes) – The sha256 hash of the file in bytes.

Yields
Unpacked items from the bytes.

async jsonlines(sha256)
Yield JSON objects from JSONL (JSON lines) file.

Parameters
sha256 (bytes) – The sha256 hash of the file.

Yields
object – Decoded JSON objects.

async metrics()

Get the runtime metrics of the Axon.

Returns
A dictionary of runtime data about the Axon.

Return type
dict

async postfiles(fields, url, params=None, headers=None, method='POST', ssl=True, timeout=None,
proxy=None)

async put(byts)
Store bytes in the Axon.

Parameters
byts (bytes) – The bytes to store in the Axon.

Notes

This API should not be used for files greater than 128 MiB in size.

Returns
A tuple with the file size and sha256 hash of the bytes.

Return type
tuple(int, bytes)

async puts(files)
Store a set of bytes in the Axon.

Parameters
files (list) – A list of bytes to store in the Axon.

786 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Notes

This API should not be used for storing more than 128 MiB of bytes at once.

Returns
A list containing tuples of file size and sha256 hash of the saved bytes.

Return type
list(tuple(int, bytes))

async readlines(sha256)
Yield lines from a multi-line text file in the axon.

Parameters
sha256 (bytes) – The sha256 hash of the file.

Yields
str – Lines of text

async size(sha256)
Get the size of a file in the Axon.

Parameters
sha256 (bytes) – The sha256 hash of the file in bytes.

Returns
The size of the file, in bytes. If not present, None is returned.

Return type
int

async upload()

Get an Upload object.

Notes

The UpLoad object should be used to manage uploads greater than 128 MiB in size.

Examples

Use an UpLoad object to upload a file to the Axon:

async with axonProxy.upload() as upfd:
Assumes bytesGenerator yields bytes
async for byts in bytsgenerator():

upfd.write(byts)
upfd.save()

Use a single UpLoad object to save multiple files:

async with axonProxy.upload() as upfd:
for fp in file_paths:

Assumes bytesGenerator yields bytes
async for byts in bytsgenerator(fp):

upfd.write(byts)
upfd.save()

10.1. synapse package 787

Synapse Documentation, Release 2.141.0

Returns
An Upload manager object.

Return type
UpLoadShare

async wants(sha256s)
Get a list of sha256 values the axon does not have from a input list.

Parameters
sha256s (list) – A list of sha256 values as bytes.

Returns
A list of bytes containing the sha256 hashes the Axon does not have.

Return type
list

async wget(url, params=None, headers=None, json=None, body=None, method='GET', ssl=True,
timeout=None, proxy=None)

Stream a file download directly into the Axon.

Parameters

• url (str) – The URL to retrieve.

• params (dict) – Additional parameters to add to the URL.

• headers (dict) – Additional HTTP headers to add in the request.

• json – A JSON body which is included with the request.

• body – The body to be included in the request.

• method (str) – The HTTP method to use.

• ssl (bool) – Perform SSL verification.

• timeout (int) – The timeout of the request, in seconds.

Notes

The response body will be stored, regardless of the response code. The ok value in the reponse does not
reflect that a status code, such as a 404, was encountered when retrieving the URL.

The dictionary returned by this may contain the following values:

{
'ok': <boolean> - False if there were exceptions retrieving the URL.
'url': <str> - The URL retrieved (which could have been redirected). This␣

→˓is a url-decoded string.
'code': <int> - The response code.
'mesg': <str> - An error message if there was an exception when retrieving␣

→˓the URL.
'headers': <dict> - The response headers as a dictionary.
'size': <int> - The size in bytes of the response body.
'hashes': {

'md5': <str> - The MD5 hash of the response body.
'sha1': <str> - The SHA1 hash of the response body.
'sha256': <str> - The SHA256 hash of the response body.

(continues on next page)

788 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

(continued from previous page)

'sha512': <str> - The SHA512 hash of the response body.
},
'request': {

'url': The request URL. This is a url-decoded string.
'headers': The request headers.
'method': The request method.

}
'history': A sequence of response bodies to track any redirects, not␣

→˓including hashes.
}

Returns
An information dictionary containing the results of the request.

Return type
dict

async wput(sha256, url, params=None, headers=None, method='PUT', ssl=True, timeout=None,
proxy=None)

class synapse.axon.AxonFileHandler(application: Application, request: HTTPServerRequest, **kwargs:
Any)

Bases: AxonHandlerMixin, Handler

async getAxonInfo()

class synapse.axon.AxonHandlerMixin

Bases: object

getAxon()

Get a reference to the Axon interface used by the handler.

class synapse.axon.AxonHttpBySha256InvalidV1(application: Application, request: HTTPServerRequest,
**kwargs: Any)

Bases: AxonFileHandler

async delete(sha256)

async get(sha256)

async head(sha256)

class synapse.axon.AxonHttpBySha256V1(application: Application, request: HTTPServerRequest, **kwargs:
Any)

Bases: AxonFileHandler

async delete(sha256)

async get(sha256)

async head(sha256)

class synapse.axon.AxonHttpDelV1(application: Application, request: HTTPServerRequest, **kwargs: Any)
Bases: AxonHandlerMixin, Handler

10.1. synapse package 789

Synapse Documentation, Release 2.141.0

async post()

class synapse.axon.AxonHttpHasV1(application: Application, request: HTTPServerRequest, **kwargs: Any)
Bases: AxonHandlerMixin, Handler

async get(sha256)

class synapse.axon.AxonHttpUploadV1(application: Application, request: HTTPServerRequest, **kwargs:
Any)

Bases: AxonHandlerMixin, StreamHandler

async data_received(chunk)
Implement this method to handle streamed request data.

Requires the .stream_request_body decorator.

May be a coroutine for flow control.

on_connection_close()

Called in async handlers if the client closed the connection.

Override this to clean up resources associated with long-lived connections. Note that this method is called
only if the connection was closed during asynchronous processing; if you need to do cleanup after every
request override on_finish instead.

Proxies may keep a connection open for a time (perhaps indefinitely) after the client has gone away, so this
method may not be called promptly after the end user closes their connection.

on_finish()

Called after the end of a request.

Override this method to perform cleanup, logging, etc. This method is a counterpart to prepare. on_finish
may not produce any output, as it is called after the response has been sent to the client.

async post()

Called after all data has been read.

async prepare()

Called at the beginning of a request before get/post/etc.

Override this method to perform common initialization regardless of the request method.

Asynchronous support: Use async def or decorate this method with .gen.coroutine to make it asyn-
chronous. If this method returns an Awaitable execution will not proceed until the Awaitable is done.

New in version 3.1: Asynchronous support.

async put()

class synapse.axon.UpLoad

Bases: Base

An object used to manage uploads to the Axon.

async save()

Save the currently uploaded bytes to the Axon.

790 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Notes

This resets the Upload object, so it can be reused.

Returns
A tuple of sizes in bytes and the sha256 hash of the saved files.

Return type
tuple(int, bytes)

async write(byts)
Write bytes to the Upload object.

Parameters
byts (bytes) – Bytes to write to the current Upload object.

Returns
Returns None.

Return type
(None)

class synapse.axon.UpLoadProxy

Bases: Share

async save()

async write(byts)

class synapse.axon.UpLoadShare

Bases: UpLoad , Share

typename = 'upload'

10.1.4 synapse.cells module

10.1.5 synapse.common module

class synapse.common.NoValu

Bases: object

class synapse.common.aclosing(thing)
Bases: AbstractAsyncContextManager

Async context manager for safely finalizing an asynchronously cleaned-up resource such as an async generator,
calling its aclose() method.

Code like this:

async with aclosing(<module>.fetch(<arguments>)) as agen:
<block>

is equivalent to this:

agen = <module>.fetch(<arguments>)
try:

<block>
(continues on next page)

10.1. synapse package 791

Synapse Documentation, Release 2.141.0

(continued from previous page)

finally:
await agen.aclose()

async synapse.common.agen(*items)

async synapse.common.aspin(genr)
Async version of spin

synapse.common.buid(valu=None)
A binary GUID like sequence of 32 bytes.

Parameters

• valu (object) – Optional, if provided, the hash of the msgpack

• to (encoded form of the object is returned. This can be used) –

• buids. (create stable) –

Notes

By default, this returns a random 32 byte value.

Returns
A 32 byte value.

Return type
bytes

synapse.common.chunks(item, size)
Divide an iterable into chunks.

Parameters

• item – Item to slice

• size (int) – Maximum chunk size.

Notes

This supports Generator objects and objects which support calling the __getitem__() method with a slice object.

Yields
Slices of the item containing up to “size” number of items.

synapse.common.config(conf, confdefs)
Initialize a config dict using the given confdef tuples.

synapse.common.debase64(b)

synapse.common.deprecated(name, curv='2.x', eolv='3.0.0')

synapse.common.ehex(byts)
Encode a bytes variable to a string using binascii.hexlify.

Parameters
byts (bytes) – Bytes to encode.

792 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Returns
A string representing the bytes.

Return type
str

synapse.common.enbase64(b)

synapse.common.envbool(name, defval='false')
Resolve an environment variable to a boolean value.

Parameters

• name (str) – Environment variable to resolve.

• defval (str) – Default string value to resolve as.

Notes

False values will be consider strings “0” or “false” after lower casing.

Returns
True if the envar is set, false if it is set to a false value.

Return type
boolean

synapse.common.err(e, fulltb=False)

synapse.common.errinfo(name, mesg)

synapse.common.excinfo(e)
Populate err,errmsg,errtrace info from exc.

synapse.common.firethread(f)
A decorator for making a function fire a thread.

synapse.common.flatten(item)

Normalize a primitive object for cryptographic signing.

Parameters
item – The python primitive object to normalize.

Notes

Only None, bool, int, bytes, strings, lists, tuples and dictionaries are acceptable input. List objects will be con-
verted to tuples. Dictionary objects must have keys which can be sorted.

Returns
A new copy of the object.

synapse.common.gendir(*paths, **opts)
Return the absolute path of the joining of the arguments, creating a directory at the resulting path if one does not
exist.

Performs home directory(~) and environment variable expansion.

Parameters

• *paths ([str,...]) – A list of path elements

10.1. synapse package 793

Synapse Documentation, Release 2.141.0

• **opts – arguments as kwargs to os.makedirs

synapse.common.genfile(*paths)
Create or open (for read/write) a file path join.

Parameters
*paths – A list of paths to join together to make the file.

Notes

If the file already exists, the fd returned is opened in r+b mode. Otherwise, the fd is opened in w+b mode.

The file position is set to the start of the file. The user is responsible for truncating (fd.truncate()) if the
existing file contents are not desired, or seeking to the end (fd.seek(0, 2)) to append.

Returns
A file-object which can be read/written too.

Return type
io.BufferedRandom

synapse.common.genpath(*paths)
Return an absolute path of the joining of the arguments as path elements

Performs home directory(~) and environment variable expansion on the joined path

Parameters
*paths ([str,...]) – A list of path elements

Note: All paths used by Synapse operations (i.e. everything but the data) shall use this function or one of its
callers before storing as object properties.

synapse.common.getDirSize(*paths)
Get the size of a directory.

Parameters
*paths (str) – A list of path elements.

Notes

This is equivalent to du -B 1 -s and du -bs.

Returns
Tuple of total real and total apparent size of all normal files and directories underneath *paths
plus *paths itself.

Return type
tuple

synapse.common.getSslCtx(cadir, purpose=Purpose.SERVER_AUTH)

Create as SSL Context and load certificates from a given directory.

Parameters

• cadir (str) – Path to load certificates from.

• purpose – SSLContext purposes flags.

794 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Returns
A SSL Context object.

Return type
ssl.SSLContext

synapse.common.getSynDir(*paths)

synapse.common.getSynPath(*paths)

synapse.common.getTempDir(dirn=None)

synapse.common.getbytes(*paths, **opts)

synapse.common.getfile(*paths, **opts)
Return a file at the path resulting from joining of the arguments, or None if the file does not exist.

Parameters

• *paths ([str,...]) – A list of path elements

• **opts – arguments as kwargs to io.open

Returns
A file-object which can be read/written too.

Return type
io.BufferedRandom

synapse.common.guid(valu=None)
Get a 16 byte guid value.

By default, this is a random guid value.

Parameters
valu – Object used to construct the guid valu from. This must be able to be msgpack’d.

Returns
32 character, lowercase ascii string.

Return type
str

synapse.common.hugeadd(x, y)
Add two decimal.Decimal with proper precision to support synapse hugenums.

synapse.common.hugediv(x, y)
Divide two decimal.Decimal with proper precision to support synapse hugenums.

synapse.common.hugemod(x, y)

synapse.common.hugemul(x, y)
Multiply two decimal.Decimal with proper precision to support synapse hugenums.

synapse.common.hugenum(valu)
Return a decimal.Decimal with proper precision for use as a synapse hugenum.

synapse.common.hugepow(x, y)
Return the first operand to the power of the second operand.

synapse.common.hugeround(x)
Round a decimal.Decimal with proper precision for synapse hugenums.

10.1. synapse package 795

Synapse Documentation, Release 2.141.0

synapse.common.hugescaleb(x, y)
Return the first operand with its exponent adjusted by the second operand.

synapse.common.hugesub(x, y)
Subtract two decimal.Decimal with proper precision to support synapse hugenums.

synapse.common.int64en(i)
Encode an unsigned 64-bit int into 8 byte big-endian bytes

synapse.common.int64un(b)
Decode an unsigned 64-bit int from 8 byte big-endian

synapse.common.intify(x)
Ensure (or coerce) a value into being an integer or None.

Parameters
x (obj) – An object to intify

Returns
The int value (or None)

Return type
(int)

synapse.common.isbuidhex(text)

synapse.common.isguid(text)

synapse.common.iterfd(fd, size=10000000)
Generator which yields bytes from a file descriptor.

Parameters

• fd (file) – A file-like object to read bytes from.

• size (int) – Size, in bytes, of the number of bytes to read from the

• time. (fd at a given) –

Notes

If the first read call on the file descriptor is a empty bytestring, that zero length bytestring will be yielded and the
generator will then be exhuasted. This behavior is intended to allow the yielding of contents of a zero byte file.

Yields
bytes – Bytes from the file descriptor.

synapse.common.iterzip(*args, fillvalue=None)

synapse.common.jslines(*paths)

synapse.common.jsload(*paths)

synapse.common.jsonsafe_nodeedits(nodeedits)
Hexlify the buid of each node:edits

synapse.common.jssave(js, *paths)

796 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

synapse.common.listdir(*paths, glob=None)
List the (optionally glob filtered) full paths from a dir.

Parameters

• *paths ([str,...]) – A list of path elements

• glob (str) – An optional fnmatch glob str

synapse.common.makedirs(path, mode=511)

async synapse.common.merggenr(genrs, cmprkey)
Iterate multiple sorted async generators and yield their results in order.

Parameters

• genrs (Sequence[AsyncGenerator[T]]) – a sequence of async generator that each yield
sorted items

• cmprkey (Callable[T, T, bool]) – a comparison function over the items yielded

Note: If the genrs yield increasing items, cmprkey should return True if the first parameter is less than the
second parameter, e.g lambda x, y: x < y.

async synapse.common.merggenr2(genrs, cmprkey=None, reverse=False)
Optimized version of merggenr based on heapq.merge

synapse.common.normLogLevel(valu)
Norm a log level value to a integer.

Parameters
valu – The value to norm (a string or integer).

Returns
A valid Logging log level.

Return type
int

synapse.common.now()

Get the current epoch time in milliseconds.

This relies on time.time(), which is system-dependent in terms of resolution.

Examples

Get the current time and make a row for a Cortex:

tick = now()
row = (someiden, 'foo:prop', 1, tick)
core.addRows([row])

Returns
Epoch time in milliseconds.

Return type
int

10.1. synapse package 797

Synapse Documentation, Release 2.141.0

synapse.common.reqJsonSafeStrict(item)

Require the item to be safe to serialize to JSON without type coercion issues.

Parameters
item – The python primitive to check.

Returns
None

Raises
s_exc.BadArg – If the item contains invalid data.

synapse.common.reqbytes(*paths)

synapse.common.reqdir(*paths)
Return the absolute path of the joining of the arguments, raising an exception if a directory does not exist at the
resulting path.

Performs home directory(~) and environment variable expansion.

Parameters
*paths ([str,...]) – A list of path elements

synapse.common.reqfile(*paths, **opts)
Return a file at the path resulting from joining of the arguments, raising an exception if the file does not exist.

Parameters

• *paths ([str,...]) – A list of path elements

• **opts – arguments as kwargs to io.open

Returns
A file-object which can be read/written too.

Return type
io.BufferedRandom

synapse.common.reqjsonsafe(item)

Returns None if item is json serializable, otherwise raises an exception. Uses default type coercion from built-in
json.dumps.

synapse.common.reqpath(*paths)
Return the absolute path of the joining of the arguments, raising an exception if a file doesn’t exist at resulting
path

Parameters
*paths ([str,...]) – A list of path elements

synapse.common.result(retn)
Return a value or raise an exception from a retn tuple.

synapse.common.retnexc(e)
Construct a retn tuple for the given exception.

synapse.common.setlogging(mlogger, defval=None, structlog=None, log_setup=True)
Configure synapse logging.

Parameters

• mlogger (logging.Logger) – Reference to a logging.Logger()

• defval (str) – Default log level. May be an integer.

798 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

• structlog (bool) – Enabled structured (jsonl) logging output.

Notes

This calls logging.basicConfig and should only be called once per process.

Returns
None

synapse.common.signedint64en(i)
Encode a signed 64-bit int into 8 byte big-endian bytes

synapse.common.signedint64un(b)
Decode a signed 64-bit int from 8 byte big-endian

synapse.common.spin(genr)
Crank through a generator but discard the yielded values.

Parameters
genr – Any generator or iterable valu.

Notes

This generator is exhausted via the collections.dequeue() constructor with a maxlen=0, which will quickly
exhaust an iterator staying in C code as much as possible.

Returns
None

synapse.common.switchext(*paths, ext)
Return an absolute path of the joining of the arguments with the extension replaced.

If an extension does not exist, it will be added.

Parameters

• *paths ([str,...]) – A list of path elements

• ext (str) – A file extension (e.g. ‘.txt’). It should begin with a period.

synapse.common.todo(_todoname, *args, **kwargs)
Construct and return a todo tuple of (name, args, kwargs).

Note: the odd name for the first parameter is to avoid collision with keys in kwargs.

synapse.common.tuplify(obj)
Convert a nested set of python primitives into tupleized forms via msgpack.

synapse.common.uhex(text)
Decode a hex string into bytes.

Parameters
text (str) – Text to decode.

Returns
The decoded bytes.

Return type
bytes

10.1. synapse package 799

Synapse Documentation, Release 2.141.0

synapse.common.unjsonsafe_nodeedits(nodeedits)

synapse.common.verstr(vtup)
Convert a version tuple to a string.

synapse.common.vertup(vstr)
Convert a version string to a tuple.

Example

ver = vertup(‘1.3.30’)

synapse.common.worker(meth, *args, **kwargs)

synapse.common.yamlload(*paths)

synapse.common.yamlmod(obj, *paths)
Combines/creates a yaml file and combines with obj. obj and file must be maps/dict or empty.

synapse.common.yamlpop(key, *paths)
Pop a key out of a yaml file.

Parameters

• key (str) – Name of the key to remove.

• *paths – Path to a yaml file. The file must be a map / dictionary.

Returns
None

synapse.common.yamlsave(obj, *paths)

10.1.6 synapse.cortex module

class synapse.cortex.CoreApi

Bases: CellApi

The CoreApi is exposed when connecting to a Cortex over Telepath.

Many CoreApi methods operate on packed nodes consisting of primitive data structures which can be serialized
with msgpack/json.

An example of a packaged Node:

((<form>, <valu>), {

"props": {
<name>: <valu>,
...

},
"tags": {

"foo": <time>,
"foo.bar": <time>,

},
})

800 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async addCronJob(cdef)
This API is deprecated.

Add a cron job to the cortex

A cron job is a persistently-stored item that causes storm queries to be run in the future. The specification
for the times that the queries run can be one-shot or recurring.

Parameters

• query (str) – The storm query to execute in the future

• reqs (Union[Dict[str, Union[int, List[int]]], List[Dict[...]]]) – Ei-
ther a dict of the fixed time fields or a list of such dicts. The keys are in the set (‘year’,
‘month’, ‘dayofmonth’, ‘dayofweek’, ‘hour’, ‘minute’. The values must be positive inte-
gers, except for the key of ‘dayofmonth’ in which it may also be a negative integer which
represents the number of days from the end of the month with -1 representing the last day
of the month. All values may also be lists of valid values.

• incunit (Optional[str]) – A member of the same set as above, with an additional
member ‘day’. If is None (default), then the appointment is one-shot and will not recur.

• incvals (Union[int, List[int]) – A integer or a list of integers of the number of
units

Returns (bytes):
An iden that can be used to later modify, query, and delete the job.

Notes

reqs must have fields present or incunit must not be None (or both) The incunit if not None it must be larger
in unit size than all the keys in all reqs elements.

async addFeedData(name, items, *, viewiden=None)

async addForm(formname, basetype, typeopts, typeinfo)
Add an extended form to the data model.

Extended forms must begin with _

async addFormProp(form, prop, tdef, info)
Add an extended property to the given form.

Extended properties must begin with _

async addNode(form, valu, props=None)
Deprecated in 2.0.0.

async addNodeTag(iden, tag, valu=(None, None))
This API is deprecated.

Add a tag to a node specified by iden.

Parameters

• iden (str) – A hex encoded node BUID.

• tag (str) – A tag string.

• valu (tuple) – A time interval tuple or (None, None).

10.1. synapse package 801

Synapse Documentation, Release 2.141.0

async addNodes(nodes)
Add a list of packed nodes to the cortex.

Parameters
nodes (list) – [((form, valu), {‘props’:{}, ‘tags’:{}}), . . .]

Yields
(tuple) – Packed node tuples ((form,valu), {‘props’: {}, ‘tags’:{}})

Deprecated in 2.0.0

addStormDmon(ddef)

async addStormPkg(pkgdef, verify=False)

async addTagProp(name, tdef, info)
Add a tag property to record data about tags on nodes.

async addUnivProp(name, tdef, info)
Add an extended universal property.

Extended properties must begin with _

addUserNotif(useriden, mesgtype, mesgdata=None)

bumpStormDmon(iden)

async callStorm(text, opts=None)
Return the value expressed in a return() statement within storm.

cloneLayer(iden, ldef=None)

async count(text, opts=None)
Count the number of nodes which result from a storm query.

Parameters

• text (str) – Storm query text.

• opts (dict) – Storm query options.

Returns
The number of nodes resulting from the query.

Return type
(int)

async delCronJob(iden)
This API is deprecated.

Delete a cron job

Parameters
iden (bytes) – The iden of the cron job to be deleted

async delForm(formname)
Remove an extended form from the data model.

async delFormProp(form, name)
Remove an extended property from the given form.

802 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async delNodeProp(iden, name)
Delete a property from a single node. Deprecated in 2.0.0.

async delNodeTag(iden, tag)
Delete a tag from the node specified by iden. Deprecated in 2.0.0.

Parameters

• iden (str) – A hex encoded node BUID.

• tag (str) – A tag string.

async delStormCmd(name)
Remove a pure storm command from the cortex.

delStormDmon(iden)

async delStormPkg(iden)

async delTagProp(name)
Remove a previously added tag property.

async delUnivProp(name)
Remove an extended universal property.

delUserNotif(indx)

async disableCronJob(iden)
This API is deprecated.

Enable a cron job

Parameters
iden (bytes) – The iden of the cron job to be changed

disableMigrationMode()

disableStormDmon(iden)

async editCronJob(iden, name, valu)
Update a value in a cron definition.

async enableCronJob(iden)
This API is deprecated.

Enable a cron job

Parameters
iden (bytes) – The iden of the cron job to be changed

enableMigrationMode()

enableStormDmon(iden)

async eval(text, opts=None)
Evaluate a storm query and yield packed nodes.

NOTE: This API is deprecated as of 2.0.0 and will be removed in 3.0.0

10.1. synapse package 803

Synapse Documentation, Release 2.141.0

async exportStorm(text, opts=None)
Execute a storm query and package nodes for export/import.

NOTE: This API yields nodes after an initial complete lift
in order to limit exported edges.

async feedFromAxon(sha256, opts=None)
Import a msgpack .nodes file from the axon.

async getAxonBytes(sha256)

async getAxonUpload()

getCoreInfo()

Return static generic information about the cortex including model definition

async getCoreInfoV2()

Return static generic information about the cortex including model definition

getCoreMods()

async getFeedFuncs()

Get a list of Cortex feed functions.

Notes

Each feed dictionary has the name of the feed function, the full docstring for the feed function, and the first
line of the docstring broken out in their own keys for easy use.

Returns
A tuple of dictionaries.

Return type
tuple

async getModelDefs()

async getModelDict()

Return a dictionary which describes the data model.

Returns
A model description dictionary.

Return type
(dict)

async getPropNorm(prop, valu)
Get the normalized property value based on the Cortex data model.

Parameters

• prop (str) – The property to normalize.

• valu – The value to normalize.

Returns
A two item tuple, containing the normed value and the info dictionary.

Return type
(tuple)

804 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Raises

• s_exc.NoSuchProp – If the prop does not exist.

• s_exc.BadTypeValu – If the value fails to normalize.

getStormDmon(iden)

getStormDmonLog(iden)

getStormDmons()

getStormPkg(name)

getStormPkgs()

async getStormVar(name, default=None)

async getTypeNorm(name, valu)
Get the normalized type value based on the Cortex data model.

Parameters

• name (str) – The type to normalize.

• valu – The value to normalize.

Returns
A two item tuple, containing the normed value and the info dictionary.

Return type
(tuple)

Raises

• s_exc.NoSuchType – If the type does not exist.

• s_exc.BadTypeValu – If the value fails to normalize.

getUserNotif(indx)

async iterFormRows(layriden, form, stortype=None, startvalu=None)
Yields buid, valu tuples of nodes of a single form, optionally (re)starting at startvalue

Parameters

• layriden (str) – Iden of the layer to retrieve the nodes

• form (str) – A form name

• stortype (Optional[int]) – a STOR_TYPE_* integer representing the type of
form:prop

• startvalu (Any) – The value to start at. May only be not None if stortype is not None.

Returns
AsyncIterator[Tuple(buid, valu)]

async iterPropRows(layriden, form, prop, stortype=None, startvalu=None)
Yields buid, valu tuples of nodes with a particular secondary property, optionally (re)starting at startvalue

Parameters

• layriden (str) – Iden of the layer to retrieve the nodes

• form (str) – A form name.

10.1. synapse package 805

Synapse Documentation, Release 2.141.0

• prop (str) – A secondary property name.

• stortype (Optional[int]) – a STOR_TYPE_* integer representing the type of
form:prop

• startvalu (Any) – The value to start at. May only be not None if stortype is not None.

Returns
AsyncIterator[Tuple(buid, valu)]

async iterTagPropRows(layriden, tag, prop, form=None, stortype=None, startvalu=None)
Yields (buid, valu) that match a tag:prop, optionally (re)starting at startvalu.

Parameters

• layriden (str) – Iden of the layer to retrieve the nodes

• tag (str) – tag name

• prop (str) – prop name

• form (Optional[str]) – optional form name

• stortype (Optional[int]) – a STOR_TYPE_* integer representing the type of
form:prop

• startvalu (Any) – The value to start at. May only be not None if stortype is not None.

Returns
AsyncIterator[Tuple(buid, valu)]

async iterTagRows(layriden, tag, form=None, starttupl=None)
Yields (buid, (valu, form)) values that match a tag and optional form, optionally (re)starting at starttupl.

Parameters

• layriden (str) – Iden of the layer to retrieve the nodes

• tag (str) – the tag to match

• form (Optional[str]) – if present, only yields buids of nodes that match the form.

• starttupl (Optional[Tuple[buid, form]]) – if present, (re)starts the stream of val-
ues there.

Returns
AsyncIterator[Tuple(buid, (valu, form))]

Note: This yields (buid, (tagvalu, form)) instead of just buid, valu in order to allow resuming an interrupted
call by feeding the last value retrieved into starttupl

async iterUnivRows(layriden, prop, stortype=None, startvalu=None)
Yields buid, valu tuples of nodes with a particular universal property, optionally (re)starting at startvalue

Parameters

• layriden (str) – Iden of the layer to retrieve the nodes

• prop (str) – A universal property name.

• stortype (Optional[int]) – a STOR_TYPE_* integer representing the type of
form:prop

• startvalu (Any) – The value to start at. May only be not None if stortype is not None.

806 Chapter 10. Synapse Python API

tag:prop

Synapse Documentation, Release 2.141.0

Returns
AsyncIterator[Tuple(buid, valu)]

iterUserNotifs(useriden, size=None)

async listCronJobs()

This API is deprecated.

Get information about all the cron jobs accessible to the current user

async popStormVar(name, default=None)

async reqValidStorm(text, opts=None)
Parse a Storm query to validate it.

Parameters

• text (str) – The text of the Storm query to parse.

• opts (dict) – A Storm options dictionary.

Returns
If the query is valid.

Return type
True

Raises
BadSyntaxError – If the query is invalid.

saveLayerNodeEdits(layriden, edits, meta)

async setNodeProp(iden, name, valu)
Set a property on a single node. Deprecated in 2.0.0.

async setStormCmd(cdef)
Set the definition of a pure storm command in the cortex.

async setStormVar(name, valu)

async spliceHistory()

This API is deprecated.

Yield splices backwards from the end of the splice log.

Will only return the user’s own splices unless they are an admin.

splices(offs=None, size=None, layriden=None)
This API is deprecated.

Return the list of splices at the given offset.

splicesBack(offs=None, size=None)
This API is deprecated.

Return the list of splices backwards from the given offset.

stat()

async storm(text, opts=None)
Evaluate a storm query and yield result messages.

Yields
((str,dict)) – Storm messages.

10.1. synapse package 807

Synapse Documentation, Release 2.141.0

async syncIndexEvents(matchdef, offsdict=None, wait=True)

async syncLayerNodeEdits(offs, layriden=None, wait=True)
Yield (indx, mesg) nodeedit sets for the given layer beginning at offset.

Once caught up, this API will begin yielding nodeedits in real-time. The generator will only terminate on
network disconnect or if the consumer falls behind the max window size of 10,000 nodeedit messages.

async syncLayersEvents(offsdict=None, wait=True)

async updateCronJob(iden, query)
This API is deprecated.

Change an existing cron job’s query

Parameters
iden (bytes) – The iden of the cron job to be changed

async watch(wdef)
This API is deprecated.

Hook cortex/view/layer watch points based on a specified watch definition.

Example

wdef = { ‘tags’: [‘foo.bar’, ‘baz.*’] }

async for mesg in core.watch(wdef):
dostuff(mesg)

watchAllUserNotifs(offs=None)

class synapse.cortex.Cortex

Bases: OAuthMixin, Cell

A Cortex implements the synapse hypergraph.

The bulk of the Cortex API lives on the Snap() object which can be obtained by calling Cortex.snap() in a with
block. This allows callers to manage transaction boundaries explicitly and dramatically increases performance.

async addCoreQueue(name, info)

async addCronJob(cdef)
Add a cron job to the cortex. Convenience wrapper around agenda.add

A cron job is a persistently-stored item that causes storm queries to be run in the future. The specification
for the times that the queries run can be one-shot or recurring.

Parameters

• query (str) – The storm query to execute in the future

• reqs (Union[Dict[str, Union[int, List[int]]], List[Dict[...]]]) – Ei-
ther a dict of the fixed time fields or a list of such dicts. The keys are in the set (‘year’,
‘month’, ‘dayofmonth’, ‘dayofweek’, ‘hour’, ‘minute’. The values must be positive inte-
gers, except for the key of ‘dayofmonth’ in which it may also be a negative integer which
represents the number of days from the end of the month with -1 representing the last day
of the month. All values may also be lists of valid values.

• incunit (Optional[str]) – A member of the same set as above, with an additional
member ‘day’. If is None (default), then the appointment is one-shot and will not recur.

808 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

• incvals (Union[int, List[int]) – A integer or a list of integers of the number of
units

Returns (bytes):
An iden that can be used to later modify, query, and delete the job.

Notes

reqs must have fields present or incunit must not be None (or both) The incunit if not None it must be larger
in unit size than all the keys in all reqs elements. Non-recurring jobs may also have a req of ‘now’ which
will cause the job to also execute immediately.

async addFeedData(name, items, *, viewiden=None)
Add data using a feed/parser function.

Parameters

• name (str) – The name of the feed record format.

• items (list) – A list of items to ingest.

• viewiden (str) – The iden of a view to use. If a view is not specified, the default view is
used.

async addForm(formname, basetype, typeopts, typeinfo)

async addFormProp(form, prop, tdef, info)

async addLayer(ldef=None, nexs=True)
Add a Layer to the cortex.

Parameters

• ldef (Optional[Dict]) – layer configuration

• nexs (bool) – whether to record a nexus transaction (internal use only)

async addLayrPull(layriden, pdef)

async addLayrPush(layriden, pdef)

async addNode(user, form, valu, props=None)

async addNodeTag(user, iden, tag, valu=(None, None))
Add a tag to a node specified by iden.

Parameters

• iden (str) – A hex encoded node BUID.

• tag (str) – A tag string.

• valu (tuple) – A time interval tuple or (None, None).

async addNodes(nodedefs, view=None)
Quickly add/modify a list of nodes from node definition tuples. This API is the simplest/fastest way to add
nodes, set node props, and add tags to nodes remotely.

Parameters
nodedefs (list) – A list of node definition tuples. See below.

A node definition tuple is defined as:

10.1. synapse package 809

Synapse Documentation, Release 2.141.0

((form, valu), {‘props’:{}, ‘tags’:{})

The “props” or “tags” keys may be omitted.

addRuntLift(prop, func)
Register a runt lift helper for a given prop.

Parameters

• prop (str) – Full property name for the prop to register the helper for.

• func –

Returns
None.

Return type
None

addRuntPropDel(full, func)
Register a prop set helper for a runt form

addRuntPropSet(full, func)
Register a prop set helper for a runt form

addStormCmd(ctor)
Add a synapse.lib.storm.Cmd class to the cortex.

async addStormDmon(ddef)
Add a storm dmon task.

async addStormGraph(gdef, user=None)

addStormLib(path, ctor)

async addStormMacro(mdef, user=None)

async addStormPkg(pkgdef, verify=False)
Add the given storm package to the cortex.

This will store the package for future use.

async addStormSvc(sdef)
Add a registered storm service to the cortex.

async addTagProp(name, tdef, info)

async addUnivProp(name, tdef, info)

async addUserNotif(useriden, mesgtype, mesgdata=None)

async addView(vdef, nexs=True)

async bumpStormDmon(iden)

async callStorm(text, opts=None)

cellapi

alias of CoreApi

810 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async cloneLayer(iden, ldef=None)
Make a copy of a Layer in the cortex.

Parameters

• iden (str) – Layer iden to clone

• ldef (Optional[Dict]) – Layer configuration overrides

Note: This should only be called with a reasonably static Cortex due to possible races.

10.1. synapse package 811

Synapse Documentation, Release 2.141.0

confbase = {'_log_conf': {'description': 'Opaque structure used for logging by
spawned processes.', 'hideconf': True, 'type': 'object'}, 'aha:admin':
{'description': 'An AHA client certificate CN to register as a local admin user.',
'type': 'string'}, 'aha:leader': {'description': 'The AHA service name to claim
as the active instance of a storm service.', 'type': 'string'}, 'aha:name':
{'description': 'The name of the cell service in the aha service registry.',
'type': 'string'}, 'aha:network': {'description': 'The AHA service network. This
makes aha:name/aha:leader relative names.', 'type': 'string'}, 'aha:provision':
{'description': 'The telepath URL of the aha provisioning service.', 'items':
{'type': 'string'}, 'type': ['string', 'array']}, 'aha:registry': {'description':
'The telepath URL of the aha service registry.', 'items': {'type': 'string'},
'type': ['string', 'array']}, 'aha:svcinfo': {'description': 'An AHA svcinfo
object. If set, this overrides self discovered Aha service information.',
'hidecmdl': True, 'hidedocs': True, 'properties': {'urlinfo': {'properties':
{'host': {'type': 'string'}, 'port': {'type': 'integer'}, 'schema': {'type':
'string'}}, 'required': ('host', 'port', 'scheme'), 'type': 'object'}},
'required': ('urlinfo',), 'type': 'object'}, 'aha:user': {'description': 'The
username of this service when connecting to others.', 'type': 'string'},
'auth:anon': {'description': 'Allow anonymous telepath access by mapping to the
given user name.', 'type': 'string'}, 'auth:conf': {'description': 'Extended
configuration to be used by an alternate auth constructor.', 'hideconf': True,
'type': 'object'}, 'auth:ctor': {'description': 'Allow the construction of the
cell auth object to be hooked at runtime.', 'hideconf': True, 'type': 'string'},
'auth:passwd': {'description': 'Set to <passwd> (local only) to bootstrap the root
user password.', 'type': 'string'}, 'backup:dir': {'description': 'A directory
outside the service directory where backups will be saved. Defaults to ./backups in
the service storage directory.', 'type': 'string'}, 'cell:ctor': {'description':
'An optional python path to the Cell class. Used by stemcell.', 'hideconf': True,
'type': 'string'}, 'cell:guid': {'description': 'An optional hard-coded GUID to
store as the permanent GUID for the service.', 'hideconf': True, 'type':
'string'}, 'dmon:listen': {'description': 'A config-driven way to specify the
telepath bind URL.', 'type': ['string', 'null']}, 'https:headers': {'description':
'Headers to add to all HTTPS server responses.', 'hidecmdl': True, 'type':
'object'}, 'https:parse:proxy:remoteip': {'default': False, 'description':
'Enable the HTTPS server to parse X-Forwarded-For and X-Real-IP headers to determine
requester IP addresses.', 'type': 'boolean'}, 'https:port': {'description': 'A
config-driven way to specify the HTTPS port.', 'type': ['integer', 'null']},
'inaugural': {'description': 'Data used to drive configuration of the service upon
first startup.', 'hidedocs': True, 'properties': {'roles': {'items':
{'additionalProperties': False, 'properties': {'name': {'pattern':
'^(?!all$).+$', 'type': 'string'}, 'rules': {'items': {'items': [{'type':
'boolean'}, {'type': 'array', 'items': {'type': 'string'}}], 'maxItems': 2,
'minItems': 2, 'type': 'array'}, 'type': 'array'}}, 'required': ['name'],
'type': 'object'}, 'type': 'array'}, 'users': {'items': {'additionalProperties':
False, 'properties': {'admin': {'default': False, 'type': 'boolean'}, 'email':
{'type': 'string'}, 'name': {'pattern': '^(?!root$).+$', 'type': 'string'},
'roles': {'items': {'type': 'string'}, 'type': 'array'}, 'rules': {'items':
{'items': [{'type': 'boolean'}, {'type': 'array', 'items': {'type':
'string'}}], 'maxItems': 2, 'minItems': 2, 'type': 'array'}, 'type': 'array'}},
'required': ['name'], 'type': 'object'}, 'type': 'array'}}, 'type': 'object'},
'limit:disk:free': {'default': 5, 'description': 'Minimum disk free space
percentage before setting the cell read-only.', 'maximum': 100, 'minimum': 0,
'type': ['integer', 'null']}, 'mirror': {'description': 'A telepath URL for our
upstream mirror (we must be a backup!).', 'hidecmdl': False, 'hidedocs': False,
'type': ['string', 'null']}, 'nexslog:async': {'default': False, 'description':
'(Experimental) Map the nexus log LMDB instance with map_async=True.', 'hidecmdl':
True, 'hidedocs': True, 'type': 'boolean'}, 'nexslog:en': {'default': True,
'description': 'Record all changes to a stream file on disk. Required for mirroring
(on both sides).', 'type': 'boolean'}, 'onboot:optimize': {'default': False,
'description': 'Delay startup to optimize LMDB databases during boot to recover
free space and increase performance. This may take a while.', 'type': 'boolean'}}

812 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

confdefs = {'axon': {'description': 'A telepath URL for a remote axon.', 'type':
'string'}, 'cron:enable': {'default': True, 'description': 'Enable cron jobs
running.', 'type': 'boolean'}, 'http:proxy': {'description': 'An aiohttp-socks
compatible proxy URL to use storm HTTP API.', 'type': 'string'}, 'jsonstor':
{'description': 'A telepath URL for a remote jsonstor.', 'type': 'string'},
'layer:lmdb:map_async': {'default': True, 'description': 'Set the default
lmdb:map_async value in LMDB layers.', 'type': 'boolean'},
'layer:lmdb:max_replay_log': {'default': 10000, 'description': 'Set the max size
of the replay log for all layers.', 'type': 'integer'}, 'layers:lockmemory':
{'default': False, 'description': 'Should new layers lock memory for performance
by default.', 'type': 'boolean'}, 'layers:logedits': {'default': True,
'description': 'Whether nodeedits are logged in each layer.', 'type': 'boolean'},
'max:nodes': {'description': 'Maximum number of nodes which are allowed to be
stored in a Cortex.', 'hidecmdl': True, 'minimum': 1, 'type': 'integer'},
'modules': {'default': [], 'description': 'A list of module classes to load.',
'type': 'array'}, 'provenance:en': {'default': False, 'description': 'This no
longer does anything.', 'hideconf': True, 'type': 'boolean'},
'storm:interface:scrape': {'default': True, 'description': 'Enable Storm scrape
interfaces when using $lib.scrape APIs.', 'type': 'boolean'},
'storm:interface:search': {'default': True, 'description': 'Enable Storm search
interfaces for lookup mode.', 'type': 'boolean'}, 'storm:log': {'default': False,
'description': 'Log storm queries via system logger.', 'type': 'boolean'},
'storm:log:level': {'default': 'INFO', 'description': 'Logging log level to emit
storm logs at.', 'type': ['integer', 'string']}, 'tls:ca:dir': {'description':
'An optional directory of CAs which are added to the TLS CA chain for Storm HTTP API
calls.', 'type': 'string'}, 'trigger:enable': {'default': True, 'description':
'Enable triggers running.', 'type': 'boolean'}}

async coreQueueCull(name, offs)

async coreQueueGet(name, offs=0, cull=True, wait=False)

async coreQueueGets(name, offs=0, cull=True, wait=False, size=None)

async coreQueuePop(name, offs)

async coreQueuePuts(name, items)

async coreQueueSize(name)

async count(text, opts=None)

async delCoreQueue(name)

async delCronJob(iden)
Delete a cron job

Parameters
iden (bytes) – The iden of the cron job to be deleted

async delForm(formname)

async delFormProp(form, prop)

async delJsonObj(path)

10.1. synapse package 813

Synapse Documentation, Release 2.141.0

async delJsonObjProp(path, prop)

async delLayer(iden)

async delLayrPull(layriden, pulliden)

async delLayrPush(layriden, pushiden)

async delNodeTag(user, iden, tag)
Delete a tag from the node specified by iden.

Parameters

• iden (str) – A hex encoded node BUID.

• tag (str) – A tag string.

async delStormCmd(name)
Remove a previously set pure storm command.

async delStormDmon(iden)
Stop and remove a storm dmon.

async delStormGraph(iden, user=None)

async delStormMacro(name, user=None)

async delStormPkg(name)

async delStormSvc(iden)

async delTagModel(tagname)
Delete all the model specification properties for a tag.

Parameters
tagname (str) – The name of the tag.

async delTagProp(name)

async delUnivProp(prop)

async delUserNotif(indx)

async delView(iden)

async disableCronJob(iden)
Enable a cron job

Parameters
iden (bytes) – The iden of the cron job to be changed

async disableStormDmon(iden)

async editCronJob(iden, name, valu)
Modify a cron job definition.

async enableCronJob(iden)
Enable a cron job

Parameters
iden (bytes) – The iden of the cron job to be changed

814 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async enableStormDmon(iden)

async eval(text, opts=None)
Evaluate a storm query and yield packed nodes.

NOTE: This API is deprecated as of 2.0.0 and will be removed in 3.0.0

async exportStorm(text, opts=None)

async exportStormToAxon(text, opts=None)

async feedFromAxon(sha256, opts=None)

async getAxon()

async getCellApi(link, user, path)
Get an instance of the telepath Client object for a given user, link and path.

Parameters

• link (s_link.Link) – The link object.

• user (s_hive.HiveUser) – The heavy user object.

• path (str) – The path requested.

Notes

This defaults to the self.cellapi class. Implementors may override the default class attribute for cellapi to
share a different interface.

Returns
The shared object for this cell.

Return type
object

getCoreInfo()

This API is deprecated.

async getCoreInfoV2()

getCoreMod(name)

getCoreMods()

async getCoreQueue(name)

getDataModel()

async getDeprLocks()

Return a dictionary of deprecated properties and their lock status.

getFeedFunc(name)
Get a data ingest function.

async getFeedFuncs()

async getFormCounts()

Return total form counts for all existing layers

10.1. synapse package 815

Synapse Documentation, Release 2.141.0

async getJsonObj(path)

async getJsonObjProp(path, prop)

async getJsonObjs(path)

getLayer(iden=None)
Get a Layer object.

Parameters
iden (str) – The layer iden to retrieve.

Returns
A Layer object.

Return type
Layer

async getLayerDef(iden=None)

async getLayerDefs()

async getModelDefs()

async getModelDict()

async getNodeByNdef(ndef, view=None)
Return a single Node() instance by (form,valu) tuple.

async getPropNorm(prop, valu)
Get the normalized property value based on the Cortex data model.

Parameters

• prop (str) – The property to normalize.

• valu – The value to normalize.

Returns
A two item tuple, containing the normed value and the info dictionary.

Return type
(tuple)

Raises

• s_exc.NoSuchProp – If the prop does not exist.

• s_exc.BadTypeValu – If the value fails to normalize.

getStormCmd(name)

getStormCmds()

async getStormDmon(iden)

async getStormDmonLog(iden)

async getStormDmons()

816 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async getStormDocs()

Get a struct containing the Storm Types documentation.

Returns
A Dictionary of storm documentation information.

Return type
dict

async getStormGraph(iden, user=None)

async getStormGraphs(user=None)

async getStormIfaces(name)

getStormLib(path)

getStormMacro(name, user=None)

async getStormMacros(user=None)

async getStormMod(name, reqvers=None)

async getStormMods()

async getStormPkg(name)

async getStormPkgs()

async getStormQuery(text, mode='storm')

getStormRuntime(query, opts=None)

getStormSvc(name)

getStormSvcs()

async getStormVar(name, default=None)

async getTagModel(tagname)
Retrieve the tag model specification for a tag.

Returns
The tag model specification or None.

Return type
(dict)

async getTagPrune(tagname)

async getTypeNorm(name, valu)
Get the normalized type value based on the Cortex data model.

Parameters

• name (str) – The type to normalize.

• valu – The value to normalize.

Returns
A two item tuple, containing the normed value and the info dictionary.

10.1. synapse package 817

Synapse Documentation, Release 2.141.0

Return type
(tuple)

Raises

• s_exc.NoSuchType – If the type does not exist.

• s_exc.BadTypeValu – If the value fails to normalize.

async getUserNotif(indx)

getView(iden=None, user=None)
Get a View object.

Parameters
iden (str) – The View iden to retrieve.

Returns
A View object.

Return type
View

async getViewDef(iden)

async getViewDefs(deporder=False)

async hasJsonObj(path)

hiveapi

alias of HiveApi

async initServiceActive()

async initServicePassive()

async initServiceRuntime()

async initServiceStorage()

isTagValid(tagname)
Check if a tag name is valid according to tag model regular expressions.

Returns
True if the tag is valid.

Return type
(bool)

async itemsStormVar()

async iterFormRows(layriden, form, stortype=None, startvalu=None)
Yields buid, valu tuples of nodes of a single form, optionally (re)starting at startvalu.

Parameters

• layriden (str) – Iden of the layer to retrieve the nodes

• form (str) – A form name.

• stortype (Optional[int]) – a STOR_TYPE_* integer representing the type of
form:prop

• startvalu (Any) – The value to start at. May only be not None if stortype is not None.

818 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Returns
AsyncIterator[Tuple(buid, valu)]

async iterPropRows(layriden, form, prop, stortype=None, startvalu=None)
Yields buid, valu tuples of nodes with a particular secondary property, optionally (re)starting at startvalu.

Parameters

• layriden (str) – Iden of the layer to retrieve the nodes

• form (str) – A form name.

• prop (str) – A universal property name.

• stortype (Optional[int]) – a STOR_TYPE_* integer representing the type of
form:prop

• startvalu (Any) – The value to start at. May only be not None if stortype is not None.

Returns
AsyncIterator[Tuple(buid, valu)]

async iterTagPropRows(layriden, tag, prop, form=None, stortype=None, startvalu=None)
Yields (buid, valu) that match a tag:prop, optionally (re)starting at startvalu.

Parameters

• layriden (str) – Iden of the layer to retrieve the nodes

• tag (str) – tag name

• prop (str) – prop name

• form (Optional[str]) – optional form name

• stortype (Optional[int]) – a STOR_TYPE_* integer representing the type of
form:prop

• startvalu (Any) – The value to start at. May only be not None if stortype is not None.

Returns
AsyncIterator[Tuple(buid, valu)]

async iterTagRows(layriden, tag, form=None, starttupl=None)
Yields (buid, (valu, form)) values that match a tag and optional form, optionally (re)starting at starttupl.

Parameters

• layriden (str) – Iden of the layer to retrieve the nodes

• tag (str) – the tag to match

• form (Optional[str]) – if present, only yields buids of nodes that match the form.

• starttupl (Optional[Tuple[buid, form]]) – if present, (re)starts the stream of val-
ues there.

Returns
AsyncIterator[Tuple(buid, (valu, form))]

Note: This yields (buid, (tagvalu, form)) instead of just buid, valu in order to allow resuming an interrupted
call by feeding the last value retrieved into starttupl

10.1. synapse package 819

tag:prop

Synapse Documentation, Release 2.141.0

async iterUnivRows(layriden, prop, stortype=None, startvalu=None)
Yields buid, valu tuples of nodes with a particular universal property, optionally (re)starting at startvalu.

Parameters

• layriden (str) – Iden of the layer to retrieve the nodes

• prop (str) – A universal property name.

• stortype (Optional[int]) – a STOR_TYPE_* integer representing the type of
form:prop

• startvalu (Any) – The value to start at. May only be not None if stortype is not None.

Returns
AsyncIterator[Tuple(buid, valu)]

async iterUserNotifs(useriden, size=None)

layerapi

alias of LayerApi

async classmethod layrctor(*args, **kwargs)

async listCoreQueues()

async listCronJobs()

Get information about all the cron jobs accessible to the current user

listLayers()

async listTagModel()

Retrieve a list of the tag model specifications.

Returns
A list of tag model specification tuples.

Return type
([(str, dict), . . .])

listViews()

async loadCoreModule(ctor, conf=None)
Load a single cortex module with the given ctor and conf.

Parameters

• ctor (str) – The python module class path

• conf (dict) – Config dictionary for the module

async loadStormPkg(pkgdef)
Load a storm package into the storm library for this cortex.

NOTE: This will not persist the package (allowing service dynamism).

async modStormGraph(iden, info, user=None)

async modStormMacro(name, info, user=None)

async moveCronJob(useriden, croniden, viewiden)

820 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async nodes(text, opts=None)
A simple non-streaming way to return a list of nodes.

offTagAdd(name, func)
Unregister a callback for tag addition.

Parameters

• name (str) – The name of the tag or tag glob.

• func (function) – The callback func(node, tagname, tagval).

offTagDel(name, func)
Unregister a callback for tag deletion.

Parameters

• name (str) – The name of the tag or tag glob.

• func (function) – The callback func(node, tagname, tagval).

onTagAdd(name, func)
Register a callback for tag addition.

Parameters

• name (str) – The name of the tag or tag glob.

• func (function) – The callback func(node, tagname, tagval).

onTagDel(name, func)
Register a callback for tag deletion.

Parameters

• name (str) – The name of the tag or tag glob.

• func (function) – The callback func(node, tagname, tagval).

async popStormVar(name, default=None)

async popTagModel(tagname, name)
Pop a property from the model specification of a tag.

Parameters

• tagname (str) – The name of the tag.

• name (str) – The name of the specification property.

Returns
The current value of the property.

Return type
(object)

reqStormMacro(name, user=None)

async reqValidStorm(text, opts=None)
Parse a storm query to validate it.

Parameters

• text (str) – The text of the Storm query to parse.

• opts (dict) – A Storm options dictionary.

10.1. synapse package 821

Synapse Documentation, Release 2.141.0

Returns
If the query is valid.

Return type
True

Raises
BadSyntaxError – If the query is invalid.

async reqValidStormGraph(gdef)

async runLayrPull(layr, pdef)

async runLayrPush(layr, pdef)

async runRuntLift(full, valu=None, cmpr=None, view=None)
Execute a runt lift function.

Parameters

• full (str) – Property to lift by.

• valu –

• cmpr –

Returns

Yields bytes, list tuples where the list contains a series of
key/value pairs which are used to construct a Node object.

Return type
bytes, list

async runRuntPropDel(node, prop)

async runRuntPropSet(node, prop, valu)

async runStormDmon(iden, ddef)

async runStormSvcEvent(iden, name)

async saveLayerNodeEdits(layriden, edits, meta)

async setDeprLock(name, locked)

setFeedFunc(name, func)
Set a data ingest function.

def func(snap, items):
loaditems. . .

async setJsonObj(path, item)

async setJsonObjProp(path, prop, item)

async setStormCmd(cdef)

async setStormGraphPerm(gden, scope, iden, level, user=None)

async setStormMacroPerm(name, scope, iden, level, user=None)

822 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async setStormSvcEvents(iden, edef)
Set the event callbacks for a storm service. Extends the sdef dict.

Parameters

• iden (str) – The service iden.

• edef (dict) – The events definition.

Notes

The edef is formatted like the following:

{
<name> : {

'storm': <storm>
}

}

where name is one of the following items:

add

Run the given storm ‘before the service is first added (a la service.add), but not on a reconnect.

del

Run the given storm after the service is removed (a la service.del), but not on a disconnect.

Returns
An updated storm service definition dictionary.

Return type
dict

async setStormVar(name, valu)

async setTagModel(tagname, name, valu)
Set a model specification property for a tag.

Parameters

• tagname (str) – The name of the tag.

• name (str) – The name of the property.

• valu (object) – The value of the property.

Tag Model Properties:
regex - A list of None or regular expression strings to match each tag level. prune - A number that
determines how many levels of pruning are desired.

10.1. synapse package 823

Synapse Documentation, Release 2.141.0

Examples

await core.setTagModel(“cno.cve”, “regex”, (None, None, “[0-9]{4}”, “[0-9]{5}”))

async setUserLocked(iden, locked)

async setViewLayers(layers, iden=None)

Parameters

• layers ([str]) – A top-down list of of layer guids

• iden (str) – The view iden (defaults to default view).

async snap(user=None, view=None)
Return a transaction object for the default view.

Parameters

• user (str) – The user to get the snap for.

• view (View) – View object to use when making the snap.

Notes

This must be used as an asynchronous context manager.

Returns
A Snap object for the view.

Return type
s_snap.Snap

async spliceHistory(user)
Yield splices backwards from the end of the nodeedit log.

Will only return user’s own splices unless they are an admin.

async stat()

async storm(text, opts=None)

async stormlist(text, opts=None)

async syncIndexEvents(matchdef, offsdict=None, wait=True)
Yield (offs, layriden, <STYPE>, <item>) tuples from the nodeedit logs of all layers starting from the given
nexus/layer offset (they are synchronized). Only edits that match the filter in matchdef will be yielded, plus
EDIT_PROGRESS (see layer.syncIndexEvents) messages.

The format of the 4th element of the tuple depends on STYPE. STYPE is one of the following constants:

SYNC_LAYR_ADD: item is an empty tuple () SYNC_LAYR_DEL: item is an empty tu-
ple () SYNC_NODEEDIT: item is (buid, form, ETYPE, VALS, META)) or (None, None,
s_layer.EDIT_PROGRESS, (), ())

For edits in the past, events are yielded in offset order across all layers. For current data (wait=True), events
across different layers may be emitted slightly out of offset order.

Note: Will not yield any values from layers created with logedits disabled

824 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Parameters

• matchdef (Dict[str, Sequence[str]]) – a dict describing which events are yielded.
See layer.syncIndexEvents for matchdef specification.

• offsdict (Optional(Dict[str,int])) – starting nexus/editlog offset by layer iden.
Defaults to 0 for unspecified layers or if offsdict is None.

• wait (bool) – whether to pend and stream value until this layer is fini’d

async syncLayerNodeEdits(iden, offs, wait=True)
Yield (offs, mesg) tuples for nodeedits in a layer.

async syncLayersEvents(offsdict=None, wait=True)
Yield (offs, layriden, STYP, item, meta) tuples for nodeedits for all layers, interspersed with add/del layer
messages.

STYP is one of the following constants:
SYNC_NODEEDITS: item is a nodeedits (buid, form, edits) SYNC_LAYR_ADD: A layer was added
(item and meta are empty) SYNC_LAYR_DEL: A layer was deleted (item and meta are empty)

Parameters

• offsdict (Optional(Dict[str,int])) – starting nexus/editlog offset by layer iden.
Defaults to 0 for unspecified layers or if offsdict is None.

• wait (bool) – whether to pend and stream value until this layer is fini’d

async updateCronJob(iden, query)
Change an existing cron job’s query

Parameters
iden (bytes) – The iden of the cron job to be changed

async verifyStormPkgDeps(pkgdef)

viewapi

alias of ViewApi

async classmethod viewctor(*args, **kwargs)

async waitStormSvc(name, timeout=None)

async watch(wdef)
Hook cortex/view/layer watch points based on a specified watch definition. (see CoreApi.watch() docs for
details)

async watchAllUserNotifs(offs=None)

watcher(wdef)

synapse.cortex.cmprkey_buid(x)

synapse.cortex.cmprkey_indx(x)

synapse.cortex.getTempCortex(mods=None)
Get a proxy to a cortex backed by a temporary directory.

Parameters
mods (list) – A list of modules which are loaded into the cortex.

10.1. synapse package 825

Synapse Documentation, Release 2.141.0

Notes

The cortex and temporary directory are town down on exit. This should only be called from synchronous code.

Returns
Proxy to the cortex.

synapse.cortex.stormlogger = <Logger synapse.storm (WARNING)>

A Cortex implements the synapse hypergraph object.

async synapse.cortex.wrap_liftgenr(iden, genr)

10.1.7 synapse.cryotank module

class synapse.cryotank.CryoApi

Bases: CellApi

The CryoCell API as seen by a telepath proxy.

This is the API to reference for remote CryoCell use.

delete(name)

async init(name, conf=None)

async last(name)

async list()

async metrics(name, offs, size=None)

async offset(name, iden)

async puts(name, items, seqn=None)

async rows(name, offs, size, iden=None)

async slice(name, offs, size=None, iden=None)

class synapse.cryotank.CryoCell

Bases: Cell

cellapi

alias of CryoApi

async delete(name)

async getCellApi(link, user, path)
Get an instance of the telepath Client object for a given user, link and path.

Parameters

• link (s_link.Link) – The link object.

• user (s_hive.HiveUser) – The heavy user object.

• path (str) – The path requested.

826 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

Notes

This defaults to the self.cellapi class. Implementors may override the default class attribute for cellapi to
share a different interface.

Returns
The shared object for this cell.

Return type
object

classmethod getEnvPrefix()

Get a list of envar prefixes for config resolution.

async init(name, conf=None)
Generate a new CryoTank with a given name or get an reference to an existing CryoTank.

Parameters
name (str) – Name of the CryoTank.

Returns
A CryoTank instance.

Return type
CryoTank

async list()

Get a list of (name, info) tuples for the CryoTanks.

Returns
A list of tufos.

Return type
list

tankapi

alias of TankApi

class synapse.cryotank.CryoTank

Bases: Base

A CryoTank implements a stream of structured data.

getOffset(iden)

async iden()

async info()

Returns information about the CryoTank instance.

Returns
A dict containing items and metrics indexes.

Return type
dict

last()

Return an (offset, item) tuple for the last element in the tank (or None).

10.1. synapse package 827

Synapse Documentation, Release 2.141.0

async metrics(offs, size=None)
Yield metrics rows starting at offset.

Parameters

• offs (int) – The index offset.

• size (int) – The maximum number of records to yield.

Yields
((int, dict)) – An index offset, info tuple for metrics.

async puts(items, seqn=None)
Add the structured data from items to the CryoTank.

Parameters

• items (list) – A list of objects to store in the CryoTank.

• seqn (iden, offs) – An iden / offset pair to record.

Returns
The ending offset of the items or seqn.

Return type
int

async rows(offs, size=None, iden=None)
Yield a number of raw items from the CryoTank starting at a given offset.

Parameters

• offs (int) – The index of the desired datum (starts at 0)

• size (int) – The max number of items to yield.

Yields
((indx, bytes)) – Index and msgpacked bytes.

setOffset(iden, offs)

async slice(offs, size=None, iden=None)
Yield a number of items from the CryoTank starting at a given offset.

Parameters

• offs (int) – The index of the desired datum (starts at 0)

• size (int) – The max number of items to yield.

Yields
((index, object)) – Index and item values.

class synapse.cryotank.TankApi

Bases: CellApi

async iden()

async metrics(offs, size=None)

async offset(iden)

async puts(items, seqn=None)

async slice(offs, size=None, iden=None)

828 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

10.1.8 synapse.daemon module

class synapse.daemon.AsyncGenr

Bases: Share

typename = 'genr'

class synapse.daemon.Daemon

Bases: Base

async getSessInfo()

async listen(url, **opts)
Bind and listen on the given host/port with possible SSL.

Parameters

• host (str) – A hostname or IP address.

• port (int) – The TCP port to bind.

async setReady(ready)

share(name, item)

Share an object via the telepath protocol.

Parameters

• name (str) – Name of the shared object

• item (object) – The object to share over telepath.

class synapse.daemon.Genr

Bases: Share

typename = 'genr'

class synapse.daemon.Sess

Bases: Base

getSessItem(name)

pack()

popSessItem(name)

setSessItem(name, item)

async synapse.daemon.t2call(link, meth, args, kwargs)
Call the given meth(*args, **kwargs) and handle the response to provide telepath task v2 events to the given
link.

10.1. synapse package 829

Synapse Documentation, Release 2.141.0

10.1.9 synapse.datamodel module

An API to assist with the creation and enforcement of cortex data models.

class synapse.datamodel.Edge(modl, edgetype, edgeinfo)
Bases: object

pack()

class synapse.datamodel.Form(modl, name, info)
Bases: object

The Form class implements data model logic for a node form.

delProp(name)

getFormDef()

getRefsOut()

getStorNode(form)

offAdd(func)
Unregister a callback for tag addition.

Parameters

• name (str) – The name of the tag.

• func (function) – The callback func(node)

onAdd(func)
Add a callback for adding this type of node.

The callback is executed after node construction.

Parameters
func (function) – A callback func(node)

def func(xact, node):
dostuff()

onDel(func)

pack()

prop(name: str)
Return a secondary property for this form by relative prop name.

Parameters
name (str) – The relative property name.

Returns
The property or None.

Return type
(synapse.datamodel.Prop)

setProp(name, prop)

830 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

async wasAdded(node)
Fire the onAdd() callbacks for node creation.

async wasDeleted(node)
Fire the onDel() callbacks for node deletion.

class synapse.datamodel.Model

Bases: object

The data model used by a Cortex hypergraph.

addBaseType(item)

Add a Type instance to the data model.

addDataModels(mods)
Add a list of (name, mdef) tuples.

A model definition (mdef) is structured as follows:

{
"ctors":(

('name', 'class.path.ctor', {}, {'doc': 'The foo thing.'}),
),

"types":(
('name', ('basetype', {typeopts}), {info}),

),

"forms":(
(formname, (typename, typeopts), {info}, (

(propname, (typename, typeopts), {info}),
)),

),
"univs":(

(propname, (typename, typeopts), {info}),
)
"tagprops":(

(tagpropname, (typename, typeopts), {info}),
)
"interfaces":(

(ifacename, {
'props': ((propname, (typename, typeopts), {info}),),
'doc': docstr,
'interfaces': (ifacename,)

}),
)

}

Parameters
mods (list) – The list of tuples.

Returns
None

addEdge(edgetype, edgeinfo)

10.1. synapse package 831

Synapse Documentation, Release 2.141.0

addForm(formname, forminfo, propdefs)

addFormProp(formname, propname, tdef, info)

addIface(name, info)

addTagProp(name, tdef, info)

addType(typename, basename, typeopts, typeinfo)

addUnivProp(name, tdef, info)

delForm(formname)

delFormProp(formname, propname)

delTagProp(name)

delType(typename)

delUnivProp(propname)

form(name)

getArrayPropsByType(name)

getModelDefs()

Returns
A list of one model definition compatible with addDataModels that represents the current
data model

getModelDict()

getProps()

getPropsByType(name)

getTagProp(name)

getTypeClone(typedef)

prop(name)

tagprop(name)

type(name)
Return a synapse.lib.types.Type by name.

univ(name)

class synapse.datamodel.Prop(modl, form, name, typedef, info)
Bases: object

The Prop class represents a property defined within the data model.

getCompOffs()

Return the offset of this field within the compound primary prop or None.

getPropDef()

832 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

getStorNode(form)

onDel(func)
Add a callback for deleting this property.

The callback is executed after the property is deleted.

Parameters
func (function) – A prop del callback.

The callback is called within the current transaction, with the node, and the old property value (or None).

def func(node, oldv):
dostuff()

onSet(func)
Add a callback for setting this property.

The callback is executed after the property is set.

Parameters
func (function) – A prop set callback.

The callback is called within the current transaction, with the node, and the old property value (or None).

def func(node, oldv):
dostuff()

pack()

async wasDel(node, oldv)

async wasSet(node, oldv)
Fire the onset() handlers for this property.

Parameters

• node (synapse.lib.node.Node) – The node whose property was set.

• oldv (obj) – The previous value of the property.

class synapse.datamodel.TagProp(model, name, tdef, info)
Bases: object

getStorNode(form)

getTagPropDef()

pack()

10.1.10 synapse.exc module

Exceptions used by synapse, all inheriting from SynErr

exception synapse.exc.AuthDeny(*args, **info)
Bases: SynErr

exception synapse.exc.BackupAlreadyRunning(*args, **info)
Bases: SynErr

Only one backup may be running at a time

10.1. synapse package 833

Synapse Documentation, Release 2.141.0

exception synapse.exc.BadArg(*args, **info)
Bases: SynErr

Improper function arguments

exception synapse.exc.BadCast(*args, **info)
Bases: SynErr

exception synapse.exc.BadCertBytes(*args, **info)
Bases: SynErr

Raised by certdir when the certificate fails to load.

exception synapse.exc.BadCertHost(*args, **info)
Bases: SynErr

exception synapse.exc.BadCertVerify(*args, **info)
Bases: SynErr

Raised by certdir when there is a failure to verify a certificate context.

exception synapse.exc.BadCmdName(*args, **info)
Bases: SynErr

exception synapse.exc.BadCmprType(*args, **info)
Bases: SynErr

Attempt to compare two incomparable values

exception synapse.exc.BadCmprValu(*args, **info)
Bases: SynErr

exception synapse.exc.BadConfValu(*args, **info)
Bases: SynErr

The configuration value provided is not valid.

This should contain the config name, valu and mesg.

exception synapse.exc.BadCoreStore(*args, **info)
Bases: SynErr

The storage layer has encountered an error

exception synapse.exc.BadCtorType(*args, **info)
Bases: SynErr

exception synapse.exc.BadDataValu(*args, **info)
Bases: SynErr

Cannot process the data as intended.

exception synapse.exc.BadEccExchange(*args, **info)
Bases: CryptoErr

Raised when there is an issue doing a ECC Key Exchange

exception synapse.exc.BadFileExt(*args, **info)
Bases: SynErr

exception synapse.exc.BadFormDef(*args, **info)
Bases: SynErr

834 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

exception synapse.exc.BadHivePath(*args, **info)
Bases: SynErr

exception synapse.exc.BadIndxValu(*args, **info)
Bases: SynErr

exception synapse.exc.BadJsonText(*args, **info)
Bases: SynErr

exception synapse.exc.BadLiftValu(*args, **info)
Bases: SynErr

exception synapse.exc.BadMesgFormat(*args, **info)
Bases: SynErr

exception synapse.exc.BadMesgVers(*args, **info)
Bases: SynErr

exception synapse.exc.BadOperArg(*args, **info)
Bases: SynErr

Improper storm function arguments

exception synapse.exc.BadOptValu(*args, **info)
Bases: SynErr

exception synapse.exc.BadPkgDef(*args, **info)
Bases: SynErr

exception synapse.exc.BadPropDef(*args, **info)
Bases: SynErr

exception synapse.exc.BadStorageVersion(*args, **info)
Bases: SynErr

Stored persistent data is incompatible with running software

exception synapse.exc.BadSyntax(*args, **info)
Bases: SynErr

exception synapse.exc.BadTag(*args, **info)
Bases: SynErr

exception synapse.exc.BadTime(*args, **info)
Bases: SynErr

exception synapse.exc.BadTypeDef(*args, **info)
Bases: SynErr

exception synapse.exc.BadTypeValu(*args, **info)
Bases: SynErr

exception synapse.exc.BadUrl(*args, **info)
Bases: SynErr

exception synapse.exc.BadVersion(*args, **info)
Bases: SynErr

Generic Bad Version exception.

10.1. synapse package 835

Synapse Documentation, Release 2.141.0

exception synapse.exc.CantDelCmd(*args, **info)
Bases: SynErr

exception synapse.exc.CantDelForm(*args, **info)
Bases: SynErr

exception synapse.exc.CantDelNode(*args, **info)
Bases: SynErr

exception synapse.exc.CantDelProp(*args, **info)
Bases: SynErr

exception synapse.exc.CantDelType(*args, **info)
Bases: SynErr

exception synapse.exc.CantDelUniv(*args, **info)
Bases: SynErr

exception synapse.exc.CantMergeView(*args, **info)
Bases: SynErr

exception synapse.exc.CantRevLayer(*args, **info)
Bases: SynErr

exception synapse.exc.CliFini(*args, **info)
Bases: SynErr

Raised when the CLI is to exit.

exception synapse.exc.CryptoErr(*args, **info)
Bases: SynErr

Raised when there is a synapse.lib.crypto error.

exception synapse.exc.DataAlreadyExists(*args, **info)
Bases: SynErr

Cannot copy data to a location that already contains data

exception synapse.exc.DbOutOfSpace(*args, **info)
Bases: SynErr

exception synapse.exc.DmonSpawn(*args, **info)
Bases: SynErr

Raised by a dispatched telepath method that has answered the call using a spawned process. (control flow that
is compatible with aborting standard calls, generators, and async generators).

exception synapse.exc.DupFileName(*args, **info)
Bases: SynErr

exception synapse.exc.DupFormName(*args, **info)
Bases: SynErr

exception synapse.exc.DupIden(*args, **info)
Bases: SynErr

exception synapse.exc.DupIndx(*args, **info)
Bases: SynErr

836 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

exception synapse.exc.DupName(*args, **info)
Bases: SynErr

exception synapse.exc.DupPropName(*args, **info)
Bases: SynErr

exception synapse.exc.DupRoleName(*args, **info)
Bases: SynErr

exception synapse.exc.DupStormSvc(*args, **info)
Bases: SynErr

exception synapse.exc.DupTagPropName(*args, **info)
Bases: SynErr

exception synapse.exc.DupUserName(*args, **info)
Bases: SynErr

exception synapse.exc.FatalErr(*args, **info)
Bases: SynErr

Raised when a fatal error has occurred which an application cannot recover from.

exception synapse.exc.FeatureNotSupported(*args, **info)
Bases: SynErr

exception synapse.exc.FileExists(*args, **info)
Bases: SynErr

exception synapse.exc.HitLimit(*args, **info)
Bases: SynErr

exception synapse.exc.InconsistentStorage(*args, **info)
Bases: SynErr

Stored persistent data is inconsistent

exception synapse.exc.IsDeprLocked(*args, **info)
Bases: SynErr

exception synapse.exc.IsFini(*args, **info)
Bases: SynErr

exception synapse.exc.IsReadOnly(*args, **info)
Bases: SynErr

exception synapse.exc.IsRuntForm(*args, **info)
Bases: SynErr

exception synapse.exc.LayerInUse(*args, **info)
Bases: SynErr

exception synapse.exc.LinkBadCert(*args, **info)
Bases: LinkErr

exception synapse.exc.LinkErr(*args, **info)
Bases: SynErr

10.1. synapse package 837

Synapse Documentation, Release 2.141.0

exception synapse.exc.LinkShutDown(*args, **info)
Bases: LinkErr

exception synapse.exc.LmdbLock(*args, **info)
Bases: SynErr

exception synapse.exc.LowSpace(*args, **info)
Bases: SynErr

exception synapse.exc.ModAlreadyLoaded(*args, **info)
Bases: SynErr

exception synapse.exc.MustBeJsonSafe(*args, **info)
Bases: SynErr

exception synapse.exc.NeedConfValu(*args, **info)
Bases: SynErr

exception synapse.exc.NoCertKey(*args, **info)
Bases: SynErr

Raised when a Cert object requires a RSA Private Key to perform an operation and the key is not present.

exception synapse.exc.NoSuchAbrv(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchAct(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchAuthGate(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchCert(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchCmd(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchCmpr(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchCond(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchCtor(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchDecoder(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchDir(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchDyn(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchEncoder(*args, **info)
Bases: SynErr

838 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

exception synapse.exc.NoSuchFile(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchForm(*args, **info)
Bases: SynErr

classmethod init(name, mesg=None)

exception synapse.exc.NoSuchFunc(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchIden(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchImpl(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchIndx(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchLayer(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchLift(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchMeth(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchName(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchObj(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchOpt(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchPath(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchPivot(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchPkg(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchProp(*args, **info)
Bases: SynErr

classmethod init(name, mesg=None)

exception synapse.exc.NoSuchRole(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchStormSvc(*args, **info)
Bases: SynErr

10.1. synapse package 839

Synapse Documentation, Release 2.141.0

exception synapse.exc.NoSuchTagProp(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchType(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchUniv(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchUser(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchVar(*args, **info)
Bases: SynErr

exception synapse.exc.NoSuchView(*args, **info)
Bases: SynErr

exception synapse.exc.NotANumberCompared(*args, **info)
Bases: SynErr

exception synapse.exc.NotMsgpackSafe(*args, **info)
Bases: SynErr

exception synapse.exc.NotReady(*args, **info)
Bases: Retry

exception synapse.exc.ParserExit(*args, **info)
Bases: SynErr

Raised by synapse.lib.cmd.Parser on Parser exit()

exception synapse.exc.PathExists(*args, **info)
Bases: SynErr

exception synapse.exc.ReadOnlyLayer(*args, **info)
Bases: SynErr

exception synapse.exc.ReadOnlyProp(*args, **info)
Bases: SynErr

exception synapse.exc.RecursionLimitHit(*args, **info)
Bases: SynErr

exception synapse.exc.Retry(*args, **info)
Bases: SynErr

exception synapse.exc.SchemaViolation(*args, **info)
Bases: SynErr

exception synapse.exc.SlabAlreadyOpen(*args, **info)
Bases: SynErr

exception synapse.exc.SlabInUse(*args, **info)
Bases: SynErr

exception synapse.exc.SpawnExit(*args, **info)
Bases: SynErr

840 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

exception synapse.exc.StepTimeout(*args, **info)
Bases: SynErr

Raised when a TestStep.wait() call times out.

exception synapse.exc.StormPkgConflicts(*args, **info)
Bases: SynErr

exception synapse.exc.StormPkgRequires(*args, **info)
Bases: SynErr

exception synapse.exc.StormRaise(*args, **info)
Bases: SynErr

This represents a user provided exception inside of a Storm runtime. It requires a errname key.

exception synapse.exc.StormRuntimeError(*args, **info)
Bases: SynErr

exception synapse.exc.StormVarListError(*args, **info)
Bases: StormRuntimeError

exception synapse.exc.SynErr(*args, **info)
Bases: Exception

get(name, defv=None)
Return a value from the errinfo dict.

Example

try:
foothing()

except SynErr as e:
blah = e.get(‘blah’)

items()

set(name, valu)
Set a value in the errinfo dict.

setdefault(name, valu)
Set a value in errinfo dict if it is not already set.

exception synapse.exc.TeleRedir(*args, **info)
Bases: SynErr

exception synapse.exc.TimeOut(*args, **info)
Bases: SynErr

10.1. synapse package 841

Synapse Documentation, Release 2.141.0

10.1.11 synapse.glob module

synapse.glob.iAmLoop()

synapse.glob.initloop()

synapse.glob.setGreedCoro(loop: AbstractEventLoop)

synapse.glob.sync(coro, timeout=None)
Schedule a coroutine to run on the global loop and return it’s result.

Parameters
coro (coroutine) – The coroutine instance.

Notes

This API is thread safe and should only be called by non-loop threads.

synapse.glob.synchelp(f)
The synchelp decorator allows the transparent execution of a coroutine using the global loop from a thread other
than the event loop. In both use cases, the actual work is done by the global event loop.

Examples

Use as a decorator:

@s_glob.synchelp
async def stuff(x, y):

await dostuff()

Calling the stuff function as regular async code using the standard await syntax:

valu = await stuff(x, y)

Calling the stuff function as regular sync code outside of the event loop thread:

valu = stuff(x, y)

10.1.12 synapse.mindmeld module

10.1.13 synapse.telepath module

An RMI framework for synapse.

class synapse.telepath.Aware

Bases: object

The telepath.Aware mixin allows shared objects to handle individual links managed by the Daemon.

async getTeleApi(link, mesg, path)
Return a shared object for this link. :param link: A network link. :type link: synapse.lib.link.Link :param
mesg: The tele:syn handshake message. :type mesg: (str,dict)

842 Chapter 10. Synapse Python API

Synapse Documentation, Release 2.141.0

onTeleShare(dmon, name)

class synapse.telepath.Client

Bases: Base

A Telepath client object which reconnects and allows waiting for link up.

Notes

The conf data allows changing parameters such as timeouts, retry period, and link pool size. The default conf
data can be seen below:

conf = {
'timeout': 10,
'retrysleep': 0.2,
'link_poolsize': 4,

}

async offlink(func)

async onlink(func)

async proxy(timeout=10)

async task(todo, name=None)

async waitready(timeout=10)

class synapse.telepath.Genr

Bases: Share

class synapse.telepath.GenrIter(proxy, todo, share)
Bases: object

An object to help delay a telepath call until iteration.

async list()

class synapse.telepath.GenrMethod(proxy, name, share=None)
Bases: Method

class synapse.telepath.Method(proxy, name, share=None)
Bases: object

The telepath Method is used to provide proxy method calls.

class synapse.telepath.Pipeline

Bases: Base

class synapse.telepath.Proxy

Bases: Base

A telepath Proxy is used to call remote APIs on a shared object.

10.1. synapse package 843

Synapse Documentation, Release 2.141.0

Example

import synapse.telepath as s_telepath

open the “foo” object shared in a dmon on localhost:3344

async def doFooThing():

proxy = await s_telepath.openurl(’tcp://127.0.0.1:3344/foo’)

valu = await proxy.getFooValu(x, y)

The proxy (and openurl function) may also be used from sync code:

proxy = s_telepath.openurl(’tcp://127.0.0.1:3344/foo’)

valu = proxy.getFooValu(x, y)

async call(methname, *args, **kwargs)
Call a remote method by name.

Parameters

• methname (str) – The name of the remote method.

• *args – Arguments to the method call.

• **kwargs – Keyword arguments to the method call.

Most use cases will likely use the proxy methods directly:

The following two are effectively the same:

valu = proxy.getFooBar(x, y) valu = proxy.call(‘getFooBar’, x, y)

async getPipeline(genr, name=None)
Construct a proxy API call pipeline in order to make multiple telepath API calls while minimizing round
trips.

Parameters

• genr (async generator) – An async generator that yields todo tuples.

• name (str) – The name of the shared object on the daemon.

Example

def genr():
yield s_common.todo(‘getFooByBar’, 10) yield s_common.todo(‘getFooByBar’, 20)

for retn in proxy.getPipeline(genr()):
valu = s_common.result(retn)

async getPoolLink()

async handshake(auth=None)

async task(todo, name=None)

async taskv2(todo, name=None)

844 Chapter 10. Synapse Python API

tcp://127.0.0.1:3344/foo
tcp://127.0.0.1:3344/foo

Synapse Documentation, Release 2.141.0

class synapse.telepath.Share

Bases: Base

The telepath client side of a dynamically shared object.

class synapse.telepath.Task

Bases: object

A telepath Task is used to internally track calls/responses.

reply(retn)

async result()

class synapse.telepath.TeleSSLObject(*args, **kwargs)
Bases: SSLObject

do_handshake()

Start the SSL/TLS handshake.

async synapse.telepath.addAhaUrl(url)
Add (incref) an aha registry URL.

NOTE: You may also add a list of redundant URLs.

synapse.telepath.alias(name)
Resolve a telepath alias via ~/.syn/aliases.yaml

Parameters
name (str) – Name of the alias to resolve.

Notes

An exact match against the aliases will always be returned first. If no exact match is found and the name contains
a ‘/’ in it, the value before the slash is looked up and the remainder of the path is joined to any result. This is
done to support dynamic Telepath share names.

Returns
The url string, if present in the alias. None will be returned if there are no matches.

Return type
str

synapse.telepath.chopurl(url, **opts)

async synapse.telepath.delAhaUrl(url)
Remove (decref) an aha registry URL.

NOTE: You may also remove a list of redundant URLs.

async synapse.telepath.getAhaProxy(urlinfo)
Return a telepath proxy by looking up a host from an aha registry.

synapse.telepath.loadTeleCell(dirn)

async synapse.telepath.loadTeleEnv(path)

synapse.telepath.mergeAhaInfo(info0, info1)

synapse.telepath.modurl(url, **info)

10.1. synapse package 845

Synapse Documentation, Release 2.141.0

async synapse.telepath.openinfo(info)

synapse.telepath.withTeleEnv()

synapse.telepath.zipurl(info)
Reconstruct a URL string from a parsed telepath info dict.

846 Chapter 10. Synapse Python API

CHAPTER

ELEVEN

SYNAPSE HTTP/REST API

Many components within the Synapse ecosystem provide HTTP/REST APIs to provide a portable interface. Some of
these APIs are RESTful, while other (streaming data) APIs are technically not.

11.1 HTTP/REST API Conventions

All Synapse RESTful APIs use HTTP GET/POST methods to retrieve and modify data. All POST requests expect a
JSON body. Each RESTful API call will return a result wrapper dictionary with one of two conventions.

For a successful API call:

{"status": "ok", "result": "some api result here"}

or for an unsuccessful API call:

{"status": "err": "code": "ErrCodeString", "mesg": "A human friendly message."}

Streaming HTTP API endpoints, such as the interface provided to retrieve nodes from a Synapse Cortex, provide JSON
results via HTTP chunked encoding where each chunk is a single result.

The client example code in these docs is given with the Python “aiohttp” and “requests” modules. They should be
enough to understand the basic operation of the APIs.

For additional examples, see the code examples at HTTPAPI Examples.

11.2 Authentication

Most Synapse HTTP APIs require an authenticated user. HTTP API endpoints requiring authentication may be accessed
using either HTTP Basic authentication via the HTTP “Authorization” header or as part of an authenticated session.

To create and use an authenticated session, the HTTP client library must support cookies.

847

https://github.com/vertexproject/synapse/tree/master/examples/httpapi

Synapse Documentation, Release 2.141.0

11.2.1 /api/v1/login

The login API endpoint may be used to create an authenticated session. This session may then be used to call other
HTTP API endpoints as the authenticated user. This expects a user and passwd provided in the body of a POST
request. The reusable session cookie is returned in a Set-Cookie header.

Both of the Python examples use session managers which manage the session cookie automatically.

import aiohttp

async def logInExample(ssl=False):

async with aiohttp.ClientSession() as sess:

info = {'user': 'visi', 'passwd': 'secret'}
async with sess.post('https://localhost:4443/api/v1/login', json=info, ssl=ssl)␣

→˓as resp:
item = await resp.json()
if item.get('status') != 'ok':

code = item.get('code')
mesg = item.get('mesg')
raise Exception(f'Login error ({code}): {mesg}')

we are now clear to make additional HTTP API calls using sess

import requests

def logInExample(ssl=False):

sess = requests.session()

url = 'https://localhost:4443/api/v1/login'
info = {'user': 'visi', 'passwd': 'secret'}
resp = sess.post(url, json=info, verify=ssl)
item = resp.json()

if item.get('status') != 'ok':
code = item.get('code')
mesg = item.get('mesg')
raise Exception(f'Login error ({code}): {mesg}')

we are now clear to make additional HTTP API calls using sess

11.2.2 /api/v1/active

Method
GET

This is an unauthenticated API that returns the leader status of Cell.

Returns
A dictionary with the active key set to True or False.

848 Chapter 11. Synapse HTTP/REST API

Synapse Documentation, Release 2.141.0

11.2.3 /api/v1/auth/users

Method
GET

Returns
A list of dictionaries, each of which represents a user on the system.

11.2.4 /api/v1/auth/roles

Method
GET

Returns
A list of dictionaries, each of which represents a role on the system.

11.2.5 /api/v1/auth/adduser

Method
POST

This API endpoint allows the caller to add a user to the system.

Input
This API expects the following JSON body:

{ "name": "myuser" }

Any additional “user dictionary” fields (other than “iden”) may be specified.

Returns
The newly created user dictionary.

11.2.6 /api/v1/auth/addrole

Method
POST

This API endpoint allows the caller to add a role to the system.

Input
This API expects the following JSON body:

{ "name": "myrole" }

Any additional “role dictionary” fields (other than “iden”) may be specified.

Returns
The newly created role dictionary.

11.2. Authentication 849

Synapse Documentation, Release 2.141.0

11.2.7 /api/v1/auth/delrole

Method
POST

This API endpoint allows the caller to delete a role from the system.

Input
This API expects the following JSON body:

{ "name": "myrole" }

Returns
null

11.2.8 /api/v1/auth/user/<id>

Method
POST

This API allows the caller to modify specified elements of a user dictionary.

Input
This API expects a JSON dictionary containing any updated values for the user.

Returns
The updated user dictionary.

Method
GET

This API allows the caller to retrieve a user dictionary.

Returns
A user dictionary.

11.2.9 /api/v1/auth/password/<id>

Method
POST

This API allows the caller to change a user’s password. The authenticated user must either be an admin or the
user whose password is being changed.

Input
This API expects a JSON dictionary containing the a key passwd with the new password string.

Returns
The updated user dictionary.

850 Chapter 11. Synapse HTTP/REST API

Synapse Documentation, Release 2.141.0

11.2.10 /api/v1/auth/role/<id>

Method
POST

This API allows the caller to modify specified elements of a role dictionary.

Input
This API expects a dictionary containing any updated values for the role.

Returns
The updated role dictionary.

Method
GET

This API allows the caller to retrieve a role dictionary.

Returns
A role dictionary.

11.2.11 /api/v1/auth/grant

Method
POST

This API allows the caller to grant a role to a given user.

Input
This API expects the following JSON body:

{
"user": "<id>",
"role": "<id>"

}

Returns
The updated user dictionary.

11.2.12 /api/v1/auth/revoke

Method
POST

This API allows the caller to revoke a role which was previously granted to a user.

Input
This API expects the following JSON body:

{
"user": "<id>",
"role": "<id>"

}

Returns
The updated user dictionary.

11.2. Authentication 851

Synapse Documentation, Release 2.141.0

11.3 Cortex

A Synapse Cortex implements an HTTP API for interacting with the hypergraph and data model. Some of the provided
APIs are pure REST APIs for simple data model operations and single/simple node modification. However, many of
the HTTP APIs provided by the Cortex are streaming APIs which use HTTP chunked encoding to deliver a stream of
results as they become available.

11.3.1 /api/v1/feed

The Cortex feed API endpoint allows the caller to add nodes in bulk.

Method
POST

Input
The API expects the following JSON body:

{
"items": [<node>, ...],
and optionally...
"view": <iden>,

}

Each <node> is expected to be in packed tuple form:

[[<formname>, <formvalu>], {...}]

Returns
The API returns {"status": "ok", "result": null} on success and any failures are returned using
the previously mentioned REST API convention.

11.3.2 /api/v1/storm

The Storm API endpoint allows the caller to execute a Storm query on the Cortex and stream back the messages
generated during the Storm runtime execution. In addition to returning nodes, these messsages include events for node
edits, tool console output, etc. This streaming API has back-pressure, and will handle streaming millions of results as
the reader consumes them. For more information about Storm APIs, including opts behavior, see Storm API Guide.

Method
GET

Input
The API expects the following JSON body:

{
"query": "a storm query here",

optional
"opts": {

...
}

optional
(continues on next page)

852 Chapter 11. Synapse HTTP/REST API

Synapse Documentation, Release 2.141.0

(continued from previous page)

"stream": "jsonlines"
}

Returns
The API returns a series of messages generated by the Storm runtime. Each message is returned as an
HTTP chunk, allowing readers to consume the resulting messages as a stream.

The stream argument to the body modifies how the results are streamed back. Currently this optional
argument can be set to jsonlines to get newline separated JSON data.

Examples
The following two examples show querying the api/v1/storm endpoint and receiving multiple message
types.

aiohttp example:

import json
import pprint

Assumes sess is an aiotthp client session that has previously logged in

query = '.created $lib.print($node.repr(".created")) | limit 3'
data = {'query': query, 'opts': {'repr': True}}
url = 'https://localhost:4443/api/v1/storm'

async with sess.get(url, json=data) as resp:
async for byts, x in resp.content.iter_chunks():

if not byts:
break

mesg = json.loads(byts)
pprint.pprint(mesg)

requests example:

import json
import pprint
Assumes sess is an requests client session that has previously logged in

query = '.created $lib.print($node.repr(".created")) | limit 3'
data = {'query': query, 'opts': {'repr': True}}
url = 'https://localhost:4443/api/v1/storm'

resp = sess.get(url, json=data, stream=True)
for chunk in resp.iter_content(chunk_size=None, decode_unicode=True):

mesg = json.loads(chunk)
pprint.pprint(mesg)

When working with these APIs across proxies, we have experienced issues with NGINX interfering with
the chunked encoding. This may require more careful message reconstruction. The following shows using
aiohttp to do that message reconstruction.

11.3. Cortex 853

Synapse Documentation, Release 2.141.0

import json
import pprint
Assumes sess is an requests client session that has previously logged in

query = '.created $lib.print($node.repr(".created")) | limit 3'
data = {'query': query, 'opts': {'repr': True}}
url = 'https://localhost:4443/api/v1/storm'

async with sess.get(url, json=data) as resp:

buf = b""

async for byts, chunkend in resp.content.iter_chunks():

if not byts:
break

buf += byts
if not chunkend:

continue

mesg = json.loads(buf)
buf = b""

pprint.pprint(buf)

11.3.3 /api/v1/storm/call

The Storm Call API endpoint allows the caller to execute a Storm query on the Cortex and get a single return value
back from the runtime. This is analogous to using the callStorm() Telepath API. This expects to return a value from
the Storm query using the Storm return() syntax. For more information about Storm APIs, including opts behavior,
see Storm API Guide.

Method
GET

Input
The API expects the following JSON body:

{
"query": "a storm query here",

optional
"opts": {

...
}

}

Returns
The API returns {"status": "ok", "result": return_value} on success and any failures are
returned using the previously mentioned REST API convention.

Examples
The following two examples show querying the api/v1/storm/call endpoint and receiving a return

854 Chapter 11. Synapse HTTP/REST API

Synapse Documentation, Release 2.141.0

value.

aiohttp example:

import pprint

Assumes sess is an aiotthp client session that has previously logged in

query = '$foo = $lib.str.format("hello {valu}", valu="world") return ($foo)'
data = {'query': query}
url = 'https://localhost:4443/api/v1/storm/call'

async with sess.get(url, json=data) as resp:
info = await resp.json()
pprint.pprint(info)

requests example:

import pprint
Assumes sess is an requests client session that has previously logged in

query = '$foo = $lib.str.format("hello {valu}", valu="world") return ($foo)'
data = {'query': query}
url = 'https://localhost:4443/api/v1/storm/call'

resp = sess.get(url, json=data)
info = resp.json()
pprint.pprint(info)

11.3.4 /api/v1/storm/nodes

Warning: This API is deprecated in Synapse v2.110.0 and will be removed in a future version.

The Storm nodes API endpoint allows the caller to execute a Storm query on the Cortex and stream back the resulting
nodes. This streaming API has back-pressure, and will handle streaming millions of results as the reader consumes
them.

Method
GET

Input
See /api/v1/storm for expected JSON body input.

Returns
The API returns the resulting nodes from the input Storm query. Each node is returned as an HTTP chunk,
allowing readers to consume the resulting nodes as a stream.

Each serialized node will have the following structure:

[
[<form>, <valu>], # The [typename, typevalue] definition of the␣

→˓node.
{

(continues on next page)

11.3. Cortex 855

Synapse Documentation, Release 2.141.0

(continued from previous page)

"iden": <hash>, # A stable identifier for the node.
"tags": {}, # The tags on the node.
"props": {}, # The node's secondary properties.

optionally (if query opts included {"repr": True}
"reprs": {} # Presentation values for props which need it.

}
]

The stream argument, documented in the /api/v1/storm endpoint, modifies how the nodes are streamed
back. Currently this optional argument can be set to jsonlines to get newline separated JSON data.

11.3.5 /api/v1/storm/export

The Storm export API endpoint allows the caller to execute a Storm query on the Cortex and export the resulting nodes
in msgpack format such that they can be directly ingested with the syn.nodes feed function.

Method
GET

Input
See /api/v1/storm for expected JSON body input.

Returns
The API returns the resulting nodes from the input Storm query. This API yields nodes after an initial
complete lift in order to limit exported edges.

Each exported node will be in msgpack format.

There is no Content-Length header returned, since the API cannot predict the volume of data a given query
may produce.

11.3.6 /api/v1/model

Method
GET

This API allows the caller to retrieve the current Cortex data model.

Input
The API takes no input.

Returns
The API returns the model in a dictionary, including the types, forms and tagprops. Secondary property
information is also included for each form:

{
"types": {

... # dictionary of type definitions
},
"forms": {

... # dictionary of form definitions, including secondary properties
},
"tagprops": {

(continues on next page)

856 Chapter 11. Synapse HTTP/REST API

Synapse Documentation, Release 2.141.0

(continued from previous page)

... # dictionary of tag property definitions
}

}

11.3.7 /api/v1/model/norm

Method
GET, POST

This API allows the caller to normalize a value based on the Cortex data model. This may be called via a GET
or POST requests.

Input
The API expects the following JSON body:

{
"prop": "prop:name:here",
"value": <value>,

}

Returns
The API returns the normalized value as well as any parsed subfields or type specific info:

{
"norm": <value>,
"info": {

"subs": {},
...

}
}

11.3.8 /api/v1/storm/vars/get

Method
GET

This API allows the caller to retrieve a storm global variable.

Input
The API expects the following JSON body:

{
"name": "varnamehere",
"default": null,

}

Returns
The API returns the global variable value or the specified default using the REST API convention described
earlier.

11.3. Cortex 857

Synapse Documentation, Release 2.141.0

11.3.9 /api/v1/storm/vars/set

Method
POST

This API allows the caller to set a storm global variable.

Input
The API expects the following JSON body:

{
"name": "varnamehere",
"value": <value>,

}

Returns
The API returns true using using the REST API convention described earlier.

11.3.10 /api/v1/storm/vars/pop

Method
POST

This API allows the caller to pop/delete a storm global variable.

Input
The API expects the following JSON body:

{
"name": "varnamehere",
"default": <value>,

}

Returns
The API returns the the current value of the variable or default using using the REST API convention
described earlier.

11.3.11 /api/v1/core/info

Method
GET

This API allows the caller to retrieve the current Cortex version, data model definitions, and Storm information.

Input
The API takes no input.

Returns
The API returns the model in a dictionary, including the types, forms and tagprops. Secondary property
information is also included for each form:

{
"version": [<major>, <minor>, <patch>], # Version tuple
"modeldict": {

... # dictionary of model definitions
(continues on next page)

858 Chapter 11. Synapse HTTP/REST API

Synapse Documentation, Release 2.141.0

(continued from previous page)

},
"stormdocs": {

"libraries": [
... # list of information about Storm libraries.

],
"types": [

... # list of information about Storm types.
]

}
}

11.4 Aha

A Synapse Aha service implements an HTTP for assisting with provisioning.

11.4.1 /api/v1/aha/provision/service

Method
POST

Input
The API expects the following JSON body:

{
"name": " ... name of the service being provisioned",
"provinfo": {

"dmon:port": # optional integer, default Telepath listening port.
"https:port": # optional integer, default HTTPS listening port.
"mirror": # optional string, service to Mirror.
"conf": {

... # optional, default service configuration values.
}

}
}

Returns
The API returns the following provisioning information. The data is returned using using the REST API
convention described earlier:

{
"url": "< the AHA provisioning URL >",

}

11.4. Aha 859

Synapse Documentation, Release 2.141.0

11.5 Axon

A Synapse Axon implements an HTTP API for uploading and downloading files. The HTTP APIs use HTTP chunked
encoding for handling large files.

11.5.1 /api/v1/axon/files/del

This API allows the caller to delete multiple files from the Axon by the SHA-256.

Method
POST

Input
The API expects the following JSON body:

{
"sha256s": [<sha256>, ...],

}

Returns
The API returns an array of SHA-256 and boolean values representing whether each was found in the Axon
and deleted. The array is returned using using the REST API convention described earlier.

11.5.2 /api/v1/axon/files/put

This API allows the caller to upload and save a file to the Axon. This may be called via a PUT or POST request.

Method
PUT, POST

Input
The API expects a stream of byte chunks.

Returns
On successful upload, or if the file already existed, the API returns information about the file:

{
"md5": "<the md5sum value of the uploaded bytes>",
"sha1": "<the sha1 value of the uploaded bytes>",
"sha256": "<the sha256 value of the uploaded bytes>",
"sha512": "<the sha512 value of the uploaded bytes>",
"size": <the size of the uploaded bytes>

}

860 Chapter 11. Synapse HTTP/REST API

Synapse Documentation, Release 2.141.0

11.5.3 /api/v1/axon/files/has/sha256/<SHA-256>

This API allows the caller to check if a file exists in the Axon as identified by the SHA-256.

Method
GET

Returns
True if the file exists; False if the file does not exist.

11.5.4 /api/v1/axon/files/by/sha256/<SHA-256>

This API allows the caller to retrieve or remove a file from the Axon as identified by the SHA-256. If the file does not
exist a 404 will be returned.

Method
GET

Returns
If the file exists a stream of byte chunks will be returned to the caller. A Range header with a single bytes
value can be provided to get a subset of a file.

Method
HEAD

Returns
If the file exists, the Content-Length header will be set for the size of the file. If a Range header with a
single bytes value is provided, the Content-Length header will describe the size of the range, and the
Content-Range header will also be set to describe the range of the requested bytes.

Method
DELETE

Returns
Boolean via the REST API convention described earlier. If the file is not found an error is returned.

11.5. Axon 861

Synapse Documentation, Release 2.141.0

862 Chapter 11. Synapse HTTP/REST API

CHAPTER

TWELVE

SYNAPSE DATA MODEL

This contains documentation for Synapse Data Model, including the data model deprecation policy.

The current sections are:

12.1 Synapse Data Model - Types

12.1.1 Base Types

Base types are defined via Python classes.

array

A typed array which indexes each field. It is implemented by the following class: synapse.lib.types.Array.

The base type array has the following default options set:

• type: int

bool

The base boolean type. It is implemented by the following class: synapse.lib.types.Bool.

comp

The base type for compound node fields. It is implemented by the following class: synapse.lib.types.Comp.

cvss:v2

A CVSS v2 vector string. It is implemented by the following class: synapse.models.risk.CvssV2.

An example of cvss:v2:

• (AV:L/AC:L/Au:M/C:P/I:C/A:N)

863

Synapse Documentation, Release 2.141.0

cvss:v3

A CVSS v3.x vector string. It is implemented by the following class: synapse.models.risk.CvssV3.

An example of cvss:v3:

• AV:N/AC:H/PR:L/UI:R/S:U/C:L/I:L/A:L

data

Arbitrary json compatible data. It is implemented by the following class: synapse.lib.types.Data.

duration

A duration value. It is implemented by the following class: synapse.lib.types.Duration.

The base type duration has the following default options set:

• signed: False

edge

An digraph edge base type. It is implemented by the following class: synapse.lib.types.Edge.

file:base

A file name with no path. It is implemented by the following class: synapse.models.files.FileBase.

An example of file:base:

• woot.exe

file:bytes

The file bytes type with SHA256 based primary property. It is implemented by the following class: synapse.models.
files.FileBytes.

file:path

A normalized file path. It is implemented by the following class: synapse.models.files.FilePath.

An example of file:path:

• c:/windows/system32/calc.exe

864 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

float

The base floating point type. It is implemented by the following class: synapse.lib.types.Float.

The base type float has the following default options set:

• fmt: %f

• min: None

• minisvalid: True

• max: None

• maxisvalid: True

geo:area

A geographic area (base unit is square mm). It is implemented by the following class: synapse.models.geospace.
Area.

An example of geo:area:

• 10 sq.km

geo:dist

A geographic distance (base unit is mm). It is implemented by the following class: synapse.models.geospace.
Dist.

An example of geo:dist:

• 10 km

geo:latlong

A Lat/Long string specifying a point on Earth. It is implemented by the following class: synapse.models.geospace.
LatLong.

An example of geo:latlong:

• -12.45,56.78

guid

The base GUID type. It is implemented by the following class: synapse.lib.types.Guid.

12.1. Synapse Data Model - Types 865

Synapse Documentation, Release 2.141.0

hex

The base hex type. It is implemented by the following class: synapse.lib.types.Hex.

The base type hex has the following default options set:

• size: 0

hugenum

A potentially huge/tiny number. [x] <= 730750818665451459101842 with a fractional precision of 24 decimal digits.
It is implemented by the following class: synapse.lib.types.HugeNum.

The base type hugenum has the following default options set:

• units: None

• modulo: None

inet:addr

A network layer URL-like format to represent tcp/udp/icmp clients and servers. It is implemented by the following
class: synapse.models.inet.Addr.

An example of inet:addr:

• tcp://1.2.3.4:80

inet:cidr4

An IPv4 address block in Classless Inter-Domain Routing (CIDR) notation. It is implemented by the following class:
synapse.models.inet.Cidr4.

An example of inet:cidr4:

• 1.2.3.0/24

inet:cidr6

An IPv6 address block in Classless Inter-Domain Routing (CIDR) notation. It is implemented by the following class:
synapse.models.inet.Cidr6.

An example of inet:cidr6:

• 2001:db8::/101

inet:dns:name

A DNS query name string. Likely an FQDN but not always. It is implemented by the following class: synapse.
models.dns.DnsName.

An example of inet:dns:name:

• vertex.link

866 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

inet:email

An e-mail address. It is implemented by the following class: synapse.models.inet.Email.

inet:fqdn

A Fully Qualified Domain Name (FQDN). It is implemented by the following class: synapse.models.inet.Fqdn.

An example of inet:fqdn:

• vertex.link

inet:http:cookie

An individual HTTP cookie string. It is implemented by the following class: synapse.models.inet.HttpCookie.

An example of inet:http:cookie:

• PHPSESSID=el4ukv0kqbvoirg7nkp4dncpk3

inet:ipv4

An IPv4 address. It is implemented by the following class: synapse.models.inet.IPv4.

An example of inet:ipv4:

• 1.2.3.4

inet:ipv4range

An IPv4 address range. It is implemented by the following class: synapse.models.inet.IPv4Range.

An example of inet:ipv4range:

• 1.2.3.4-1.2.3.8

inet:ipv6

An IPv6 address. It is implemented by the following class: synapse.models.inet.IPv6.

An example of inet:ipv6:

• 2607:f8b0:4004:809::200e

inet:ipv6range

An IPv6 address range. It is implemented by the following class: synapse.models.inet.IPv6Range.

An example of inet:ipv6range:

• (2607:f8b0:4004:809::200e, 2607:f8b0:4004:809::2011)

12.1. Synapse Data Model - Types 867

Synapse Documentation, Release 2.141.0

inet:rfc2822:addr

An RFC 2822 Address field. It is implemented by the following class: synapse.models.inet.Rfc2822Addr.

An example of inet:rfc2822:addr:

• "Visi Kenshoto" <visi@vertex.link>

inet:url

A Universal Resource Locator (URL). It is implemented by the following class: synapse.models.inet.Url.

An example of inet:url:

• http://www.woot.com/files/index.html

int

The base 64 bit signed integer type. It is implemented by the following class: synapse.lib.types.Int.

The base type int has the following default options set:

• size: 8

• signed: True

• fmt: %d

• min: None

• max: None

• ismin: False

• ismax: False

it:sec:cpe

A NIST CPE 2.3 Formatted String. It is implemented by the following class: synapse.models.infotech.
Cpe23Str.

The base type it:sec:cpe has the following default options set:

• lower: True

it:sec:cpe:v2_2

A NIST CPE 2.2 Formatted String. It is implemented by the following class: synapse.models.infotech.
Cpe22Str.

The base type it:sec:cpe:v2_2 has the following default options set:

• lower: True

868 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

it:semver

Semantic Version type. It is implemented by the following class: synapse.models.infotech.SemVer.

ival

A time window/interval. It is implemented by the following class: synapse.lib.types.Ival.

loc

The base geo political location type. It is implemented by the following class: synapse.lib.types.Loc.

ndef

The node definition type for a (form,valu) compound field. It is implemented by the following class: synapse.lib.
types.Ndef.

nodeprop

The nodeprop type for a (prop,valu) compound field. It is implemented by the following class: synapse.lib.types.
NodeProp.

range

A base range type. It is implemented by the following class: synapse.lib.types.Range.

The base type range has the following default options set:

• type: ('int', {})

str

The base string type. It is implemented by the following class: synapse.lib.types.Str.

The base type str has the following default options set:

• enums: None

• regex: None

• lower: False

• strip: False

• replace: ()

• onespace: False

• globsuffix: False

12.1. Synapse Data Model - Types 869

Synapse Documentation, Release 2.141.0

syn:tag

The base type for a synapse tag. It is implemented by the following class: synapse.lib.types.Tag.

The base type syn:tag has the following default options set:

• enums: None

• regex: None

• lower: False

• strip: False

• replace: ()

• onespace: False

• globsuffix: False

syn:tag:part

A tag component string. It is implemented by the following class: synapse.lib.types.TagPart.

The base type syn:tag:part has the following default options set:

• enums: None

• regex: None

• lower: False

• strip: False

• replace: ()

• onespace: False

• globsuffix: False

taxon

A component of a hierarchical taxonomy. It is implemented by the following class: synapse.lib.types.Taxon.

The base type taxon has the following default options set:

• enums: None

• regex: None

• lower: False

• strip: False

• replace: ()

• onespace: False

• globsuffix: False

870 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

taxonomy

A hierarchical taxonomy. It is implemented by the following class: synapse.lib.types.Taxonomy.

The base type taxonomy has the following default options set:

• enums: None

• regex: None

• lower: False

• strip: False

• replace: ()

• onespace: False

• globsuffix: False

tel:mob:imei

An International Mobile Equipment Id. It is implemented by the following class: synapse.models.telco.Imei.

An example of tel:mob:imei:

• 490154203237518

tel:mob:imsi

An International Mobile Subscriber Id. It is implemented by the following class: synapse.models.telco.Imsi.

An example of tel:mob:imsi:

• 310150123456789

tel:phone

A phone number. It is implemented by the following class: synapse.models.telco.Phone.

An example of tel:phone:

• +15558675309

time

A date/time value. It is implemented by the following class: synapse.lib.types.Time.

The base type time has the following default options set:

• ismin: False

• ismax: False

12.1. Synapse Data Model - Types 871

Synapse Documentation, Release 2.141.0

timeedge

An digraph edge base type with a unique time. It is implemented by the following class: synapse.lib.types.
TimeEdge.

velocity

A velocity with base units in mm/sec. It is implemented by the following class: synapse.lib.types.Velocity.

The base type velocity has the following default options set:

• relative: False

12.1.2 Types

Regular types are derived from BaseTypes.

auth:access

An instance of using creds to access a resource. The auth:access type is derived from the base type: guid.

auth:creds

A unique set of credentials used to access a resource. The auth:creds type is derived from the base type: guid.

belief:subscriber

A contact which subscribes to a belief system. The belief:subscriber type is derived from the base type: guid.

belief:system

A belief system such as an ideology, philosophy, or religion. The belief:system type is derived from the base type:
guid.

belief:system:type:taxonomy

A hierarchical taxonomy of belief system types. The belief:system:type:taxonomy type is derived from the base
type: taxonomy.

The type belief:system:type:taxonomy has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

872 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

belief:tenet

A concrete tenet potentially shared by multiple belief systems. The belief:tenet type is derived from the base type:
guid.

biz:bundle

A bundle allows construction of products which bundle instances of other products. The biz:bundle type is derived
from the base type: guid.

biz:deal

A sales or procurement effort in pursuit of a purchase. The biz:deal type is derived from the base type: guid.

biz:dealstatus

A deal/rfp status taxonomy. The biz:dealstatus type is derived from the base type: taxonomy.

The type biz:dealstatus has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

biz:dealtype

A deal type taxonomy. The biz:dealtype type is derived from the base type: taxonomy.

The type biz:dealtype has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

12.1. Synapse Data Model - Types 873

Synapse Documentation, Release 2.141.0

biz:listing

A product or service being listed for sale at a given price by a specific seller. The biz:listing type is derived from
the base type: guid.

biz:prodtype

A product type taxonomy. The biz:prodtype type is derived from the base type: taxonomy.

The type biz:prodtype has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

biz:product

A product which is available for purchase. The biz:product type is derived from the base type: guid.

biz:rfp

An RFP (Request for Proposal) soliciting proposals. The biz:rfp type is derived from the base type: guid.

biz:service

A service which is performed by a specific organization. The biz:service type is derived from the base type: guid.

biz:service:type:taxonomy

A taxonomy of service offering types. The biz:service:type:taxonomy type is derived from the base type:
taxonomy.

The type biz:service:type:taxonomy has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

874 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

biz:stake

A stake or partial ownership in a company. The biz:stake type is derived from the base type: guid.

crypto:algorithm

A cryptographic algorithm name. The crypto:algorithm type is derived from the base type: str.

An example of crypto:algorithm:

• aes256

The type crypto:algorithm has the following options set:

• globsuffix: False

• lower: True

• onespace: True

• regex: None

• replace: ()

• strip: False

crypto:currency:address

An individual crypto currency address. The crypto:currency:address type is derived from the base type: comp.

An example of crypto:currency:address:

• btc/1BvBMSEYstWetqTFn5Au4m4GFg7xJaNVN2

The type crypto:currency:address has the following options set:

• fields: (('coin', 'crypto:currency:coin'), ('iden', 'str'))

• sepr: /

crypto:currency:block

An individual crypto currency block record on the blockchain. The crypto:currency:block type is derived from
the base type: comp.

The type crypto:currency:block has the following options set:

• fields: (('coin', 'crypto:currency:coin'), ('offset', 'int'))

• sepr: /

12.1. Synapse Data Model - Types 875

Synapse Documentation, Release 2.141.0

crypto:currency:client

A fused node representing a crypto currency address used by an Internet client. The crypto:currency:client type
is derived from the base type: comp.

An example of crypto:currency:client:

• (1.2.3.4, (btc, 1BvBMSEYstWetqTFn5Au4m4GFg7xJaNVN2))

The type crypto:currency:client has the following options set:

• fields: (('inetaddr', 'inet:client'), ('coinaddr', 'crypto:currency:address'))

crypto:currency:coin

An individual crypto currency type. The crypto:currency:coin type is derived from the base type: str.

An example of crypto:currency:coin:

• btc

The type crypto:currency:coin has the following options set:

• globsuffix: False

• lower: True

• onespace: False

• regex: None

• replace: ()

• strip: False

crypto:currency:transaction

An individual crypto currency transaction recorded on the blockchain. The crypto:currency:transaction type is
derived from the base type: guid.

crypto:key

A cryptographic key and algorithm. The crypto:key type is derived from the base type: guid.

crypto:payment:input

A payment made into a transaction. The crypto:payment:input type is derived from the base type: guid.

876 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

crypto:payment:output

A payment received from a transaction. The crypto:payment:output type is derived from the base type: guid.

crypto:smart:contract

A smart contract. The crypto:smart:contract type is derived from the base type: guid.

crypto:smart:effect:burntoken

A smart contract effect which destroys a non-fungible token. The crypto:smart:effect:burntoken type is derived
from the base type: guid.

crypto:smart:effect:edittokensupply

A smart contract effect which increases or decreases the supply of a fungible token. The
crypto:smart:effect:edittokensupply type is derived from the base type: guid.

crypto:smart:effect:minttoken

A smart contract effect which creates a new non-fungible token. The crypto:smart:effect:minttoken type is
derived from the base type: guid.

crypto:smart:effect:proxytoken

A smart contract effect which grants a non-owner address the ability to manipulate a specific non-fungible token. The
crypto:smart:effect:proxytoken type is derived from the base type: guid.

crypto:smart:effect:proxytokenall

A smart contract effect which grants a non-owner address the ability to manipulate all non-fungible tokens of the owner.
The crypto:smart:effect:proxytokenall type is derived from the base type: guid.

crypto:smart:effect:proxytokens

A smart contract effect which grants a non-owner address the ability to manipulate fungible tokens. The
crypto:smart:effect:proxytokens type is derived from the base type: guid.

crypto:smart:effect:transfertoken

A smart contract effect which transfers ownership of a non-fungible token. The
crypto:smart:effect:transfertoken type is derived from the base type: guid.

12.1. Synapse Data Model - Types 877

Synapse Documentation, Release 2.141.0

crypto:smart:effect:transfertokens

A smart contract effect which transfers fungible tokens. The crypto:smart:effect:transfertokens type is de-
rived from the base type: guid.

crypto:smart:token

A token managed by a smart contract. The crypto:smart:token type is derived from the base type: comp.

The type crypto:smart:token has the following options set:

• fields: (('contract', 'crypto:smart:contract'), ('tokenid', 'hugenum'))

crypto:x509:cert

A unique X.509 certificate. The crypto:x509:cert type is derived from the base type: guid.

crypto:x509:crl

A unique X.509 Certificate Revocation List. The crypto:x509:crl type is derived from the base type: guid.

crypto:x509:revoked

A revocation relationship between a CRL and an X.509 certificate. The crypto:x509:revoked type is derived from
the base type: comp.

The type crypto:x509:revoked has the following options set:

• fields: (('crl', 'crypto:x509:crl'), ('cert', 'crypto:x509:cert'))

crypto:x509:san

An X.509 Subject Alternative Name (SAN). The crypto:x509:san type is derived from the base type: comp.

The type crypto:x509:san has the following options set:

• fields: (('type', 'str'), ('value', 'str'))

crypto:x509:signedfile

A digital signature relationship between an X.509 certificate and a file. The crypto:x509:signedfile type is derived
from the base type: comp.

The type crypto:x509:signedfile has the following options set:

• fields: (('cert', 'crypto:x509:cert'), ('file', 'file:bytes'))

878 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

econ:acct:balance

A snapshot of the balance of an account at a point in time. The econ:acct:balance type is derived from the base
type: guid.

econ:acct:payment

A payment or crypto currency transaction. The econ:acct:payment type is derived from the base type: guid.

econ:acquired

Deprecated. Please use econ:purchase -(acquired)> *. The econ:acquired type is derived from the base type: comp.

The type econ:acquired has the following options set:

• fields: (('purchase', 'econ:purchase'), ('item', 'ndef'))

econ:currency

The name of a system of money in general use. The econ:currency type is derived from the base type: str.

An example of econ:currency:

• usd

The type econ:currency has the following options set:

• globsuffix: False

• lower: True

• onespace: False

• regex: None

• replace: ()

• strip: False

econ:fin:bar

A sample of the open, close, high, low prices of a security in a specific time window. The econ:fin:bar type is
derived from the base type: guid.

econ:fin:exchange

A financial exchange where securities are traded. The econ:fin:exchange type is derived from the base type: guid.

12.1. Synapse Data Model - Types 879

Synapse Documentation, Release 2.141.0

econ:fin:security

A financial security which is typically traded on an exchange. The econ:fin:security type is derived from the base
type: guid.

econ:fin:tick

A sample of the price of a security at a single moment in time. The econ:fin:tick type is derived from the base
type: guid.

econ:pay:card

A single payment card. The econ:pay:card type is derived from the base type: guid.

econ:pay:cvv

A Card Verification Value (CVV). The econ:pay:cvv type is derived from the base type: str.

The type econ:pay:cvv has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: ^[0-9]{1,6}$

• replace: ()

• strip: False

econ:pay:iin

An Issuer Id Number (IIN). The econ:pay:iin type is derived from the base type: int.

The type econ:pay:iin has the following options set:

• fmt: %d

• ismax: False

• ismin: False

• max: 999999

• min: 0

• signed: True

• size: 8

880 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

econ:pay:mii

A Major Industry Identifier (MII). The econ:pay:mii type is derived from the base type: int.

The type econ:pay:mii has the following options set:

• fmt: %d

• ismax: False

• ismin: False

• max: 9

• min: 0

• signed: True

• size: 8

econ:pay:pan

A Primary Account Number (PAN) or card number. The econ:pay:pan type is derived from the base type: str.

The type econ:pay:pan has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: ^(?<iin>(?<mii>[0-9]{1})[0-9]{5})[0-9]{1,13}$

• replace: ()

• strip: False

econ:pay:pin

A Personal Identification Number. The econ:pay:pin type is derived from the base type: str.

The type econ:pay:pin has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: ^[0-9]{3,6}$

• replace: ()

• strip: False

12.1. Synapse Data Model - Types 881

Synapse Documentation, Release 2.141.0

econ:price

The amount of money expected, required, or given in payment for something. The econ:price type is derived from
the base type: hugenum.

An example of econ:price:

• 2.20

The type econ:price has the following options set:

• modulo: None

• norm: False

• units: None

econ:purchase

A purchase event. The econ:purchase type is derived from the base type: guid.

econ:receipt:item

A line item included as part of a purchase. The econ:receipt:item type is derived from the base type: guid.

edge:has

A digraph edge which records that N1 has N2. The edge:has type is derived from the base type: edge.

edge:refs

A digraph edge which records that N1 refers to or contains N2. The edge:refs type is derived from the base type:
edge.

edge:wentto

A digraph edge which records that N1 went to N2 at a specific time. The edge:wentto type is derived from the base
type: timeedge.

edu:class

An instance of an edu:course taught at a given time. The edu:class type is derived from the base type: guid.

882 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

edu:course

A course of study taught by an org. The edu:course type is derived from the base type: guid.

file:archive:entry

An archive entry representing a file and metadata within a parent archive file. The file:archive:entry type is
derived from the base type: guid.

file:filepath

The fused knowledge of the association of a file:bytes node and a file:path. The file:filepath type is derived from
the base type: comp.

The type file:filepath has the following options set:

• fields: (('file', 'file:bytes'), ('path', 'file:path'))

file:ismime

Records one, of potentially multiple, mime types for a given file. The file:ismime type is derived from the base type:
comp.

The type file:ismime has the following options set:

• fields: (('file', 'file:bytes'), ('mime', 'file:mime'))

file:mime

A file mime name string. The file:mime type is derived from the base type: str.

An example of file:mime:

• text/plain

The type file:mime has the following options set:

• globsuffix: False

• lower: 1

• onespace: False

• regex: None

• replace: ()

• strip: False

12.1. Synapse Data Model - Types 883

file:bytes
file:path

Synapse Documentation, Release 2.141.0

file:mime:gif

The GUID of a set of mime metadata for a .gif file. The file:mime:gif type is derived from the base type: guid.

file:mime:jpg

The GUID of a set of mime metadata for a .jpg file. The file:mime:jpg type is derived from the base type: guid.

file:mime:macho:loadcmd

A generic load command pulled from the Mach-O headers. The file:mime:macho:loadcmd type is derived from
the base type: guid.

file:mime:macho:section

A section inside a Mach-O binary denoting a named region of bytes inside a segment. The
file:mime:macho:section type is derived from the base type: guid.

file:mime:macho:segment

A named region of bytes inside a Mach-O binary. The file:mime:macho:segment type is derived from the base
type: guid.

file:mime:macho:uuid

A specific load command denoting a UUID used to uniquely identify the Mach-O binary. The
file:mime:macho:uuid type is derived from the base type: guid.

file:mime:macho:version

A specific load command used to denote the version of the source used to build the Mach-O binary. The
file:mime:macho:version type is derived from the base type: guid.

file:mime:msdoc

The GUID of a set of mime metadata for a Microsoft Word file. The file:mime:msdoc type is derived from the base
type: guid.

file:mime:msppt

The GUID of a set of mime metadata for a Microsoft Powerpoint file. The file:mime:msppt type is derived from
the base type: guid.

884 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

file:mime:msxls

The GUID of a set of mime metadata for a Microsoft Excel file. The file:mime:msxls type is derived from the base
type: guid.

file:mime:pe:export

The fused knowledge of a file:bytes node containing a pe named export. The file:mime:pe:export type is derived
from the base type: comp.

The type file:mime:pe:export has the following options set:

• fields: (('file', 'file:bytes'), ('name', 'str'))

file:mime:pe:resource

The fused knowledge of a file:bytes node containing a pe resource. The file:mime:pe:resource type is derived
from the base type: comp.

The type file:mime:pe:resource has the following options set:

• fields:

[
[
"file",
"file:bytes"
],
[
"type",
"pe:resource:type"
],
[
"langid",
"pe:langid"
],
[
"resource",
"file:bytes"
]

]

file:mime:pe:section

The fused knowledge a file:bytes node containing a pe section. The file:mime:pe:section type is derived from the
base type: comp.

The type file:mime:pe:section has the following options set:

• fields: (('file', 'file:bytes'), ('name', 'str'), ('sha256', 'hash:sha256'))

12.1. Synapse Data Model - Types 885

file:bytes
file:bytes
file:bytes

Synapse Documentation, Release 2.141.0

file:mime:pe:vsvers:info

knowledge of a file:bytes node containing vsvers info. The file:mime:pe:vsvers:info type is derived from the
base type: comp.

The type file:mime:pe:vsvers:info has the following options set:

• fields: (('file', 'file:bytes'), ('keyval', 'file:mime:pe:vsvers:keyval'))

file:mime:pe:vsvers:keyval

A key value pair found in a PE vsversion info structure. The file:mime:pe:vsvers:keyval type is derived from
the base type: comp.

The type file:mime:pe:vsvers:keyval has the following options set:

• fields: (('name', 'str'), ('value', 'str'))

file:mime:png

The GUID of a set of mime metadata for a .png file. The file:mime:png type is derived from the base type: guid.

file:mime:rtf

The GUID of a set of mime metadata for a .rtf file. The file:mime:rtf type is derived from the base type: guid.

file:mime:tif

The GUID of a set of mime metadata for a .tif file. The file:mime:tif type is derived from the base type: guid.

file:string

Deprecated. Please use the edge -(refs)> it:dev:str. The file:string type is derived from the base type: comp.

The type file:string has the following options set:

• fields: (('file', 'file:bytes'), ('string', 'str'))

file:subfile

A parent file that fully contains the specified child file. The file:subfile type is derived from the base type: comp.

The type file:subfile has the following options set:

• fields: (('parent', 'file:bytes'), ('child', 'file:bytes'))

886 Chapter 12. Synapse Data Model

file:bytes

Synapse Documentation, Release 2.141.0

geo:address

A street/mailing address string. The geo:address type is derived from the base type: str.

The type geo:address has the following options set:

• globsuffix: False

• lower: True

• onespace: True

• regex: None

• replace: ()

• strip: False

geo:altitude

A negative or positive offset from Mean Sea Level (6,371.0088km from Earths core). The geo:altitude type is
derived from the base type: geo:dist.

An example of geo:altitude:

• 10 km

The type geo:altitude has the following options set:

• baseoff: 6371008800

• fmt: %d

• ismax: False

• ismin: False

• max: None

• min: None

• signed: True

• size: 8

geo:bbox

A geospatial bounding box in (xmin, xmax, ymin, ymax) format. The geo:bbox type is derived from the base type:
comp.

The type geo:bbox has the following options set:

• fields:

[
[
"xmin",
"geo:longitude"
],
[
"xmax",
"geo:longitude"

(continues on next page)

12.1. Synapse Data Model - Types 887

Synapse Documentation, Release 2.141.0

(continued from previous page)

],
[
"ymin",
"geo:latitude"
],
[
"ymax",
"geo:latitude"
]

]

• sepr: ,

geo:json

GeoJSON structured JSON data. The geo:json type is derived from the base type: data.

The type geo:json has the following options set:

• schema:

{
"$schema": "http://json-schema.org/draft-07/schema#",
"definitions": {
"BoundingBox": {
"items": {
"type": "number"
},
"minItems": 4,
"type": "array"

},
"Feature": {
"properties": {
"bbox": {
"$ref": "#/definitions/BoundingBox"
},
"geometry": {
"oneOf": [
{
"type": "null"
},
{
"$ref": "#/definitions/Point"
},
{
"$ref": "#/definitions/LineString"
},
{
"$ref": "#/definitions/Polygon"
},
{
"$ref": "#/definitions/MultiPoint"

(continues on next page)

888 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

(continued from previous page)

},
{
"$ref": "#/definitions/MultiLineString"
},
{
"$ref": "#/definitions/MultiPolygon"
},
{
"$ref": "#/definitions/GeometryCollection"
}

]
},
"properties": {
"oneOf": [
{
"type": "null"
},
{
"type": "object"
}

]
},
"type": {
"enum": [
"Feature"

],
"type": "string"
}
},
"required": [
"type",
"properties",
"geometry"
],
"title": "GeoJSON Feature",
"type": "object"

},
"FeatureCollection": {
"properties": {
"bbox": {
"$ref": "#/definitions/BoundingBox"
},
"features": {
"items": {
"$ref": "#/definitions/Feature"

},
"type": "array"
},
"type": {
"enum": [
"FeatureCollection"

],

(continues on next page)

12.1. Synapse Data Model - Types 889

Synapse Documentation, Release 2.141.0

(continued from previous page)

"type": "string"
}
},
"required": [
"type",
"features"
],
"title": "GeoJSON FeatureCollection",
"type": "object"

},
"GeometryCollection": {
"properties": {
"bbox": {
"$ref": "#/definitions/BoundingBox"
},
"geometries": {
"items": {
"oneOf": [
{
"$ref": "#/definitions/Point"
},
{
"$ref": "#/definitions/LineString"
},
{
"$ref": "#/definitions/Polygon"
},
{
"$ref": "#/definitions/MultiPoint"
},
{
"$ref": "#/definitions/MultiLineString"
},
{
"$ref": "#/definitions/MultiPolygon"
}
]

},
"type": "array"
},
"type": {
"enum": [
"GeometryCollection"

],
"type": "string"
}
},
"required": [
"type",
"geometries"
],
"title": "GeoJSON GeometryCollection",

(continues on next page)

890 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

(continued from previous page)

"type": "object"
},
"LineString": {
"properties": {
"bbox": {
"$ref": "#/definitions/BoundingBox"
},
"coordinates": {
"$ref": "#/definitions/LineStringCoordinates"
},
"type": {
"enum": [
"LineString"

],
"type": "string"
}
},
"required": [
"type",
"coordinates"
],
"title": "GeoJSON LineString",
"type": "object"

},
"LineStringCoordinates": {
"items": {
"$ref": "#/definitions/PointCoordinates"
},
"minItems": 2,
"type": "array"

},
"LinearRingCoordinates": {
"items": {
"$ref": "#/definitions/PointCoordinates"
},
"minItems": 4,
"type": "array"

},
"MultiLineString": {
"properties": {
"bbox": {
"$ref": "#/definitions/BoundingBox"
},
"coordinates": {
"items": {
"$ref": "#/definitions/LineStringCoordinates"

},
"type": "array"
},
"type": {
"enum": [
"MultiLineString"

(continues on next page)

12.1. Synapse Data Model - Types 891

Synapse Documentation, Release 2.141.0

(continued from previous page)

],
"type": "string"
}
},
"required": [
"type",
"coordinates"
],
"title": "GeoJSON MultiLineString",
"type": "object"

},
"MultiPoint": {
"properties": {
"bbox": {
"$ref": "#/definitions/BoundingBox"
},
"coordinates": {
"items": {
"$ref": "#/definitions/PointCoordinates"

},
"type": "array"
},
"type": {
"enum": [
"MultiPoint"

],
"type": "string"
}
},
"required": [
"type",
"coordinates"
],
"title": "GeoJSON MultiPoint",
"type": "object"

},
"MultiPolygon": {
"properties": {
"bbox": {
"$ref": "#/definitions/BoundingBox"
},
"coordinates": {
"items": {
"$ref": "#/definitions/PolygonCoordinates"

},
"type": "array"
},
"type": {
"enum": [
"MultiPolygon"

],
"type": "string"

(continues on next page)

892 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

(continued from previous page)

}
},
"required": [
"type",
"coordinates"
],
"title": "GeoJSON MultiPolygon",
"type": "object"

},
"Point": {
"properties": {
"bbox": {
"$ref": "#/definitions/BoundingBox"
},
"coordinates": {
"$ref": "#/definitions/PointCoordinates"
},
"type": {
"enum": [
"Point"

],
"type": "string"
}
},
"required": [
"type",
"coordinates"
],
"title": "GeoJSON Point",
"type": "object"

},
"PointCoordinates": {
"items": {
"type": "number"
},
"minItems": 2,
"type": "array"

},
"Polygon": {
"properties": {
"bbox": {
"$ref": "#/definitions/BoundingBox"
},
"coordinates": {
"$ref": "#/definitions/PolygonCoordinates"
},
"type": {
"enum": [
"Polygon"

],
"type": "string"
}

(continues on next page)

12.1. Synapse Data Model - Types 893

Synapse Documentation, Release 2.141.0

(continued from previous page)

},
"required": [
"type",
"coordinates"
],
"title": "GeoJSON Polygon",
"type": "object"

},
"PolygonCoordinates": {
"items": {
"$ref": "#/definitions/LinearRingCoordinates"
},
"type": "array"

}
},
"oneOf": [
{
"$ref": "#/definitions/Point"

},
{
"$ref": "#/definitions/LineString"

},
{
"$ref": "#/definitions/Polygon"

},
{
"$ref": "#/definitions/MultiPoint"

},
{
"$ref": "#/definitions/MultiLineString"

},
{
"$ref": "#/definitions/MultiPolygon"

},
{
"$ref": "#/definitions/GeometryCollection"

},
{
"$ref": "#/definitions/Feature"

},
{
"$ref": "#/definitions/FeatureCollection"

}
]

}

894 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

geo:latitude

A latitude in floating point notation. The geo:latitude type is derived from the base type: float.

An example of geo:latitude:

• 31.337

The type geo:latitude has the following options set:

• fmt: %f

• max: 90.0

• maxisvalid: True

• min: -90.0

• minisvalid: True

geo:longitude

A longitude in floating point notation. The geo:longitude type is derived from the base type: float.

An example of geo:longitude:

• 31.337

The type geo:longitude has the following options set:

• fmt: %f

• max: 180.0

• maxisvalid: True

• min: -180.0

• minisvalid: False

geo:name

An unstructured place name or address. The geo:name type is derived from the base type: str.

The type geo:name has the following options set:

• globsuffix: False

• lower: True

• onespace: True

• regex: None

• replace: ()

• strip: False

12.1. Synapse Data Model - Types 895

Synapse Documentation, Release 2.141.0

geo:nloc

Records a node latitude/longitude in space-time. The geo:nloc type is derived from the base type: comp.

The type geo:nloc has the following options set:

• fields: (('ndef', 'ndef'), ('latlong', 'geo:latlong'), ('time', 'time'))

geo:place

A GUID for a geographic place. The geo:place type is derived from the base type: guid.

geo:place:taxonomy

A taxonomy of place types. The geo:place:taxonomy type is derived from the base type: taxonomy.

The type geo:place:taxonomy has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

geo:telem

A geospatial position of a node at a given time. The node should be linked via -(seenat)> edges. The geo:telem type
is derived from the base type: guid.

gov:cn:icp

A Chinese Internet Content Provider ID. The gov:cn:icp type is derived from the base type: int.

The type gov:cn:icp has the following options set:

• fmt: %d

• ismax: False

• ismin: False

• max: None

• min: None

• signed: True

• size: 8

896 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

gov:cn:mucd

A Chinese PLA MUCD. The gov:cn:mucd type is derived from the base type: int.

The type gov:cn:mucd has the following options set:

• fmt: %d

• ismax: False

• ismin: False

• max: None

• min: None

• signed: True

• size: 8

gov:intl:un:m49

UN M49 Numeric Country Code. The gov:intl:un:m49 type is derived from the base type: int.

The type gov:intl:un:m49 has the following options set:

• fmt: %d

• ismax: False

• ismin: False

• max: 999

• min: 1

• signed: True

• size: 8

gov:us:cage

A Commercial and Government Entity (CAGE) code. The gov:us:cage type is derived from the base type: str.

The type gov:us:cage has the following options set:

• globsuffix: False

• lower: True

• onespace: False

• regex: None

• replace: ()

• strip: False

12.1. Synapse Data Model - Types 897

Synapse Documentation, Release 2.141.0

gov:us:ssn

A US Social Security Number (SSN). The gov:us:ssn type is derived from the base type: int.

The type gov:us:ssn has the following options set:

• fmt: %d

• ismax: False

• ismin: False

• max: None

• min: None

• signed: True

• size: 8

gov:us:zip

A US Postal Zip Code. The gov:us:zip type is derived from the base type: int.

The type gov:us:zip has the following options set:

• fmt: %d

• ismax: False

• ismin: False

• max: None

• min: None

• signed: True

• size: 8

graph:cluster

A generic node, used in conjunction with Edge types, to cluster arbitrary nodes to a single node in the model. The
graph:cluster type is derived from the base type: guid.

graph:edge

A generic digraph edge to show relationships outside the model. The graph:edge type is derived from the base type:
edge.

898 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

graph:event

A generic event node to represent events outside the model. The graph:event type is derived from the base type:
guid.

graph:node

A generic node used to represent objects outside the model. The graph:node type is derived from the base type: guid.

graph:timeedge

A generic digraph time edge to show relationships outside the model. The graph:timeedge type is derived from the
base type: timeedge.

hash:lm

A hex encoded Microsoft Windows LM password hash. The hash:lm type is derived from the base type: hex.

An example of hash:lm:

• d41d8cd98f00b204e9800998ecf8427e

The type hash:lm has the following options set:

• size: 32

hash:md5

A hex encoded MD5 hash. The hash:md5 type is derived from the base type: hex.

An example of hash:md5:

• d41d8cd98f00b204e9800998ecf8427e

The type hash:md5 has the following options set:

• size: 32

hash:ntlm

A hex encoded Microsoft Windows NTLM password hash. The hash:ntlm type is derived from the base type: hex.

An example of hash:ntlm:

• d41d8cd98f00b204e9800998ecf8427e

The type hash:ntlm has the following options set:

• size: 32

12.1. Synapse Data Model - Types 899

Synapse Documentation, Release 2.141.0

hash:sha1

A hex encoded SHA1 hash. The hash:sha1 type is derived from the base type: hex.

An example of hash:sha1:

• da39a3ee5e6b4b0d3255bfef95601890afd80709

The type hash:sha1 has the following options set:

• size: 40

hash:sha256

A hex encoded SHA256 hash. The hash:sha256 type is derived from the base type: hex.

An example of hash:sha256:

• ad9f4fe922b61e674a09530831759843b1880381de686a43460a76864ca0340c

The type hash:sha256 has the following options set:

• size: 64

hash:sha384

A hex encoded SHA384 hash. The hash:sha384 type is derived from the base type: hex.

An example of hash:sha384:

• d425f1394e418ce01ed1579069a8bfaa1da8f32cf823982113ccbef531fa36bda9987f389c5af05b5e28035242efab6c

The type hash:sha384 has the following options set:

• size: 96

hash:sha512

A hex encoded SHA512 hash. The hash:sha512 type is derived from the base type: hex.

An example of hash:sha512:

• ca74fe2ff2d03b29339ad7d08ba21d192077fece1715291c7b43c20c9136cd132788239189f3441a87eb23ce2660aa243f334295902c904b5520f6e80ab91f11

The type hash:sha512 has the following options set:

• size: 128

inet:asn

An Autonomous System Number (ASN). The inet:asn type is derived from the base type: int.

The type inet:asn has the following options set:

• fmt: %d

• ismax: False

• ismin: False

• max: None

900 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

• min: None

• signed: True

• size: 8

inet:asnet4

An Autonomous System Number (ASN) and its associated IPv4 address range. The inet:asnet4 type is derived from
the base type: comp.

An example of inet:asnet4:

• (54959, (1.2.3.4, 1.2.3.20))

The type inet:asnet4 has the following options set:

• fields: (('asn', 'inet:asn'), ('net4', 'inet:net4'))

inet:asnet6

An Autonomous System Number (ASN) and its associated IPv6 address range. The inet:asnet6 type is derived from
the base type: comp.

An example of inet:asnet6:

• (54959, (ff::00, ff::02))

The type inet:asnet6 has the following options set:

• fields: (('asn', 'inet:asn'), ('net6', 'inet:net6'))

inet:banner

A network protocol banner string presented by a server. The inet:banner type is derived from the base type: comp.

The type inet:banner has the following options set:

• fields: (('server', 'inet:server'), ('text', 'it:dev:str'))

inet:client

A network client address. The inet:client type is derived from the base type: inet:addr.

An example of inet:client:

• tcp://1.2.3.4:80

The type inet:client has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

12.1. Synapse Data Model - Types 901

Synapse Documentation, Release 2.141.0

inet:dns:a

The result of a DNS A record lookup. The inet:dns:a type is derived from the base type: comp.

An example of inet:dns:a:

• (vertex.link,1.2.3.4)

The type inet:dns:a has the following options set:

• fields: (('fqdn', 'inet:fqdn'), ('ipv4', 'inet:ipv4'))

inet:dns:aaaa

The result of a DNS AAAA record lookup. The inet:dns:aaaa type is derived from the base type: comp.

An example of inet:dns:aaaa:

• (vertex.link,2607:f8b0:4004:809::200e)

The type inet:dns:aaaa has the following options set:

• fields: (('fqdn', 'inet:fqdn'), ('ipv6', 'inet:ipv6'))

inet:dns:answer

A single answer from within a DNS reply. The inet:dns:answer type is derived from the base type: guid.

inet:dns:cname

The result of a DNS CNAME record lookup. The inet:dns:cname type is derived from the base type: comp.

An example of inet:dns:cname:

• (foo.vertex.link,vertex.link)

The type inet:dns:cname has the following options set:

• fields: (('fqdn', 'inet:fqdn'), ('cname', 'inet:fqdn'))

inet:dns:dynreg

A dynamic DNS registration. The inet:dns:dynreg type is derived from the base type: guid.

inet:dns:mx

The result of a DNS MX record lookup. The inet:dns:mx type is derived from the base type: comp.

An example of inet:dns:mx:

• (vertex.link,mail.vertex.link)

The type inet:dns:mx has the following options set:

• fields: (('fqdn', 'inet:fqdn'), ('mx', 'inet:fqdn'))

902 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

inet:dns:ns

The result of a DNS NS record lookup. The inet:dns:ns type is derived from the base type: comp.

An example of inet:dns:ns:

• (vertex.link,ns.dnshost.com)

The type inet:dns:ns has the following options set:

• fields: (('zone', 'inet:fqdn'), ('ns', 'inet:fqdn'))

inet:dns:query

A DNS query unique to a given client. The inet:dns:query type is derived from the base type: comp.

An example of inet:dns:query:

• (1.2.3.4, woot.com, 1)

The type inet:dns:query has the following options set:

• fields: (('client', 'inet:client'), ('name', 'inet:dns:name'), ('type', 'int'))

inet:dns:request

A single instance of a DNS resolver request and optional reply info. The inet:dns:request type is derived from the
base type: guid.

inet:dns:rev

The transformed result of a DNS PTR record lookup. The inet:dns:rev type is derived from the base type: comp.

An example of inet:dns:rev:

• (1.2.3.4,vertex.link)

The type inet:dns:rev has the following options set:

• fields: (('ipv4', 'inet:ipv4'), ('fqdn', 'inet:fqdn'))

inet:dns:rev6

The transformed result of a DNS PTR record for an IPv6 address. The inet:dns:rev6 type is derived from the base
type: comp.

An example of inet:dns:rev6:

• (2607:f8b0:4004:809::200e,vertex.link)

The type inet:dns:rev6 has the following options set:

• fields: (('ipv6', 'inet:ipv6'), ('fqdn', 'inet:fqdn'))

12.1. Synapse Data Model - Types 903

Synapse Documentation, Release 2.141.0

inet:dns:soa

The result of a DNS SOA record lookup. The inet:dns:soa type is derived from the base type: guid.

inet:dns:txt

The result of a DNS MX record lookup. The inet:dns:txt type is derived from the base type: comp.

An example of inet:dns:txt:

• (hehe.vertex.link,"fancy TXT record")

The type inet:dns:txt has the following options set:

• fields: (('fqdn', 'inet:fqdn'), ('txt', 'str'))

inet:dns:type

A DNS query/answer type integer. The inet:dns:type type is derived from the base type: int.

The type inet:dns:type has the following options set:

• fmt: %d

• ismax: False

• ismin: False

• max: None

• min: None

• signed: True

• size: 8

inet:dns:wild:a

A DNS A wild card record and the IPv4 it resolves to. The inet:dns:wild:a type is derived from the base type:
comp.

The type inet:dns:wild:a has the following options set:

• fields: (('fqdn', 'inet:fqdn'), ('ipv4', 'inet:ipv4'))

inet:dns:wild:aaaa

A DNS AAAA wild card record and the IPv6 it resolves to. The inet:dns:wild:aaaa type is derived from the base
type: comp.

The type inet:dns:wild:aaaa has the following options set:

• fields: (('fqdn', 'inet:fqdn'), ('ipv6', 'inet:ipv6'))

904 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

inet:download

An instance of a file downloaded from a server. The inet:download type is derived from the base type: guid.

inet:egress

A host using a specific network egress client address. The inet:egress type is derived from the base type: guid.

inet:email:header

A unique email message header. The inet:email:header type is derived from the base type: comp.

The type inet:email:header has the following options set:

• fields: (('name', 'inet:email:header:name'), ('value', 'str'))

inet:email:header:name

An email header name. The inet:email:header:name type is derived from the base type: str.

An example of inet:email:header:name:

• subject

The type inet:email:header:name has the following options set:

• globsuffix: False

• lower: True

• onespace: False

• regex: None

• replace: ()

• strip: False

inet:email:message

A unique email message. The inet:email:message type is derived from the base type: guid.

inet:email:message:attachment

A file which was attached to an email message. The inet:email:message:attachment type is derived from the
base type: comp.

The type inet:email:message:attachment has the following options set:

• fields: (('message', 'inet:email:message'), ('file', 'file:bytes'))

12.1. Synapse Data Model - Types 905

Synapse Documentation, Release 2.141.0

inet:email:message:link

A url/link embedded in an email message. The inet:email:message:link type is derived from the base type: comp.

The type inet:email:message:link has the following options set:

• fields: (('message', 'inet:email:message'), ('url', 'inet:url'))

inet:flow

An individual network connection between a given source and destination. The inet:flow type is derived from the
base type: guid.

inet:group

A group name string. The inet:group type is derived from the base type: str.

The type inet:group has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

inet:http:header

An HTTP protocol header key/value. The inet:http:header type is derived from the base type: comp.

The type inet:http:header has the following options set:

• fields: (('name', 'inet:http:header:name'), ('value', 'str'))

inet:http:header:name

The base string type. The inet:http:header:name type is derived from the base type: str.

The type inet:http:header:name has the following options set:

• globsuffix: False

• lower: True

• onespace: False

• regex: None

• replace: ()

• strip: False

906 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

inet:http:param

An HTTP request path query parameter. The inet:http:param type is derived from the base type: comp.

The type inet:http:param has the following options set:

• fields: (('name', 'str'), ('value', 'str'))

inet:http:request

A single HTTP request. The inet:http:request type is derived from the base type: guid.

inet:http:request:header

An HTTP request header. The inet:http:request:header type is derived from the base type:
inet:http:header.

The type inet:http:request:header has the following options set:

• fields: (('name', 'inet:http:header:name'), ('value', 'str'))

inet:http:response:header

An HTTP response header. The inet:http:response:header type is derived from the base type:
inet:http:header.

The type inet:http:response:header has the following options set:

• fields: (('name', 'inet:http:header:name'), ('value', 'str'))

inet:http:session

An HTTP session. The inet:http:session type is derived from the base type: guid.

inet:iface

A network interface with a set of associated protocol addresses. The inet:iface type is derived from the base type:
guid.

inet:mac

A 48-bit Media Access Control (MAC) address. The inet:mac type is derived from the base type: str.

An example of inet:mac:

• aa:bb:cc:dd:ee:ff

The type inet:mac has the following options set:

• globsuffix: False

• lower: True

• onespace: False

• regex: ^([0-9a-f]{2}[:]){5}([0-9a-f]{2})$

12.1. Synapse Data Model - Types 907

Synapse Documentation, Release 2.141.0

• replace: ()

• strip: False

inet:net4

An IPv4 address range. The inet:net4 type is derived from the base type: inet:ipv4range.

An example of inet:net4:

• (1.2.3.4, 1.2.3.20)

The type inet:net4 has the following options set:

• type: ('inet:ipv4', {})

inet:net6

An IPv6 address range. The inet:net6 type is derived from the base type: inet:ipv6range.

An example of inet:net6:

• ('ff::00', 'ff::30')

The type inet:net6 has the following options set:

• type: ('inet:ipv6', {})

inet:passwd

A password string. The inet:passwd type is derived from the base type: str.

The type inet:passwd has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

inet:port

A network port. The inet:port type is derived from the base type: int.

An example of inet:port:

• 80

The type inet:port has the following options set:

• fmt: %d

• ismax: False

• ismin: False

• max: 65535

908 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

• min: 0

• signed: True

• size: 8

inet:proto

A network protocol name. The inet:proto type is derived from the base type: str.

The type inet:proto has the following options set:

• globsuffix: False

• lower: True

• onespace: False

• regex: ^[a-z0-9+-]+$

• replace: ()

• strip: False

inet:search:query

An instance of a search query issued to a search engine. The inet:search:query type is derived from the base type:
guid.

inet:search:result

A single result from a web search. The inet:search:result type is derived from the base type: guid.

inet:server

A network server address. The inet:server type is derived from the base type: inet:addr.

An example of inet:server:

• tcp://1.2.3.4:80

The type inet:server has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

12.1. Synapse Data Model - Types 909

Synapse Documentation, Release 2.141.0

inet:servfile

A file hosted on a server for access over a network protocol. The inet:servfile type is derived from the base type:
comp.

The type inet:servfile has the following options set:

• fields: (('server', 'inet:server'), ('file', 'file:bytes'))

inet:ssl:cert

An SSL certificate file served by a server. The inet:ssl:cert type is derived from the base type: comp.

An example of inet:ssl:cert:

• (1.2.3.4:443, guid:d41d8cd98f00b204e9800998ecf8427e)

The type inet:ssl:cert has the following options set:

• fields: (('server', 'inet:server'), ('file', 'file:bytes'))

inet:ssl:jarmhash

A TLS JARM fingerprint hash. The inet:ssl:jarmhash type is derived from the base type: str.

The type inet:ssl:jarmhash has the following options set:

• globsuffix: False

• lower: True

• onespace: False

• regex: ^(?<ciphers>[0-9a-f]{30})(?<extensions>[0-9a-f]{32})$

• replace: ()

• strip: True

inet:ssl:jarmsample

A JARM hash sample taken from a server. The inet:ssl:jarmsample type is derived from the base type: comp.

The type inet:ssl:jarmsample has the following options set:

• fields: (('server', 'inet:server'), ('jarmhash', 'inet:ssl:jarmhash'))

inet:tunnel

A specific sequence of hosts forwarding connections such as a VPN or proxy. The inet:tunnel type is derived from
the base type: guid.

910 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

inet:tunnel:type:taxonomy

A taxonomy of network tunnel types. The inet:tunnel:type:taxonomy type is derived from the base type:
taxonomy.

The type inet:tunnel:type:taxonomy has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

inet:url:mirror

A URL mirror site. The inet:url:mirror type is derived from the base type: comp.

The type inet:url:mirror has the following options set:

• fields: (('of', 'inet:url'), ('at', 'inet:url'))

inet:urlfile

A file hosted at a specific Universal Resource Locator (URL). The inet:urlfile type is derived from the base type:
comp.

The type inet:urlfile has the following options set:

• fields: (('url', 'inet:url'), ('file', 'file:bytes'))

inet:urlredir

A URL that redirects to another URL, such as via a URL shortening service or an HTTP 302 response. The
inet:urlredir type is derived from the base type: comp.

An example of inet:urlredir:

• (http://foo.com/,http://bar.com/)

The type inet:urlredir has the following options set:

• fields: (('src', 'inet:url'), ('dst', 'inet:url'))

12.1. Synapse Data Model - Types 911

Synapse Documentation, Release 2.141.0

inet:user

A username string. The inet:user type is derived from the base type: str.

The type inet:user has the following options set:

• globsuffix: False

• lower: True

• onespace: False

• regex: None

• replace: ()

• strip: False

inet:web:acct

An account with a given Internet-based site or service. The inet:web:acct type is derived from the base type: comp.

An example of inet:web:acct:

• twitter.com/invisig0th

The type inet:web:acct has the following options set:

• fields: (('site', 'inet:fqdn'), ('user', 'inet:user'))

• sepr: /

inet:web:action

An instance of an account performing an action at an Internet-based site or service. The inet:web:action type is
derived from the base type: guid.

inet:web:attachment

An instance of a file being sent to a web service by an account. The inet:web:attachment type is derived from the
base type: guid.

inet:web:channel

A channel within a web service or instance such as slack or discord. The inet:web:channel type is derived from the
base type: guid.

912 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

inet:web:chprofile

A change to a web account. Used to capture historical properties associated with an account, as opposed to current
data in the inet:web:acct node. The inet:web:chprofile type is derived from the base type: guid.

inet:web:file

A file posted by a web account. The inet:web:file type is derived from the base type: comp.

The type inet:web:file has the following options set:

• fields: (('acct', 'inet:web:acct'), ('file', 'file:bytes'))

inet:web:follows

A web account follows or is connected to another web account. The inet:web:follows type is derived from the base
type: comp.

The type inet:web:follows has the following options set:

• fields: (('follower', 'inet:web:acct'), ('followee', 'inet:web:acct'))

inet:web:group

A group hosted within or registered with a given Internet-based site or service. The inet:web:group type is derived
from the base type: comp.

An example of inet:web:group:

• somesite.com/mycoolgroup

The type inet:web:group has the following options set:

• fields: (('site', 'inet:fqdn'), ('id', 'inet:group'))

• sepr: /

inet:web:hashtag

A hashtag used in a web post. The inet:web:hashtag type is derived from the base type: str.

The type inet:web:hashtag has the following options set:

• globsuffix: False

• lower: True

• onespace: False

• regex: ^#[\w]+$

• replace: ()

• strip: False

12.1. Synapse Data Model - Types 913

Synapse Documentation, Release 2.141.0

inet:web:instance

An instance of a web service such as slack or discord. The inet:web:instance type is derived from the base type:
guid.

inet:web:logon

An instance of an account authenticating to an Internet-based site or service. The inet:web:logon type is derived
from the base type: guid.

inet:web:memb

Deprecated. Please use inet:web:member. The inet:web:memb type is derived from the base type: comp.

The type inet:web:memb has the following options set:

• fields: (('acct', 'inet:web:acct'), ('group', 'inet:web:group'))

inet:web:member

Represents a web account membership in a channel or group. The inet:web:member type is derived from the base
type: guid.

inet:web:mesg

A message sent from one web account to another web account or channel. The inet:web:mesg type is derived from
the base type: comp.

An example of inet:web:mesg:

• ((twitter.com, invisig0th), (twitter.com, gobbles), 20041012130220)

The type inet:web:mesg has the following options set:

• fields: (('from', 'inet:web:acct'), ('to', 'inet:web:acct'), ('time', 'time'))

inet:web:post

A post made by a web account. The inet:web:post type is derived from the base type: guid.

inet:web:post:link

A link contained within post text. The inet:web:post:link type is derived from the base type: guid.

914 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

inet:whois:contact

An individual contact from a domain whois record. The inet:whois:contact type is derived from the base type:
comp.

The type inet:whois:contact has the following options set:

• fields: (('rec', 'inet:whois:rec'), ('type', ('str', {'lower': True})))

inet:whois:email

An email address associated with an FQDN via whois registration text. The inet:whois:email type is derived from
the base type: comp.

The type inet:whois:email has the following options set:

• fields: (('fqdn', 'inet:fqdn'), ('email', 'inet:email'))

inet:whois:ipcontact

An individual contact from an IP block record. The inet:whois:ipcontact type is derived from the base type:
guid.

inet:whois:ipquery

Query details used to retrieve an IP record. The inet:whois:ipquery type is derived from the base type: guid.

inet:whois:iprec

An IPv4/IPv6 block registration record. The inet:whois:iprec type is derived from the base type: guid.

inet:whois:rar

A domain registrar. The inet:whois:rar type is derived from the base type: str.

An example of inet:whois:rar:

• godaddy, inc.

The type inet:whois:rar has the following options set:

• globsuffix: False

• lower: True

• onespace: False

• regex: None

• replace: ()

• strip: False

12.1. Synapse Data Model - Types 915

Synapse Documentation, Release 2.141.0

inet:whois:rec

A domain whois record. The inet:whois:rec type is derived from the base type: comp.

The type inet:whois:rec has the following options set:

• fields: (('fqdn', 'inet:fqdn'), ('asof', 'time'))

inet:whois:recns

A nameserver associated with a domain whois record. The inet:whois:recns type is derived from the base type:
comp.

The type inet:whois:recns has the following options set:

• fields: (('ns', 'inet:fqdn'), ('rec', 'inet:whois:rec'))

inet:whois:reg

A domain registrant. The inet:whois:reg type is derived from the base type: str.

An example of inet:whois:reg:

• woot hostmaster

The type inet:whois:reg has the following options set:

• globsuffix: False

• lower: True

• onespace: False

• regex: None

• replace: ()

• strip: False

inet:whois:regid

The registry unique identifier of the registration record. The inet:whois:regid type is derived from the base type:
str.

An example of inet:whois:regid:

• NET-10-0-0-0-1

The type inet:whois:regid has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

916 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

inet:wifi:ap

An SSID/MAC address combination for a wireless access point. The inet:wifi:ap type is derived from the base
type: comp.

The type inet:wifi:ap has the following options set:

• fields: (('ssid', 'inet:wifi:ssid'), ('bssid', 'inet:mac'))

inet:wifi:ssid

A WiFi service set identifier (SSID) name. The inet:wifi:ssid type is derived from the base type: str.

An example of inet:wifi:ssid:

• The Vertex Project

The type inet:wifi:ssid has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

iso:3166:cc

An ISO 3166 2 digit country code. The iso:3166:cc type is derived from the base type: str.

The type iso:3166:cc has the following options set:

• globsuffix: False

• lower: True

• onespace: False

• regex: ^[a-z]{2}$

• replace: ()

• strip: False

iso:oid

An ISO Object Identifier string. The iso:oid type is derived from the base type: str.

The type iso:oid has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: ^([0-2])((\.0)|(\.[1-9][0-9]*))*$

• replace: ()

12.1. Synapse Data Model - Types 917

Synapse Documentation, Release 2.141.0

• strip: False

it:account

A GUID that represents an account on a host or network. The it:account type is derived from the base type: guid.

it:adid

An advertising identification string. The it:adid type is derived from the base type: str.

The type it:adid has the following options set:

• globsuffix: False

• lower: True

• onespace: False

• regex: None

• replace: ()

• strip: True

it:app:snort:hit

An instance of a snort rule hit. The it:app:snort:hit type is derived from the base type: guid.

it:app:snort:rule

A snort rule. The it:app:snort:rule type is derived from the base type: guid.

it:app:yara:match

A YARA rule match to a file. The it:app:yara:match type is derived from the base type: comp.

The type it:app:yara:match has the following options set:

• fields: (('rule', 'it:app:yara:rule'), ('file', 'file:bytes'))

it:app:yara:procmatch

An instance of a YARA rule match to a process. The it:app:yara:procmatch type is derived from the base type:
guid.

918 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

it:app:yara:rule

A YARA rule unique identifier. The it:app:yara:rule type is derived from the base type: guid.

it:auth:passwdhash

An instance of a password hash. The it:auth:passwdhash type is derived from the base type: guid.

it:av:filehit

A file that triggered an alert on a specific antivirus signature. The it:av:filehit type is derived from the base type:
comp.

The type it:av:filehit has the following options set:

• fields: (('file', 'file:bytes'), ('sig', 'it:av:sig'))

it:av:prochit

An instance of a process triggering an alert on a specific antivirus signature. The it:av:prochit type is derived from
the base type: guid.

it:av:sig

A signature name within the namespace of an antivirus engine name. The it:av:sig type is derived from the base
type: comp.

The type it:av:sig has the following options set:

• fields: (('soft', 'it:prod:soft'), ('name', 'it:av:signame'))

it:av:signame

An antivirus signature name. The it:av:signame type is derived from the base type: str.

The type it:av:signame has the following options set:

• globsuffix: False

• lower: True

• onespace: False

• regex: None

• replace: ()

• strip: False

12.1. Synapse Data Model - Types 919

Synapse Documentation, Release 2.141.0

it:cmd

A unique command-line string. The it:cmd type is derived from the base type: str.

An example of it:cmd:

• foo.exe --dostuff bar

The type it:cmd has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: True

it:dev:int

A developer selected integer constant. The it:dev:int type is derived from the base type: int.

The type it:dev:int has the following options set:

• fmt: %d

• ismax: False

• ismin: False

• max: None

• min: None

• signed: True

• size: 8

it:dev:mutex

A string representing a mutex. The it:dev:mutex type is derived from the base type: str.

The type it:dev:mutex has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

920 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

it:dev:pipe

A string representing a named pipe. The it:dev:pipe type is derived from the base type: str.

The type it:dev:pipe has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

it:dev:regkey

A Windows registry key. The it:dev:regkey type is derived from the base type: str.

An example of it:dev:regkey:

• HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

The type it:dev:regkey has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

it:dev:regval

A Windows registry key/value pair. The it:dev:regval type is derived from the base type: guid.

it:dev:str

A developer-selected string. The it:dev:str type is derived from the base type: str.

The type it:dev:str has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

12.1. Synapse Data Model - Types 921

Synapse Documentation, Release 2.141.0

it:domain

A logical boundary of authentication and configuration such as a windows domain. The it:domain type is derived
from the base type: guid.

it:exec:bind

An instance of a host binding a listening port. The it:exec:bind type is derived from the base type: guid.

it:exec:file:add

An instance of a host adding a file to a filesystem. The it:exec:file:add type is derived from the base type: guid.

it:exec:file:del

An instance of a host deleting a file from a filesystem. The it:exec:file:del type is derived from the base type:
guid.

it:exec:file:read

An instance of a host reading a file from a filesystem. The it:exec:file:read type is derived from the base type:
guid.

it:exec:file:write

An instance of a host writing a file to a filesystem. The it:exec:file:write type is derived from the base type:
guid.

it:exec:loadlib

A library load event in a process. The it:exec:loadlib type is derived from the base type: guid.

it:exec:mmap

A memory mapped segment located in a process. The it:exec:mmap type is derived from the base type: guid.

it:exec:mutex

A mutex created by a process at runtime. The it:exec:mutex type is derived from the base type: guid.

922 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

it:exec:pipe

A named pipe created by a process at runtime. The it:exec:pipe type is derived from the base type: guid.

it:exec:proc

A process executing on a host. May be an actual (e.g., endpoint) or virtual (e.g., malware sandbox) host. The
it:exec:proc type is derived from the base type: guid.

it:exec:query

An instance of an executed query. The it:exec:query type is derived from the base type: guid.

it:exec:reg:del

An instance of a host deleting a registry key. The it:exec:reg:del type is derived from the base type: guid.

it:exec:reg:get

An instance of a host getting a registry key. The it:exec:reg:get type is derived from the base type: guid.

it:exec:reg:set

An instance of a host creating or setting a registry key. The it:exec:reg:set type is derived from the base type:
guid.

it:exec:thread

A thread executing in a process. The it:exec:thread type is derived from the base type: guid.

it:exec:url

An instance of a host requesting a URL. The it:exec:url type is derived from the base type: guid.

it:fs:file

A file on a host. The it:fs:file type is derived from the base type: guid.

it:group

A GUID that represents a group on a host or network. The it:group type is derived from the base type: guid.

12.1. Synapse Data Model - Types 923

Synapse Documentation, Release 2.141.0

it:host

A GUID that represents a host or system. The it:host type is derived from the base type: guid.

it:hostname

The name of a host or system. The it:hostname type is derived from the base type: str.

The type it:hostname has the following options set:

• globsuffix: False

• lower: True

• onespace: False

• regex: None

• replace: ()

• strip: True

it:hostsoft

A version of a software product which is present on a given host. The it:hostsoft type is derived from the base
type: comp.

The type it:hostsoft has the following options set:

• fields: (('host', 'it:host'), ('softver', 'it:prod:softver'))

it:hosturl

A url hosted on or served by a host or system. The it:hosturl type is derived from the base type: comp.

The type it:hosturl has the following options set:

• fields: (('host', 'it:host'), ('url', 'inet:url'))

it:log:event

A GUID representing an individual log event. The it:log:event type is derived from the base type: guid.

it:log:event:type:taxonomy

A taxonomy of log event types. The it:log:event:type:taxonomy type is derived from the base type: taxonomy.

The type it:log:event:type:taxonomy has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

924 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

• strip: False

it:logon

A GUID that represents an individual logon/logoff event. The it:logon type is derived from the base type: guid.

it:mitre:attack:group

A Mitre ATT&CK Group ID. The it:mitre:attack:group type is derived from the base type: str.

An example of it:mitre:attack:group:

• G0100

The type it:mitre:attack:group has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: ^G[0-9]{4}$

• replace: ()

• strip: False

it:mitre:attack:matrix

An enumeration of ATT&CK matrix values. The it:mitre:attack:matrix type is derived from the base type: str.

An example of it:mitre:attack:matrix:

• enterprise

The type it:mitre:attack:matrix has the following options set:

• enums:

valu

enterprise

mobile

ics

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

12.1. Synapse Data Model - Types 925

Synapse Documentation, Release 2.141.0

it:mitre:attack:mitigation

A Mitre ATT&CK Mitigation ID. The it:mitre:attack:mitigation type is derived from the base type: str.

An example of it:mitre:attack:mitigation:

• M1036

The type it:mitre:attack:mitigation has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: ^M[0-9]{4}$

• replace: ()

• strip: False

it:mitre:attack:software

A Mitre ATT&CK Software ID. The it:mitre:attack:software type is derived from the base type: str.

An example of it:mitre:attack:software:

• S0154

The type it:mitre:attack:software has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: ^S[0-9]{4}$

• replace: ()

• strip: False

it:mitre:attack:status

A Mitre ATT&CK element status. The it:mitre:attack:status type is derived from the base type: str.

An example of it:mitre:attack:status:

• current

The type it:mitre:attack:status has the following options set:

• enums:

926 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

valu

current

deprecated

withdrawn

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

it:mitre:attack:tactic

A Mitre ATT&CK Tactic ID. The it:mitre:attack:tactic type is derived from the base type: str.

An example of it:mitre:attack:tactic:

• TA0040

The type it:mitre:attack:tactic has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: ^TA[0-9]{4}$

• replace: ()

• strip: False

it:mitre:attack:technique

A Mitre ATT&CK Technique ID. The it:mitre:attack:technique type is derived from the base type: str.

An example of it:mitre:attack:technique:

• T1548

The type it:mitre:attack:technique has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: ^T[0-9]{4}(.[0-9]{3})?$

• replace: ()

12.1. Synapse Data Model - Types 927

Synapse Documentation, Release 2.141.0

• strip: False

it:network

A GUID that represents a logical network. The it:network type is derived from the base type: guid.

it:os:android:aaid

An android advertising identification string. The it:os:android:aaid type is derived from the base type: it:adid.

The type it:os:android:aaid has the following options set:

• globsuffix: False

• lower: True

• onespace: False

• regex: None

• replace: ()

• strip: True

it:os:android:ibroadcast

The given software broadcasts the given Android intent. The it:os:android:ibroadcast type is derived from the
base type: comp.

The type it:os:android:ibroadcast has the following options set:

• fields: (('app', 'it:prod:soft'), ('intent', 'it:os:android:intent'))

it:os:android:ilisten

The given software listens for an android intent. The it:os:android:ilisten type is derived from the base type:
comp.

The type it:os:android:ilisten has the following options set:

• fields: (('app', 'it:prod:soft'), ('intent', 'it:os:android:intent'))

it:os:android:intent

An android intent string. The it:os:android:intent type is derived from the base type: str.

The type it:os:android:intent has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

928 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

it:os:android:perm

An android permission string. The it:os:android:perm type is derived from the base type: str.

The type it:os:android:perm has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

it:os:android:reqperm

The given software requests the android permission. The it:os:android:reqperm type is derived from the base
type: comp.

The type it:os:android:reqperm has the following options set:

• fields: (('app', 'it:prod:soft'), ('perm', 'it:os:android:perm'))

it:os:ios:idfa

An iOS advertising identification string. The it:os:ios:idfa type is derived from the base type: it:adid.

The type it:os:ios:idfa has the following options set:

• globsuffix: False

• lower: True

• onespace: False

• regex: None

• replace: ()

• strip: True

it:os:windows:sid

A Microsoft Windows Security Identifier. The it:os:windows:sid type is derived from the base type: str.

An example of it:os:windows:sid:

• S-1-5-21-1220945662-1202665555-839525555-5555

The type it:os:windows:sid has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: ^S-1-[0-59]-\d{2}-\d{8,10}-\d{8,10}-\d{8,10}-[1-9]\d{3}$

• replace: ()

12.1. Synapse Data Model - Types 929

Synapse Documentation, Release 2.141.0

• strip: False

it:prod:component

A specific instance of an it:prod:hardware most often as part of an it:host. The it:prod:component type is derived
from the base type: guid.

it:prod:hardware

A specification for a piece of IT hardware. The it:prod:hardware type is derived from the base type: guid.

it:prod:hardwaretype

An IT hardware type taxonomy. The it:prod:hardwaretype type is derived from the base type: taxonomy.

The type it:prod:hardwaretype has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

it:prod:soft

A software product. The it:prod:soft type is derived from the base type: guid.

it:prod:soft:taxonomy

A software type taxonomy. The it:prod:soft:taxonomy type is derived from the base type: taxonomy.

The type it:prod:soft:taxonomy has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

930 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

it:prod:softfile

A file is distributed by a specific software version. The it:prod:softfile type is derived from the base type: comp.

The type it:prod:softfile has the following options set:

• fields: (('soft', 'it:prod:softver'), ('file', 'file:bytes'))

it:prod:softid

An identifier issued to a given host by a specific software application. The it:prod:softid type is derived from the
base type: guid.

it:prod:softlib

A software version contains a library software version. The it:prod:softlib type is derived from the base type:
comp.

The type it:prod:softlib has the following options set:

• fields: (('soft', 'it:prod:softver'), ('lib', 'it:prod:softver'))

it:prod:softname

A software product name. The it:prod:softname type is derived from the base type: str.

The type it:prod:softname has the following options set:

• globsuffix: False

• lower: True

• onespace: True

• regex: None

• replace: ()

• strip: False

it:prod:softos

The software version is known to be compatible with the given os software version. The it:prod:softos type is
derived from the base type: comp.

The type it:prod:softos has the following options set:

• fields: (('soft', 'it:prod:softver'), ('os', 'it:prod:softver'))

12.1. Synapse Data Model - Types 931

Synapse Documentation, Release 2.141.0

it:prod:softreg

A registry entry is created by a specific software version. The it:prod:softreg type is derived from the base type:
comp.

The type it:prod:softreg has the following options set:

• fields: (('softver', 'it:prod:softver'), ('regval', 'it:dev:regval'))

it:prod:softver

A specific version of a software product. The it:prod:softver type is derived from the base type: guid.

it:query

A unique query string. The it:query type is derived from the base type: str.

The type it:query has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: True

it:reveng:filefunc

An instance of a function in an executable. The it:reveng:filefunc type is derived from the base type: comp.

The type it:reveng:filefunc has the following options set:

• fields: (('file', 'file:bytes'), ('function', 'it:reveng:function'))

it:reveng:funcstr

A reference to a string inside a function. The it:reveng:funcstr type is derived from the base type: comp.

The type it:reveng:funcstr has the following options set:

• fields: (('function', 'it:reveng:function'), ('string', 'str'))

it:reveng:function

A function inside an executable. The it:reveng:function type is derived from the base type: guid.

932 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

it:reveng:impfunc

A function from an imported library. The it:reveng:impfunc type is derived from the base type: str.

The type it:reveng:impfunc has the following options set:

• globsuffix: False

• lower: 1

• onespace: False

• regex: None

• replace: ()

• strip: False

it:screenshot

A screenshot of a host. The it:screenshot type is derived from the base type: guid.

it:sec:c2:config

An extracted C2 config from an executable. The it:sec:c2:config type is derived from the base type: guid.

it:sec:cve

A vulnerability as designated by a Common Vulnerabilities and Exposures (CVE) number. The it:sec:cve type is
derived from the base type: str.

An example of it:sec:cve:

• cve-2012-0158

The type it:sec:cve has the following options set:

• globsuffix: False

• lower: True

• onespace: False

• regex: (?i)^CVE-[0-9]{4}-[0-9]{4,}$

• replace: (('-', '-'), ('–', '-'), ('–', '-'), ('—', '-'))

• strip: False

it:sec:cwe

NIST NVD Common Weaknesses Enumeration Specification. The it:sec:cwe type is derived from the base type:
str.

An example of it:sec:cwe:

• CWE-120

The type it:sec:cwe has the following options set:

• globsuffix: False

12.1. Synapse Data Model - Types 933

Synapse Documentation, Release 2.141.0

• lower: False

• onespace: False

• regex: ^CWE-[0-9]{1,8}$

• replace: ()

• strip: False

it:sec:stix:bundle

A STIX bundle. The it:sec:stix:bundle type is derived from the base type: guid.

it:sec:stix:indicator

A STIX indicator pattern. The it:sec:stix:indicator type is derived from the base type: guid.

lang:code

An optionally 2 part language code. The lang:code type is derived from the base type: str.

An example of lang:code:

• pt.br

The type lang:code has the following options set:

• globsuffix: False

• lower: True

• onespace: False

• regex: ^[a-z]{2}(.[a-z]{2})?$

• replace: ()

• strip: False

lang:idiom

Deprecated. Please use lang:translation. The lang:idiom type is derived from the base type: str.

The type lang:idiom has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

934 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

lang:language

A specific written or spoken language. The lang:language type is derived from the base type: guid.

lang:name

A name used to refer to a language. The lang:name type is derived from the base type: str.

The type lang:name has the following options set:

• globsuffix: False

• lower: True

• onespace: True

• regex: None

• replace: ()

• strip: False

lang:trans

Deprecated. Please use lang:translation. The lang:trans type is derived from the base type: str.

The type lang:trans has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

lang:translation

A translation of text from one language to another. The lang:translation type is derived from the base type: guid.

mass

A mass which converts to grams as a base unit. The mass type is derived from the base type: hugenum.

The type mass has the following options set:

• modulo: None

• units: {'µg': '0.000001', 'microgram': '0.000001', 'micrograms': '0.000001', 'mg':
'0.001', 'milligram': '0.001', 'milligrams': '0.001', 'g': '1', 'grams': '1',
'kg': '1000', 'kilogram': '1000', 'kilograms': '1000', 'lb': '453.592', 'lbs':
'453.592', 'pound': '453.592', 'pounds': '453.592', 'stone': '6350.29'}

12.1. Synapse Data Model - Types 935

Synapse Documentation, Release 2.141.0

mat:item

A GUID assigned to a material object. The mat:item type is derived from the base type: guid.

mat:itemimage

The base type for compound node fields. The mat:itemimage type is derived from the base type: comp.

The type mat:itemimage has the following options set:

• fields: (('item', 'mat:item'), ('file', 'file:bytes'))

mat:spec

A GUID assigned to a material specification. The mat:spec type is derived from the base type: guid.

mat:specimage

The base type for compound node fields. The mat:specimage type is derived from the base type: comp.

The type mat:specimage has the following options set:

• fields: (('spec', 'mat:spec'), ('file', 'file:bytes'))

mat:type

A taxonomy of material item/specification types. The mat:type type is derived from the base type: taxonomy.

The type mat:type has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

media:news

A GUID for a news article or report. The media:news type is derived from the base type: guid.

936 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

media:news:taxonomy

A taxonomy of types or sources of news. The media:news:taxonomy type is derived from the base type: taxonomy.

The type media:news:taxonomy has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

media:topic

A topic string. The media:topic type is derived from the base type: str.

The type media:topic has the following options set:

• globsuffix: False

• lower: True

• onespace: True

• regex: None

• replace: ()

• strip: False

meta:event

An analytically relevant event in a curated timeline. The meta:event type is derived from the base type: guid.

meta:event:taxonomy

A taxonomy of event types for meta:event nodes. The meta:event:taxonomy type is derived from the base type:
taxonomy.

The type meta:event:taxonomy has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

12.1. Synapse Data Model - Types 937

Synapse Documentation, Release 2.141.0

meta:note

An analyst note about nodes linked with -(about)> edges. The meta:note type is derived from the base type: guid.

meta:note:type:taxonomy

An analyst note type taxonomy. The meta:note:type:taxonomy type is derived from the base type: taxonomy.

The type meta:note:type:taxonomy has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

meta:rule

A generic rule linked to matches with -(matches)> edges. The meta:rule type is derived from the base type: guid.

meta:ruleset

A set of rules linked with -(has)> edges. The meta:ruleset type is derived from the base type: guid.

meta:seen

Annotates that the data in a node was obtained from or observed by a given source. The meta:seen type is derived
from the base type: comp.

The type meta:seen has the following options set:

• fields: (('source', 'meta:source'), ('node', 'ndef'))

meta:sophistication

A sophistication score with named values: very low, low, medium, high, and very high. The meta:sophistication
type is derived from the base type: int.

The type meta:sophistication has the following options set:

• enums:

int valu
10 very low
20 low
30 medium
40 high
50 very high

938 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

• fmt: %d

• ismax: False

• ismin: False

• max: None

• min: None

• signed: True

• size: 8

meta:source

A data source unique identifier. The meta:source type is derived from the base type: guid.

meta:timeline

A curated timeline of analytically relevant events. The meta:timeline type is derived from the base type: guid.

meta:timeline:taxonomy

A taxonomy of timeline types for meta:timeline nodes. The meta:timeline:taxonomy type is derived from the base
type: taxonomy.

The type meta:timeline:taxonomy has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

ou:alias

An alias for the org GUID. The ou:alias type is derived from the base type: str.

An example of ou:alias:

• vertexproject

The type ou:alias has the following options set:

• globsuffix: False

• lower: True

• onespace: False

• regex: ^[0-9a-z_]+$

• replace: ()

• strip: False

12.1. Synapse Data Model - Types 939

Synapse Documentation, Release 2.141.0

ou:attendee

A node representing a person attending a meeting, conference, or event. The ou:attendee type is derived from the
base type: guid.

ou:award

An award issued by an organization. The ou:award type is derived from the base type: guid.

ou:campaign

Represents an org’s activity in pursuit of a goal. The ou:campaign type is derived from the base type: guid.

ou:campname

A campaign name. The ou:campname type is derived from the base type: str.

The type ou:campname has the following options set:

• globsuffix: False

• lower: True

• onespace: True

• regex: None

• replace: ()

• strip: False

ou:camptype

An campaign type taxonomy. The ou:camptype type is derived from the base type: taxonomy.

The type ou:camptype has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

940 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

ou:conference

A conference with a name and sponsoring org. The ou:conference type is derived from the base type: guid.

ou:conference:attendee

Deprecated. Please use ou:attendee. The ou:conference:attendee type is derived from the base type: comp.

The type ou:conference:attendee has the following options set:

• fields: (('conference', 'ou:conference'), ('person', 'ps:person'))

ou:conference:event

A conference event with a name and associated conference. The ou:conference:event type is derived from the base
type: guid.

ou:conference:event:attendee

Deprecated. Please use ou:attendee. The ou:conference:event:attendee type is derived from the base type:
comp.

The type ou:conference:event:attendee has the following options set:

• fields: (('conference', 'ou:conference:event'), ('person', 'ps:person'))

ou:conflict

Represents a conflict where two or more campaigns have mutually exclusive goals. The ou:conflict type is derived
from the base type: guid.

ou:contest

A competitive event resulting in a ranked set of participants. The ou:contest type is derived from the base type:
guid.

ou:contest:result

The results from a single contest participant. The ou:contest:result type is derived from the base type: comp.

The type ou:contest:result has the following options set:

• fields: (('contest', 'ou:contest'), ('participant', 'ps:contact'))

12.1. Synapse Data Model - Types 941

Synapse Documentation, Release 2.141.0

ou:contract

An contract between multiple entities. The ou:contract type is derived from the base type: guid.

ou:contract:type

A pre-defined set of contract types. The ou:contract:type type is derived from the base type: str.

The type ou:contract:type has the following options set:

• enum: ('nda', 'other', 'grant', 'treaty', 'purchase', 'indemnity', 'partnership')

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

ou:contribution

Represents a specific instance of contributing material support to a campaign. The ou:contribution type is derived
from the base type: guid.

ou:conttype

A contract type taxonomy. The ou:conttype type is derived from the base type: taxonomy.

The type ou:conttype has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

ou:employment

An employment type taxonomy. The ou:employment type is derived from the base type: taxonomy.

An example of ou:employment:

• fulltime.salary

The type ou:employment has the following options set:

• globsuffix: False

• lower: False

• onespace: False

942 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

• regex: None

• replace: ()

• strip: False

ou:goal

An assessed or stated goal which may be abstract or org specific. The ou:goal type is derived from the base type:
guid.

ou:goal:type:taxonomy

A taxonomy of goal types. The ou:goal:type:taxonomy type is derived from the base type: taxonomy.

The type ou:goal:type:taxonomy has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

ou:goalname

A goal name. The ou:goalname type is derived from the base type: str.

The type ou:goalname has the following options set:

• globsuffix: False

• lower: True

• onespace: True

• regex: None

• replace: ()

• strip: False

ou:hasalias

The knowledge that an organization has an alias. The ou:hasalias type is derived from the base type: comp.

The type ou:hasalias has the following options set:

• fields: (('org', 'ou:org'), ('alias', 'ou:alias'))

12.1. Synapse Data Model - Types 943

Synapse Documentation, Release 2.141.0

ou:hasgoal

Deprecated. Please use ou:org:goals. The ou:hasgoal type is derived from the base type: comp.

The type ou:hasgoal has the following options set:

• fields: (('org', 'ou:org'), ('goal', 'ou:goal'))

ou:id:number

A unique id number issued by a specific organization. The ou:id:number type is derived from the base type: comp.

The type ou:id:number has the following options set:

• fields: (('type', 'ou:id:type'), ('value', 'ou:id:value'))

ou:id:type

A type of id number issued by an org. The ou:id:type type is derived from the base type: guid.

ou:id:update

A status update to an org:id:number. The ou:id:update type is derived from the base type: guid.

ou:id:value

The value of an org:id:number. The ou:id:value type is derived from the base type: str.

The type ou:id:value has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: True

ou:industry

An industry classification type. The ou:industry type is derived from the base type: guid.

944 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

ou:industry:type:taxonomy

An industry type taxonomy. The ou:industry:type:taxonomy type is derived from the base type: taxonomy.

The type ou:industry:type:taxonomy has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

ou:industryname

The name of an industry. The ou:industryname type is derived from the base type: str.

The type ou:industryname has the following options set:

• globsuffix: False

• lower: True

• onespace: True

• regex: None

• replace: ()

• strip: False

ou:isic

An International Standard Industrial Classification of All Economic Activities (ISIC) code. The ou:isic type is
derived from the base type: str.

An example of ou:isic:

• C1393

The type ou:isic has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: ^[A-Z]([0-9]{2}[0-9]{0,2})?$

• replace: ()

• strip: False

12.1. Synapse Data Model - Types 945

Synapse Documentation, Release 2.141.0

ou:jobtitle

A title for a position within an org. The ou:jobtitle type is derived from the base type: str.

The type ou:jobtitle has the following options set:

• globsuffix: False

• lower: True

• onespace: True

• regex: None

• replace: ()

• strip: False

ou:jobtype

A title for a position within an org. The ou:jobtype type is derived from the base type: taxonomy.

An example of ou:jobtype:

• it.dev.python

The type ou:jobtype has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

ou:meet

An informal meeting of people which has no title or sponsor. See also: ou:conference. The ou:meet type is derived
from the base type: guid.

ou:meet:attendee

Deprecated. Please use ou:attendee. The ou:meet:attendee type is derived from the base type: comp.

The type ou:meet:attendee has the following options set:

• fields: (('meet', 'ou:meet'), ('person', 'ps:person'))

946 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

ou:member

Deprecated. Please use ou:position. The ou:member type is derived from the base type: comp.

The type ou:member has the following options set:

• fields: (('org', 'ou:org'), ('person', 'ps:person'))

ou:naics

North American Industry Classification System codes and prefixes. The ou:naics type is derived from the base type:
str.

An example of ou:naics:

• 541715

The type ou:naics has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: ^[1-9][0-9]{1,5}?$

• replace: ()

• strip: True

ou:name

The name of an organization. This may be a formal name or informal name of the organization. The ou:name type is
derived from the base type: str.

An example of ou:name:

• acme corporation

The type ou:name has the following options set:

• globsuffix: False

• lower: True

• onespace: False

• regex: None

• replace: ()

• strip: True

12.1. Synapse Data Model - Types 947

Synapse Documentation, Release 2.141.0

ou:opening

A job/work opening within an org. The ou:opening type is derived from the base type: guid.

ou:org

A GUID for a human organization such as a company or military unit. The ou:org type is derived from the base type:
guid.

ou:org:has

An org owns, controls, or has exclusive use of an object or resource, potentially during a specific period of time. The
ou:org:has type is derived from the base type: comp.

The type ou:org:has has the following options set:

• fields: (('org', 'ou:org'), ('node', 'ndef'))

ou:orgnet4

An organization’s IPv4 netblock. The ou:orgnet4 type is derived from the base type: comp.

The type ou:orgnet4 has the following options set:

• fields: (('org', 'ou:org'), ('net', 'inet:net4'))

ou:orgnet6

An organization’s IPv6 netblock. The ou:orgnet6 type is derived from the base type: comp.

The type ou:orgnet6 has the following options set:

• fields: (('org', 'ou:org'), ('net', 'inet:net6'))

ou:orgtype

An org type taxonomy. The ou:orgtype type is derived from the base type: taxonomy.

The type ou:orgtype has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

948 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

ou:position

A position within an org. May be organized into an org chart. The ou:position type is derived from the base type:
guid.

ou:preso

A webinar, conference talk, or other type of presentation. The ou:preso type is derived from the base type: guid.

ou:role

A named role when participating in an event. The ou:role type is derived from the base type: str.

An example of ou:role:

• staff

The type ou:role has the following options set:

• globsuffix: False

• lower: True

• onespace: False

• regex: ^\w+$

• replace: ()

• strip: False

ou:sic

The four digit Standard Industrial Classification Code. The ou:sic type is derived from the base type: str.

An example of ou:sic:

• 0111

The type ou:sic has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: ^[0-9]{4}$

• replace: ()

• strip: False

12.1. Synapse Data Model - Types 949

Synapse Documentation, Release 2.141.0

ou:suborg

Any parent/child relationship between two orgs. May represent ownership, organizational structure, etc. The
ou:suborg type is derived from the base type: comp.

The type ou:suborg has the following options set:

• fields: (('org', 'ou:org'), ('sub', 'ou:org'))

ou:team

A GUID for a team within an organization. The ou:team type is derived from the base type: guid.

ou:technique

A specific technique used to achieve a goal. The ou:technique type is derived from the base type: guid.

ou:technique:taxonomy

An analyst defined taxonomy to classify techniques in different disciplines. The ou:technique:taxonomy type is
derived from the base type: taxonomy.

The type ou:technique:taxonomy has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

ou:user

A user name within an organization. The ou:user type is derived from the base type: comp.

The type ou:user has the following options set:

• fields: (('org', 'ou:org'), ('user', 'inet:user'))

ou:vitals

Vital statistics about an org for a given time period. The ou:vitals type is derived from the base type: guid.

950 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

pe:langid

The PE language id. The pe:langid type is derived from the base type: int.

The type pe:langid has the following options set:

• enums:

int valu
0 neutral
4 zh-Hans
26 hr
127 invariant
1024 default
1025 ar-SA
1026 bg-BG
1027 ca-ES
1029 cs-CZ
1030 da-DK
1031 de-DE
1032 el-GR
1033 en-US
1034 es-ES-traditional
1035 fi-FI
1036 fr-FR
1037 he-IL
1038 hu-HU
1039 is-IS
1040 it-IT
1041 ja-JP
1042 ko-KR
1043 nl-NL
1044 nb-NO
1045 pl-PL
1046 pt-BR
1047 rm-CH
1048 ro-RO
1049 ru-RU
1050 hr-HR
1051 sk-SK
1052 sq-AL
1053 sv-SE
1054 th-TH
1055 tr-TR
1056 ur-PK
1057 id-ID
1058 uk-UA
1059 be-BY
1060 sl-SI
1061 et-EE
1062 lv-LV
1063 lt-LT
1064 tg-TJ

continues on next page

12.1. Synapse Data Model - Types 951

Synapse Documentation, Release 2.141.0

Table 1 – continued from previous page
int valu
1065 fa-IR
1066 vi-VN
1067 hy-AM
1068 az-AZ-Latin
1069 Basque-Basque
1070 hsb-DE
1071 mk-MK
1074 tn-ZA
1076 xh-ZA
1077 zu-ZA
1078 af-ZA
1079 ka-GE
1080 fo-FO
1081 hi-IN
1082 mt-MT
1083 se-NO
1086 ms-MY
1087 kk-KZ
1088 ky-KG
1089 sw-KE
1090 tk-TM
1091 uz-UZ-Latin
1092 tt-RU
1093 bn-Bangledesh
1094 pa-IN
1095 gu-IN
1096 or-IN
1097 ta-IN
1098 te-IN
1099 kn-IN
1100 ml-IN
1101 as-IN
1102 mr-IN
1103 sa-IN
1104 mn-MN-Cyrllic
1105 bo-CN
1106 cy-GB
1107 kh-KH
1108 lo-LA
1110 gl-ES
1111 kok-IN
1114 syr-SY
1115 si-LK
1116 chr-Cher
1117 iu-CA
1118 am-ET
1121 ne-NP
1122 fy-NL
1123 ps-AF
1124 fil-PH

continues on next page

952 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

Table 1 – continued from previous page
int valu
1125 dv-MV
1128 ha-NG
1130 yo-NG
1131 quz-BO
1132 nso-ZA
1133 ba-RU
1134 lb-LU
1135 kl-GL
1136 ig-NG
1139 ti-ET
1141 haw-US
1144 ii-CN
1146 arn-CL
1148 moh-CA
1150 br-FR
1152 ug-CN
1153 mi-NZ
1154 oc-FR
1155 co-FR
1156 gsw-FR
1157 sah-RU
1158 qut-GT
1159 rw-RW
1160 wo-SN
1164 prs-AF
1170 ku-IQ
2048 sys default
2049 ar-IQ
2051 ca-ES-Valencia
2055 de-CH
2057 en-GB
2058 es-MX
2060 fr-BE
2064 it-CH
2067 nl-BE
2068 no-NO
2070 pt-PT
2074 sr-CS-Latin
2077 sv-FI
2080 ur-IN
2092 az-AZ-Cyrillic
2094 dsb-DE
2098 tn-BW
2107 se-SE
2108 ga-IE
2110 ms-BN
2115 uz-UZ-Cyrillic
2117 bn-IN
2118 pa-PK
2121 ta-LK

continues on next page

12.1. Synapse Data Model - Types 953

Synapse Documentation, Release 2.141.0

Table 1 – continued from previous page
int valu
2128 mn-MN-Prc
2137 sd-PK
2141 iu-CA-Latin
2143 tzm-DZ
2151 ff-SN
2155 quz-EC
2163 ti-ER
3072 custom default
3073 ar-EG
3076 zh-HK
3079 de-AT
3081 en-AU
3082 es-ES-modern
3084 fr-CA
3098 sr-CS-Cyrillic
3131 se-FI
3179 quz-PE
4096 custom unspecified
4097 ar-LY
4100 zh-SG
4103 de-LU
4105 en-CA
4106 es-GT
4108 fr-CH
4122 hr-BA
4155 smj-NO
5120 ui_custom_default
5121 ar-DZ
5124 zh-MO
5127 de-LI
5129 en-NZ
5130 es-CR
5132 fr-LU
5146 bs-BA-Latin
5179 smj-SE
6145 ar-MA
6153 en-IE
6154 es-PA
6156 fr-MC
6170 sr-code-Latin
6203 sma-NO
7169 ar-TN
7177 en-ZA
7178 es-DO
7194 sr-BA
7227 sma-SE
8193 ar-OM
8201 en-JM
8202 es-VE
8218 bs-BA-Cyrillic

continues on next page

954 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

Table 1 – continued from previous page
int valu
8251 sms-FI
9217 ar-YE
9225 en-029
9226 es-CO
9275 smn-FIl
10241 ar-SY
10249 en-BZ
10250 es-PE
11265 ar-JO
11273 en-TT
11274 es-AR
12289 ar-LB
12297 en-ZW
12298 es-EC
13313 ar-KW
13321 en-PH
13322 es-CL
14337 ar-AE
14346 es-UY
15361 ar-BH
15370 es-PY
16385 ar-QA
16393 en-IN
16394 es-BO
17417 en-MY
17418 es-SV
18441 en-SG
18442 es-HN
19466 es-NI
20490 es-PR
21514 es-US
30746 bs-neutral
31748 zh-Hant
31770 sr-Neutral

• fmt: %d

• ismax: False

• ismin: False

• max: None

• min: None

• signed: True

• size: 8

12.1. Synapse Data Model - Types 955

Synapse Documentation, Release 2.141.0

pe:resource:type

The typecode for the resource. The pe:resource:type type is derived from the base type: int.

The type pe:resource:type has the following options set:

• enums:

int valu
1 RT_CURSOR
2 RT_BITMAP
3 RT_ICON
4 RT_MENU
5 RT_DIALOG
6 RT_STRING
7 RT_FONTDIR
8 RT_FONT
9 RT_ACCELERATOR
10 RT_RCDATA
11 RT_MESSAGETABLE
12 RT_GROUP_CURSOR
14 RT_GROUP_ICON
16 RT_VERSION
17 RT_DLGINCLUDE
19 RT_PLUGPLAY
20 RT_VXD
21 RT_ANICURSOR
22 RT_ANIICON
23 RT_HTML
24 RT_MANIFEST

• fmt: %d

• ismax: False

• ismin: False

• max: None

• min: None

• signed: True

• size: 8

pol:candidate

A candidate for office in a specific race. The pol:candidate type is derived from the base type: guid.

956 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

pol:country

A GUID for a country. The pol:country type is derived from the base type: guid.

pol:election

An election involving one or more races for office. The pol:election type is derived from the base type: guid.

pol:immigration:status

A node which tracks the immigration status of a contact. The pol:immigration:status type is derived from the
base type: guid.

pol:immigration:status:type:taxonomy

A taxonomy of immigration types. The pol:immigration:status:type:taxonomy type is derived from the base
type: taxonomy.

The type pol:immigration:status:type:taxonomy has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

pol:iso2

The 2 digit ISO 3166 country code. The pol:iso2 type is derived from the base type: str.

An example of pol:iso2:

• us

The type pol:iso2 has the following options set:

• globsuffix: False

• lower: True

• onespace: False

• regex: ^[a-z0-9]{2}$

• replace: ()

• strip: False

12.1. Synapse Data Model - Types 957

Synapse Documentation, Release 2.141.0

pol:iso3

The 3 digit ISO 3166 country code. The pol:iso3 type is derived from the base type: str.

An example of pol:iso3:

• usa

The type pol:iso3 has the following options set:

• globsuffix: False

• lower: True

• onespace: False

• regex: ^[a-z0-9]{3}$

• replace: ()

• strip: False

pol:isonum

The ISO integer country code. The pol:isonum type is derived from the base type: int.

An example of pol:isonum:

• 840

The type pol:isonum has the following options set:

• fmt: %d

• ismax: False

• ismin: False

• max: None

• min: None

• signed: True

• size: 8

pol:office

An elected or appointed office. The pol:office type is derived from the base type: guid.

pol:pollingplace

An official place where ballots may be cast for a specific election. The pol:pollingplace type is derived from the
base type: guid.

958 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

pol:race

An individual race for office. The pol:race type is derived from the base type: guid.

pol:term

A term in office held by a specific individual. The pol:term type is derived from the base type: guid.

pol:vitals

A set of vital statistics about a country. The pol:vitals type is derived from the base type: guid.

proj:attachment

A file attachment added to a ticket or comment. The proj:attachment type is derived from the base type: guid.

proj:comment

A user comment on a ticket. The proj:comment type is derived from the base type: guid.

proj:epic

A collection of tickets related to a topic. The proj:epic type is derived from the base type: guid.

proj:project

A project in a ticketing system. The proj:project type is derived from the base type: guid.

proj:sprint

A timeboxed period to complete a set amount of work. The proj:sprint type is derived from the base type: guid.

proj:ticket

A ticket in a ticketing system. The proj:ticket type is derived from the base type: guid.

ps:achievement

An instance of an individual receiving an award. The ps:achievement type is derived from the base type: guid.

12.1. Synapse Data Model - Types 959

Synapse Documentation, Release 2.141.0

ps:contact

A GUID for a contact info record. The ps:contact type is derived from the base type: guid.

ps:contact:type:taxonomy

A taxonomy of contact types. The ps:contact:type:taxonomy type is derived from the base type: taxonomy.

The type ps:contact:type:taxonomy has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

ps:contactlist

A GUID for a list of associated contacts. The ps:contactlist type is derived from the base type: guid.

ps:education

A period of education for an individual. The ps:education type is derived from the base type: guid.

ps:name

An arbitrary, lower spaced string with normalized whitespace. The ps:name type is derived from the base type: str.

An example of ps:name:

• robert grey

The type ps:name has the following options set:

• globsuffix: False

• lower: True

• onespace: True

• regex: None

• replace: ()

• strip: False

960 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

ps:person

A GUID for a person. The ps:person type is derived from the base type: guid.

ps:person:has

A person owns, controls, or has exclusive use of an object or resource, potentially during a specific period of time. The
ps:person:has type is derived from the base type: comp.

The type ps:person:has has the following options set:

• fields: (('person', 'ps:person'), ('node', 'ndef'))

ps:persona

A GUID for a suspected person. The ps:persona type is derived from the base type: guid.

ps:persona:has

A persona owns, controls, or has exclusive use of an object or resource, potentially during a specific period of time.
The ps:persona:has type is derived from the base type: comp.

The type ps:persona:has has the following options set:

• fields: (('persona', 'ps:persona'), ('node', 'ndef'))

ps:proficiency

The assessment that a given contact possesses a specific skill. The ps:proficiency type is derived from the base
type: guid.

ps:skill

A specific skill which a person or organization may have. The ps:skill type is derived from the base type: guid.

ps:skill:type:taxonomy

A taxonomy of skill types. The ps:skill:type:taxonomy type is derived from the base type: taxonomy.

The type ps:skill:type:taxonomy has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

12.1. Synapse Data Model - Types 961

Synapse Documentation, Release 2.141.0

ps:tokn

A single name element (potentially given or sur). The ps:tokn type is derived from the base type: str.

An example of ps:tokn:

• robert

The type ps:tokn has the following options set:

• globsuffix: False

• lower: True

• onespace: False

• regex: None

• replace: ()

• strip: True

ps:vitals

Statistics and demographic data about a person or contact. The ps:vitals type is derived from the base type: guid.

ps:workhist

A GUID representing entry in a contact’s work history. The ps:workhist type is derived from the base type: guid.

risk:alert

An instance of an alert which indicates the presence of a risk. The risk:alert type is derived from the base type:
guid.

risk:alert:taxonomy

A taxonomy of alert types. The risk:alert:taxonomy type is derived from the base type: taxonomy.

The type risk:alert:taxonomy has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

962 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

risk:alert:verdict:taxonomy

A taxonomy of verdicts for the origin and validity of the alert. The risk:alert:verdict:taxonomy type is derived
from the base type: taxonomy.

The type risk:alert:verdict:taxonomy has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

risk:attack

An instance of an actor attacking a target. The risk:attack type is derived from the base type: guid.

risk:attacktype

A taxonomy of attack types. The risk:attacktype type is derived from the base type: taxonomy.

The type risk:attacktype has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

risk:availability

A taxonomy of availability status values. The risk:availability type is derived from the base type: taxonomy.

The type risk:availability has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

12.1. Synapse Data Model - Types 963

Synapse Documentation, Release 2.141.0

risk:compromise

An instance of a compromise and its aggregate impact. The risk:compromise type is derived from the base type:
guid.

risk:compromisetype

A taxonomy of compromise types. The risk:compromisetype type is derived from the base type: taxonomy.

An example of risk:compromisetype:

• cno.breach

The type risk:compromisetype has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

risk:hasvuln

An instance of a vulnerability present in a target. The risk:hasvuln type is derived from the base type: guid.

risk:mitigation

A mitigation for a specific risk:vuln. The risk:mitigation type is derived from the base type: guid.

risk:threat

A threat cluster or subgraph of threat activity, as reported by a specific organization. The risk:threat type is derived
from the base type: guid.

risk:threat:type:taxonomy

A taxonomy of threat types. The risk:threat:type:taxonomy type is derived from the base type: taxonomy.

The type risk:threat:type:taxonomy has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

964 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

risk:tool:software

A software tool used in threat activity, as reported by a specific organization. The risk:tool:software type is
derived from the base type: guid.

risk:tool:software:taxonomy

A taxonomy of software / tool types. The risk:tool:software:taxonomy type is derived from the base type:
taxonomy.

The type risk:tool:software:taxonomy has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

risk:vuln

A unique vulnerability. The risk:vuln type is derived from the base type: guid.

risk:vuln:soft:range

A contiguous range of software versions which contain a vulnerability. The risk:vuln:soft:range type is derived
from the base type: guid.

risk:vuln:type:taxonomy

A taxonomy of vulnerability types. The risk:vuln:type:taxonomy type is derived from the base type: taxonomy.

The type risk:vuln:type:taxonomy has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: False

12.1. Synapse Data Model - Types 965

Synapse Documentation, Release 2.141.0

risk:vulnname

A vulnerability name such as log4j or rowhammer. The risk:vulnname type is derived from the base type: str.

The type risk:vulnname has the following options set:

• globsuffix: False

• lower: True

• onespace: True

• regex: None

• replace: ()

• strip: False

rsa:key

An RSA keypair modulus and public exponent. The rsa:key type is derived from the base type: comp.

The type rsa:key has the following options set:

• fields: (('mod', 'hex'), ('pub:exp', 'int'))

syn:cmd

A Synapse storm command. The syn:cmd type is derived from the base type: str.

The type syn:cmd has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: True

syn:cron

A Cortex cron job. The syn:cron type is derived from the base type: guid.

syn:form

A Synapse form used for representing nodes in the graph. The syn:form type is derived from the base type: str.

The type syn:form has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

966 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

• replace: ()

• strip: True

syn:nodedata

A nodedata key and the form it may be present on. The syn:nodedata type is derived from the base type: comp.

The type syn:nodedata has the following options set:

• fields: (('key', 'str'), ('form', 'syn:form'))

syn:prop

A Synapse property. The syn:prop type is derived from the base type: str.

The type syn:prop has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: True

syn:role

A Synapse role GUID. The syn:role type is derived from the base type: guid.

The type syn:role has the following options set:

• strip: True

syn:splice

A splice from a layer. The syn:splice type is derived from the base type: guid.

The type syn:splice has the following options set:

• strip: True

syn:tagprop

A user defined tag property. The syn:tagprop type is derived from the base type: str.

The type syn:tagprop has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

12.1. Synapse Data Model - Types 967

Synapse Documentation, Release 2.141.0

• replace: ()

• strip: True

syn:trigger

A Cortex trigger. The syn:trigger type is derived from the base type: guid.

syn:type

A Synapse type used for normalizing nodes and properties. The syn:type type is derived from the base type: str.

The type syn:type has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: None

• replace: ()

• strip: True

syn:user

A Synapse user GUID. The syn:user type is derived from the base type: guid.

The type syn:user has the following options set:

• strip: True

tel:call

A guid for a telephone call record. The tel:call type is derived from the base type: guid.

tel:mob:carrier

The fusion of a MCC/MNC. The tel:mob:carrier type is derived from the base type: comp.

The type tel:mob:carrier has the following options set:

• fields: (('mcc', 'tel:mob:mcc'), ('mnc', 'tel:mob:mnc'))

tel:mob:cell

A mobile cell site which a phone may connect to. The tel:mob:cell type is derived from the base type: comp.

The type tel:mob:cell has the following options set:

• fields: (('carrier', 'tel:mob:carrier'), ('lac', ('int', {})), ('cid', ('int', {})))

968 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

tel:mob:imid

Fused knowledge of an IMEI/IMSI used together. The tel:mob:imid type is derived from the base type: comp.

An example of tel:mob:imid:

• (490154203237518, 310150123456789)

The type tel:mob:imid has the following options set:

• fields: (('imei', 'tel:mob:imei'), ('imsi', 'tel:mob:imsi'))

tel:mob:imsiphone

Fused knowledge of an IMSI assigned phone number. The tel:mob:imsiphone type is derived from the base type:
comp.

An example of tel:mob:imsiphone:

• (310150123456789, "+7(495) 124-59-83")

The type tel:mob:imsiphone has the following options set:

• fields: (('imsi', 'tel:mob:imsi'), ('phone', 'tel:phone'))

tel:mob:mcc

ITU Mobile Country Code. The tel:mob:mcc type is derived from the base type: str.

The type tel:mob:mcc has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: ^[0-9]{3}$

• replace: ()

• strip: 1

tel:mob:mnc

ITU Mobile Network Code. The tel:mob:mnc type is derived from the base type: str.

The type tel:mob:mnc has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: ^[0-9]{2,3}$

• replace: ()

• strip: 1

12.1. Synapse Data Model - Types 969

Synapse Documentation, Release 2.141.0

tel:mob:tac

A mobile Type Allocation Code. The tel:mob:tac type is derived from the base type: int.

An example of tel:mob:tac:

• 49015420

The type tel:mob:tac has the following options set:

• fmt: %d

• ismax: False

• ismin: False

• max: None

• min: None

• signed: True

• size: 8

tel:mob:telem

A single mobile telemetry measurement. The tel:mob:telem type is derived from the base type: guid.

tel:txtmesg

A guid for an individual text message. The tel:txtmesg type is derived from the base type: guid.

transport:air:craft

An individual aircraft. The transport:air:craft type is derived from the base type: guid.

transport:air:flight

An individual instance of a flight. The transport:air:flight type is derived from the base type: guid.

transport:air:flightnum

A commercial flight designator including airline and serial. The transport:air:flightnum type is derived from
the base type: str.

An example of transport:air:flightnum:

• ua2437

The type transport:air:flightnum has the following options set:

• globsuffix: False

• lower: True

• onespace: False

• regex: ^[a-z]{2}[0-9]{1,4}$

970 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

• replace: ((' ', ''),)

• strip: True

transport:air:occupant

An occupant of a specific flight. The transport:air:occupant type is derived from the base type: guid.

transport:air:port

An IATA assigned airport code. The transport:air:port type is derived from the base type: str.

The type transport:air:port has the following options set:

• globsuffix: False

• lower: True

• onespace: False

• regex: None

• replace: ()

• strip: False

transport:air:tailnum

An aircraft registration number or military aircraft serial number. The transport:air:tailnum type is derived from
the base type: str.

An example of transport:air:tailnum:

• ff023

The type transport:air:tailnum has the following options set:

• globsuffix: False

• lower: True

• onespace: False

• regex: ^[a-z0-9-]{2,}$

• replace: ()

• strip: True

transport:air:telem

A telemetry sample from an aircraft in transit. The transport:air:telem type is derived from the base type: guid.

12.1. Synapse Data Model - Types 971

Synapse Documentation, Release 2.141.0

transport:direction

A direction measured in degrees with 0.0 being true North. The transport:direction type is derived from the base
type: hugenum.

The type transport:direction has the following options set:

• modulo: 360

• units: None

transport:land:license

A license to operate a land vehicle issued to a contact. The transport:land:license type is derived from the base
type: guid.

transport:land:registration

Registration issued to a contact for a land vehicle. The transport:land:registration type is derived from the
base type: guid.

transport:land:vehicle

An individual vehicle. The transport:land:vehicle type is derived from the base type: guid.

transport:sea:imo

An International Maritime Organization registration number. The transport:sea:imo type is derived from the base
type: str.

The type transport:sea:imo has the following options set:

• globsuffix: False

• lower: True

• onespace: False

• regex: ^imo[0-9]{7}$

• replace: ((' ', ''),)

• strip: True

transport:sea:mmsi

A Maritime Mobile Service Identifier. The transport:sea:mmsi type is derived from the base type: str.

The type transport:sea:mmsi has the following options set:

• globsuffix: False

• lower: False

• onespace: False

• regex: [0-9]{9}

972 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

• replace: ()

• strip: False

transport:sea:telem

A telemetry sample from a vessel in transit. The transport:sea:telem type is derived from the base type: guid.

transport:sea:vessel

An individual sea vessel. The transport:sea:vessel type is derived from the base type: guid.

12.2 Synapse Data Model - Forms

12.2.1 Forms

Forms are derived from types, or base types. Forms represent node types in the graph.

auth:access

An instance of using creds to access a resource.

The base type for the form can be found at auth:access.

Properties:

:creds / auth:access:creds
The credentials used to attempt access.

The property type is auth:creds.

:time / auth:access:time
The time of the access attempt.

The property type is time.

:success / auth:access:success
Set to true if the access was successful.

The property type is bool.

:person / auth:access:person
The person who attempted access.

The property type is ps:person.

12.2. Synapse Data Model - Forms 973

Synapse Documentation, Release 2.141.0

auth:creds

A unique set of credentials used to access a resource.

The base type for the form can be found at auth:creds.

Properties:

:email / auth:creds:email
The email address used to identify the user.

The property type is inet:email.

:user / auth:creds:user
The user name used to identify the user.

The property type is inet:user.

:phone / auth:creds:phone
The phone number used to identify the user.

The property type is tel:phone.

:passwd / auth:creds:passwd
The password used to authenticate.

The property type is inet:passwd.

:passwdhash / auth:creds:passwdhash
The password hash used to authenticate.

The property type is it:auth:passwdhash.

:account / auth:creds:account
The account that the creds allow access to.

The property type is it:account.

:website / auth:creds:website
The base URL of the website that the credentials allow access to.

The property type is inet:url.

:host / auth:creds:host
The host that the credentials allow access to.

The property type is it:host.

:wifi:ssid / auth:creds:wifi:ssid
The WiFi SSID that the credentials allow access to.

The property type is inet:wifi:ssid.

:web:acct / auth:creds:web:acct
The web account that the credentials allow access to.

The property type is inet:web:acct.

974 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

belief:subscriber

A contact which subscribes to a belief system.

The base type for the form can be found at belief:subscriber.

Properties:

:contact / belief:subscriber:contact
The contact which subscribes to the belief system.

The property type is ps:contact.

:system / belief:subscriber:system
The belief system to which the contact subscribes.

The property type is belief:system.

:began / belief:subscriber:began
The time that the contact began to be a subscriber to the belief system.

The property type is time.

:ended / belief:subscriber:ended
The time when the contact ceased to be a subscriber to the belief system.

The property type is time.

belief:system

A belief system such as an ideology, philosophy, or religion.

The base type for the form can be found at belief:system.

Properties:

:name / belief:system:name
The name of the belief system.

The property type is str. Its type has the following options set:

• onespace: True

• lower: True

:desc / belief:system:desc
A description of the belief system. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:type / belief:system:type
A taxonometric type for the belief system.

The property type is belief:system:type:taxonomy.

:began / belief:system:began
The time that the belief system was first observed.

The property type is time.

12.2. Synapse Data Model - Forms 975

Synapse Documentation, Release 2.141.0

belief:system:type:taxonomy

A hierarchical taxonomy of belief system types.

The base type for the form can be found at belief:system:type:taxonomy.

Properties:

:title / belief:system:type:taxonomy:title
A brief title of the definition.

The property type is str.

:summary / belief:system:type:taxonomy:summary
A summary of the definition. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:sort / belief:system:type:taxonomy:sort
A display sort order for siblings.

The property type is int.

:base / belief:system:type:taxonomy:base
The base taxon. It has the following property options set:

• Read Only: True

The property type is taxon.

:depth / belief:system:type:taxonomy:depth
The depth indexed from 0. It has the following property options set:

• Read Only: True

The property type is int.

:parent / belief:system:type:taxonomy:parent
The taxonomy parent. It has the following property options set:

• Read Only: True

The property type is belief:system:type:taxonomy.

belief:tenet

A concrete tenet potentially shared by multiple belief systems.

The base type for the form can be found at belief:tenet.

Properties:

:name / belief:tenet:name
The name of the tenet.

The property type is str. Its type has the following options set:

• onespace: True

• lower: True

:desc / belief:tenet:desc
A description of the tenet. It has the following property options set:

976 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

• disp: {'hint': 'text'}

The property type is str.

biz:bundle

A bundle allows construction of products which bundle instances of other products.

The base type for the form can be found at biz:bundle.

Properties:

:count / biz:bundle:count
The number of instances of the product or service included in the bundle.

The property type is int.

:price / biz:bundle:price
The price of the bundle.

The property type is econ:price.

:product / biz:bundle:product
The product included in the bundle.

The property type is biz:product.

:service / biz:bundle:service
The service included in the bundle.

The property type is biz:service.

:deal / biz:bundle:deal
Deprecated. Please use econ:receipt:item for instances of bundles being sold. It has the following property
options set:

• deprecated: True

The property type is biz:deal.

:purchase / biz:bundle:purchase
Deprecated. Please use econ:receipt:item for instances of bundles being sold. It has the following property
options set:

• deprecated: True

The property type is econ:purchase.

biz:deal

A sales or procurement effort in pursuit of a purchase.

The base type for the form can be found at biz:deal.

Properties:

:title / biz:deal:title
A title for the deal.

The property type is str.

:type / biz:deal:type
The type of deal. It has the following property options set:

12.2. Synapse Data Model - Forms 977

Synapse Documentation, Release 2.141.0

• disp: {'hint': 'taxonomy'}

The property type is biz:dealtype.

:status / biz:deal:status
The status of the deal. It has the following property options set:

• disp: {'hint': 'taxonomy'}

The property type is biz:dealstatus.

:updated / biz:deal:updated
The last time the deal had a significant update.

The property type is time.

:contacted / biz:deal:contacted
The last time the contacts communicated about the deal.

The property type is time.

:rfp / biz:deal:rfp
The RFP that the deal is in response to.

The property type is biz:rfp.

:buyer / biz:deal:buyer
The primary contact information for the buyer.

The property type is ps:contact.

:buyer:org / biz:deal:buyer:org
The buyer org.

The property type is ou:org.

:buyer:orgname / biz:deal:buyer:orgname
The reported ou:name of the buyer org.

The property type is ou:name.

:buyer:orgfqdn / biz:deal:buyer:orgfqdn
The reported inet:fqdn of the buyer org.

The property type is inet:fqdn.

:seller / biz:deal:seller
The primary contact information for the seller.

The property type is ps:contact.

:seller:org / biz:deal:seller:org
The seller org.

The property type is ou:org.

:seller:orgname / biz:deal:seller:orgname
The reported ou:name of the seller org.

The property type is ou:name.

:seller:orgfqdn / biz:deal:seller:orgfqdn
The reported inet:fqdn of the seller org.

The property type is inet:fqdn.

978 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:currency / biz:deal:currency
The currency of econ:price values associated with the deal.

The property type is econ:currency.

:buyer:budget / biz:deal:buyer:budget
The buyers budget for the eventual purchase.

The property type is econ:price.

:buyer:deadline / biz:deal:buyer:deadline
When the buyer intends to make a decision.

The property type is time.

:offer:price / biz:deal:offer:price
The total price of the offered products.

The property type is econ:price.

:offer:expires / biz:deal:offer:expires
When the offer expires.

The property type is time.

:purchase / biz:deal:purchase
Records a purchase resulting from the deal.

The property type is econ:purchase.

biz:dealstatus

A deal/rfp status taxonomy.

The base type for the form can be found at biz:dealstatus.

Properties:

:title / biz:dealstatus:title
A brief title of the definition.

The property type is str.

:summary / biz:dealstatus:summary
A summary of the definition. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:sort / biz:dealstatus:sort
A display sort order for siblings.

The property type is int.

:base / biz:dealstatus:base
The base taxon. It has the following property options set:

• Read Only: True

The property type is taxon.

:depth / biz:dealstatus:depth
The depth indexed from 0. It has the following property options set:

• Read Only: True

12.2. Synapse Data Model - Forms 979

Synapse Documentation, Release 2.141.0

The property type is int.

:parent / biz:dealstatus:parent
The taxonomy parent. It has the following property options set:

• Read Only: True

The property type is biz:dealstatus.

biz:dealtype

A deal type taxonomy.

The base type for the form can be found at biz:dealtype.

Properties:

:title / biz:dealtype:title
A brief title of the definition.

The property type is str.

:summary / biz:dealtype:summary
A summary of the definition. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:sort / biz:dealtype:sort
A display sort order for siblings.

The property type is int.

:base / biz:dealtype:base
The base taxon. It has the following property options set:

• Read Only: True

The property type is taxon.

:depth / biz:dealtype:depth
The depth indexed from 0. It has the following property options set:

• Read Only: True

The property type is int.

:parent / biz:dealtype:parent
The taxonomy parent. It has the following property options set:

• Read Only: True

The property type is biz:dealtype.

980 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

biz:listing

A product or service being listed for sale at a given price by a specific seller.

The base type for the form can be found at biz:listing.

Properties:

:seller / biz:listing:seller
The contact information for the seller.

The property type is ps:contact.

:product / biz:listing:product
The product being offered.

The property type is biz:product.

:service / biz:listing:service
The service being offered.

The property type is biz:service.

:current / biz:listing:current
Set to true if the offer is still current.

The property type is bool.

:time / biz:listing:time
The first known offering of this product/service by the organization for the asking price.

The property type is time.

:expires / biz:listing:expires
Set if the offer has a known expiration date.

The property type is time.

:price / biz:listing:price
The asking price of the product or service.

The property type is econ:price.

:currency / biz:listing:currency
The currency of the asking price.

The property type is econ:currency.

biz:prodtype

A product type taxonomy.

The base type for the form can be found at biz:prodtype.

Properties:

:title / biz:prodtype:title
A brief title of the definition.

The property type is str.

:summary / biz:prodtype:summary
A summary of the definition. It has the following property options set:

• disp: {'hint': 'text'}

12.2. Synapse Data Model - Forms 981

Synapse Documentation, Release 2.141.0

The property type is str.

:sort / biz:prodtype:sort
A display sort order for siblings.

The property type is int.

:base / biz:prodtype:base
The base taxon. It has the following property options set:

• Read Only: True

The property type is taxon.

:depth / biz:prodtype:depth
The depth indexed from 0. It has the following property options set:

• Read Only: True

The property type is int.

:parent / biz:prodtype:parent
The taxonomy parent. It has the following property options set:

• Read Only: True

The property type is biz:prodtype.

biz:product

A product which is available for purchase.

The base type for the form can be found at biz:product.

Properties:

:name / biz:product:name
The name of the product.

The property type is str.

:type / biz:product:type
The type of product. It has the following property options set:

• disp: {'hint': 'taxonomy'}

The property type is biz:prodtype.

:summary / biz:product:summary
A brief summary of the product. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:maker / biz:product:maker
A contact for the maker of the product.

The property type is ps:contact.

:madeby:org / biz:product:madeby:org
Deprecated. Please use biz:product:maker. It has the following property options set:

• deprecated: True

The property type is ou:org.

982 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:madeby:orgname / biz:product:madeby:orgname
Deprecated. Please use biz:product:maker. It has the following property options set:

• deprecated: True

The property type is ou:name.

:madeby:orgfqdn / biz:product:madeby:orgfqdn
Deprecated. Please use biz:product:maker. It has the following property options set:

• deprecated: True

The property type is inet:fqdn.

:price:retail / biz:product:price:retail
The MSRP price of the product.

The property type is econ:price.

:price:bottom / biz:product:price:bottom
The minimum offered or observed price of the product.

The property type is econ:price.

:price:currency / biz:product:price:currency
The currency of the retail and bottom price properties.

The property type is econ:currency.

:bundles / biz:product:bundles
An array of bundles included with the product.

The property type is array. Its type has the following options set:

• type: biz:bundle

• uniq: True

• sorted: True

biz:rfp

An RFP (Request for Proposal) soliciting proposals.

The base type for the form can be found at biz:rfp.

Properties:

:ext:id / biz:rfp:ext:id
An externally specified identifier for the RFP.

The property type is str.

:title / biz:rfp:title
The title of the RFP.

The property type is str.

:summary / biz:rfp:summary
A brief summary of the RFP. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

12.2. Synapse Data Model - Forms 983

Synapse Documentation, Release 2.141.0

:status / biz:rfp:status
The status of the RFP. It has the following property options set:

• disp: {'hint': 'enum'}

The property type is biz:dealstatus.

:url / biz:rfp:url
The official URL for the RFP.

The property type is inet:url.

:file / biz:rfp:file
The RFP document.

The property type is file:bytes.

:posted / biz:rfp:posted
The date/time that the RFP was posted.

The property type is time.

:quesdue / biz:rfp:quesdue
The date/time that questions are due.

The property type is time.

:propdue / biz:rfp:propdue
The date/time that proposals are due.

The property type is time.

:contact / biz:rfp:contact
The contact information given for the org requesting offers.

The property type is ps:contact.

:purchases / biz:rfp:purchases
Any known purchases that resulted from the RFP.

The property type is array. Its type has the following options set:

• type: econ:purchase

• uniq: True

• sorted: True

:requirements / biz:rfp:requirements
A typed array which indexes each field.

The property type is array. Its type has the following options set:

• type: ou:goal

• uniq: True

• sorted: True

984 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

biz:service

A service which is performed by a specific organization.

The base type for the form can be found at biz:service.

Properties:

:provider / biz:service:provider
The contact info of the entity which performs the service.

The property type is ps:contact.

:name / biz:service:name
The name of the service being performed.

The property type is str. Its type has the following options set:

• lower: True

• onespace: True

:summary / biz:service:summary
A brief summary of the service. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:type / biz:service:type
A taxonomy of service types.

The property type is biz:service:type:taxonomy.

:launched / biz:service:launched
The time when the operator first made the service available.

The property type is time.

biz:stake

A stake or partial ownership in a company.

The base type for the form can be found at biz:stake.

Properties:

:vitals / biz:stake:vitals
The ou:vitals snapshot this stake is part of.

The property type is ou:vitals.

:org / biz:stake:org
The resolved org.

The property type is ou:org.

:orgname / biz:stake:orgname
The org name as reported by the source of the vitals.

The property type is ou:name.

:orgfqdn / biz:stake:orgfqdn
The org FQDN as reported by the source of the vitals.

The property type is inet:fqdn.

12.2. Synapse Data Model - Forms 985

service:provider
service:name
service:summary
service:type
service:launched

Synapse Documentation, Release 2.141.0

:name / biz:stake:name
An arbitrary name for this stake. Can be non-contact like “pool”.

The property type is str.

:asof / biz:stake:asof
The time the stake is being measured. Likely as part of an ou:vitals.

The property type is time.

:shares / biz:stake:shares
The number of shares represented by the stake.

The property type is int.

:invested / biz:stake:invested
The amount of money invested in the cap table iteration.

The property type is econ:price.

:value / biz:stake:value
The monetary value of the stake.

The property type is econ:price.

:percent / biz:stake:percent
The percentage ownership represented by this stake.

The property type is hugenum.

:owner / biz:stake:owner
Contact information of the owner of the stake.

The property type is ps:contact.

:purchase / biz:stake:purchase
The purchase event for the stake.

The property type is econ:purchase.

crypto:algorithm

A cryptographic algorithm name.

The base type for the form can be found at crypto:algorithm.

An example of crypto:algorithm:

• aes256

Properties:

crypto:currency:address

An individual crypto currency address.

The base type for the form can be found at crypto:currency:address.

An example of crypto:currency:address:

• btc/1BvBMSEYstWetqTFn5Au4m4GFg7xJaNVN2

Properties:

986 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:coin / crypto:currency:address:coin
The crypto coin to which the address belongs. It has the following property options set:

• Read Only: True

The property type is crypto:currency:coin.

:seed / crypto:currency:address:seed
The cryptographic key and or password used to generate the address.

The property type is crypto:key.

:iden / crypto:currency:address:iden
The coin specific address identifier. It has the following property options set:

• Read Only: True

The property type is str.

:desc / crypto:currency:address:desc
A free-form description of the address.

The property type is str.

:contact / crypto:currency:address:contact
Contact information associated with the address.

The property type is ps:contact.

crypto:currency:block

An individual crypto currency block record on the blockchain.

The base type for the form can be found at crypto:currency:block.

Properties:

:coin / crypto:currency:block:coin
The coin/blockchain this block resides on. It has the following property options set:

• Read Only: True

The property type is crypto:currency:coin.

:offset / crypto:currency:block:offset
The index of this block. It has the following property options set:

• Read Only: True

The property type is int.

:hash / crypto:currency:block:hash
The unique hash for the block.

The property type is hex.

:minedby / crypto:currency:block:minedby
The address which mined the block.

The property type is crypto:currency:address.

:time / crypto:currency:block:time
Time timestamp embedded in the block by the miner.

The property type is time.

12.2. Synapse Data Model - Forms 987

Synapse Documentation, Release 2.141.0

crypto:currency:client

A fused node representing a crypto currency address used by an Internet client.

The base type for the form can be found at crypto:currency:client.

An example of crypto:currency:client:

• (1.2.3.4, (btc, 1BvBMSEYstWetqTFn5Au4m4GFg7xJaNVN2))

Properties:

:inetaddr / crypto:currency:client:inetaddr
The Internet client address observed using the crypto currency address. It has the following property options set:

• Read Only: True

The property type is inet:client.

:coinaddr / crypto:currency:client:coinaddr
The crypto currency address observed in use by the Internet client. It has the following property options set:

• Read Only: True

The property type is crypto:currency:address.

crypto:currency:coin

An individual crypto currency type.

The base type for the form can be found at crypto:currency:coin.

An example of crypto:currency:coin:

• btc

Properties:

:name / crypto:currency:coin:name
The full name of the crypto coin.

The property type is str.

crypto:currency:transaction

An individual crypto currency transaction recorded on the blockchain.

The base type for the form can be found at crypto:currency:transaction.

Properties:

:hash / crypto:currency:transaction:hash
The unique transaction hash for the transaction.

The property type is hex.

:desc / crypto:currency:transaction:desc
An analyst specified description of the transaction.

The property type is str.

:block / crypto:currency:transaction:block
The block which records the transaction.

The property type is crypto:currency:block.

988 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:block:coin / crypto:currency:transaction:block:coin
The coin/blockchain of the block which records this transaction.

The property type is crypto:currency:coin.

:block:offset / crypto:currency:transaction:block:offset
The offset of the block which records this transaction.

The property type is int.

:success / crypto:currency:transaction:success
Set to true if the transaction was successfully executed and recorded.

The property type is bool.

:status:code / crypto:currency:transaction:status:code
A coin specific status code which may represent an error reason.

The property type is int.

:status:message / crypto:currency:transaction:status:message
A coin specific status message which may contain an error reason.

The property type is str.

:to / crypto:currency:transaction:to
The destination address of the transaction.

The property type is crypto:currency:address.

:from / crypto:currency:transaction:from
The source address of the transaction.

The property type is crypto:currency:address.

:inputs / crypto:currency:transaction:inputs
Deprecated. Please use crypto:payment:input:transaction. It has the following property options set:

• deprecated: True

The property type is array. Its type has the following options set:

• type: crypto:payment:input

• sorted: True

• uniq: True

:outputs / crypto:currency:transaction:outputs
Deprecated. Please use crypto:payment:output:transaction. It has the following property options set:

• deprecated: True

The property type is array. Its type has the following options set:

• type: crypto:payment:output

• sorted: True

• uniq: True

:fee / crypto:currency:transaction:fee
The total fee paid to execute the transaction.

The property type is econ:price.

12.2. Synapse Data Model - Forms 989

Synapse Documentation, Release 2.141.0

:value / crypto:currency:transaction:value
The total value of the transaction.

The property type is econ:price.

:time / crypto:currency:transaction:time
The time this transaction was initiated.

The property type is time.

:eth:gasused / crypto:currency:transaction:eth:gasused
The amount of gas used to execute this transaction.

The property type is int.

:eth:gaslimit / crypto:currency:transaction:eth:gaslimit
The ETH gas limit specified for this transaction.

The property type is int.

:eth:gasprice / crypto:currency:transaction:eth:gasprice
The gas price (in ETH) specified for this transaction.

The property type is econ:price.

:contract:input / crypto:currency:transaction:contract:input
Input value to a smart contract call.

The property type is file:bytes.

:contract:output / crypto:currency:transaction:contract:output
Output value of a smart contract call.

The property type is file:bytes.

crypto:key

A cryptographic key and algorithm.

The base type for the form can be found at crypto:key.

Properties:

:algorithm / crypto:key:algorithm
The cryptographic algorithm which uses the key material. It has the following property options set:

• Example: aes256

The property type is crypto:algorithm.

:mode / crypto:key:mode
The algorithm specific mode in use.

The property type is str. Its type has the following options set:

• lower: True

• onespace: True

:iv / crypto:key:iv
The hex encoded initialization vector.

The property type is hex.

990 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:public / crypto:key:public
The hex encoded public key material if the algorithm has a public/private key pair.

The property type is hex.

:public:md5 / crypto:key:public:md5
The MD5 hash of the public key in raw binary form.

The property type is hash:md5.

:public:sha1 / crypto:key:public:sha1
The SHA1 hash of the public key in raw binary form.

The property type is hash:sha1.

:public:sha256 / crypto:key:public:sha256
The SHA256 hash of the public key in raw binary form.

The property type is hash:sha256.

:private / crypto:key:private
The hex encoded private key material. All symmetric keys are private.

The property type is hex.

:private:md5 / crypto:key:private:md5
The MD5 hash of the private key in raw binary form.

The property type is hash:md5.

:private:sha1 / crypto:key:private:sha1
The SHA1 hash of the private key in raw binary form.

The property type is hash:sha1.

:private:sha256 / crypto:key:private:sha256
The SHA256 hash of the private key in raw binary form.

The property type is hash:sha256.

:seed:passwd / crypto:key:seed:passwd
The seed password used to generate the key material.

The property type is inet:passwd.

:seed:algorithm / crypto:key:seed:algorithm
The algorithm used to generate the key from the seed password. It has the following property options set:

• Example: pbkdf2

The property type is crypto:algorithm.

crypto:payment:input

A payment made into a transaction.

The base type for the form can be found at crypto:payment:input.

Properties:

:transaction / crypto:payment:input:transaction
The transaction the payment was input to.

The property type is crypto:currency:transaction.

12.2. Synapse Data Model - Forms 991

Synapse Documentation, Release 2.141.0

:address / crypto:payment:input:address
The address which paid into the transaction.

The property type is crypto:currency:address.

:value / crypto:payment:input:value
The value of the currency paid into the transaction.

The property type is econ:price.

crypto:payment:output

A payment received from a transaction.

The base type for the form can be found at crypto:payment:output.

Properties:

:transaction / crypto:payment:output:transaction
The transaction the payment was output from.

The property type is crypto:currency:transaction.

:address / crypto:payment:output:address
The address which received payment from the transaction.

The property type is crypto:currency:address.

:value / crypto:payment:output:value
The value of the currency received from the transaction.

The property type is econ:price.

crypto:smart:contract

A smart contract.

The base type for the form can be found at crypto:smart:contract.

Properties:

:transaction / crypto:smart:contract:transaction
The transaction which created the contract.

The property type is crypto:currency:transaction.

:address / crypto:smart:contract:address
The address of the contract.

The property type is crypto:currency:address.

:bytecode / crypto:smart:contract:bytecode
The bytecode which implements the contract.

The property type is file:bytes.

:token:name / crypto:smart:contract:token:name
The ERC-20 token name.

The property type is str.

992 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:token:symbol / crypto:smart:contract:token:symbol
The ERC-20 token symbol.

The property type is str.

:token:totalsupply / crypto:smart:contract:token:totalsupply
The ERC-20 totalSupply value.

The property type is hugenum.

crypto:smart:effect:burntoken

A smart contract effect which destroys a non-fungible token.

The base type for the form can be found at crypto:smart:effect:burntoken.

Properties:

:token / crypto:smart:effect:burntoken:token
The non-fungible token that was destroyed.

The property type is crypto:smart:token.

:index / crypto:smart:effect:burntoken:index
The order of the effect within the effects of one transaction.

The property type is int.

:transaction / crypto:smart:effect:burntoken:transaction
The transaction where the smart contract was called.

The property type is crypto:currency:transaction.

crypto:smart:effect:edittokensupply

A smart contract effect which increases or decreases the supply of a fungible token.

The base type for the form can be found at crypto:smart:effect:edittokensupply.

Properties:

:contract / crypto:smart:effect:edittokensupply:contract
The contract which defines the tokens.

The property type is crypto:smart:contract.

:amount / crypto:smart:effect:edittokensupply:amount
The number of tokens added or removed if negative.

The property type is hugenum.

:totalsupply / crypto:smart:effect:edittokensupply:totalsupply
The total supply of tokens after this modification.

The property type is hugenum.

:index / crypto:smart:effect:edittokensupply:index
The order of the effect within the effects of one transaction.

The property type is int.

12.2. Synapse Data Model - Forms 993

Synapse Documentation, Release 2.141.0

:transaction / crypto:smart:effect:edittokensupply:transaction
The transaction where the smart contract was called.

The property type is crypto:currency:transaction.

crypto:smart:effect:minttoken

A smart contract effect which creates a new non-fungible token.

The base type for the form can be found at crypto:smart:effect:minttoken.

Properties:

:token / crypto:smart:effect:minttoken:token
The non-fungible token that was created.

The property type is crypto:smart:token.

:index / crypto:smart:effect:minttoken:index
The order of the effect within the effects of one transaction.

The property type is int.

:transaction / crypto:smart:effect:minttoken:transaction
The transaction where the smart contract was called.

The property type is crypto:currency:transaction.

crypto:smart:effect:proxytoken

A smart contract effect which grants a non-owner address the ability to manipulate a specific non-fungible token.

The base type for the form can be found at crypto:smart:effect:proxytoken.

Properties:

:owner / crypto:smart:effect:proxytoken:owner
The address granting proxy authority to manipulate non-fungible tokens.

The property type is crypto:currency:address.

:proxy / crypto:smart:effect:proxytoken:proxy
The address granted proxy authority to manipulate non-fungible tokens.

The property type is crypto:currency:address.

:token / crypto:smart:effect:proxytoken:token
The specific token being granted access to.

The property type is crypto:smart:token.

:index / crypto:smart:effect:proxytoken:index
The order of the effect within the effects of one transaction.

The property type is int.

:transaction / crypto:smart:effect:proxytoken:transaction
The transaction where the smart contract was called.

The property type is crypto:currency:transaction.

994 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

crypto:smart:effect:proxytokenall

A smart contract effect which grants a non-owner address the ability to manipulate all non-fungible tokens of the owner.

The base type for the form can be found at crypto:smart:effect:proxytokenall.

Properties:

:contract / crypto:smart:effect:proxytokenall:contract
The contract which defines the tokens.

The property type is crypto:smart:contract.

:owner / crypto:smart:effect:proxytokenall:owner
The address granting/denying proxy authority to manipulate all non-fungible tokens of the owner.

The property type is crypto:currency:address.

:proxy / crypto:smart:effect:proxytokenall:proxy
The address granted/denied proxy authority to manipulate all non-fungible tokens of the owner.

The property type is crypto:currency:address.

:approval / crypto:smart:effect:proxytokenall:approval
The approval status.

The property type is bool.

:index / crypto:smart:effect:proxytokenall:index
The order of the effect within the effects of one transaction.

The property type is int.

:transaction / crypto:smart:effect:proxytokenall:transaction
The transaction where the smart contract was called.

The property type is crypto:currency:transaction.

crypto:smart:effect:proxytokens

A smart contract effect which grants a non-owner address the ability to manipulate fungible tokens.

The base type for the form can be found at crypto:smart:effect:proxytokens.

Properties:

:contract / crypto:smart:effect:proxytokens:contract
The contract which defines the tokens.

The property type is crypto:smart:contract.

:owner / crypto:smart:effect:proxytokens:owner
The address granting proxy authority to manipulate fungible tokens.

The property type is crypto:currency:address.

:proxy / crypto:smart:effect:proxytokens:proxy
The address granted proxy authority to manipulate fungible tokens.

The property type is crypto:currency:address.

:amount / crypto:smart:effect:proxytokens:amount
The hex encoded amount of tokens the proxy is allowed to manipulate.

The property type is hex.

12.2. Synapse Data Model - Forms 995

Synapse Documentation, Release 2.141.0

:index / crypto:smart:effect:proxytokens:index
The order of the effect within the effects of one transaction.

The property type is int.

:transaction / crypto:smart:effect:proxytokens:transaction
The transaction where the smart contract was called.

The property type is crypto:currency:transaction.

crypto:smart:effect:transfertoken

A smart contract effect which transfers ownership of a non-fungible token.

The base type for the form can be found at crypto:smart:effect:transfertoken.

Properties:

:token / crypto:smart:effect:transfertoken:token
The non-fungible token that was transferred.

The property type is crypto:smart:token.

:from / crypto:smart:effect:transfertoken:from
The address the NFT was transferred from.

The property type is crypto:currency:address.

:to / crypto:smart:effect:transfertoken:to
The address the NFT was transferred to.

The property type is crypto:currency:address.

:index / crypto:smart:effect:transfertoken:index
The order of the effect within the effects of one transaction.

The property type is int.

:transaction / crypto:smart:effect:transfertoken:transaction
The transaction where the smart contract was called.

The property type is crypto:currency:transaction.

crypto:smart:effect:transfertokens

A smart contract effect which transfers fungible tokens.

The base type for the form can be found at crypto:smart:effect:transfertokens.

Properties:

:contract / crypto:smart:effect:transfertokens:contract
The contract which defines the tokens.

The property type is crypto:smart:contract.

:from / crypto:smart:effect:transfertokens:from
The address the tokens were transferred from.

The property type is crypto:currency:address.

996 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:to / crypto:smart:effect:transfertokens:to
The address the tokens were transferred to.

The property type is crypto:currency:address.

:amount / crypto:smart:effect:transfertokens:amount
The number of tokens transferred.

The property type is hugenum.

:index / crypto:smart:effect:transfertokens:index
The order of the effect within the effects of one transaction.

The property type is int.

:transaction / crypto:smart:effect:transfertokens:transaction
The transaction where the smart contract was called.

The property type is crypto:currency:transaction.

crypto:smart:token

A token managed by a smart contract.

The base type for the form can be found at crypto:smart:token.

Properties:

:contract / crypto:smart:token:contract
The smart contract which defines and manages the token. It has the following property options set:

• Read Only: True

The property type is crypto:smart:contract.

:tokenid / crypto:smart:token:tokenid
The token ID. It has the following property options set:

• Read Only: True

The property type is hugenum.

:owner / crypto:smart:token:owner
The address which currently owns the token.

The property type is crypto:currency:address.

:nft:url / crypto:smart:token:nft:url
The URL which hosts the NFT metadata.

The property type is inet:url.

:nft:meta / crypto:smart:token:nft:meta
The raw NFT metadata.

The property type is data.

:nft:meta:name / crypto:smart:token:nft:meta:name
The name field from the NFT metadata.

The property type is str.

:nft:meta:description / crypto:smart:token:nft:meta:description
The description field from the NFT metadata. It has the following property options set:

• disp: {'hint': 'text'}

12.2. Synapse Data Model - Forms 997

Synapse Documentation, Release 2.141.0

The property type is str.

:nft:meta:image / crypto:smart:token:nft:meta:image
The image URL from the NFT metadata.

The property type is inet:url.

crypto:x509:cert

A unique X.509 certificate.

The base type for the form can be found at crypto:x509:cert.

Properties:

:file / crypto:x509:cert:file
The file that the certificate metadata was parsed from.

The property type is file:bytes.

:subject / crypto:x509:cert:subject
The subject identifier, commonly in X.500/LDAP format, to which the certificate was issued.

The property type is str.

:issuer / crypto:x509:cert:issuer
The Distinguished Name (DN) of the Certificate Authority (CA) which issued the certificate.

The property type is str.

:issuer:cert / crypto:x509:cert:issuer:cert
The certificate used by the issuer to sign this certificate.

The property type is crypto:x509:cert.

:serial / crypto:x509:cert:serial
The certificate serial number as a big endian hex value.

The property type is hex. Its type has the following options set:

• size: 40

:version / crypto:x509:cert:version
The version integer in the certificate. (ex. 2 == v3).

The property type is int. Its type has the following options set:

• enums: ((0, 'v1'), (2, 'v3'))

:validity:notbefore / crypto:x509:cert:validity:notbefore
The timestamp for the beginning of the certificate validity period.

The property type is time.

:validity:notafter / crypto:x509:cert:validity:notafter
The timestamp for the end of the certificate validity period.

The property type is time.

:md5 / crypto:x509:cert:md5
The MD5 fingerprint for the certificate.

The property type is hash:md5.

998 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:sha1 / crypto:x509:cert:sha1
The SHA1 fingerprint for the certificate.

The property type is hash:sha1.

:sha256 / crypto:x509:cert:sha256
The SHA256 fingerprint for the certificate.

The property type is hash:sha256.

:rsa:key / crypto:x509:cert:rsa:key
The optional RSA public key associated with the certificate.

The property type is rsa:key.

:algo / crypto:x509:cert:algo
The X.509 signature algorithm OID.

The property type is iso:oid.

:signature / crypto:x509:cert:signature
The hexadecimal representation of the digital signature.

The property type is hex.

:ext:sans / crypto:x509:cert:ext:sans
The Subject Alternate Names (SANs) listed in the certificate.

The property type is array. Its type has the following options set:

• type: crypto:x509:san

• uniq: True

• sorted: True

:ext:crls / crypto:x509:cert:ext:crls
A list of Subject Alternate Names (SANs) for Distribution Points.

The property type is array. Its type has the following options set:

• type: crypto:x509:san

• uniq: True

• sorted: True

:identities:fqdns / crypto:x509:cert:identities:fqdns
The fused list of FQDNs identified by the cert CN and SANs.

The property type is array. Its type has the following options set:

• type: inet:fqdn

• uniq: True

• sorted: True

:identities:emails / crypto:x509:cert:identities:emails
The fused list of e-mail addresses identified by the cert CN and SANs.

The property type is array. Its type has the following options set:

• type: inet:email

• uniq: True

• sorted: True

12.2. Synapse Data Model - Forms 999

Synapse Documentation, Release 2.141.0

:identities:ipv4s / crypto:x509:cert:identities:ipv4s
The fused list of IPv4 addresses identified by the cert CN and SANs.

The property type is array. Its type has the following options set:

• type: inet:ipv4

• uniq: True

• sorted: True

:identities:ipv6s / crypto:x509:cert:identities:ipv6s
The fused list of IPv6 addresses identified by the cert CN and SANs.

The property type is array. Its type has the following options set:

• type: inet:ipv6

• uniq: True

• sorted: True

:identities:urls / crypto:x509:cert:identities:urls
The fused list of URLs identified by the cert CN and SANs.

The property type is array. Its type has the following options set:

• type: inet:url

• uniq: True

• sorted: True

:crl:urls / crypto:x509:cert:crl:urls
The extracted URL values from the CRLs extension.

The property type is array. Its type has the following options set:

• type: inet:url

• uniq: True

• sorted: True

:selfsigned / crypto:x509:cert:selfsigned
Whether this is a self-signed certificate.

The property type is bool.

crypto:x509:crl

A unique X.509 Certificate Revocation List.

The base type for the form can be found at crypto:x509:crl.

Properties:

:file / crypto:x509:crl:file
The file containing the CRL.

The property type is file:bytes.

:url / crypto:x509:crl:url
The URL where the CRL was published.

The property type is inet:url.

1000 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

crypto:x509:revoked

A revocation relationship between a CRL and an X.509 certificate.

The base type for the form can be found at crypto:x509:revoked.

Properties:

:crl / crypto:x509:revoked:crl
The CRL which revoked the certificate. It has the following property options set:

• Read Only: True

The property type is crypto:x509:crl.

:cert / crypto:x509:revoked:cert
The certificate revoked by the CRL. It has the following property options set:

• Read Only: True

The property type is crypto:x509:cert.

crypto:x509:signedfile

A digital signature relationship between an X.509 certificate and a file.

The base type for the form can be found at crypto:x509:signedfile.

Properties:

:cert / crypto:x509:signedfile:cert
The certificate for the key which signed the file. It has the following property options set:

• Read Only: True

The property type is crypto:x509:cert.

:file / crypto:x509:signedfile:file
The file which was signed by the certificates key. It has the following property options set:

• Read Only: True

The property type is file:bytes.

econ:acct:balance

A snapshot of the balance of an account at a point in time.

The base type for the form can be found at econ:acct:balance.

Properties:

:time / econ:acct:balance:time
The time the balance was recorded.

The property type is time.

:pay:card / econ:acct:balance:pay:card
The payment card holding the balance.

The property type is econ:pay:card.

12.2. Synapse Data Model - Forms 1001

Synapse Documentation, Release 2.141.0

:crypto:address / econ:acct:balance:crypto:address
The crypto currency address holding the balance.

The property type is crypto:currency:address.

:amount / econ:acct:balance:amount
The account balance at the time.

The property type is econ:price.

:currency / econ:acct:balance:currency
The currency of the balance amount.

The property type is econ:currency.

:delta / econ:acct:balance:delta
The change since last regular sample.

The property type is econ:price.

:total:received / econ:acct:balance:total:received
The total amount of currency received by the account.

The property type is econ:price.

:total:sent / econ:acct:balance:total:sent
The total amount of currency sent from the account.

The property type is econ:price.

econ:acct:payment

A payment or crypto currency transaction.

The base type for the form can be found at econ:acct:payment.

Properties:

:txnid / econ:acct:payment:txnid
A payment processor specific transaction id.

The property type is str. Its type has the following options set:

• strip: True

:fee / econ:acct:payment:fee
The transaction fee paid by the recipient to the payment processor.

The property type is econ:price.

:from:pay:card / econ:acct:payment:from:pay:card
The payment card making the payment.

The property type is econ:pay:card.

:from:contract / econ:acct:payment:from:contract
A contract used as an aggregate payment source.

The property type is ou:contract.

:from:coinaddr / econ:acct:payment:from:coinaddr
The crypto currency address making the payment.

The property type is crypto:currency:address.

1002 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:from:contact / econ:acct:payment:from:contact
Contact information for the person/org being paid.

The property type is ps:contact.

:to:coinaddr / econ:acct:payment:to:coinaddr
The crypto currency address receiving the payment.

The property type is crypto:currency:address.

:to:contact / econ:acct:payment:to:contact
Contact information for the person/org being paid.

The property type is ps:contact.

:to:contract / econ:acct:payment:to:contract
A contract used as an aggregate payment destination.

The property type is ou:contract.

:time / econ:acct:payment:time
The time the payment was processed.

The property type is time.

:purchase / econ:acct:payment:purchase
The purchase which the payment was paying for.

The property type is econ:purchase.

:amount / econ:acct:payment:amount
The amount of money transferred in the payment.

The property type is econ:price.

:currency / econ:acct:payment:currency
The currency of the payment.

The property type is econ:currency.

:memo / econ:acct:payment:memo
A small note specified by the payer common in financial transactions.

The property type is str.

:crypto:transaction / econ:acct:payment:crypto:transaction
A crypto currency transaction that initiated the payment.

The property type is crypto:currency:transaction.

econ:acquired

Deprecated. Please use econ:purchase -(acquired)> *.

The base type for the form can be found at econ:acquired.

Properties:

:purchase / econ:acquired:purchase
The purchase event which acquired an item. It has the following property options set:

• Read Only: True

The property type is econ:purchase.

12.2. Synapse Data Model - Forms 1003

Synapse Documentation, Release 2.141.0

:item / econ:acquired:item
A reference to the item that was acquired. It has the following property options set:

• Read Only: True

The property type is ndef .

:item:form / econ:acquired:item:form
The form of item purchased.

The property type is str.

econ:fin:bar

A sample of the open, close, high, low prices of a security in a specific time window.

The base type for the form can be found at econ:fin:bar.

Properties:

:security / econ:fin:bar:security
The security measured by the bar.

The property type is econ:fin:security.

:ival / econ:fin:bar:ival
The interval of measurement.

The property type is ival.

:price:open / econ:fin:bar:price:open
The opening price of the security.

The property type is econ:price.

:price:close / econ:fin:bar:price:close
The closing price of the security.

The property type is econ:price.

:price:low / econ:fin:bar:price:low
The low price of the security.

The property type is econ:price.

:price:high / econ:fin:bar:price:high
The high price of the security.

The property type is econ:price.

econ:fin:exchange

A financial exchange where securities are traded.

The base type for the form can be found at econ:fin:exchange.

Properties:

:name / econ:fin:exchange:name
A simple name for the exchange. It has the following property options set:

• Example: nasdaq

The property type is str. Its type has the following options set:

1004 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

• lower: True

• strip: True

:org / econ:fin:exchange:org
The organization that operates the exchange.

The property type is ou:org.

:currency / econ:fin:exchange:currency
The currency used for all transactions in the exchange. It has the following property options set:

• Example: usd

The property type is econ:currency.

econ:fin:security

A financial security which is typically traded on an exchange.

The base type for the form can be found at econ:fin:security.

Properties:

:exchange / econ:fin:security:exchange
The exchange on which the security is traded.

The property type is econ:fin:exchange.

:ticker / econ:fin:security:ticker
The identifier for this security within the exchange.

The property type is str. Its type has the following options set:

• lower: True

• strip: True

:type / econ:fin:security:type
A user defined type such as stock, bond, option, future, or forex.

The property type is str. Its type has the following options set:

• lower: True

• strip: True

:price / econ:fin:security:price
The last known/available price of the security.

The property type is econ:price.

:time / econ:fin:security:time
The time of the last know price sample.

The property type is time.

12.2. Synapse Data Model - Forms 1005

Synapse Documentation, Release 2.141.0

econ:fin:tick

A sample of the price of a security at a single moment in time.

The base type for the form can be found at econ:fin:tick.

Properties:

:security / econ:fin:tick:security
The security measured by the tick.

The property type is econ:fin:security.

:time / econ:fin:tick:time
The time the price was sampled.

The property type is time.

:price / econ:fin:tick:price
The price of the security at the time.

The property type is econ:price.

econ:pay:card

A single payment card.

The base type for the form can be found at econ:pay:card.

Properties:

:pan / econ:pay:card:pan
The payment card number.

The property type is econ:pay:pan.

:pan:mii / econ:pay:card:pan:mii
The payment card MII.

The property type is econ:pay:mii.

:pan:iin / econ:pay:card:pan:iin
The payment card IIN.

The property type is econ:pay:iin.

:name / econ:pay:card:name
The name as it appears on the card.

The property type is ps:name.

:expr / econ:pay:card:expr
The expiration date for the card.

The property type is time.

:cvv / econ:pay:card:cvv
The Card Verification Value on the card.

The property type is econ:pay:cvv.

:pin / econ:pay:card:pin
The Personal Identification Number on the card.

The property type is econ:pay:pin.

1006 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

econ:pay:iin

An Issuer Id Number (IIN).

The base type for the form can be found at econ:pay:iin.

Properties:

:org / econ:pay:iin:org
The issuer organization.

The property type is ou:org.

:name / econ:pay:iin:name
The registered name of the issuer.

The property type is str. Its type has the following options set:

• lower: True

econ:purchase

A purchase event.

The base type for the form can be found at econ:purchase.

Properties:

:by:contact / econ:purchase:by:contact
The contact information used to make the purchase.

The property type is ps:contact.

:from:contact / econ:purchase:from:contact
The contact information used to sell the item.

The property type is ps:contact.

:time / econ:purchase:time
The time of the purchase.

The property type is time.

:place / econ:purchase:place
The place where the purchase took place.

The property type is geo:place.

:paid / econ:purchase:paid
Set to True if the purchase has been paid in full.

The property type is bool.

:paid:time / econ:purchase:paid:time
The point in time where the purchase was paid in full.

The property type is time.

:settled / econ:purchase:settled
The point in time where the purchase was settled.

The property type is time.

12.2. Synapse Data Model - Forms 1007

Synapse Documentation, Release 2.141.0

:campaign / econ:purchase:campaign
The campaign that the purchase was in support of.

The property type is ou:campaign.

:price / econ:purchase:price
The econ:price of the purchase.

The property type is econ:price.

:currency / econ:purchase:currency
The econ:price of the purchase.

The property type is econ:currency.

econ:receipt:item

A line item included as part of a purchase.

The base type for the form can be found at econ:receipt:item.

Properties:

:purchase / econ:receipt:item:purchase
The purchase that contains this line item.

The property type is econ:purchase.

:count / econ:receipt:item:count
The number of items included in this line item.

The property type is int. Its type has the following options set:

• min: 1

:price / econ:receipt:item:price
The total cost of this receipt line item.

The property type is econ:price.

:product / econ:receipt:item:product
The product being being purchased in this line item.

The property type is biz:product.

edge:has

A digraph edge which records that N1 has N2.

The base type for the form can be found at edge:has.

Properties:

:n1 / edge:has:n1
The node definition type for a (form,valu) compound field. It has the following property options set:

• Read Only: True

The property type is ndef .

:n1:form / edge:has:n1:form
The base string type. It has the following property options set:

• Read Only: True

1008 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

The property type is str.

:n2 / edge:has:n2
The node definition type for a (form,valu) compound field. It has the following property options set:

• Read Only: True

The property type is ndef .

:n2:form / edge:has:n2:form
The base string type. It has the following property options set:

• Read Only: True

The property type is str.

edge:refs

A digraph edge which records that N1 refers to or contains N2.

The base type for the form can be found at edge:refs.

Properties:

:n1 / edge:refs:n1
The node definition type for a (form,valu) compound field. It has the following property options set:

• Read Only: True

The property type is ndef .

:n1:form / edge:refs:n1:form
The base string type. It has the following property options set:

• Read Only: True

The property type is str.

:n2 / edge:refs:n2
The node definition type for a (form,valu) compound field. It has the following property options set:

• Read Only: True

The property type is ndef .

:n2:form / edge:refs:n2:form
The base string type. It has the following property options set:

• Read Only: True

The property type is str.

edge:wentto

A digraph edge which records that N1 went to N2 at a specific time.

The base type for the form can be found at edge:wentto.

Properties:

:n1 / edge:wentto:n1
The node definition type for a (form,valu) compound field. It has the following property options set:

• Read Only: True

12.2. Synapse Data Model - Forms 1009

Synapse Documentation, Release 2.141.0

The property type is ndef .

:n1:form / edge:wentto:n1:form
The base string type. It has the following property options set:

• Read Only: True

The property type is str.

:n2 / edge:wentto:n2
The node definition type for a (form,valu) compound field. It has the following property options set:

• Read Only: True

The property type is ndef .

:n2:form / edge:wentto:n2:form
The base string type. It has the following property options set:

• Read Only: True

The property type is str.

:time / edge:wentto:time
A date/time value. It has the following property options set:

• Read Only: True

The property type is time.

edu:class

An instance of an edu:course taught at a given time.

The base type for the form can be found at edu:class.

Properties:

:course / edu:class:course
The course being taught in the class.

The property type is edu:course.

:instructor / edu:class:instructor
The primary instructor for the class.

The property type is ps:contact.

:assistants / edu:class:assistants
An array of assistant/co-instructor contacts.

The property type is array. Its type has the following options set:

• type: ps:contact

• uniq: True

• sorted: True

:date:first / edu:class:date:first
The date of the first day of class.

The property type is time.

1010 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:date:last / edu:class:date:last
The date of the last day of class.

The property type is time.

:isvirtual / edu:class:isvirtual
Set if the class is known to be virtual.

The property type is bool.

:virtual:url / edu:class:virtual:url
The URL a student would use to attend the virtual class.

The property type is inet:url.

:virtual:provider / edu:class:virtual:provider
Contact info for the virtual infrastructure provider.

The property type is ps:contact.

:place / edu:class:place
The place that the class is held.

The property type is geo:place.

edu:course

A course of study taught by an org.

The base type for the form can be found at edu:course.

Properties:

:name / edu:course:name
The name of the course. It has the following property options set:

• Example: organic chemistry for beginners

The property type is str. Its type has the following options set:

• lower: True

• onespace: True

:desc / edu:course:desc
A brief course description.

The property type is str.

:code / edu:course:code
The course catalog number or designator. It has the following property options set:

• Example: chem101

The property type is str. Its type has the following options set:

• lower: True

• strip: True

:institution / edu:course:institution
The org or department which teaches the course.

The property type is ps:contact.

12.2. Synapse Data Model - Forms 1011

Synapse Documentation, Release 2.141.0

:prereqs / edu:course:prereqs
The pre-requisite courses for taking this course.

The property type is array. Its type has the following options set:

• type: edu:course

• uniq: True

• sorted: True

file:archive:entry

An archive entry representing a file and metadata within a parent archive file.

The base type for the form can be found at file:archive:entry.

Properties:

:parent / file:archive:entry:parent
The parent archive file.

The property type is file:bytes.

:file / file:archive:entry:file
The file contained within the archive.

The property type is file:bytes.

:path / file:archive:entry:path
The file path of the archived file.

The property type is file:path.

:user / file:archive:entry:user
The name of the user who owns the archived file.

The property type is inet:user.

:added / file:archive:entry:added
The time that the file was added to the archive.

The property type is time.

:created / file:archive:entry:created
The created time of the archived file.

The property type is time.

:modified / file:archive:entry:modified
The modified time of the archived file.

The property type is time.

:comment / file:archive:entry:comment
The comment field for the file entry within the archive.

The property type is str.

:posix:uid / file:archive:entry:posix:uid
The POSIX UID of the user who owns the archived file.

The property type is int.

1012 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:posix:gid / file:archive:entry:posix:gid
The POSIX GID of the group who owns the archived file.

The property type is int.

:posix:perms / file:archive:entry:posix:perms
The POSIX permissions mask of the archived file.

The property type is int.

:archived:size / file:archive:entry:archived:size
The encoded or compressed size of the archived file within the parent.

The property type is int.

file:base

A file name with no path.

The base type for the form can be found at file:base.

An example of file:base:

• woot.exe

Properties:

:ext / file:base:ext
The file extension (if any). It has the following property options set:

• Read Only: True

The property type is str.

file:bytes

The file bytes type with SHA256 based primary property.

The base type for the form can be found at file:bytes.

Properties:

:size / file:bytes:size
The file size in bytes.

The property type is int.

:md5 / file:bytes:md5
The md5 hash of the file.

The property type is hash:md5.

:sha1 / file:bytes:sha1
The sha1 hash of the file.

The property type is hash:sha1.

:sha256 / file:bytes:sha256
The sha256 hash of the file.

The property type is hash:sha256.

12.2. Synapse Data Model - Forms 1013

Synapse Documentation, Release 2.141.0

:sha512 / file:bytes:sha512
The sha512 hash of the file.

The property type is hash:sha512.

:name / file:bytes:name
The best known base name for the file.

The property type is file:base.

:mime / file:bytes:mime
The “best” mime type name for the file.

The property type is file:mime.

:mime:x509:cn / file:bytes:mime:x509:cn
The Common Name (CN) attribute of the x509 Subject.

The property type is str.

:mime:pe:size / file:bytes:mime:pe:size
The size of the executable file according to the PE file header.

The property type is int.

:mime:pe:imphash / file:bytes:mime:pe:imphash
The PE import hash of the file as calculated by pefile; https://github.com/erocarrera/pefile .

The property type is hash:md5.

:mime:pe:compiled / file:bytes:mime:pe:compiled
The compile time of the file according to the PE header.

The property type is time.

:mime:pe:pdbpath / file:bytes:mime:pe:pdbpath
The PDB string according to the PE.

The property type is file:path.

:mime:pe:exports:time / file:bytes:mime:pe:exports:time
The export time of the file according to the PE.

The property type is time.

:mime:pe:exports:libname / file:bytes:mime:pe:exports:libname
The export library name according to the PE.

The property type is str.

:mime:pe:richhdr / file:bytes:mime:pe:richhdr
The sha256 hash of the rich header bytes.

The property type is hash:sha256.

:exe:compiler / file:bytes:exe:compiler
The software used to compile the file.

The property type is it:prod:softver.

:exe:packer / file:bytes:exe:packer
The packer software used to encode the file.

The property type is it:prod:softver.

1014 Chapter 12. Synapse Data Model

https://github.com/erocarrera/pefile

Synapse Documentation, Release 2.141.0

file:filepath

The fused knowledge of the association of a file:bytes node and a file:path.

The base type for the form can be found at file:filepath.

Properties:

:file / file:filepath:file
The file seen at a path. It has the following property options set:

• Read Only: True

The property type is file:bytes.

:path / file:filepath:path
The path a file was seen at. It has the following property options set:

• Read Only: True

The property type is file:path.

:path:dir / file:filepath:path:dir
The parent directory. It has the following property options set:

• Read Only: True

The property type is file:path.

:path:base / file:filepath:path:base
The name of the file. It has the following property options set:

• Read Only: True

The property type is file:base.

:path:base:ext / file:filepath:path:base:ext
The extension of the file name. It has the following property options set:

• Read Only: True

The property type is str.

file:ismime

Records one, of potentially multiple, mime types for a given file.

The base type for the form can be found at file:ismime.

Properties:

:file / file:ismime:file
The file node that is an instance of the named mime type. It has the following property options set:

• Read Only: True

The property type is file:bytes.

:mime / file:ismime:mime
The mime type of the file. It has the following property options set:

• Read Only: True

The property type is file:mime.

12.2. Synapse Data Model - Forms 1015

file:bytes
file:path

Synapse Documentation, Release 2.141.0

file:mime

A file mime name string.

The base type for the form can be found at file:mime.

An example of file:mime:

• text/plain

Properties:

file:mime:gif

The GUID of a set of mime metadata for a .gif file.

The base type for the form can be found at file:mime:gif .

Properties:

:desc / file:mime:gif:desc
MIME specific description field extracted from metadata.

The property type is str.

:comment / file:mime:gif:comment
MIME specific comment field extracted from metadata.

The property type is str.

:created / file:mime:gif:created
MIME specific creation timestamp extracted from metadata.

The property type is time.

:imageid / file:mime:gif:imageid
MIME specific unique identifier extracted from metadata.

The property type is str.

:author / file:mime:gif:author
MIME specific contact information extracted from metadata.

The property type is ps:contact.

:latlong / file:mime:gif:latlong
MIME specific lat/long information extracted from metadata.

The property type is geo:latlong.

:altitude / file:mime:gif:altitude
MIME specific altitude information extracted from metadata.

The property type is geo:altitude.

:file / file:mime:gif:file
The file that the mime info was parsed from.

The property type is file:bytes.

:file:offs / file:mime:gif:file:offs
The optional offset where the mime info was parsed from.

The property type is int.

1016 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:file:data / file:mime:gif:file:data
A mime specific arbitrary data structure for non-indexed data.

The property type is data.

file:mime:jpg

The GUID of a set of mime metadata for a .jpg file.

The base type for the form can be found at file:mime:jpg.

Properties:

:desc / file:mime:jpg:desc
MIME specific description field extracted from metadata.

The property type is str.

:comment / file:mime:jpg:comment
MIME specific comment field extracted from metadata.

The property type is str.

:created / file:mime:jpg:created
MIME specific creation timestamp extracted from metadata.

The property type is time.

:imageid / file:mime:jpg:imageid
MIME specific unique identifier extracted from metadata.

The property type is str.

:author / file:mime:jpg:author
MIME specific contact information extracted from metadata.

The property type is ps:contact.

:latlong / file:mime:jpg:latlong
MIME specific lat/long information extracted from metadata.

The property type is geo:latlong.

:altitude / file:mime:jpg:altitude
MIME specific altitude information extracted from metadata.

The property type is geo:altitude.

:file / file:mime:jpg:file
The file that the mime info was parsed from.

The property type is file:bytes.

:file:offs / file:mime:jpg:file:offs
The optional offset where the mime info was parsed from.

The property type is int.

:file:data / file:mime:jpg:file:data
A mime specific arbitrary data structure for non-indexed data.

The property type is data.

12.2. Synapse Data Model - Forms 1017

Synapse Documentation, Release 2.141.0

file:mime:macho:loadcmd

A generic load command pulled from the Mach-O headers.

The base type for the form can be found at file:mime:macho:loadcmd.

Properties:

:file / file:mime:macho:loadcmd:file
The Mach-O file containing the load command.

The property type is file:bytes.

:type / file:mime:macho:loadcmd:type
The type of the load command.

The property type is int. Its type has the following options set:

• enums: ((1, 'segment'), (2, 'symbol table'), (3, 'gdb symbol table'), (4,
'thread'), (5, 'unix thread'), (6, 'fixed VM shared library'), (7, 'fixed VM
shared library identification'), (8, 'object identification'), (9, 'fixed VM
file inclusion'), (10, 'prepage'), (11, 'dynamic link-edit symbol table'),
(12, 'load dynamically linked shared library'), (13, 'dynamically linked
shared library identifier'), (14, 'load dynamic linker'), (15, 'dynamic linker
identification'), (16, 'prebound dynamically linked shared library'), (17,
'image routines'), (18, 'sub framework'), (19, 'sub umbrella'), (20, 'sub
client'), (21, 'sub library'), (22, 'two level namespace lookup hints'), (23,
'prebind checksum'), (24, 'weak import dynamically linked shared library'),
(25, '64bit segment'), (26, '64bit image routines'), (27, 'uuid'), (28, 'runpath
additions'), (29, 'code signature'), (30, 'split segment info'), (31, 'load
and re-export dynamic library'), (32, 'delay load of dynamic library'),
(33, 'encrypted segment information'), (34, 'compressed dynamic library
information'), (35, 'load upward dylib'), (36, 'minimum osx version'), (37,
'minimum ios version'), (38, 'compressed table of function start addresses'),
(39, 'environment variable string for dynamic library'), (40, 'unix thread
replacement'), (41, 'table of non-instructions in __text'), (42, 'source version
used to build binary'), (43, 'Code signing DRs copied from linked dynamic
libraries'))

:size / file:mime:macho:loadcmd:size
The size of the load command structure in bytes.

The property type is int.

file:mime:macho:section

A section inside a Mach-O binary denoting a named region of bytes inside a segment.

The base type for the form can be found at file:mime:macho:section.

Properties:

:segment / file:mime:macho:section:segment
The Mach-O segment that contains this section.

The property type is file:mime:macho:segment.

:name / file:mime:macho:section:name
Name of the section.

The property type is str.

1018 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:size / file:mime:macho:section:size
Size of the section in bytes.

The property type is int.

:type / file:mime:macho:section:type
The type of the section.

The property type is int. Its type has the following options set:

• enums: ((0, 'regular'), (1, 'zero fill on demand'), (2, 'only literal C
strings'), (3, 'only 4 byte literals'), (4, 'only 8 byte literals'), (5, 'only
pointers to literals'), (6, 'only non-lazy symbol pointers'), (7, 'only lazy
symbol pointers'), (8, 'only symbol stubs'), (9, 'only function pointers for
init'), (10, 'only function pointers for fini'), (11, 'contains symbols to be
coalesced'), (12, 'zero fill on deman (greater than 4gb)'), (13, 'only pairs of
function pointers for interposing'), (14, 'only 16 byte literals'), (15, 'dtrace
object format'), (16, 'only lazy symbols pointers to lazy dynamic libraries'))

:sha256 / file:mime:macho:section:sha256
The sha256 hash of the bytes of the Mach-O section.

The property type is hash:sha256.

:offset / file:mime:macho:section:offset
The file offset to the beginning of the section.

The property type is int.

file:mime:macho:segment

A named region of bytes inside a Mach-O binary.

The base type for the form can be found at file:mime:macho:segment.

Properties:

:name / file:mime:macho:segment:name
The name of the Mach-O segment.

The property type is str.

:memsize / file:mime:macho:segment:memsize
The size of the segment in bytes, when resident in memory, according to the load command structure.

The property type is int.

:disksize / file:mime:macho:segment:disksize
The size of the segment in bytes, when on disk, according to the load command structure.

The property type is int.

:sha256 / file:mime:macho:segment:sha256
The sha256 hash of the bytes of the segment.

The property type is hash:sha256.

:offset / file:mime:macho:segment:offset
The file offset to the beginning of the segment.

The property type is int.

12.2. Synapse Data Model - Forms 1019

Synapse Documentation, Release 2.141.0

:file / file:mime:macho:segment:file
The Mach-O file containing the load command.

The property type is file:bytes.

:type / file:mime:macho:segment:type
The type of the load command.

The property type is int. Its type has the following options set:

• enums: ((1, 'segment'), (2, 'symbol table'), (3, 'gdb symbol table'), (4,
'thread'), (5, 'unix thread'), (6, 'fixed VM shared library'), (7, 'fixed VM
shared library identification'), (8, 'object identification'), (9, 'fixed VM
file inclusion'), (10, 'prepage'), (11, 'dynamic link-edit symbol table'),
(12, 'load dynamically linked shared library'), (13, 'dynamically linked
shared library identifier'), (14, 'load dynamic linker'), (15, 'dynamic linker
identification'), (16, 'prebound dynamically linked shared library'), (17,
'image routines'), (18, 'sub framework'), (19, 'sub umbrella'), (20, 'sub
client'), (21, 'sub library'), (22, 'two level namespace lookup hints'), (23,
'prebind checksum'), (24, 'weak import dynamically linked shared library'),
(25, '64bit segment'), (26, '64bit image routines'), (27, 'uuid'), (28, 'runpath
additions'), (29, 'code signature'), (30, 'split segment info'), (31, 'load
and re-export dynamic library'), (32, 'delay load of dynamic library'),
(33, 'encrypted segment information'), (34, 'compressed dynamic library
information'), (35, 'load upward dylib'), (36, 'minimum osx version'), (37,
'minimum ios version'), (38, 'compressed table of function start addresses'),
(39, 'environment variable string for dynamic library'), (40, 'unix thread
replacement'), (41, 'table of non-instructions in __text'), (42, 'source version
used to build binary'), (43, 'Code signing DRs copied from linked dynamic
libraries'))

:size / file:mime:macho:segment:size
The size of the load command structure in bytes.

The property type is int.

file:mime:macho:uuid

A specific load command denoting a UUID used to uniquely identify the Mach-O binary.

The base type for the form can be found at file:mime:macho:uuid.

Properties:

:uuid / file:mime:macho:uuid:uuid
The UUID of the Mach-O application (as defined in an LC_UUID load command).

The property type is guid.

:file / file:mime:macho:uuid:file
The Mach-O file containing the load command.

The property type is file:bytes.

:type / file:mime:macho:uuid:type
The type of the load command.

The property type is int. Its type has the following options set:

• enums: ((1, 'segment'), (2, 'symbol table'), (3, 'gdb symbol table'), (4,
'thread'), (5, 'unix thread'), (6, 'fixed VM shared library'), (7, 'fixed VM

1020 Chapter 12. Synapse Data Model

uuid:uuid
uuid:file
uuid:type

Synapse Documentation, Release 2.141.0

shared library identification'), (8, 'object identification'), (9, 'fixed VM
file inclusion'), (10, 'prepage'), (11, 'dynamic link-edit symbol table'),
(12, 'load dynamically linked shared library'), (13, 'dynamically linked
shared library identifier'), (14, 'load dynamic linker'), (15, 'dynamic linker
identification'), (16, 'prebound dynamically linked shared library'), (17,
'image routines'), (18, 'sub framework'), (19, 'sub umbrella'), (20, 'sub
client'), (21, 'sub library'), (22, 'two level namespace lookup hints'), (23,
'prebind checksum'), (24, 'weak import dynamically linked shared library'),
(25, '64bit segment'), (26, '64bit image routines'), (27, 'uuid'), (28, 'runpath
additions'), (29, 'code signature'), (30, 'split segment info'), (31, 'load
and re-export dynamic library'), (32, 'delay load of dynamic library'),
(33, 'encrypted segment information'), (34, 'compressed dynamic library
information'), (35, 'load upward dylib'), (36, 'minimum osx version'), (37,
'minimum ios version'), (38, 'compressed table of function start addresses'),
(39, 'environment variable string for dynamic library'), (40, 'unix thread
replacement'), (41, 'table of non-instructions in __text'), (42, 'source version
used to build binary'), (43, 'Code signing DRs copied from linked dynamic
libraries'))

:size / file:mime:macho:uuid:size
The size of the load command structure in bytes.

The property type is int.

file:mime:macho:version

A specific load command used to denote the version of the source used to build the Mach-O binary.

The base type for the form can be found at file:mime:macho:version.

Properties:

:version / file:mime:macho:version:version
The version of the Mach-O file encoded in an LC_VERSION load command.

The property type is str.

:file / file:mime:macho:version:file
The Mach-O file containing the load command.

The property type is file:bytes.

:type / file:mime:macho:version:type
The type of the load command.

The property type is int. Its type has the following options set:

• enums: ((1, 'segment'), (2, 'symbol table'), (3, 'gdb symbol table'), (4,
'thread'), (5, 'unix thread'), (6, 'fixed VM shared library'), (7, 'fixed VM
shared library identification'), (8, 'object identification'), (9, 'fixed VM
file inclusion'), (10, 'prepage'), (11, 'dynamic link-edit symbol table'),
(12, 'load dynamically linked shared library'), (13, 'dynamically linked
shared library identifier'), (14, 'load dynamic linker'), (15, 'dynamic linker
identification'), (16, 'prebound dynamically linked shared library'), (17,
'image routines'), (18, 'sub framework'), (19, 'sub umbrella'), (20, 'sub
client'), (21, 'sub library'), (22, 'two level namespace lookup hints'), (23,
'prebind checksum'), (24, 'weak import dynamically linked shared library'),
(25, '64bit segment'), (26, '64bit image routines'), (27, 'uuid'), (28, 'runpath
additions'), (29, 'code signature'), (30, 'split segment info'), (31, 'load

12.2. Synapse Data Model - Forms 1021

uuid:size

Synapse Documentation, Release 2.141.0

and re-export dynamic library'), (32, 'delay load of dynamic library'),
(33, 'encrypted segment information'), (34, 'compressed dynamic library
information'), (35, 'load upward dylib'), (36, 'minimum osx version'), (37,
'minimum ios version'), (38, 'compressed table of function start addresses'),
(39, 'environment variable string for dynamic library'), (40, 'unix thread
replacement'), (41, 'table of non-instructions in __text'), (42, 'source version
used to build binary'), (43, 'Code signing DRs copied from linked dynamic
libraries'))

:size / file:mime:macho:version:size
The size of the load command structure in bytes.

The property type is int.

file:mime:msdoc

The GUID of a set of mime metadata for a Microsoft Word file.

The base type for the form can be found at file:mime:msdoc.

Properties:

:title / file:mime:msdoc:title
The title extracted from Microsoft Office metadata.

The property type is str.

:author / file:mime:msdoc:author
The author extracted from Microsoft Office metadata.

The property type is str.

:subject / file:mime:msdoc:subject
The subject extracted from Microsoft Office metadata.

The property type is str.

:application / file:mime:msdoc:application
The creating_application extracted from Microsoft Office metadata.

The property type is str.

:created / file:mime:msdoc:created
The create_time extracted from Microsoft Office metadata.

The property type is time.

:lastsaved / file:mime:msdoc:lastsaved
The last_saved_time extracted from Microsoft Office metadata.

The property type is time.

:file / file:mime:msdoc:file
The file that the mime info was parsed from.

The property type is file:bytes.

:file:offs / file:mime:msdoc:file:offs
The optional offset where the mime info was parsed from.

The property type is int.

1022 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:file:data / file:mime:msdoc:file:data
A mime specific arbitrary data structure for non-indexed data.

The property type is data.

file:mime:msppt

The GUID of a set of mime metadata for a Microsoft Powerpoint file.

The base type for the form can be found at file:mime:msppt.

Properties:

:title / file:mime:msppt:title
The title extracted from Microsoft Office metadata.

The property type is str.

:author / file:mime:msppt:author
The author extracted from Microsoft Office metadata.

The property type is str.

:subject / file:mime:msppt:subject
The subject extracted from Microsoft Office metadata.

The property type is str.

:application / file:mime:msppt:application
The creating_application extracted from Microsoft Office metadata.

The property type is str.

:created / file:mime:msppt:created
The create_time extracted from Microsoft Office metadata.

The property type is time.

:lastsaved / file:mime:msppt:lastsaved
The last_saved_time extracted from Microsoft Office metadata.

The property type is time.

:file / file:mime:msppt:file
The file that the mime info was parsed from.

The property type is file:bytes.

:file:offs / file:mime:msppt:file:offs
The optional offset where the mime info was parsed from.

The property type is int.

:file:data / file:mime:msppt:file:data
A mime specific arbitrary data structure for non-indexed data.

The property type is data.

12.2. Synapse Data Model - Forms 1023

Synapse Documentation, Release 2.141.0

file:mime:msxls

The GUID of a set of mime metadata for a Microsoft Excel file.

The base type for the form can be found at file:mime:msxls.

Properties:

:title / file:mime:msxls:title
The title extracted from Microsoft Office metadata.

The property type is str.

:author / file:mime:msxls:author
The author extracted from Microsoft Office metadata.

The property type is str.

:subject / file:mime:msxls:subject
The subject extracted from Microsoft Office metadata.

The property type is str.

:application / file:mime:msxls:application
The creating_application extracted from Microsoft Office metadata.

The property type is str.

:created / file:mime:msxls:created
The create_time extracted from Microsoft Office metadata.

The property type is time.

:lastsaved / file:mime:msxls:lastsaved
The last_saved_time extracted from Microsoft Office metadata.

The property type is time.

:file / file:mime:msxls:file
The file that the mime info was parsed from.

The property type is file:bytes.

:file:offs / file:mime:msxls:file:offs
The optional offset where the mime info was parsed from.

The property type is int.

:file:data / file:mime:msxls:file:data
A mime specific arbitrary data structure for non-indexed data.

The property type is data.

file:mime:pe:export

The fused knowledge of a file:bytes node containing a pe named export.

The base type for the form can be found at file:mime:pe:export.

Properties:

:file / file:mime:pe:export:file
The file containing the export. It has the following property options set:

• Read Only: True

1024 Chapter 12. Synapse Data Model

file:bytes

Synapse Documentation, Release 2.141.0

The property type is file:bytes.

:name / file:mime:pe:export:name
The name of the export in the file. It has the following property options set:

• Read Only: True

The property type is str.

file:mime:pe:resource

The fused knowledge of a file:bytes node containing a pe resource.

The base type for the form can be found at file:mime:pe:resource.

Properties:

:file / file:mime:pe:resource:file
The file containing the resource. It has the following property options set:

• Read Only: True

The property type is file:bytes.

:type / file:mime:pe:resource:type
The typecode for the resource. It has the following property options set:

• Read Only: True

The property type is pe:resource:type.

:langid / file:mime:pe:resource:langid
The language code for the resource. It has the following property options set:

• Read Only: True

The property type is pe:langid.

:resource / file:mime:pe:resource:resource
The sha256 hash of the resource bytes. It has the following property options set:

• Read Only: True

The property type is file:bytes.

file:mime:pe:section

The fused knowledge a file:bytes node containing a pe section.

The base type for the form can be found at file:mime:pe:section.

Properties:

:file / file:mime:pe:section:file
The file containing the section. It has the following property options set:

• Read Only: True

The property type is file:bytes.

:name / file:mime:pe:section:name
The textual name of the section. It has the following property options set:

• Read Only: True

12.2. Synapse Data Model - Forms 1025

file:bytes
file:bytes

Synapse Documentation, Release 2.141.0

The property type is str.

:sha256 / file:mime:pe:section:sha256
The sha256 hash of the section. Relocations must be zeroed before hashing. It has the following property options
set:

• Read Only: True

The property type is hash:sha256.

file:mime:pe:vsvers:info

knowledge of a file:bytes node containing vsvers info.

The base type for the form can be found at file:mime:pe:vsvers:info.

Properties:

:file / file:mime:pe:vsvers:info:file
The file containing the vsversion keyval pair. It has the following property options set:

• Read Only: True

The property type is file:bytes.

:keyval / file:mime:pe:vsvers:info:keyval
The vsversion info keyval in this file:bytes node. It has the following property options set:

• Read Only: True

The property type is file:mime:pe:vsvers:keyval.

file:mime:pe:vsvers:keyval

A key value pair found in a PE vsversion info structure.

The base type for the form can be found at file:mime:pe:vsvers:keyval.

Properties:

:name / file:mime:pe:vsvers:keyval:name
The key for the vsversion keyval pair. It has the following property options set:

• Read Only: True

The property type is str.

:value / file:mime:pe:vsvers:keyval:value
The value for the vsversion keyval pair. It has the following property options set:

• Read Only: True

The property type is str.

1026 Chapter 12. Synapse Data Model

file:bytes
info:file
info:keyval
file:bytes

Synapse Documentation, Release 2.141.0

file:mime:png

The GUID of a set of mime metadata for a .png file.

The base type for the form can be found at file:mime:png.

Properties:

:desc / file:mime:png:desc
MIME specific description field extracted from metadata.

The property type is str.

:comment / file:mime:png:comment
MIME specific comment field extracted from metadata.

The property type is str.

:created / file:mime:png:created
MIME specific creation timestamp extracted from metadata.

The property type is time.

:imageid / file:mime:png:imageid
MIME specific unique identifier extracted from metadata.

The property type is str.

:author / file:mime:png:author
MIME specific contact information extracted from metadata.

The property type is ps:contact.

:latlong / file:mime:png:latlong
MIME specific lat/long information extracted from metadata.

The property type is geo:latlong.

:altitude / file:mime:png:altitude
MIME specific altitude information extracted from metadata.

The property type is geo:altitude.

:file / file:mime:png:file
The file that the mime info was parsed from.

The property type is file:bytes.

:file:offs / file:mime:png:file:offs
The optional offset where the mime info was parsed from.

The property type is int.

:file:data / file:mime:png:file:data
A mime specific arbitrary data structure for non-indexed data.

The property type is data.

12.2. Synapse Data Model - Forms 1027

Synapse Documentation, Release 2.141.0

file:mime:rtf

The GUID of a set of mime metadata for a .rtf file.

The base type for the form can be found at file:mime:rtf .

Properties:

:guid / file:mime:rtf:guid
The parsed GUID embedded in the .rtf file.

The property type is guid.

:file / file:mime:rtf:file
The file that the mime info was parsed from.

The property type is file:bytes.

:file:offs / file:mime:rtf:file:offs
The optional offset where the mime info was parsed from.

The property type is int.

:file:data / file:mime:rtf:file:data
A mime specific arbitrary data structure for non-indexed data.

The property type is data.

file:mime:tif

The GUID of a set of mime metadata for a .tif file.

The base type for the form can be found at file:mime:tif .

Properties:

:desc / file:mime:tif:desc
MIME specific description field extracted from metadata.

The property type is str.

:comment / file:mime:tif:comment
MIME specific comment field extracted from metadata.

The property type is str.

:created / file:mime:tif:created
MIME specific creation timestamp extracted from metadata.

The property type is time.

:imageid / file:mime:tif:imageid
MIME specific unique identifier extracted from metadata.

The property type is str.

:author / file:mime:tif:author
MIME specific contact information extracted from metadata.

The property type is ps:contact.

:latlong / file:mime:tif:latlong
MIME specific lat/long information extracted from metadata.

The property type is geo:latlong.

1028 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:altitude / file:mime:tif:altitude
MIME specific altitude information extracted from metadata.

The property type is geo:altitude.

:file / file:mime:tif:file
The file that the mime info was parsed from.

The property type is file:bytes.

:file:offs / file:mime:tif:file:offs
The optional offset where the mime info was parsed from.

The property type is int.

:file:data / file:mime:tif:file:data
A mime specific arbitrary data structure for non-indexed data.

The property type is data.

file:path

A normalized file path.

The base type for the form can be found at file:path.

An example of file:path:

• c:/windows/system32/calc.exe

Properties:

:dir / file:path:dir
The parent directory. It has the following property options set:

• Read Only: True

The property type is file:path.

:base / file:path:base
The file base name. It has the following property options set:

• Read Only: True

The property type is file:base.

:base:ext / file:path:base:ext
The file extension. It has the following property options set:

• Read Only: True

The property type is str.

12.2. Synapse Data Model - Forms 1029

Synapse Documentation, Release 2.141.0

file:string

Deprecated. Please use the edge -(refs)> it:dev:str.

The base type for the form can be found at file:string.

Properties:

:file / file:string:file
The file containing the string. It has the following property options set:

• Read Only: True

The property type is file:bytes.

:string / file:string:string
The string contained in this file:bytes node. It has the following property options set:

• Read Only: True

The property type is str.

file:subfile

A parent file that fully contains the specified child file.

The base type for the form can be found at file:subfile.

Properties:

:parent / file:subfile:parent
The parent file containing the child file. It has the following property options set:

• Read Only: True

The property type is file:bytes.

:child / file:subfile:child
The child file contained in the parent file. It has the following property options set:

• Read Only: True

The property type is file:bytes.

:name / file:subfile:name
Deprecated, please use the :path property. It has the following property options set:

• deprecated: True

The property type is file:base.

:path / file:subfile:path
The path that the parent uses to refer to the child file.

The property type is file:path.

1030 Chapter 12. Synapse Data Model

file:bytes

Synapse Documentation, Release 2.141.0

geo:name

An unstructured place name or address.

The base type for the form can be found at geo:name.

Properties:

geo:nloc

Records a node latitude/longitude in space-time.

The base type for the form can be found at geo:nloc.

Properties:

:ndef / geo:nloc:ndef
The node with location in geospace and time. It has the following property options set:

• Read Only: True

The property type is ndef .

:ndef:form / geo:nloc:ndef:form
The form of node referenced by the ndef. It has the following property options set:

• Read Only: True

The property type is str.

:latlong / geo:nloc:latlong
The latitude/longitude the node was observed. It has the following property options set:

• Read Only: True

The property type is geo:latlong.

:time / geo:nloc:time
The time the node was observed at location. It has the following property options set:

• Read Only: True

The property type is time.

:place / geo:nloc:place
The place corresponding to the latlong property.

The property type is geo:place.

:loc / geo:nloc:loc
The geo-political location string for the node.

The property type is loc.

12.2. Synapse Data Model - Forms 1031

Synapse Documentation, Release 2.141.0

geo:place

A GUID for a geographic place.

The base type for the form can be found at geo:place.

Properties:

:name / geo:place:name
The name of the place.

The property type is geo:name.

:type / geo:place:type
The type of place.

The property type is geo:place:taxonomy.

:names / geo:place:names
An array of alternative place names.

The property type is array. Its type has the following options set:

• type: geo:name

• sorted: True

• uniq: True

:parent / geo:place:parent
Deprecated. Please use a -(contains)> edge. It has the following property options set:

• deprecated: True

The property type is geo:place.

:desc / geo:place:desc
A long form description of the place.

The property type is str.

:loc / geo:place:loc
The geo-political location string for the node.

The property type is loc.

:address / geo:place:address
The street/mailing address for the place.

The property type is geo:address.

:geojson / geo:place:geojson
A GeoJSON representation of the place.

The property type is geo:json.

:latlong / geo:place:latlong
The lat/long position for the place.

The property type is geo:latlong.

:bbox / geo:place:bbox
A bounding box which encompasses the place.

The property type is geo:bbox.

1032 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:radius / geo:place:radius
An approximate radius to use for bounding box calculation.

The property type is geo:dist.

:photo / geo:place:photo
The image file to use as the primary image of the place.

The property type is file:bytes.

geo:place:taxonomy

A taxonomy of place types.

The base type for the form can be found at geo:place:taxonomy.

Properties:

geo:telem

A geospatial position of a node at a given time. The node should be linked via -(seenat)> edges.

The base type for the form can be found at geo:telem.

Properties:

:time / geo:telem:time
The time that the node was at the position.

The property type is time.

:desc / geo:telem:desc
A description of the telemetry sample.

The property type is str.

:latlong / geo:telem:latlong
The latitude/longitude reading at the time.

The property type is geo:latlong.

:accuracy / geo:telem:accuracy
The reported accuracy of the latlong telemetry reading.

The property type is geo:dist.

:place / geo:telem:place
The place which includes the latlong value.

The property type is geo:place.

:place:name / geo:telem:place:name
The purported place name. Used for entity resolution.

The property type is geo:name.

12.2. Synapse Data Model - Forms 1033

Synapse Documentation, Release 2.141.0

gov:cn:icp

A Chinese Internet Content Provider ID.

The base type for the form can be found at gov:cn:icp.

Properties:

:org / gov:cn:icp:org
The org with the Internet Content Provider ID.

The property type is ou:org.

gov:cn:mucd

A Chinese PLA MUCD.

The base type for the form can be found at gov:cn:mucd.

Properties:

gov:us:cage

A Commercial and Government Entity (CAGE) code.

The base type for the form can be found at gov:us:cage.

Properties:

:name0 / gov:us:cage:name0
The name of the organization.

The property type is ou:name.

:name1 / gov:us:cage:name1
Name Part 1.

The property type is str. Its type has the following options set:

• lower: True

:street / gov:us:cage:street
The base string type.

The property type is str. Its type has the following options set:

• lower: True

:city / gov:us:cage:city
The base string type.

The property type is str. Its type has the following options set:

• lower: True

:state / gov:us:cage:state
The base string type.

The property type is str. Its type has the following options set:

• lower: True

1034 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:zip / gov:us:cage:zip
A US Postal Zip Code.

The property type is gov:us:zip.

:cc / gov:us:cage:cc
The 2 digit ISO 3166 country code.

The property type is pol:iso2.

:country / gov:us:cage:country
The base string type.

The property type is str. Its type has the following options set:

• lower: True

:phone0 / gov:us:cage:phone0
A phone number.

The property type is tel:phone.

:phone1 / gov:us:cage:phone1
A phone number.

The property type is tel:phone.

gov:us:ssn

A US Social Security Number (SSN).

The base type for the form can be found at gov:us:ssn.

Properties:

gov:us:zip

A US Postal Zip Code.

The base type for the form can be found at gov:us:zip.

Properties:

graph:cluster

A generic node, used in conjunction with Edge types, to cluster arbitrary nodes to a single node in the model.

The base type for the form can be found at graph:cluster.

Properties:

:name / graph:cluster:name
A human friendly name for the cluster.

The property type is str. Its type has the following options set:

• lower: True

:desc / graph:cluster:desc
A human friendly long form description for the cluster.

The property type is str. Its type has the following options set:

12.2. Synapse Data Model - Forms 1035

Synapse Documentation, Release 2.141.0

• lower: True

:type / graph:cluster:type
An optional type field used to group clusters.

The property type is str. Its type has the following options set:

• lower: True

graph:edge

A generic digraph edge to show relationships outside the model.

The base type for the form can be found at graph:edge.

Properties:

:n1 / graph:edge:n1
The node definition type for a (form,valu) compound field. It has the following property options set:

• Read Only: True

The property type is ndef .

:n1:form / graph:edge:n1:form
The base string type. It has the following property options set:

• Read Only: True

The property type is str.

:n2 / graph:edge:n2
The node definition type for a (form,valu) compound field. It has the following property options set:

• Read Only: True

The property type is ndef .

:n2:form / graph:edge:n2:form
The base string type. It has the following property options set:

• Read Only: True

The property type is str.

graph:event

A generic event node to represent events outside the model.

The base type for the form can be found at graph:event.

Properties:

:time / graph:event:time
The time of the event.

The property type is time.

:type / graph:event:type
A arbitrary type string for the event.

The property type is str.

1036 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:name / graph:event:name
A name for the event.

The property type is str.

:data / graph:event:data
Arbitrary non-indexed msgpack data attached to the event.

The property type is data.

graph:node

A generic node used to represent objects outside the model.

The base type for the form can be found at graph:node.

Properties:

:type / graph:node:type
The type name for the non-model node.

The property type is str.

:name / graph:node:name
A human readable name for this record.

The property type is str.

:data / graph:node:data
Arbitrary non-indexed msgpack data attached to the node.

The property type is data.

graph:timeedge

A generic digraph time edge to show relationships outside the model.

The base type for the form can be found at graph:timeedge.

Properties:

:time / graph:timeedge:time
A date/time value. It has the following property options set:

• Read Only: True

The property type is time.

:n1 / graph:timeedge:n1
The node definition type for a (form,valu) compound field. It has the following property options set:

• Read Only: True

The property type is ndef .

:n1:form / graph:timeedge:n1:form
The base string type. It has the following property options set:

• Read Only: True

The property type is str.

:n2 / graph:timeedge:n2
The node definition type for a (form,valu) compound field. It has the following property options set:

12.2. Synapse Data Model - Forms 1037

Synapse Documentation, Release 2.141.0

• Read Only: True

The property type is ndef .

:n2:form / graph:timeedge:n2:form
The base string type. It has the following property options set:

• Read Only: True

The property type is str.

hash:md5

A hex encoded MD5 hash.

The base type for the form can be found at hash:md5.

An example of hash:md5:

• d41d8cd98f00b204e9800998ecf8427e

Properties:

hash:sha1

A hex encoded SHA1 hash.

The base type for the form can be found at hash:sha1.

An example of hash:sha1:

• da39a3ee5e6b4b0d3255bfef95601890afd80709

Properties:

hash:sha256

A hex encoded SHA256 hash.

The base type for the form can be found at hash:sha256.

An example of hash:sha256:

• ad9f4fe922b61e674a09530831759843b1880381de686a43460a76864ca0340c

Properties:

hash:sha384

A hex encoded SHA384 hash.

The base type for the form can be found at hash:sha384.

An example of hash:sha384:

• d425f1394e418ce01ed1579069a8bfaa1da8f32cf823982113ccbef531fa36bda9987f389c5af05b5e28035242efab6c

Properties:

1038 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

hash:sha512

A hex encoded SHA512 hash.

The base type for the form can be found at hash:sha512.

An example of hash:sha512:

• ca74fe2ff2d03b29339ad7d08ba21d192077fece1715291c7b43c20c9136cd132788239189f3441a87eb23ce2660aa243f334295902c904b5520f6e80ab91f11

Properties:

inet:asn

An Autonomous System Number (ASN).

The base type for the form can be found at inet:asn.

Properties:

:name / inet:asn:name
The name of the organization currently responsible for the ASN.

The property type is str. Its type has the following options set:

• lower: True

:owner / inet:asn:owner
The guid of the organization currently responsible for the ASN.

The property type is ou:org.

inet:asnet4

An Autonomous System Number (ASN) and its associated IPv4 address range.

The base type for the form can be found at inet:asnet4.

An example of inet:asnet4:

• (54959, (1.2.3.4, 1.2.3.20))

Properties:

:asn / inet:asnet4:asn
The Autonomous System Number (ASN) of the netblock. It has the following property options set:

• Read Only: True

The property type is inet:asn.

:net4 / inet:asnet4:net4
The IPv4 address range assigned to the ASN. It has the following property options set:

• Read Only: True

The property type is inet:net4.

:net4:min / inet:asnet4:net4:min
The first IPv4 in the range assigned to the ASN. It has the following property options set:

• Read Only: True

The property type is inet:ipv4.

12.2. Synapse Data Model - Forms 1039

Synapse Documentation, Release 2.141.0

:net4:max / inet:asnet4:net4:max
The last IPv4 in the range assigned to the ASN. It has the following property options set:

• Read Only: True

The property type is inet:ipv4.

inet:asnet6

An Autonomous System Number (ASN) and its associated IPv6 address range.

The base type for the form can be found at inet:asnet6.

An example of inet:asnet6:

• (54959, (ff::00, ff::02))

Properties:

:asn / inet:asnet6:asn
The Autonomous System Number (ASN) of the netblock. It has the following property options set:

• Read Only: True

The property type is inet:asn.

:net6 / inet:asnet6:net6
The IPv6 address range assigned to the ASN. It has the following property options set:

• Read Only: True

The property type is inet:net6.

:net6:min / inet:asnet6:net6:min
The first IPv6 in the range assigned to the ASN. It has the following property options set:

• Read Only: True

The property type is inet:ipv6.

:net6:max / inet:asnet6:net6:max
The last IPv6 in the range assigned to the ASN. It has the following property options set:

• Read Only: True

The property type is inet:ipv6.

inet:banner

A network protocol banner string presented by a server.

The base type for the form can be found at inet:banner.

Properties:

:server / inet:banner:server
The server which presented the banner string. It has the following property options set:

• Read Only: True

The property type is inet:server.

:server:ipv4 / inet:banner:server:ipv4
The IPv4 address of the server. It has the following property options set:

1040 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

• Read Only: True

The property type is inet:ipv4.

:server:ipv6 / inet:banner:server:ipv6
The IPv6 address of the server. It has the following property options set:

• Read Only: True

The property type is inet:ipv6.

:server:port / inet:banner:server:port
The network port. It has the following property options set:

• Read Only: True

The property type is inet:port.

:text / inet:banner:text
The banner text. It has the following property options set:

• Read Only: True

• disp: {'hint': 'text'}

The property type is it:dev:str.

inet:cidr4

An IPv4 address block in Classless Inter-Domain Routing (CIDR) notation.

The base type for the form can be found at inet:cidr4.

An example of inet:cidr4:

• 1.2.3.0/24

Properties:

:broadcast / inet:cidr4:broadcast
The broadcast IP address from the CIDR notation. It has the following property options set:

• Read Only: True

The property type is inet:ipv4.

:mask / inet:cidr4:mask
The mask from the CIDR notation. It has the following property options set:

• Read Only: True

The property type is int.

:network / inet:cidr4:network
The network IP address from the CIDR notation. It has the following property options set:

• Read Only: True

The property type is inet:ipv4.

12.2. Synapse Data Model - Forms 1041

Synapse Documentation, Release 2.141.0

inet:cidr6

An IPv6 address block in Classless Inter-Domain Routing (CIDR) notation.

The base type for the form can be found at inet:cidr6.

An example of inet:cidr6:

• 2001:db8::/101

Properties:

:broadcast / inet:cidr6:broadcast
The broadcast IP address from the CIDR notation. It has the following property options set:

• Read Only: True

The property type is inet:ipv6.

:mask / inet:cidr6:mask
The mask from the CIDR notation. It has the following property options set:

• Read Only: True

The property type is int.

:network / inet:cidr6:network
The network IP address from the CIDR notation. It has the following property options set:

• Read Only: True

The property type is inet:ipv6.

inet:client

A network client address.

The base type for the form can be found at inet:client.

An example of inet:client:

• tcp://1.2.3.4:80

Properties:

:proto / inet:client:proto
The network protocol of the client. It has the following property options set:

• Read Only: True

The property type is str. Its type has the following options set:

• lower: True

:ipv4 / inet:client:ipv4
The IPv4 of the client. It has the following property options set:

• Read Only: True

The property type is inet:ipv4.

:ipv6 / inet:client:ipv6
The IPv6 of the client. It has the following property options set:

• Read Only: True

The property type is inet:ipv6.

1042 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:host / inet:client:host
The it:host node for the client. It has the following property options set:

• Read Only: True

The property type is it:host.

:port / inet:client:port
The client tcp/udp port.

The property type is inet:port.

inet:dns:a

The result of a DNS A record lookup.

The base type for the form can be found at inet:dns:a.

An example of inet:dns:a:

• (vertex.link,1.2.3.4)

Properties:

:fqdn / inet:dns:a:fqdn
The domain queried for its DNS A record. It has the following property options set:

• Read Only: True

The property type is inet:fqdn.

:ipv4 / inet:dns:a:ipv4
The IPv4 address returned in the A record. It has the following property options set:

• Read Only: True

The property type is inet:ipv4.

inet:dns:aaaa

The result of a DNS AAAA record lookup.

The base type for the form can be found at inet:dns:aaaa.

An example of inet:dns:aaaa:

• (vertex.link,2607:f8b0:4004:809::200e)

Properties:

:fqdn / inet:dns:aaaa:fqdn
The domain queried for its DNS AAAA record. It has the following property options set:

• Read Only: True

The property type is inet:fqdn.

:ipv6 / inet:dns:aaaa:ipv6
The IPv6 address returned in the AAAA record. It has the following property options set:

• Read Only: True

The property type is inet:ipv6.

12.2. Synapse Data Model - Forms 1043

Synapse Documentation, Release 2.141.0

inet:dns:answer

A single answer from within a DNS reply.

The base type for the form can be found at inet:dns:answer.

Properties:

:ttl / inet:dns:answer:ttl
The base 64 bit signed integer type.

The property type is int.

:request / inet:dns:answer:request
A single instance of a DNS resolver request and optional reply info.

The property type is inet:dns:request.

:a / inet:dns:answer:a
The DNS A record returned by the lookup.

The property type is inet:dns:a.

:ns / inet:dns:answer:ns
The DNS NS record returned by the lookup.

The property type is inet:dns:ns.

:rev / inet:dns:answer:rev
The DNS PTR record returned by the lookup.

The property type is inet:dns:rev.

:aaaa / inet:dns:answer:aaaa
The DNS AAAA record returned by the lookup.

The property type is inet:dns:aaaa.

:rev6 / inet:dns:answer:rev6
The DNS PTR record returned by the lookup of an IPv6 address.

The property type is inet:dns:rev6.

:cname / inet:dns:answer:cname
The DNS CNAME record returned by the lookup.

The property type is inet:dns:cname.

:mx / inet:dns:answer:mx
The DNS MX record returned by the lookup.

The property type is inet:dns:mx.

:mx:priority / inet:dns:answer:mx:priority
The DNS MX record priority.

The property type is int.

:soa / inet:dns:answer:soa
The domain queried for its SOA record.

The property type is inet:dns:soa.

:txt / inet:dns:answer:txt
The DNS TXT record returned by the lookup.

The property type is inet:dns:txt.

1044 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

inet:dns:cname

The result of a DNS CNAME record lookup.

The base type for the form can be found at inet:dns:cname.

An example of inet:dns:cname:

• (foo.vertex.link,vertex.link)

Properties:

:fqdn / inet:dns:cname:fqdn
The domain queried for its CNAME record. It has the following property options set:

• Read Only: True

The property type is inet:fqdn.

:cname / inet:dns:cname:cname
The domain returned in the CNAME record. It has the following property options set:

• Read Only: True

The property type is inet:fqdn.

inet:dns:dynreg

A dynamic DNS registration.

The base type for the form can be found at inet:dns:dynreg.

Properties:

:fqdn / inet:dns:dynreg:fqdn
The FQDN registered within a dynamic DNS provider.

The property type is inet:fqdn.

:provider / inet:dns:dynreg:provider
The organization which provides the dynamic DNS FQDN.

The property type is ou:org.

:provider:name / inet:dns:dynreg:provider:name
The name of the organization which provides the dynamic DNS FQDN.

The property type is ou:name.

:provider:fqdn / inet:dns:dynreg:provider:fqdn
The FQDN of the organization which provides the dynamic DNS FQDN.

The property type is inet:fqdn.

:contact / inet:dns:dynreg:contact
The contact information of the registrant.

The property type is ps:contact.

:created / inet:dns:dynreg:created
The time that the dynamic DNS registration was first created.

The property type is time.

12.2. Synapse Data Model - Forms 1045

Synapse Documentation, Release 2.141.0

:client / inet:dns:dynreg:client
The network client address used to register the dynamic FQDN.

The property type is inet:client.

:client:ipv4 / inet:dns:dynreg:client:ipv4
The client IPv4 address used to register the dynamic FQDN.

The property type is inet:ipv4.

:client:ipv6 / inet:dns:dynreg:client:ipv6
The client IPv6 address used to register the dynamic FQDN.

The property type is inet:ipv6.

inet:dns:mx

The result of a DNS MX record lookup.

The base type for the form can be found at inet:dns:mx.

An example of inet:dns:mx:

• (vertex.link,mail.vertex.link)

Properties:

:fqdn / inet:dns:mx:fqdn
The domain queried for its MX record. It has the following property options set:

• Read Only: True

The property type is inet:fqdn.

:mx / inet:dns:mx:mx
The domain returned in the MX record. It has the following property options set:

• Read Only: True

The property type is inet:fqdn.

inet:dns:ns

The result of a DNS NS record lookup.

The base type for the form can be found at inet:dns:ns.

An example of inet:dns:ns:

• (vertex.link,ns.dnshost.com)

Properties:

:zone / inet:dns:ns:zone
The domain queried for its DNS NS record. It has the following property options set:

• Read Only: True

The property type is inet:fqdn.

:ns / inet:dns:ns:ns
The domain returned in the NS record. It has the following property options set:

• Read Only: True

1046 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

The property type is inet:fqdn.

inet:dns:query

A DNS query unique to a given client.

The base type for the form can be found at inet:dns:query.

An example of inet:dns:query:

• (1.2.3.4, woot.com, 1)

Properties:

:client / inet:dns:query:client
A network client address. It has the following property options set:

• Read Only: True

The property type is inet:client.

:name / inet:dns:query:name
A DNS query name string. Likely an FQDN but not always. It has the following property options set:

• Read Only: True

The property type is inet:dns:name.

:name:ipv4 / inet:dns:query:name:ipv4
An IPv4 address.

The property type is inet:ipv4.

:name:ipv6 / inet:dns:query:name:ipv6
An IPv6 address.

The property type is inet:ipv6.

:name:fqdn / inet:dns:query:name:fqdn
A Fully Qualified Domain Name (FQDN).

The property type is inet:fqdn.

:type / inet:dns:query:type
The base 64 bit signed integer type. It has the following property options set:

• Read Only: True

The property type is int.

inet:dns:request

A single instance of a DNS resolver request and optional reply info.

The base type for the form can be found at inet:dns:request.

Properties:

:time / inet:dns:request:time
A date/time value.

The property type is time.

12.2. Synapse Data Model - Forms 1047

Synapse Documentation, Release 2.141.0

:query / inet:dns:request:query
A DNS query unique to a given client.

The property type is inet:dns:query.

:query:name / inet:dns:request:query:name
A DNS query name string. Likely an FQDN but not always.

The property type is inet:dns:name.

:query:name:ipv4 / inet:dns:request:query:name:ipv4
An IPv4 address.

The property type is inet:ipv4.

:query:name:ipv6 / inet:dns:request:query:name:ipv6
An IPv6 address.

The property type is inet:ipv6.

:query:name:fqdn / inet:dns:request:query:name:fqdn
A Fully Qualified Domain Name (FQDN).

The property type is inet:fqdn.

:query:type / inet:dns:request:query:type
The base 64 bit signed integer type.

The property type is int.

:server / inet:dns:request:server
A network server address.

The property type is inet:server.

:reply:code / inet:dns:request:reply:code
The DNS server response code.

The property type is int.

:exe / inet:dns:request:exe
The file containing the code that attempted the DNS lookup.

The property type is file:bytes.

:proc / inet:dns:request:proc
The process that attempted the DNS lookup.

The property type is it:exec:proc.

:host / inet:dns:request:host
The host that attempted the DNS lookup.

The property type is it:host.

:sandbox:file / inet:dns:request:sandbox:file
The initial sample given to a sandbox environment to analyze.

The property type is file:bytes.

1048 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

inet:dns:rev

The transformed result of a DNS PTR record lookup.

The base type for the form can be found at inet:dns:rev.

An example of inet:dns:rev:

• (1.2.3.4,vertex.link)

Properties:

:ipv4 / inet:dns:rev:ipv4
The IPv4 address queried for its DNS PTR record. It has the following property options set:

• Read Only: True

The property type is inet:ipv4.

:fqdn / inet:dns:rev:fqdn
The domain returned in the PTR record. It has the following property options set:

• Read Only: True

The property type is inet:fqdn.

inet:dns:rev6

The transformed result of a DNS PTR record for an IPv6 address.

The base type for the form can be found at inet:dns:rev6.

An example of inet:dns:rev6:

• (2607:f8b0:4004:809::200e,vertex.link)

Properties:

:ipv6 / inet:dns:rev6:ipv6
The IPv6 address queried for its DNS PTR record. It has the following property options set:

• Read Only: True

The property type is inet:ipv6.

:fqdn / inet:dns:rev6:fqdn
The domain returned in the PTR record. It has the following property options set:

• Read Only: True

The property type is inet:fqdn.

inet:dns:soa

The result of a DNS SOA record lookup.

The base type for the form can be found at inet:dns:soa.

Properties:

:fqdn / inet:dns:soa:fqdn
The domain queried for its SOA record.

The property type is inet:fqdn.

12.2. Synapse Data Model - Forms 1049

Synapse Documentation, Release 2.141.0

:ns / inet:dns:soa:ns
The domain (MNAME) returned in the SOA record.

The property type is inet:fqdn.

:email / inet:dns:soa:email
The email address (RNAME) returned in the SOA record.

The property type is inet:email.

inet:dns:txt

The result of a DNS MX record lookup.

The base type for the form can be found at inet:dns:txt.

An example of inet:dns:txt:

• (hehe.vertex.link,"fancy TXT record")

Properties:

:fqdn / inet:dns:txt:fqdn
The domain queried for its TXT record. It has the following property options set:

• Read Only: True

The property type is inet:fqdn.

:txt / inet:dns:txt:txt
The string returned in the TXT record. It has the following property options set:

• Read Only: True

The property type is str.

inet:dns:wild:a

A DNS A wild card record and the IPv4 it resolves to.

The base type for the form can be found at inet:dns:wild:a.

Properties:

:fqdn / inet:dns:wild:a:fqdn
The domain containing a wild card record. It has the following property options set:

• Read Only: True

The property type is inet:fqdn.

:ipv4 / inet:dns:wild:a:ipv4
The IPv4 address returned by wild card resolutions. It has the following property options set:

• Read Only: True

The property type is inet:ipv4.

1050 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

inet:dns:wild:aaaa

A DNS AAAA wild card record and the IPv6 it resolves to.

The base type for the form can be found at inet:dns:wild:aaaa.

Properties:

:fqdn / inet:dns:wild:aaaa:fqdn
The domain containing a wild card record. It has the following property options set:

• Read Only: True

The property type is inet:fqdn.

:ipv6 / inet:dns:wild:aaaa:ipv6
The IPv6 address returned by wild card resolutions. It has the following property options set:

• Read Only: True

The property type is inet:ipv6.

inet:download

An instance of a file downloaded from a server.

The base type for the form can be found at inet:download.

Properties:

:time / inet:download:time
The time the file was downloaded.

The property type is time.

:fqdn / inet:download:fqdn
The FQDN used to resolve the server.

The property type is inet:fqdn.

:file / inet:download:file
The file that was downloaded.

The property type is file:bytes.

:server / inet:download:server
The inet:addr of the server.

The property type is inet:server.

:server:host / inet:download:server:host
The it:host node for the server.

The property type is it:host.

:server:ipv4 / inet:download:server:ipv4
The IPv4 of the server.

The property type is inet:ipv4.

:server:ipv6 / inet:download:server:ipv6
The IPv6 of the server.

The property type is inet:ipv6.

12.2. Synapse Data Model - Forms 1051

Synapse Documentation, Release 2.141.0

:server:port / inet:download:server:port
The server tcp/udp port.

The property type is inet:port.

:server:proto / inet:download:server:proto
The server network layer protocol.

The property type is str. Its type has the following options set:

• lower: True

:client / inet:download:client
The inet:addr of the client.

The property type is inet:client.

:client:host / inet:download:client:host
The it:host node for the client.

The property type is it:host.

:client:ipv4 / inet:download:client:ipv4
The IPv4 of the client.

The property type is inet:ipv4.

:client:ipv6 / inet:download:client:ipv6
The IPv6 of the client.

The property type is inet:ipv6.

:client:port / inet:download:client:port
The client tcp/udp port.

The property type is inet:port.

:client:proto / inet:download:client:proto
The client network layer protocol.

The property type is str. Its type has the following options set:

• lower: True

inet:egress

A host using a specific network egress client address.

The base type for the form can be found at inet:egress.

Properties:

:host / inet:egress:host
The host that used the network egress.

The property type is it:host.

:client / inet:egress:client
The client address the host used as a network egress.

The property type is inet:client.

:client:ipv4 / inet:egress:client:ipv4
The client IPv4 address the host used as a network egress.

The property type is inet:ipv4.

1052 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:client:ipv6 / inet:egress:client:ipv6
The client IPv6 address the host used as a network egress.

The property type is inet:ipv6.

inet:email

An e-mail address.

The base type for the form can be found at inet:email.

Properties:

:user / inet:email:user
The username of the email address. It has the following property options set:

• Read Only: True

The property type is inet:user.

:fqdn / inet:email:fqdn
The domain of the email address. It has the following property options set:

• Read Only: True

The property type is inet:fqdn.

inet:email:header

A unique email message header.

The base type for the form can be found at inet:email:header.

Properties:

:name / inet:email:header:name
The name of the email header. It has the following property options set:

• Read Only: True

The property type is inet:email:header:name.

:value / inet:email:header:value
The value of the email header. It has the following property options set:

• Read Only: True

The property type is str.

inet:email:message

A unique email message.

The base type for the form can be found at inet:email:message.

Properties:

:to / inet:email:message:to
The email address of the recipient.

The property type is inet:email.

12.2. Synapse Data Model - Forms 1053

Synapse Documentation, Release 2.141.0

:from / inet:email:message:from
The email address of the sender.

The property type is inet:email.

:replyto / inet:email:message:replyto
The email address from the reply-to header.

The property type is inet:email.

:subject / inet:email:message:subject
The email message subject line.

The property type is str.

:body / inet:email:message:body
The body of the email message. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:date / inet:email:message:date
The time the email message was received.

The property type is time.

:bytes / inet:email:message:bytes
The file bytes which contain the email message.

The property type is file:bytes.

:headers / inet:email:message:headers
An array of email headers from the message.

The property type is array. Its type has the following options set:

• type: inet:email:header

inet:email:message:attachment

A file which was attached to an email message.

The base type for the form can be found at inet:email:message:attachment.

Properties:

:message / inet:email:message:attachment:message
The message containing the attached file. It has the following property options set:

• Read Only: True

The property type is inet:email:message.

:file / inet:email:message:attachment:file
The attached file. It has the following property options set:

• Read Only: True

The property type is file:bytes.

:name / inet:email:message:attachment:name
The name of the attached file.

The property type is file:base.

1054 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

inet:email:message:link

A url/link embedded in an email message.

The base type for the form can be found at inet:email:message:link.

Properties:

:message / inet:email:message:link:message
The message containing the embedded link. It has the following property options set:

• Read Only: True

The property type is inet:email:message.

:url / inet:email:message:link:url
The url contained within the email message. It has the following property options set:

• Read Only: True

The property type is inet:url.

:text / inet:email:message:link:text
The displayed hyperlink text if it was not the raw URL.

The property type is str.

inet:flow

An individual network connection between a given source and destination.

The base type for the form can be found at inet:flow.

Properties:

:time / inet:flow:time
The time the network connection was initiated.

The property type is time.

:duration / inet:flow:duration
The duration of the flow in seconds.

The property type is int.

:from / inet:flow:from
The ingest source file/iden. Used for reparsing.

The property type is guid.

:dst / inet:flow:dst
The destination address / port for a connection.

The property type is inet:server.

:dst:ipv4 / inet:flow:dst:ipv4
The destination IPv4 address.

The property type is inet:ipv4.

:dst:ipv6 / inet:flow:dst:ipv6
The destination IPv6 address.

The property type is inet:ipv6.

12.2. Synapse Data Model - Forms 1055

Synapse Documentation, Release 2.141.0

:dst:port / inet:flow:dst:port
The destination port.

The property type is inet:port.

:dst:proto / inet:flow:dst:proto
The destination protocol.

The property type is str. Its type has the following options set:

• lower: True

:dst:host / inet:flow:dst:host
The guid of the destination host.

The property type is it:host.

:dst:proc / inet:flow:dst:proc
The guid of the destination process.

The property type is it:exec:proc.

:dst:exe / inet:flow:dst:exe
The file (executable) that received the connection.

The property type is file:bytes.

:dst:txcount / inet:flow:dst:txcount
The number of packets sent by the destination host.

The property type is int.

:dst:txbytes / inet:flow:dst:txbytes
The number of bytes sent by the destination host.

The property type is int.

:dst:handshake / inet:flow:dst:handshake
A text representation of the initial handshake sent by the server. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:src / inet:flow:src
The source address / port for a connection.

The property type is inet:client.

:src:ipv4 / inet:flow:src:ipv4
The source IPv4 address.

The property type is inet:ipv4.

:src:ipv6 / inet:flow:src:ipv6
The source IPv6 address.

The property type is inet:ipv6.

:src:port / inet:flow:src:port
The source port.

The property type is inet:port.

:src:proto / inet:flow:src:proto
The source protocol.

1056 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

The property type is str. Its type has the following options set:

• lower: True

:src:host / inet:flow:src:host
The guid of the source host.

The property type is it:host.

:src:proc / inet:flow:src:proc
The guid of the source process.

The property type is it:exec:proc.

:src:exe / inet:flow:src:exe
The file (executable) that created the connection.

The property type is file:bytes.

:src:txcount / inet:flow:src:txcount
The number of packets sent by the source host.

The property type is int.

:src:txbytes / inet:flow:src:txbytes
The number of bytes sent by the source host.

The property type is int.

:tot:txcount / inet:flow:tot:txcount
The number of packets sent in both directions.

The property type is int.

:tot:txbytes / inet:flow:tot:txbytes
The number of bytes sent in both directions.

The property type is int.

:src:handshake / inet:flow:src:handshake
A text representation of the initial handshake sent by the client. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:dst:cpes / inet:flow:dst:cpes
An array of NIST CPEs identified on the destination host.

The property type is array. Its type has the following options set:

• type: it:sec:cpe

• uniq: True

• sorted: True

:dst:softnames / inet:flow:dst:softnames
An array of software names identified on the destination host.

The property type is array. Its type has the following options set:

• type: it:prod:softname

• uniq: True

• sorted: True

12.2. Synapse Data Model - Forms 1057

Synapse Documentation, Release 2.141.0

:src:cpes / inet:flow:src:cpes
An array of NIST CPEs identified on the source host.

The property type is array. Its type has the following options set:

• type: it:sec:cpe

• uniq: True

• sorted: True

:src:softnames / inet:flow:src:softnames
An array of software names identified on the source host.

The property type is array. Its type has the following options set:

• type: it:prod:softname

• uniq: True

• sorted: True

:ip:proto / inet:flow:ip:proto
The IP protocol number of the flow.

The property type is int. Its type has the following options set:

• min: 0

• max: 255

:ip:tcp:flags / inet:flow:ip:tcp:flags
An aggregation of observed TCP flags commonly provided by flow APIs.

The property type is int. Its type has the following options set:

• min: 0

• max: 255

:sandbox:file / inet:flow:sandbox:file
The initial sample given to a sandbox environment to analyze.

The property type is file:bytes.

:src:ssl:cert / inet:flow:src:ssl:cert
The x509 certificate sent by the client as part of an SSL/TLS negotiation.

The property type is crypto:x509:cert.

:dst:ssl:cert / inet:flow:dst:ssl:cert
The x509 certificate sent by the server as part of an SSL/TLS negotiation.

The property type is crypto:x509:cert.

:src:rdp:hostname / inet:flow:src:rdp:hostname
The hostname sent by the client as part of an RDP session setup.

The property type is it:hostname.

:src:rdp:keyboard:layout / inet:flow:src:rdp:keyboard:layout
The keyboard layout sent by the client as part of an RDP session setup.

The property type is str. Its type has the following options set:

• lower: True

• onespace: True

1058 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:src:ssh:key / inet:flow:src:ssh:key
The key sent by the client as part of an SSH session setup.

The property type is crypto:key.

:dst:ssh:key / inet:flow:dst:ssh:key
The key sent by the server as part of an SSH session setup.

The property type is crypto:key.

:raw / inet:flow:raw
A raw record used to create the flow which may contain additional protocol details.

The property type is data.

inet:fqdn

A Fully Qualified Domain Name (FQDN).

The base type for the form can be found at inet:fqdn.

An example of inet:fqdn:

• vertex.link

Properties:

:domain / inet:fqdn:domain
The parent domain for the FQDN. It has the following property options set:

• Read Only: True

The property type is inet:fqdn.

:host / inet:fqdn:host
The host part of the FQDN. It has the following property options set:

• Read Only: True

The property type is str. Its type has the following options set:

• lower: True

:issuffix / inet:fqdn:issuffix
True if the FQDN is considered a suffix.

The property type is bool.

:iszone / inet:fqdn:iszone
True if the FQDN is considered a zone.

The property type is bool.

:zone / inet:fqdn:zone
The zone level parent for this FQDN.

The property type is inet:fqdn.

12.2. Synapse Data Model - Forms 1059

Synapse Documentation, Release 2.141.0

inet:group

A group name string.

The base type for the form can be found at inet:group.

Properties:

inet:http:cookie

An individual HTTP cookie string.

The base type for the form can be found at inet:http:cookie.

An example of inet:http:cookie:

• PHPSESSID=el4ukv0kqbvoirg7nkp4dncpk3

Properties:

:name / inet:http:cookie:name
The name of the cookie preceding the equal sign.

The property type is str.

:value / inet:http:cookie:value
The value of the cookie after the equal sign if present.

The property type is str.

inet:http:param

An HTTP request path query parameter.

The base type for the form can be found at inet:http:param.

Properties:

:name / inet:http:param:name
The name of the HTTP query parameter. It has the following property options set:

• Read Only: True

The property type is str. Its type has the following options set:

• lower: True

:value / inet:http:param:value
The value of the HTTP query parameter. It has the following property options set:

• Read Only: True

The property type is str.

1060 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

inet:http:request

A single HTTP request.

The base type for the form can be found at inet:http:request.

Properties:

:method / inet:http:request:method
The HTTP request method string.

The property type is str.

:path / inet:http:request:path
The requested HTTP path (without query parameters).

The property type is str.

:url / inet:http:request:url
The reconstructed URL for the request if known.

The property type is inet:url.

:query / inet:http:request:query
The HTTP query string which optionally follows the path.

The property type is str.

:headers / inet:http:request:headers
An array of HTTP headers from the request.

The property type is array. Its type has the following options set:

• type: inet:http:request:header

:body / inet:http:request:body
The body of the HTTP request.

The property type is file:bytes.

:referer / inet:http:request:referer
The referer URL parsed from the “Referer:” header in the request.

The property type is inet:url.

:cookies / inet:http:request:cookies
An array of HTTP cookie values parsed from the “Cookies:” header in the request.

The property type is array. Its type has the following options set:

• type: inet:http:cookie

• sorted: True

• uniq: True

:response:time / inet:http:request:response:time
A date/time value.

The property type is time.

:response:code / inet:http:request:response:code
The base 64 bit signed integer type.

The property type is int.

12.2. Synapse Data Model - Forms 1061

Synapse Documentation, Release 2.141.0

:response:reason / inet:http:request:response:reason
The base string type.

The property type is str.

:response:headers / inet:http:request:response:headers
An array of HTTP headers from the response.

The property type is array. Its type has the following options set:

• type: inet:http:response:header

:response:body / inet:http:request:response:body
The file bytes type with SHA256 based primary property.

The property type is file:bytes.

:session / inet:http:request:session
The HTTP session this request was part of.

The property type is inet:http:session.

:flow / inet:http:request:flow
The raw inet:flow containing the request.

The property type is inet:flow.

:client / inet:http:request:client
The inet:addr of the client.

The property type is inet:client.

:client:ipv4 / inet:http:request:client:ipv4
The server IPv4 address that the request was sent from.

The property type is inet:ipv4.

:client:ipv6 / inet:http:request:client:ipv6
The server IPv6 address that the request was sent from.

The property type is inet:ipv6.

:client:host / inet:http:request:client:host
The host that the request was sent from.

The property type is it:host.

:server / inet:http:request:server
The inet:addr of the server.

The property type is inet:server.

:server:ipv4 / inet:http:request:server:ipv4
The server IPv4 address that the request was sent to.

The property type is inet:ipv4.

:server:ipv6 / inet:http:request:server:ipv6
The server IPv6 address that the request was sent to.

The property type is inet:ipv6.

:server:port / inet:http:request:server:port
The server port that the request was sent to.

The property type is inet:port.

1062 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:server:host / inet:http:request:server:host
The host that the request was sent to.

The property type is it:host.

:exe / inet:http:request:exe
The executable file which caused the activity.

The property type is file:bytes.

:proc / inet:http:request:proc
The host process which caused the activity.

The property type is it:exec:proc.

:thread / inet:http:request:thread
The host thread which caused the activity.

The property type is it:exec:thread.

:host / inet:http:request:host
The host on which the activity occurred.

The property type is it:host.

:time / inet:http:request:time
The time that the activity started.

The property type is time.

:sandbox:file / inet:http:request:sandbox:file
The initial sample given to a sandbox environment to analyze.

The property type is file:bytes.

inet:http:request:header

An HTTP request header.

The base type for the form can be found at inet:http:request:header.

Properties:

:name / inet:http:request:header:name
The name of the HTTP request header. It has the following property options set:

• Read Only: True

The property type is inet:http:header:name.

:value / inet:http:request:header:value
The value of the HTTP request header. It has the following property options set:

• Read Only: True

The property type is str.

12.2. Synapse Data Model - Forms 1063

Synapse Documentation, Release 2.141.0

inet:http:response:header

An HTTP response header.

The base type for the form can be found at inet:http:response:header.

Properties:

:name / inet:http:response:header:name
The name of the HTTP response header. It has the following property options set:

• Read Only: True

The property type is inet:http:header:name.

:value / inet:http:response:header:value
The value of the HTTP response header. It has the following property options set:

• Read Only: True

The property type is str.

inet:http:session

An HTTP session.

The base type for the form can be found at inet:http:session.

Properties:

:contact / inet:http:session:contact
The ps:contact which owns the session.

The property type is ps:contact.

:cookies / inet:http:session:cookies
An array of cookies used to identify this specific session.

The property type is array. Its type has the following options set:

• type: inet:http:cookie

• sorted: True

• uniq: True

inet:iface

A network interface with a set of associated protocol addresses.

The base type for the form can be found at inet:iface.

Properties:

:host / inet:iface:host
The guid of the host the interface is associated with.

The property type is it:host.

:network / inet:iface:network
The guid of the it:network the interface connected to.

The property type is it:network.

1064 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:type / inet:iface:type
The free-form interface type.

The property type is str. Its type has the following options set:

• lower: True

:mac / inet:iface:mac
The ethernet (MAC) address of the interface.

The property type is inet:mac.

:ipv4 / inet:iface:ipv4
The IPv4 address of the interface.

The property type is inet:ipv4.

:ipv6 / inet:iface:ipv6
The IPv6 address of the interface.

The property type is inet:ipv6.

:phone / inet:iface:phone
The telephone number of the interface.

The property type is tel:phone.

:wifi:ssid / inet:iface:wifi:ssid
The wifi SSID of the interface.

The property type is inet:wifi:ssid.

:wifi:bssid / inet:iface:wifi:bssid
The wifi BSSID of the interface.

The property type is inet:mac.

:adid / inet:iface:adid
An advertising ID associated with the interface.

The property type is it:adid.

:mob:imei / inet:iface:mob:imei
The IMEI of the interface.

The property type is tel:mob:imei.

:mob:imsi / inet:iface:mob:imsi
The IMSI of the interface.

The property type is tel:mob:imsi.

inet:ipv4

An IPv4 address.

The base type for the form can be found at inet:ipv4.

An example of inet:ipv4:

• 1.2.3.4

Properties:

12.2. Synapse Data Model - Forms 1065

Synapse Documentation, Release 2.141.0

:asn / inet:ipv4:asn
The ASN to which the IPv4 address is currently assigned.

The property type is inet:asn.

:latlong / inet:ipv4:latlong
The best known latitude/longitude for the node.

The property type is geo:latlong.

:loc / inet:ipv4:loc
The geo-political location string for the IPv4.

The property type is loc.

:place / inet:ipv4:place
The geo:place associated with the latlong property.

The property type is geo:place.

:type / inet:ipv4:type
The type of IP address (e.g., private, multicast, etc.).

The property type is str.

:dns:rev / inet:ipv4:dns:rev
The most current DNS reverse lookup for the IPv4.

The property type is inet:fqdn.

inet:ipv6

An IPv6 address.

The base type for the form can be found at inet:ipv6.

An example of inet:ipv6:

• 2607:f8b0:4004:809::200e

Properties:

:asn / inet:ipv6:asn
The ASN to which the IPv6 address is currently assigned.

The property type is inet:asn.

:ipv4 / inet:ipv6:ipv4
The mapped ipv4.

The property type is inet:ipv4.

:latlong / inet:ipv6:latlong
The last known latitude/longitude for the node.

The property type is geo:latlong.

:place / inet:ipv6:place
The geo:place associated with the latlong property.

The property type is geo:place.

:dns:rev / inet:ipv6:dns:rev
The most current DNS reverse lookup for the IPv6.

The property type is inet:fqdn.

1066 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:loc / inet:ipv6:loc
The geo-political location string for the IPv6.

The property type is loc.

inet:mac

A 48-bit Media Access Control (MAC) address.

The base type for the form can be found at inet:mac.

An example of inet:mac:

• aa:bb:cc:dd:ee:ff

Properties:

:vendor / inet:mac:vendor
The vendor associated with the 24-bit prefix of a MAC address.

The property type is str.

inet:passwd

A password string.

The base type for the form can be found at inet:passwd.

Properties:

:md5 / inet:passwd:md5
The MD5 hash of the password. It has the following property options set:

• Read Only: True

The property type is hash:md5.

:sha1 / inet:passwd:sha1
The SHA1 hash of the password. It has the following property options set:

• Read Only: True

The property type is hash:sha1.

:sha256 / inet:passwd:sha256
The SHA256 hash of the password. It has the following property options set:

• Read Only: True

The property type is hash:sha256.

12.2. Synapse Data Model - Forms 1067

Synapse Documentation, Release 2.141.0

inet:proto

A network protocol name.

The base type for the form can be found at inet:proto.

Properties:

:port / inet:proto:port
The default port this protocol typically uses if applicable.

The property type is inet:port.

inet:rfc2822:addr

An RFC 2822 Address field.

The base type for the form can be found at inet:rfc2822:addr.

An example of inet:rfc2822:addr:

• "Visi Kenshoto" <visi@vertex.link>

Properties:

:name / inet:rfc2822:addr:name
The name field parsed from an RFC 2822 address string. It has the following property options set:

• Read Only: True

The property type is ps:name.

:email / inet:rfc2822:addr:email
The email field parsed from an RFC 2822 address string. It has the following property options set:

• Read Only: True

The property type is inet:email.

inet:search:query

An instance of a search query issued to a search engine.

The base type for the form can be found at inet:search:query.

Properties:

:text / inet:search:query:text
The search query text. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:time / inet:search:query:time
The time the web search was issued.

The property type is time.

:acct / inet:search:query:acct
The account that the query was issued as.

The property type is inet:web:acct.

1068 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:host / inet:search:query:host
The host that issued the query.

The property type is it:host.

:engine / inet:search:query:engine
A simple name for the search engine used. It has the following property options set:

• Example: google

The property type is str. Its type has the following options set:

• lower: True

:request / inet:search:query:request
The HTTP request used to issue the query.

The property type is inet:http:request.

inet:search:result

A single result from a web search.

The base type for the form can be found at inet:search:result.

Properties:

:query / inet:search:result:query
The search query that produced the result.

The property type is inet:search:query.

:title / inet:search:result:title
The title of the matching web page.

The property type is str. Its type has the following options set:

• lower: True

:rank / inet:search:result:rank
The rank/order of the query result.

The property type is int.

:url / inet:search:result:url
The URL hosting the matching content.

The property type is inet:url.

:text / inet:search:result:text
Extracted/matched text from the matched content.

The property type is str. Its type has the following options set:

• lower: True

12.2. Synapse Data Model - Forms 1069

Synapse Documentation, Release 2.141.0

inet:server

A network server address.

The base type for the form can be found at inet:server.

An example of inet:server:

• tcp://1.2.3.4:80

Properties:

:proto / inet:server:proto
The network protocol of the server. It has the following property options set:

• Read Only: True

The property type is str. Its type has the following options set:

• lower: True

:ipv4 / inet:server:ipv4
The IPv4 of the server. It has the following property options set:

• Read Only: True

The property type is inet:ipv4.

:ipv6 / inet:server:ipv6
The IPv6 of the server. It has the following property options set:

• Read Only: True

The property type is inet:ipv6.

:host / inet:server:host
The it:host node for the server. It has the following property options set:

• Read Only: True

The property type is it:host.

:port / inet:server:port
The server tcp/udp port.

The property type is inet:port.

inet:servfile

A file hosted on a server for access over a network protocol.

The base type for the form can be found at inet:servfile.

Properties:

:file / inet:servfile:file
The file hosted by the server. It has the following property options set:

• Read Only: True

The property type is file:bytes.

:server / inet:servfile:server
The inet:addr of the server. It has the following property options set:

• Read Only: True

1070 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

The property type is inet:server.

:server:proto / inet:servfile:server:proto
The network protocol of the server. It has the following property options set:

• Read Only: True

The property type is str. Its type has the following options set:

• lower: True

:server:ipv4 / inet:servfile:server:ipv4
The IPv4 of the server. It has the following property options set:

• Read Only: True

The property type is inet:ipv4.

:server:ipv6 / inet:servfile:server:ipv6
The IPv6 of the server. It has the following property options set:

• Read Only: True

The property type is inet:ipv6.

:server:host / inet:servfile:server:host
The it:host node for the server. It has the following property options set:

• Read Only: True

The property type is it:host.

:server:port / inet:servfile:server:port
The server tcp/udp port.

The property type is inet:port.

inet:ssl:cert

An SSL certificate file served by a server.

The base type for the form can be found at inet:ssl:cert.

An example of inet:ssl:cert:

• (1.2.3.4:443, guid:d41d8cd98f00b204e9800998ecf8427e)

Properties:

:file / inet:ssl:cert:file
The file bytes for the SSL certificate. It has the following property options set:

• Read Only: True

The property type is file:bytes.

:server / inet:ssl:cert:server
The server that presented the SSL certificate. It has the following property options set:

• Read Only: True

The property type is inet:server.

:server:ipv4 / inet:ssl:cert:server:ipv4
The SSL server IPv4 address. It has the following property options set:

• Read Only: True

12.2. Synapse Data Model - Forms 1071

Synapse Documentation, Release 2.141.0

The property type is inet:ipv4.

:server:ipv6 / inet:ssl:cert:server:ipv6
The SSL server IPv6 address. It has the following property options set:

• Read Only: True

The property type is inet:ipv6.

:server:port / inet:ssl:cert:server:port
The SSL server listening port. It has the following property options set:

• Read Only: True

The property type is inet:port.

inet:ssl:jarmhash

A TLS JARM fingerprint hash.

The base type for the form can be found at inet:ssl:jarmhash.

Properties:

:ciphers / inet:ssl:jarmhash:ciphers
The encoded cipher and TLS version of the server. It has the following property options set:

• Read Only: True

The property type is str. Its type has the following options set:

• lower: True

• strip: True

• regex: ^[0-9a-f]{30}$

:extensions / inet:ssl:jarmhash:extensions
The truncated SHA256 of the TLS server extensions. It has the following property options set:

• Read Only: True

The property type is str. Its type has the following options set:

• lower: True

• strip: True

• regex: ^[0-9a-f]{32}$

inet:ssl:jarmsample

A JARM hash sample taken from a server.

The base type for the form can be found at inet:ssl:jarmsample.

Properties:

:jarmhash / inet:ssl:jarmsample:jarmhash
The JARM hash computed from the server responses. It has the following property options set:

• Read Only: True

The property type is inet:ssl:jarmhash.

1072 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:server / inet:ssl:jarmsample:server
The server that was sampled to compute the JARM hash. It has the following property options set:

• Read Only: True

The property type is inet:server.

inet:tunnel

A specific sequence of hosts forwarding connections such as a VPN or proxy.

The base type for the form can be found at inet:tunnel.

Properties:

:anon / inet:tunnel:anon
Indicates that this tunnel provides anonymization.

The property type is bool.

:type / inet:tunnel:type
The type of tunnel such as vpn or proxy.

The property type is inet:tunnel:type:taxonomy.

:ingress / inet:tunnel:ingress
The server where client traffic enters the tunnel.

The property type is inet:server.

:egress / inet:tunnel:egress
The server where client traffic leaves the tunnel.

The property type is inet:server.

:operator / inet:tunnel:operator
The contact information for the tunnel operator.

The property type is ps:contact.

inet:tunnel:type:taxonomy

A taxonomy of network tunnel types.

The base type for the form can be found at inet:tunnel:type:taxonomy.

Properties:

:title / inet:tunnel:type:taxonomy:title
A brief title of the definition.

The property type is str.

:summary / inet:tunnel:type:taxonomy:summary
A summary of the definition. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:sort / inet:tunnel:type:taxonomy:sort
A display sort order for siblings.

The property type is int.

12.2. Synapse Data Model - Forms 1073

Synapse Documentation, Release 2.141.0

:base / inet:tunnel:type:taxonomy:base
The base taxon. It has the following property options set:

• Read Only: True

The property type is taxon.

:depth / inet:tunnel:type:taxonomy:depth
The depth indexed from 0. It has the following property options set:

• Read Only: True

The property type is int.

:parent / inet:tunnel:type:taxonomy:parent
The taxonomy parent. It has the following property options set:

• Read Only: True

The property type is inet:tunnel:type:taxonomy.

inet:url

A Universal Resource Locator (URL).

The base type for the form can be found at inet:url.

An example of inet:url:

• http://www.woot.com/files/index.html

Properties:

:fqdn / inet:url:fqdn
The fqdn used in the URL (e.g., http://www.woot.com/page.html). It has the following property options set:

• Read Only: True

The property type is inet:fqdn.

:ipv4 / inet:url:ipv4
The IPv4 address used in the URL (e.g., http://1.2.3.4/page.html). It has the following property options set:

• Read Only: True

The property type is inet:ipv4.

:ipv6 / inet:url:ipv6
The IPv6 address used in the URL. It has the following property options set:

• Read Only: True

The property type is inet:ipv6.

:passwd / inet:url:passwd
The optional password used to access the URL. It has the following property options set:

• Read Only: True

The property type is inet:passwd.

:base / inet:url:base
The base scheme, user/pass, fqdn, port and path w/o parameters. It has the following property options set:

• Read Only: True

The property type is str.

1074 Chapter 12. Synapse Data Model

http://www.woot.com/page.html
http://1.2.3.4/page.html

Synapse Documentation, Release 2.141.0

:path / inet:url:path
The path in the URL w/o parameters. It has the following property options set:

• Read Only: True

The property type is str.

:params / inet:url:params
The URL parameter string. It has the following property options set:

• Read Only: True

The property type is str.

:port / inet:url:port
The port of the URL. URLs prefixed with http will be set to port 80 and URLs prefixed with https will be set to
port 443 unless otherwise specified. It has the following property options set:

• Read Only: True

The property type is inet:port.

:proto / inet:url:proto
The protocol in the URL. It has the following property options set:

• Read Only: True

The property type is str. Its type has the following options set:

• lower: True

:user / inet:url:user
The optional username used to access the URL. It has the following property options set:

• Read Only: True

The property type is inet:user.

inet:url:mirror

A URL mirror site.

The base type for the form can be found at inet:url:mirror.

Properties:

:of / inet:url:mirror:of
The URL being mirrored. It has the following property options set:

• Read Only: True

The property type is inet:url.

:at / inet:url:mirror:at
The URL of the mirror. It has the following property options set:

• Read Only: True

The property type is inet:url.

12.2. Synapse Data Model - Forms 1075

Synapse Documentation, Release 2.141.0

inet:urlfile

A file hosted at a specific Universal Resource Locator (URL).

The base type for the form can be found at inet:urlfile.

Properties:

:url / inet:urlfile:url
The URL where the file was hosted. It has the following property options set:

• Read Only: True

The property type is inet:url.

:file / inet:urlfile:file
The file that was hosted at the URL. It has the following property options set:

• Read Only: True

The property type is file:bytes.

inet:urlredir

A URL that redirects to another URL, such as via a URL shortening service or an HTTP 302 response.

The base type for the form can be found at inet:urlredir.

An example of inet:urlredir:

• (http://foo.com/,http://bar.com/)

Properties:

:src / inet:urlredir:src
The original/source URL before redirect. It has the following property options set:

• Read Only: True

The property type is inet:url.

:src:fqdn / inet:urlredir:src:fqdn
The FQDN within the src URL (if present). It has the following property options set:

• Read Only: True

The property type is inet:fqdn.

:dst / inet:urlredir:dst
The redirected/destination URL. It has the following property options set:

• Read Only: True

The property type is inet:url.

:dst:fqdn / inet:urlredir:dst:fqdn
The FQDN within the dst URL (if present). It has the following property options set:

• Read Only: True

The property type is inet:fqdn.

1076 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

inet:user

A username string.

The base type for the form can be found at inet:user.

Properties:

inet:web:acct

An account with a given Internet-based site or service.

The base type for the form can be found at inet:web:acct.

An example of inet:web:acct:

• twitter.com/invisig0th

Properties:

:avatar / inet:web:acct:avatar
The file representing the avatar (e.g., profile picture) for the account.

The property type is file:bytes.

:banner / inet:web:acct:banner
The file representing the banner for the account.

The property type is file:bytes.

:dob / inet:web:acct:dob
A self-declared date of birth for the account (if the account belongs to a person).

The property type is time.

:email / inet:web:acct:email
The email address associated with the account.

The property type is inet:email.

:linked:accts / inet:web:acct:linked:accts
Linked accounts specified in the account profile.

The property type is array. Its type has the following options set:

• type: inet:web:acct

• uniq: True

• sorted: True

:latlong / inet:web:acct:latlong
The last known latitude/longitude for the node.

The property type is geo:latlong.

:place / inet:web:acct:place
The geo:place associated with the latlong property.

The property type is geo:place.

:loc / inet:web:acct:loc
A self-declared location for the account.

The property type is loc.

12.2. Synapse Data Model - Forms 1077

Synapse Documentation, Release 2.141.0

:name / inet:web:acct:name
The localized name associated with the account (may be different from the account identifier, e.g., a display
name).

The property type is inet:user.

:name:en / inet:web:acct:name:en
The English version of the name associated with the (may be different from the account identifier, e.g., a display
name).

The property type is inet:user.

:aliases / inet:web:acct:aliases
An array of alternate names for the user.

The property type is array. Its type has the following options set:

• type: inet:user

• uniq: True

• sorted: True

:occupation / inet:web:acct:occupation
A self-declared occupation for the account.

The property type is str. Its type has the following options set:

• lower: True

:passwd / inet:web:acct:passwd
The current password for the account.

The property type is inet:passwd.

:phone / inet:web:acct:phone
The phone number associated with the account.

The property type is tel:phone.

:realname / inet:web:acct:realname
The localized version of the real name of the account owner / registrant.

The property type is ps:name.

:realname:en / inet:web:acct:realname:en
The English version of the real name of the account owner / registrant.

The property type is ps:name.

:signup / inet:web:acct:signup
The date and time the account was registered.

The property type is time.

:signup:client / inet:web:acct:signup:client
The client address used to sign up for the account.

The property type is inet:client.

:signup:client:ipv4 / inet:web:acct:signup:client:ipv4
The IPv4 address used to sign up for the account.

The property type is inet:ipv4.

1078 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:signup:client:ipv6 / inet:web:acct:signup:client:ipv6
The IPv6 address used to sign up for the account.

The property type is inet:ipv6.

:site / inet:web:acct:site
The site or service associated with the account. It has the following property options set:

• Read Only: True

The property type is inet:fqdn.

:tagline / inet:web:acct:tagline
The text of the account status or tag line.

The property type is str.

:url / inet:web:acct:url
The service provider URL where the account is hosted.

The property type is inet:url.

:user / inet:web:acct:user
The unique identifier for the account (may be different from the common name or display name). It has the
following property options set:

• Read Only: True

The property type is inet:user.

:webpage / inet:web:acct:webpage
A related URL specified by the account (e.g., a personal or company web page, blog, etc.).

The property type is inet:url.

:recovery:email / inet:web:acct:recovery:email
An email address registered as a recovery email address for the account.

The property type is inet:email.

inet:web:action

An instance of an account performing an action at an Internet-based site or service.

The base type for the form can be found at inet:web:action.

Properties:

:act / inet:web:action:act
The action performed by the account.

The property type is str. Its type has the following options set:

• lower: True

• strip: True

:acct / inet:web:action:acct
The web account associated with the action.

The property type is inet:web:acct.

:acct:site / inet:web:action:acct:site
The site or service associated with the account.

The property type is inet:fqdn.

12.2. Synapse Data Model - Forms 1079

Synapse Documentation, Release 2.141.0

:acct:user / inet:web:action:acct:user
The unique identifier for the account.

The property type is inet:user.

:time / inet:web:action:time
The date and time the account performed the action.

The property type is time.

:client / inet:web:action:client
The source client address of the action.

The property type is inet:client.

:client:ipv4 / inet:web:action:client:ipv4
The source IPv4 address of the action.

The property type is inet:ipv4.

:client:ipv6 / inet:web:action:client:ipv6
The source IPv6 address of the action.

The property type is inet:ipv6.

:loc / inet:web:action:loc
The location of the user executing the web action.

The property type is loc.

:latlong / inet:web:action:latlong
The latlong of the user when executing the web action.

The property type is geo:latlong.

:place / inet:web:action:place
The geo:place of the user when executing the web action.

The property type is geo:place.

inet:web:attachment

An instance of a file being sent to a web service by an account.

The base type for the form can be found at inet:web:attachment.

Properties:

:acct / inet:web:attachment:acct
The account that uploaded the file.

The property type is inet:web:acct.

:post / inet:web:attachment:post
The optional web post that the file was attached to.

The property type is inet:web:post.

:mesg / inet:web:attachment:mesg
The optional web message that the file was attached to.

The property type is inet:web:mesg.

:proto / inet:web:attachment:proto
The protocol used to transmit the file to the web service. It has the following property options set:

1080 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

• Example: https

The property type is inet:proto.

:interactive / inet:web:attachment:interactive
Set to true if the upload was interactive. False if automated.

The property type is bool.

:file / inet:web:attachment:file
The file that was sent.

The property type is file:bytes.

:name / inet:web:attachment:name
The name of the file at the time it was sent.

The property type is file:path.

:time / inet:web:attachment:time
The time the file was sent.

The property type is time.

:client / inet:web:attachment:client
The client address which initiated the upload.

The property type is inet:client.

:client:ipv4 / inet:web:attachment:client:ipv4
The IPv4 address of the client that initiated the upload.

The property type is inet:ipv4.

:client:ipv6 / inet:web:attachment:client:ipv6
The IPv6 address of the client that initiated the upload.

The property type is inet:ipv6.

:place / inet:web:attachment:place
The place the file was sent from.

The property type is geo:place.

:place:loc / inet:web:attachment:place:loc
The geopolitical location that the file was sent from.

The property type is loc.

:place:name / inet:web:attachment:place:name
The reported name of the place that the file was sent from.

The property type is geo:name.

12.2. Synapse Data Model - Forms 1081

Synapse Documentation, Release 2.141.0

inet:web:channel

A channel within a web service or instance such as slack or discord.

The base type for the form can be found at inet:web:channel.

Properties:

:url / inet:web:channel:url
The primary URL used to identify the channel. It has the following property options set:

• Example: https://app.slack.com/client/T2XK1223Y/C2XHHNDS7

The property type is inet:url.

:id / inet:web:channel:id
The operator specified ID of this channel. It has the following property options set:

• Example: C2XHHNDS7

The property type is str. Its type has the following options set:

• strip: True

:instance / inet:web:channel:instance
The instance which contains the channel.

The property type is inet:web:instance.

:name / inet:web:channel:name
The visible name of the channel. It has the following property options set:

• Example: general

The property type is str. Its type has the following options set:

• strip: True

:topic / inet:web:channel:topic
The visible topic of the channel. It has the following property options set:

• Example: Synapse Discussion - Feel free to invite others!

The property type is str. Its type has the following options set:

• strip: True

:created / inet:web:channel:created
The time the channel was created.

The property type is time.

:creator / inet:web:channel:creator
The account which created the channel.

The property type is inet:web:acct.

1082 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

inet:web:chprofile

A change to a web account. Used to capture historical properties associated with an account, as opposed to current
data in the inet:web:acct node.

The base type for the form can be found at inet:web:chprofile.

Properties:

:acct / inet:web:chprofile:acct
The web account associated with the change.

The property type is inet:web:acct.

:acct:site / inet:web:chprofile:acct:site
The site or service associated with the account.

The property type is inet:fqdn.

:acct:user / inet:web:chprofile:acct:user
The unique identifier for the account.

The property type is inet:user.

:client / inet:web:chprofile:client
The source address used to make the account change.

The property type is inet:client.

:client:ipv4 / inet:web:chprofile:client:ipv4
The source IPv4 address used to make the account change.

The property type is inet:ipv4.

:client:ipv6 / inet:web:chprofile:client:ipv6
The source IPv6 address used to make the account change.

The property type is inet:ipv6.

:time / inet:web:chprofile:time
The date and time when the account change occurred.

The property type is time.

:pv / inet:web:chprofile:pv
The prop=valu of the account property that was changed. Valu should be the old / original value, while the new
value should be updated on the inet:web:acct form.

The property type is nodeprop.

:pv:prop / inet:web:chprofile:pv:prop
The property that was changed.

The property type is str.

12.2. Synapse Data Model - Forms 1083

Synapse Documentation, Release 2.141.0

inet:web:file

A file posted by a web account.

The base type for the form can be found at inet:web:file.

Properties:

:acct / inet:web:file:acct
The account that owns or is associated with the file. It has the following property options set:

• Read Only: True

The property type is inet:web:acct.

:acct:site / inet:web:file:acct:site
The site or service associated with the account. It has the following property options set:

• Read Only: True

The property type is inet:fqdn.

:acct:user / inet:web:file:acct:user
The unique identifier for the account. It has the following property options set:

• Read Only: True

The property type is inet:user.

:file / inet:web:file:file
The file owned by or associated with the account. It has the following property options set:

• Read Only: True

The property type is file:bytes.

:name / inet:web:file:name
The name of the file owned by or associated with the account.

The property type is file:base.

:posted / inet:web:file:posted
Deprecated. Instance data belongs on inet:web:attachment. It has the following property options set:

• deprecated: True

The property type is time.

:client / inet:web:file:client
Deprecated. Instance data belongs on inet:web:attachment. It has the following property options set:

• deprecated: True

The property type is inet:client.

:client:ipv4 / inet:web:file:client:ipv4
Deprecated. Instance data belongs on inet:web:attachment. It has the following property options set:

• deprecated: True

The property type is inet:ipv4.

:client:ipv6 / inet:web:file:client:ipv6
Deprecated. Instance data belongs on inet:web:attachment. It has the following property options set:

• deprecated: True

The property type is inet:ipv6.

1084 Chapter 12. Synapse Data Model

file:acct
file:file
file:name
file:posted
file:client

Synapse Documentation, Release 2.141.0

inet:web:follows

A web account follows or is connected to another web account.

The base type for the form can be found at inet:web:follows.

Properties:

:follower / inet:web:follows:follower
The account following an account. It has the following property options set:

• Read Only: True

The property type is inet:web:acct.

:followee / inet:web:follows:followee
The account followed by an account. It has the following property options set:

• Read Only: True

The property type is inet:web:acct.

inet:web:group

A group hosted within or registered with a given Internet-based site or service.

The base type for the form can be found at inet:web:group.

An example of inet:web:group:

• somesite.com/mycoolgroup

Properties:

:site / inet:web:group:site
The site or service associated with the group. It has the following property options set:

• Read Only: True

The property type is inet:fqdn.

:id / inet:web:group:id
The site-specific unique identifier for the group (may be different from the common name or display name). It
has the following property options set:

• Read Only: True

The property type is inet:group.

:name / inet:web:group:name
The localized name associated with the group (may be different from the account identifier, e.g., a display name).

The property type is inet:group.

:aliases / inet:web:group:aliases
An array of alternate names for the group.

The property type is array. Its type has the following options set:

• type: inet:group

• uniq: True

• sorted: True

12.2. Synapse Data Model - Forms 1085

Synapse Documentation, Release 2.141.0

:name:en / inet:web:group:name:en
The English version of the name associated with the group (may be different from the localized name).

The property type is inet:group.

:url / inet:web:group:url
The service provider URL where the group is hosted.

The property type is inet:url.

:avatar / inet:web:group:avatar
The file representing the avatar (e.g., profile picture) for the group.

The property type is file:bytes.

:desc / inet:web:group:desc
The text of the description of the group.

The property type is str.

:webpage / inet:web:group:webpage
A related URL specified by the group (e.g., primary web site, etc.).

The property type is inet:url.

:loc / inet:web:group:loc
A self-declared location for the group.

The property type is str. Its type has the following options set:

• lower: True

:latlong / inet:web:group:latlong
The last known latitude/longitude for the node.

The property type is geo:latlong.

:place / inet:web:group:place
The geo:place associated with the latlong property.

The property type is geo:place.

:signup / inet:web:group:signup
The date and time the group was created on the site.

The property type is time.

:signup:client / inet:web:group:signup:client
The client address used to create the group.

The property type is inet:client.

:signup:client:ipv4 / inet:web:group:signup:client:ipv4
The IPv4 address used to create the group.

The property type is inet:ipv4.

:signup:client:ipv6 / inet:web:group:signup:client:ipv6
The IPv6 address used to create the group.

The property type is inet:ipv6.

1086 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

inet:web:hashtag

A hashtag used in a web post.

The base type for the form can be found at inet:web:hashtag.

Properties:

inet:web:instance

An instance of a web service such as slack or discord.

The base type for the form can be found at inet:web:instance.

Properties:

:url / inet:web:instance:url
The primary URL used to identify the instance. It has the following property options set:

• Example: https://app.slack.com/client/T2XK1223Y

The property type is inet:url.

:id / inet:web:instance:id
The operator specified ID of this instance. It has the following property options set:

• Example: T2XK1223Y

The property type is str. Its type has the following options set:

• strip: True

:name / inet:web:instance:name
The visible name of the instance. It has the following property options set:

• Example: vertex synapse

The property type is str. Its type has the following options set:

• strip: True

:created / inet:web:instance:created
The time the instance was created.

The property type is time.

:creator / inet:web:instance:creator
The account which created the instance.

The property type is inet:web:acct.

:owner / inet:web:instance:owner
The organization which created the instance.

The property type is ou:org.

:owner:fqdn / inet:web:instance:owner:fqdn
The FQDN of the organization which created the instance. Used for entity resolution. It has the following
property options set:

• Example: vertex.link

The property type is inet:fqdn.

12.2. Synapse Data Model - Forms 1087

Synapse Documentation, Release 2.141.0

:owner:name / inet:web:instance:owner:name
The name of the organization which created the instance. Used for entity resolution. It has the following property
options set:

• Example: the vertex project, llc.

The property type is ou:name.

:operator / inet:web:instance:operator
The organization which operates the instance.

The property type is ou:org.

:operator:name / inet:web:instance:operator:name
The name of the organization which operates the instance. Used for entity resolution. It has the following
property options set:

• Example: slack

The property type is ou:name.

:operator:fqdn / inet:web:instance:operator:fqdn
The FQDN of the organization which operates the instance. Used for entity resolution. It has the following
property options set:

• Example: slack.com

The property type is inet:fqdn.

inet:web:logon

An instance of an account authenticating to an Internet-based site or service.

The base type for the form can be found at inet:web:logon.

Properties:

:acct / inet:web:logon:acct
The web account associated with the logon event.

The property type is inet:web:acct.

:acct:site / inet:web:logon:acct:site
The site or service associated with the account.

The property type is inet:fqdn.

:acct:user / inet:web:logon:acct:user
The unique identifier for the account.

The property type is inet:user.

:time / inet:web:logon:time
The date and time the account logged into the service.

The property type is time.

:client / inet:web:logon:client
The source address of the logon.

The property type is inet:client.

:client:ipv4 / inet:web:logon:client:ipv4
The source IPv4 address of the logon.

1088 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

The property type is inet:ipv4.

:client:ipv6 / inet:web:logon:client:ipv6
The source IPv6 address of the logon.

The property type is inet:ipv6.

:logout / inet:web:logon:logout
The date and time the account logged out of the service.

The property type is time.

:loc / inet:web:logon:loc
The location of the user executing the logon.

The property type is loc.

:latlong / inet:web:logon:latlong
The latlong of the user executing the logon.

The property type is geo:latlong.

:place / inet:web:logon:place
The geo:place of the user executing the logon.

The property type is geo:place.

inet:web:memb

Deprecated. Please use inet:web:member.

The base type for the form can be found at inet:web:memb.

Properties:

:acct / inet:web:memb:acct
The account that is a member of the group. It has the following property options set:

• Read Only: True

The property type is inet:web:acct.

:group / inet:web:memb:group
The group that the account is a member of. It has the following property options set:

• Read Only: True

The property type is inet:web:group.

:title / inet:web:memb:title
The title or status of the member (e.g., admin, new member, etc.).

The property type is str. Its type has the following options set:

• lower: True

:joined / inet:web:memb:joined
The date / time the account joined the group.

The property type is time.

12.2. Synapse Data Model - Forms 1089

Synapse Documentation, Release 2.141.0

inet:web:member

Represents a web account membership in a channel or group.

The base type for the form can be found at inet:web:member.

Properties:

:acct / inet:web:member:acct
The account that is a member of the group or channel.

The property type is inet:web:acct.

:group / inet:web:member:group
The group that the account is a member of.

The property type is inet:web:group.

:channel / inet:web:member:channel
The channel that the account is a member of.

The property type is inet:web:channel.

:added / inet:web:member:added
The date / time the account was added to the group or channel.

The property type is time.

:removed / inet:web:member:removed
The date / time the account was removed from the group or channel.

The property type is time.

inet:web:mesg

A message sent from one web account to another web account or channel.

The base type for the form can be found at inet:web:mesg.

An example of inet:web:mesg:

• ((twitter.com, invisig0th), (twitter.com, gobbles), 20041012130220)

Properties:

:from / inet:web:mesg:from
The web account that sent the message. It has the following property options set:

• Read Only: True

The property type is inet:web:acct.

:to / inet:web:mesg:to
The web account that received the message. It has the following property options set:

• Read Only: True

The property type is inet:web:acct.

:client / inet:web:mesg:client
The source address of the message.

The property type is inet:client.

1090 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:client:ipv4 / inet:web:mesg:client:ipv4
The source IPv4 address of the message.

The property type is inet:ipv4.

:client:ipv6 / inet:web:mesg:client:ipv6
The source IPv6 address of the message.

The property type is inet:ipv6.

:time / inet:web:mesg:time
The date and time at which the message was sent. It has the following property options set:

• Read Only: True

The property type is time.

:url / inet:web:mesg:url
The URL where the message is posted / visible.

The property type is inet:url.

:text / inet:web:mesg:text
The text of the message. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:deleted / inet:web:mesg:deleted
The message was deleted.

The property type is bool.

:file / inet:web:mesg:file
The file attached to or sent with the message.

The property type is file:bytes.

:place / inet:web:mesg:place
The place that the message was reportedly sent from.

The property type is geo:place.

:place:name / inet:web:mesg:place:name
The name of the place that the message was reportedly sent from. Used for entity resolution.

The property type is geo:name.

:instance / inet:web:mesg:instance
The instance where the message was sent.

The property type is inet:web:instance.

12.2. Synapse Data Model - Forms 1091

Synapse Documentation, Release 2.141.0

inet:web:post

A post made by a web account.

The base type for the form can be found at inet:web:post.

Properties:

:acct / inet:web:post:acct
The web account that made the post.

The property type is inet:web:acct.

:acct:site / inet:web:post:acct:site
The site or service associated with the account.

The property type is inet:fqdn.

:client / inet:web:post:client
The source address of the post.

The property type is inet:client.

:client:ipv4 / inet:web:post:client:ipv4
The source IPv4 address of the post.

The property type is inet:ipv4.

:client:ipv6 / inet:web:post:client:ipv6
The source IPv6 address of the post.

The property type is inet:ipv6.

:acct:user / inet:web:post:acct:user
The unique identifier for the account.

The property type is inet:user.

:text / inet:web:post:text
The text of the post. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:time / inet:web:post:time
The date and time that the post was made.

The property type is time.

:deleted / inet:web:post:deleted
The message was deleted by the poster.

The property type is bool.

:url / inet:web:post:url
The URL where the post is published / visible.

The property type is inet:url.

:file / inet:web:post:file
The file that was attached to the post.

The property type is file:bytes.

1092 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:replyto / inet:web:post:replyto
The post that this post is in reply to.

The property type is inet:web:post.

:repost / inet:web:post:repost
The original post that this is a repost of.

The property type is inet:web:post.

:hashtags / inet:web:post:hashtags
Hashtags mentioned within the post.

The property type is array. Its type has the following options set:

• type: inet:web:hashtag

• uniq: True

• sorted: True

• split: ,

:mentions:users / inet:web:post:mentions:users
Accounts mentioned within the post.

The property type is array. Its type has the following options set:

• type: inet:web:acct

• uniq: True

• sorted: True

• split: ,

:mentions:groups / inet:web:post:mentions:groups
Groups mentioned within the post.

The property type is array. Its type has the following options set:

• type: inet:web:group

• uniq: True

• sorted: True

• split: ,

:loc / inet:web:post:loc
The location that the post was reportedly sent from.

The property type is loc.

:place / inet:web:post:place
The place that the post was reportedly sent from.

The property type is geo:place.

:place:name / inet:web:post:place:name
The name of the place that the post was reportedly sent from. Used for entity resolution.

The property type is geo:name.

:latlong / inet:web:post:latlong
The place that the post was reportedly sent from.

The property type is geo:latlong.

12.2. Synapse Data Model - Forms 1093

Synapse Documentation, Release 2.141.0

:channel / inet:web:post:channel
The channel where the post was made.

The property type is inet:web:channel.

inet:web:post:link

A link contained within post text.

The base type for the form can be found at inet:web:post:link.

Properties:

:post / inet:web:post:link:post
The post containing the embedded link.

The property type is inet:web:post.

:url / inet:web:post:link:url
The url that the link forwards to.

The property type is inet:url.

:text / inet:web:post:link:text
The displayed hyperlink text if it was not the raw URL.

The property type is str.

inet:whois:contact

An individual contact from a domain whois record.

The base type for the form can be found at inet:whois:contact.

Properties:

:rec / inet:whois:contact:rec
The whois record containing the contact data. It has the following property options set:

• Read Only: True

The property type is inet:whois:rec.

:rec:fqdn / inet:whois:contact:rec:fqdn
The domain associated with the whois record. It has the following property options set:

• Read Only: True

The property type is inet:fqdn.

:rec:asof / inet:whois:contact:rec:asof
The date of the whois record. It has the following property options set:

• Read Only: True

The property type is time.

:type / inet:whois:contact:type
The contact type (e.g., registrar, registrant, admin, billing, tech, etc.). It has the following property options set:

• Read Only: True

The property type is str. Its type has the following options set:

• lower: True

1094 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:id / inet:whois:contact:id
The ID associated with the contact.

The property type is str. Its type has the following options set:

• lower: True

:name / inet:whois:contact:name
The name of the contact.

The property type is str. Its type has the following options set:

• lower: True

:email / inet:whois:contact:email
The email address of the contact.

The property type is inet:email.

:orgname / inet:whois:contact:orgname
The name of the contact organization.

The property type is ou:name.

:address / inet:whois:contact:address
The content of the street address field(s) of the contact.

The property type is str. Its type has the following options set:

• lower: True

:city / inet:whois:contact:city
The content of the city field of the contact.

The property type is str. Its type has the following options set:

• lower: True

:state / inet:whois:contact:state
The content of the state field of the contact.

The property type is str. Its type has the following options set:

• lower: True

:country / inet:whois:contact:country
The two-letter country code of the contact.

The property type is str. Its type has the following options set:

• lower: True

:phone / inet:whois:contact:phone
The content of the phone field of the contact.

The property type is tel:phone.

:fax / inet:whois:contact:fax
The content of the fax field of the contact.

The property type is tel:phone.

:url / inet:whois:contact:url
The URL specified for the contact.

The property type is inet:url.

12.2. Synapse Data Model - Forms 1095

Synapse Documentation, Release 2.141.0

:whois:fqdn / inet:whois:contact:whois:fqdn
The whois server FQDN for the given contact (most likely a registrar).

The property type is inet:fqdn.

inet:whois:email

An email address associated with an FQDN via whois registration text.

The base type for the form can be found at inet:whois:email.

Properties:

:fqdn / inet:whois:email:fqdn
The domain with a whois record containing the email address. It has the following property options set:

• Read Only: True

The property type is inet:fqdn.

:email / inet:whois:email:email
The email address associated with the domain whois record. It has the following property options set:

• Read Only: True

The property type is inet:email.

inet:whois:ipcontact

An individual contact from an IP block record.

The base type for the form can be found at inet:whois:ipcontact.

Properties:

:contact / inet:whois:ipcontact:contact
Contact information associated with a registration.

The property type is ps:contact.

:asof / inet:whois:ipcontact:asof
The date of the record.

The property type is time.

:created / inet:whois:ipcontact:created
The “created” time from the record.

The property type is time.

:updated / inet:whois:ipcontact:updated
The “last updated” time from the record.

The property type is time.

:role / inet:whois:ipcontact:role
The primary role for the contact.

The property type is str. Its type has the following options set:

• lower: True

1096 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:roles / inet:whois:ipcontact:roles
Additional roles assigned to the contact.

The property type is array. Its type has the following options set:

• type: str

• uniq: True

• sorted: True

:asn / inet:whois:ipcontact:asn
The associated Autonomous System Number (ASN).

The property type is inet:asn.

:id / inet:whois:ipcontact:id
The registry unique identifier (e.g. NET-74-0-0-0-1).

The property type is inet:whois:regid.

:links / inet:whois:ipcontact:links
URLs provided with the record.

The property type is array. Its type has the following options set:

• type: inet:url

• uniq: True

• sorted: True

:status / inet:whois:ipcontact:status
The state of the registered contact (e.g. validated, obscured).

The property type is str. Its type has the following options set:

• lower: True

:contacts / inet:whois:ipcontact:contacts
Additional contacts referenced by this contact.

The property type is array. Its type has the following options set:

• type: inet:whois:ipcontact

• uniq: True

• sorted: True

inet:whois:ipquery

Query details used to retrieve an IP record.

The base type for the form can be found at inet:whois:ipquery.

Properties:

:time / inet:whois:ipquery:time
The time the request was made.

The property type is time.

:url / inet:whois:ipquery:url
The query URL when using the HTTP RDAP Protocol.

The property type is inet:url.

12.2. Synapse Data Model - Forms 1097

Synapse Documentation, Release 2.141.0

:fqdn / inet:whois:ipquery:fqdn
The FQDN of the host server when using the legacy WHOIS Protocol.

The property type is inet:fqdn.

:ipv4 / inet:whois:ipquery:ipv4
The IPv4 address queried.

The property type is inet:ipv4.

:ipv6 / inet:whois:ipquery:ipv6
The IPv6 address queried.

The property type is inet:ipv6.

:success / inet:whois:ipquery:success
Whether the host returned a valid response for the query.

The property type is bool.

:rec / inet:whois:ipquery:rec
The resulting record from the query.

The property type is inet:whois:iprec.

inet:whois:iprec

An IPv4/IPv6 block registration record.

The base type for the form can be found at inet:whois:iprec.

Properties:

:net4 / inet:whois:iprec:net4
The IPv4 address range assigned.

The property type is inet:net4.

:net4:min / inet:whois:iprec:net4:min
The first IPv4 in the range assigned.

The property type is inet:ipv4.

:net4:max / inet:whois:iprec:net4:max
The last IPv4 in the range assigned.

The property type is inet:ipv4.

:net6 / inet:whois:iprec:net6
The IPv6 address range assigned.

The property type is inet:net6.

:net6:min / inet:whois:iprec:net6:min
The first IPv6 in the range assigned.

The property type is inet:ipv6.

:net6:max / inet:whois:iprec:net6:max
The last IPv6 in the range assigned.

The property type is inet:ipv6.

1098 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:asof / inet:whois:iprec:asof
The date of the record.

The property type is time.

:created / inet:whois:iprec:created
The “created” time from the record.

The property type is time.

:updated / inet:whois:iprec:updated
The “last updated” time from the record.

The property type is time.

:text / inet:whois:iprec:text
The full text of the record. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str. Its type has the following options set:

• lower: True

:desc / inet:whois:iprec:desc
Notes concerning the record. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str. Its type has the following options set:

• lower: True

:asn / inet:whois:iprec:asn
The associated Autonomous System Number (ASN).

The property type is inet:asn.

:id / inet:whois:iprec:id
The registry unique identifier (e.g. NET-74-0-0-0-1).

The property type is inet:whois:regid.

:name / inet:whois:iprec:name
The name assigned to the network by the registrant.

The property type is str.

:parentid / inet:whois:iprec:parentid
The registry unique identifier of the parent whois record (e.g. NET-74-0-0-0-0).

The property type is inet:whois:regid.

:registrant / inet:whois:iprec:registrant
The registrant contact from the record.

The property type is inet:whois:ipcontact.

:contacts / inet:whois:iprec:contacts
Additional contacts from the record.

The property type is array. Its type has the following options set:

• type: inet:whois:ipcontact

• uniq: True

• sorted: True

12.2. Synapse Data Model - Forms 1099

Synapse Documentation, Release 2.141.0

:country / inet:whois:iprec:country
The two-letter ISO 3166 country code.

The property type is str. Its type has the following options set:

• lower: True

• regex: ^[a-z]{2}$

:status / inet:whois:iprec:status
The state of the registered network.

The property type is str. Its type has the following options set:

• lower: True

:type / inet:whois:iprec:type
The classification of the registered network (e.g. direct allocation).

The property type is str. Its type has the following options set:

• lower: True

:links / inet:whois:iprec:links
URLs provided with the record.

The property type is array. Its type has the following options set:

• type: inet:url

• uniq: True

• sorted: True

inet:whois:rar

A domain registrar.

The base type for the form can be found at inet:whois:rar.

An example of inet:whois:rar:

• godaddy, inc.

Properties:

inet:whois:rec

A domain whois record.

The base type for the form can be found at inet:whois:rec.

Properties:

:fqdn / inet:whois:rec:fqdn
The domain associated with the whois record. It has the following property options set:

• Read Only: True

The property type is inet:fqdn.

:asof / inet:whois:rec:asof
The date of the whois record. It has the following property options set:

• Read Only: True

1100 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

The property type is time.

:text / inet:whois:rec:text
The full text of the whois record. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str. Its type has the following options set:

• lower: True

:created / inet:whois:rec:created
The “created” time from the whois record.

The property type is time.

:updated / inet:whois:rec:updated
The “last updated” time from the whois record.

The property type is time.

:expires / inet:whois:rec:expires
The “expires” time from the whois record.

The property type is time.

:registrar / inet:whois:rec:registrar
The registrar name from the whois record.

The property type is inet:whois:rar.

:registrant / inet:whois:rec:registrant
The registrant name from the whois record.

The property type is inet:whois:reg.

inet:whois:recns

A nameserver associated with a domain whois record.

The base type for the form can be found at inet:whois:recns.

Properties:

:ns / inet:whois:recns:ns
A nameserver for a domain as listed in the domain whois record. It has the following property options set:

• Read Only: True

The property type is inet:fqdn.

:rec / inet:whois:recns:rec
The whois record containing the nameserver data. It has the following property options set:

• Read Only: True

The property type is inet:whois:rec.

:rec:fqdn / inet:whois:recns:rec:fqdn
The domain associated with the whois record. It has the following property options set:

• Read Only: True

The property type is inet:fqdn.

12.2. Synapse Data Model - Forms 1101

Synapse Documentation, Release 2.141.0

:rec:asof / inet:whois:recns:rec:asof
The date of the whois record. It has the following property options set:

• Read Only: True

The property type is time.

inet:whois:reg

A domain registrant.

The base type for the form can be found at inet:whois:reg.

An example of inet:whois:reg:

• woot hostmaster

Properties:

inet:whois:regid

The registry unique identifier of the registration record.

The base type for the form can be found at inet:whois:regid.

An example of inet:whois:regid:

• NET-10-0-0-0-1

Properties:

inet:wifi:ap

An SSID/MAC address combination for a wireless access point.

The base type for the form can be found at inet:wifi:ap.

Properties:

:ssid / inet:wifi:ap:ssid
The SSID for the wireless access point. It has the following property options set:

• Read Only: True

The property type is inet:wifi:ssid.

:bssid / inet:wifi:ap:bssid
The MAC address for the wireless access point. It has the following property options set:

• Read Only: True

The property type is inet:mac.

:latlong / inet:wifi:ap:latlong
The best known latitude/longitude for the wireless access point.

The property type is geo:latlong.

:accuracy / inet:wifi:ap:accuracy
The reported accuracy of the latlong telemetry reading.

The property type is geo:dist.

1102 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:channel / inet:wifi:ap:channel
The WIFI channel that the AP was last observed operating on.

The property type is int.

:encryption / inet:wifi:ap:encryption
The type of encryption used by the WIFI AP such as “wpa2”.

The property type is str. Its type has the following options set:

• lower: True

• strip: True

:place / inet:wifi:ap:place
The geo:place associated with the latlong property.

The property type is geo:place.

:loc / inet:wifi:ap:loc
The geo-political location string for the wireless access point.

The property type is loc.

:org / inet:wifi:ap:org
The organization that owns/operates the access point.

The property type is ou:org.

inet:wifi:ssid

A WiFi service set identifier (SSID) name.

The base type for the form can be found at inet:wifi:ssid.

An example of inet:wifi:ssid:

• The Vertex Project

Properties:

iso:oid

An ISO Object Identifier string.

The base type for the form can be found at iso:oid.

Properties:

:descr / iso:oid:descr
A description of the value or meaning of the OID.

The property type is str.

:identifier / iso:oid:identifier
The string identifier for the deepest tree element.

The property type is str.

12.2. Synapse Data Model - Forms 1103

Synapse Documentation, Release 2.141.0

it:account

A GUID that represents an account on a host or network.

The base type for the form can be found at it:account.

Properties:

:user / it:account:user
The username associated with the account.

The property type is inet:user.

:contact / it:account:contact
Additional contact information associated with this account.

The property type is ps:contact.

:host / it:account:host
The host where the account is registered.

The property type is it:host.

:domain / it:account:domain
The authentication domain where the account is registered.

The property type is it:domain.

:posix:uid / it:account:posix:uid
The user ID of the account. It has the following property options set:

• Example: 1001

The property type is int.

:posix:gid / it:account:posix:gid
The primary group ID of the account. It has the following property options set:

• Example: 1001

The property type is int.

:posix:gecos / it:account:posix:gecos
The GECOS field for the POSIX account.

The property type is int.

:posix:home / it:account:posix:home
The path to the POSIX account’s home directory. It has the following property options set:

• Example: /home/visi

The property type is file:path.

:posix:shell / it:account:posix:shell
The path to the POSIX account’s default shell. It has the following property options set:

• Example: /bin/bash

The property type is file:path.

:windows:sid / it:account:windows:sid
The Microsoft Windows Security Identifier of the account.

The property type is it:os:windows:sid.

1104 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:groups / it:account:groups
An array of groups that the account is a member of.

The property type is array. Its type has the following options set:

• type: it:group

• uniq: True

• sorted: True

it:adid

An advertising identification string.

The base type for the form can be found at it:adid.

Properties:

it:app:snort:hit

An instance of a snort rule hit.

The base type for the form can be found at it:app:snort:hit.

Properties:

:rule / it:app:snort:hit:rule
The snort rule that matched the file.

The property type is it:app:snort:rule.

:flow / it:app:snort:hit:flow
The inet:flow that matched the snort rule.

The property type is inet:flow.

:src / it:app:snort:hit:src
The source address of flow that caused the hit.

The property type is inet:addr.

:src:ipv4 / it:app:snort:hit:src:ipv4
The source IPv4 address of the flow that caused the hit.

The property type is inet:ipv4.

:src:ipv6 / it:app:snort:hit:src:ipv6
The source IPv6 address of the flow that caused the hit.

The property type is inet:ipv6.

:src:port / it:app:snort:hit:src:port
The source port of the flow that caused the hit.

The property type is inet:port.

:dst / it:app:snort:hit:dst
The destination address of the trigger.

The property type is inet:addr.

12.2. Synapse Data Model - Forms 1105

Synapse Documentation, Release 2.141.0

:dst:ipv4 / it:app:snort:hit:dst:ipv4
The destination IPv4 address of the flow that caused the hit.

The property type is inet:ipv4.

:dst:ipv6 / it:app:snort:hit:dst:ipv6
The destination IPv4 address of the flow that caused the hit.

The property type is inet:ipv6.

:dst:port / it:app:snort:hit:dst:port
The destination port of the flow that caused the hit.

The property type is inet:port.

:time / it:app:snort:hit:time
The time of the network flow that caused the hit.

The property type is time.

:sensor / it:app:snort:hit:sensor
The sensor host node that produced the hit.

The property type is it:host.

:version / it:app:snort:hit:version
The version of the rule at the time of match.

The property type is it:semver.

it:app:snort:rule

A snort rule.

The base type for the form can be found at it:app:snort:rule.

Properties:

:id / it:app:snort:rule:id
The snort rule id.

The property type is str.

:text / it:app:snort:rule:text
The snort rule text. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:name / it:app:snort:rule:name
The name of the snort rule.

The property type is str.

:desc / it:app:snort:rule:desc
A brief description of the snort rule. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:engine / it:app:snort:rule:engine
The snort engine ID which can parse and evaluate the rule text.

The property type is int.

1106 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:version / it:app:snort:rule:version
The current version of the rule.

The property type is it:semver.

:author / it:app:snort:rule:author
Contact info for the author of the rule.

The property type is ps:contact.

:created / it:app:snort:rule:created
The time the rule was initially created.

The property type is time.

:updated / it:app:snort:rule:updated
The time the rule was most recently modified.

The property type is time.

:enabled / it:app:snort:rule:enabled
The rule enabled status to be used for snort evaluation engines.

The property type is bool.

:family / it:app:snort:rule:family
The name of the software family the rule is designed to detect.

The property type is it:prod:softname.

it:app:yara:match

A YARA rule match to a file.

The base type for the form can be found at it:app:yara:match.

Properties:

:rule / it:app:yara:match:rule
The YARA rule that matched the file. It has the following property options set:

• Read Only: True

The property type is it:app:yara:rule.

:file / it:app:yara:match:file
The file that matched the YARA rule. It has the following property options set:

• Read Only: True

The property type is file:bytes.

:version / it:app:yara:match:version
The most recent version of the rule evaluated as a match.

The property type is it:semver.

12.2. Synapse Data Model - Forms 1107

Synapse Documentation, Release 2.141.0

it:app:yara:procmatch

An instance of a YARA rule match to a process.

The base type for the form can be found at it:app:yara:procmatch.

Properties:

:rule / it:app:yara:procmatch:rule
The YARA rule that matched the file.

The property type is it:app:yara:rule.

:proc / it:app:yara:procmatch:proc
The process that matched the YARA rule.

The property type is it:exec:proc.

:time / it:app:yara:procmatch:time
The time that the YARA engine matched the process to the rule.

The property type is time.

:version / it:app:yara:procmatch:version
The most recent version of the rule evaluated as a match.

The property type is it:semver.

it:app:yara:rule

A YARA rule unique identifier.

The base type for the form can be found at it:app:yara:rule.

Properties:

:text / it:app:yara:rule:text
The YARA rule text. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:ext:id / it:app:yara:rule:ext:id
The YARA rule ID from an external system.

The property type is str.

:url / it:app:yara:rule:url
A URL which documents the YARA rule.

The property type is inet:url.

:name / it:app:yara:rule:name
The name of the YARA rule.

The property type is str.

:author / it:app:yara:rule:author
Contact info for the author of the YARA rule.

The property type is ps:contact.

1108 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:version / it:app:yara:rule:version
The current version of the rule.

The property type is it:semver.

:created / it:app:yara:rule:created
The time the YARA rule was initially created.

The property type is time.

:updated / it:app:yara:rule:updated
The time the YARA rule was most recently modified.

The property type is time.

:enabled / it:app:yara:rule:enabled
The rule enabled status to be used for YARA evaluation engines.

The property type is bool.

:family / it:app:yara:rule:family
The name of the software family the rule is designed to detect.

The property type is it:prod:softname.

it:auth:passwdhash

An instance of a password hash.

The base type for the form can be found at it:auth:passwdhash.

Properties:

:salt / it:auth:passwdhash:salt
The (optional) hex encoded salt value used to calculate the password hash.

The property type is hex.

:hash:md5 / it:auth:passwdhash:hash:md5
The MD5 password hash value.

The property type is hash:md5.

:hash:sha1 / it:auth:passwdhash:hash:sha1
The SHA1 password hash value.

The property type is hash:sha1.

:hash:sha256 / it:auth:passwdhash:hash:sha256
The SHA256 password hash value.

The property type is hash:sha256.

:hash:sha512 / it:auth:passwdhash:hash:sha512
The SHA512 password hash value.

The property type is hash:sha512.

:hash:lm / it:auth:passwdhash:hash:lm
The LM password hash value.

The property type is hash:lm.

12.2. Synapse Data Model - Forms 1109

Synapse Documentation, Release 2.141.0

:hash:ntlm / it:auth:passwdhash:hash:ntlm
The NTLM password hash value.

The property type is hash:ntlm.

:passwd / it:auth:passwdhash:passwd
The (optional) clear text password for this password hash.

The property type is inet:passwd.

it:av:filehit

A file that triggered an alert on a specific antivirus signature.

The base type for the form can be found at it:av:filehit.

Properties:

:file / it:av:filehit:file
The file that triggered the signature hit. It has the following property options set:

• Read Only: True

The property type is file:bytes.

:sig / it:av:filehit:sig
The signature that the file triggered on. It has the following property options set:

• Read Only: True

The property type is it:av:sig.

:sig:name / it:av:filehit:sig:name
The signature name. It has the following property options set:

• Read Only: True

The property type is it:av:signame.

:sig:soft / it:av:filehit:sig:soft
The anti-virus product which contains the signature. It has the following property options set:

• Read Only: True

The property type is it:prod:soft.

it:av:prochit

An instance of a process triggering an alert on a specific antivirus signature.

The base type for the form can be found at it:av:prochit.

Properties:

:proc / it:av:prochit:proc
The file that triggered the signature hit.

The property type is it:exec:proc.

:sig / it:av:prochit:sig
The signature that the file triggered on.

The property type is it:av:sig.

1110 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:time / it:av:prochit:time
The time that the AV engine detected the signature.

The property type is time.

it:av:sig

A signature name within the namespace of an antivirus engine name.

The base type for the form can be found at it:av:sig.

Properties:

:soft / it:av:sig:soft
The anti-virus product which contains the signature. It has the following property options set:

• Read Only: True

The property type is it:prod:soft.

:name / it:av:sig:name
The signature name. It has the following property options set:

• Read Only: True

The property type is it:av:signame.

:desc / it:av:sig:desc
A free-form description of the signature. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:url / it:av:sig:url
A reference URL for information about the signature.

The property type is inet:url.

it:av:signame

An antivirus signature name.

The base type for the form can be found at it:av:signame.

Properties:

it:cmd

A unique command-line string.

The base type for the form can be found at it:cmd.

An example of it:cmd:

• foo.exe --dostuff bar

Properties:

12.2. Synapse Data Model - Forms 1111

Synapse Documentation, Release 2.141.0

it:dev:int

A developer selected integer constant.

The base type for the form can be found at it:dev:int.

Properties:

it:dev:mutex

A string representing a mutex.

The base type for the form can be found at it:dev:mutex.

Properties:

it:dev:pipe

A string representing a named pipe.

The base type for the form can be found at it:dev:pipe.

Properties:

it:dev:regkey

A Windows registry key.

The base type for the form can be found at it:dev:regkey.

An example of it:dev:regkey:

• HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

Properties:

it:dev:regval

A Windows registry key/value pair.

The base type for the form can be found at it:dev:regval.

Properties:

:key / it:dev:regval:key
The Windows registry key.

The property type is it:dev:regkey.

:str / it:dev:regval:str
The value of the registry key, if the value is a string.

The property type is it:dev:str.

:int / it:dev:regval:int
The value of the registry key, if the value is an integer.

The property type is it:dev:int.

1112 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:bytes / it:dev:regval:bytes
The file representing the value of the registry key, if the value is binary data.

The property type is file:bytes.

it:dev:str

A developer-selected string.

The base type for the form can be found at it:dev:str.

Properties:

:norm / it:dev:str:norm
Lower case normalized version of the it:dev:str.

The property type is str. Its type has the following options set:

• lower: True

it:domain

A logical boundary of authentication and configuration such as a windows domain.

The base type for the form can be found at it:domain.

Properties:

:name / it:domain:name
The name of the domain.

The property type is str. Its type has the following options set:

• lower: True

• onespace: True

:desc / it:domain:desc
A brief description of the domain.

The property type is str.

:org / it:domain:org
The org that operates the given domain.

The property type is ou:org.

it:exec:bind

An instance of a host binding a listening port.

The base type for the form can be found at it:exec:bind.

Properties:

:proc / it:exec:bind:proc
The main process executing code that bound the listening port.

The property type is it:exec:proc.

12.2. Synapse Data Model - Forms 1113

Synapse Documentation, Release 2.141.0

:host / it:exec:bind:host
The host running the process that bound the listening port. Typically the same host referenced in :proc, if present.

The property type is it:host.

:exe / it:exec:bind:exe
The specific file containing code that bound the listening port. May or may not be the same :exe specified in
:proc, if present.

The property type is file:bytes.

:time / it:exec:bind:time
The time the port was bound.

The property type is time.

:server / it:exec:bind:server
The inet:addr of the server when binding the port.

The property type is inet:server.

:server:ipv4 / it:exec:bind:server:ipv4
The IPv4 address specified to bind().

The property type is inet:ipv4.

:server:ipv6 / it:exec:bind:server:ipv6
The IPv6 address specified to bind().

The property type is inet:ipv6.

:server:port / it:exec:bind:server:port
The bound (listening) TCP port.

The property type is inet:port.

:sandbox:file / it:exec:bind:sandbox:file
The initial sample given to a sandbox environment to analyze.

The property type is file:bytes.

it:exec:file:add

An instance of a host adding a file to a filesystem.

The base type for the form can be found at it:exec:file:add.

Properties:

:proc / it:exec:file:add:proc
The main process executing code that created the new file.

The property type is it:exec:proc.

:host / it:exec:file:add:host
The host running the process that created the new file. Typically the same host referenced in :proc, if present.

The property type is it:host.

:exe / it:exec:file:add:exe
The specific file containing code that created the new file. May or may not be the same :exe specified in :proc, if
present.

The property type is file:bytes.

1114 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:time / it:exec:file:add:time
The time the file was created.

The property type is time.

:path / it:exec:file:add:path
The path where the file was created.

The property type is file:path.

:path:dir / it:exec:file:add:path:dir
The parent directory of the file path (parsed from :path). It has the following property options set:

• Read Only: True

The property type is file:path.

:path:ext / it:exec:file:add:path:ext
The file extension of the file name (parsed from :path). It has the following property options set:

• Read Only: True

The property type is str. Its type has the following options set:

• lower: True

• strip: True

:path:base / it:exec:file:add:path:base
The final component of the file path (parsed from :path). It has the following property options set:

• Read Only: True

The property type is file:base.

:file / it:exec:file:add:file
The file that was created.

The property type is file:bytes.

:sandbox:file / it:exec:file:add:sandbox:file
The initial sample given to a sandbox environment to analyze.

The property type is file:bytes.

it:exec:file:del

An instance of a host deleting a file from a filesystem.

The base type for the form can be found at it:exec:file:del.

Properties:

:proc / it:exec:file:del:proc
The main process executing code that deleted the file.

The property type is it:exec:proc.

:host / it:exec:file:del:host
The host running the process that deleted the file. Typically the same host referenced in :proc, if present.

The property type is it:host.

12.2. Synapse Data Model - Forms 1115

Synapse Documentation, Release 2.141.0

:exe / it:exec:file:del:exe
The specific file containing code that deleted the file. May or may not be the same :exe specified in :proc, if
present.

The property type is file:bytes.

:time / it:exec:file:del:time
The time the file was deleted.

The property type is time.

:path / it:exec:file:del:path
The path where the file was deleted.

The property type is file:path.

:path:dir / it:exec:file:del:path:dir
The parent directory of the file path (parsed from :path). It has the following property options set:

• Read Only: True

The property type is file:path.

:path:ext / it:exec:file:del:path:ext
The file extension of the file name (parsed from :path). It has the following property options set:

• Read Only: True

The property type is str. Its type has the following options set:

• lower: True

• strip: True

:path:base / it:exec:file:del:path:base
The final component of the file path (parsed from :path). It has the following property options set:

• Read Only: True

The property type is file:base.

:file / it:exec:file:del:file
The file that was deleted.

The property type is file:bytes.

:sandbox:file / it:exec:file:del:sandbox:file
The initial sample given to a sandbox environment to analyze.

The property type is file:bytes.

it:exec:file:read

An instance of a host reading a file from a filesystem.

The base type for the form can be found at it:exec:file:read.

Properties:

:proc / it:exec:file:read:proc
The main process executing code that read the file.

The property type is it:exec:proc.

1116 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:host / it:exec:file:read:host
The host running the process that read the file. Typically the same host referenced in :proc, if present.

The property type is it:host.

:exe / it:exec:file:read:exe
The specific file containing code that read the file. May or may not be the same :exe specified in :proc, if present.

The property type is file:bytes.

:time / it:exec:file:read:time
The time the file was read.

The property type is time.

:path / it:exec:file:read:path
The path where the file was read.

The property type is file:path.

:path:dir / it:exec:file:read:path:dir
The parent directory of the file path (parsed from :path). It has the following property options set:

• Read Only: True

The property type is file:path.

:path:ext / it:exec:file:read:path:ext
The file extension of the file name (parsed from :path). It has the following property options set:

• Read Only: True

The property type is str. Its type has the following options set:

• lower: True

• strip: True

:path:base / it:exec:file:read:path:base
The final component of the file path (parsed from :path). It has the following property options set:

• Read Only: True

The property type is file:base.

:file / it:exec:file:read:file
The file that was read.

The property type is file:bytes.

:sandbox:file / it:exec:file:read:sandbox:file
The initial sample given to a sandbox environment to analyze.

The property type is file:bytes.

12.2. Synapse Data Model - Forms 1117

Synapse Documentation, Release 2.141.0

it:exec:file:write

An instance of a host writing a file to a filesystem.

The base type for the form can be found at it:exec:file:write.

Properties:

:proc / it:exec:file:write:proc
The main process executing code that wrote to / modified the existing file.

The property type is it:exec:proc.

:host / it:exec:file:write:host
The host running the process that wrote to the file. Typically the same host referenced in :proc, if present.

The property type is it:host.

:exe / it:exec:file:write:exe
The specific file containing code that wrote to the file. May or may not be the same :exe specified in :proc, if
present.

The property type is file:bytes.

:time / it:exec:file:write:time
The time the file was written to/modified.

The property type is time.

:path / it:exec:file:write:path
The path where the file was written to/modified.

The property type is file:path.

:path:dir / it:exec:file:write:path:dir
The parent directory of the file path (parsed from :path). It has the following property options set:

• Read Only: True

The property type is file:path.

:path:ext / it:exec:file:write:path:ext
The file extension of the file name (parsed from :path). It has the following property options set:

• Read Only: True

The property type is str. Its type has the following options set:

• lower: True

• strip: True

:path:base / it:exec:file:write:path:base
The final component of the file path (parsed from :path). It has the following property options set:

• Read Only: True

The property type is file:base.

:file / it:exec:file:write:file
The file that was modified.

The property type is file:bytes.

:sandbox:file / it:exec:file:write:sandbox:file
The initial sample given to a sandbox environment to analyze.

1118 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

The property type is file:bytes.

it:exec:loadlib

A library load event in a process.

The base type for the form can be found at it:exec:loadlib.

Properties:

:proc / it:exec:loadlib:proc
The process where the library was loaded.

The property type is it:exec:proc.

:va / it:exec:loadlib:va
The base memory address where the library was loaded in the process.

The property type is int.

:loaded / it:exec:loadlib:loaded
The time the library was loaded.

The property type is time.

:unloaded / it:exec:loadlib:unloaded
The time the library was unloaded.

The property type is time.

:path / it:exec:loadlib:path
The path that the library was loaded from.

The property type is file:path.

:file / it:exec:loadlib:file
The library file that was loaded.

The property type is file:bytes.

:sandbox:file / it:exec:loadlib:sandbox:file
The initial sample given to a sandbox environment to analyze.

The property type is file:bytes.

it:exec:mmap

A memory mapped segment located in a process.

The base type for the form can be found at it:exec:mmap.

Properties:

:proc / it:exec:mmap:proc
The process where the memory was mapped.

The property type is it:exec:proc.

:va / it:exec:mmap:va
The base memory address where the map was created in the process.

The property type is int.

12.2. Synapse Data Model - Forms 1119

Synapse Documentation, Release 2.141.0

:size / it:exec:mmap:size
The size of the memory map in bytes.

The property type is int.

:perms:read / it:exec:mmap:perms:read
True if the mmap is mapped with read permissions.

The property type is bool.

:perms:write / it:exec:mmap:perms:write
True if the mmap is mapped with write permissions.

The property type is bool.

:perms:execute / it:exec:mmap:perms:execute
True if the mmap is mapped with execute permissions.

The property type is bool.

:created / it:exec:mmap:created
The time the memory map was created.

The property type is time.

:deleted / it:exec:mmap:deleted
The time the memory map was deleted.

The property type is time.

:path / it:exec:mmap:path
The file path if the mmap is a mapped view of a file.

The property type is file:path.

:hash:sha256 / it:exec:mmap:hash:sha256
A SHA256 hash of the memory map. Bytes may optionally be present in the axon.

The property type is hash:sha256.

:sandbox:file / it:exec:mmap:sandbox:file
The initial sample given to a sandbox environment to analyze.

The property type is file:bytes.

it:exec:mutex

A mutex created by a process at runtime.

The base type for the form can be found at it:exec:mutex.

Properties:

:proc / it:exec:mutex:proc
The main process executing code that created the mutex.

The property type is it:exec:proc.

:host / it:exec:mutex:host
The host running the process that created the mutex. Typically the same host referenced in :proc, if present.

The property type is it:host.

1120 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:exe / it:exec:mutex:exe
The specific file containing code that created the mutex. May or may not be the same :exe specified in :proc, if
present.

The property type is file:bytes.

:time / it:exec:mutex:time
The time the mutex was created.

The property type is time.

:name / it:exec:mutex:name
The mutex string.

The property type is it:dev:mutex.

:sandbox:file / it:exec:mutex:sandbox:file
The initial sample given to a sandbox environment to analyze.

The property type is file:bytes.

it:exec:pipe

A named pipe created by a process at runtime.

The base type for the form can be found at it:exec:pipe.

Properties:

:proc / it:exec:pipe:proc
The main process executing code that created the named pipe.

The property type is it:exec:proc.

:host / it:exec:pipe:host
The host running the process that created the named pipe. Typically the same host referenced in :proc, if present.

The property type is it:host.

:exe / it:exec:pipe:exe
The specific file containing code that created the named pipe. May or may not be the same :exe specified in :proc,
if present.

The property type is file:bytes.

:time / it:exec:pipe:time
The time the named pipe was created.

The property type is time.

:name / it:exec:pipe:name
The named pipe string.

The property type is it:dev:pipe.

:sandbox:file / it:exec:pipe:sandbox:file
The initial sample given to a sandbox environment to analyze.

The property type is file:bytes.

12.2. Synapse Data Model - Forms 1121

Synapse Documentation, Release 2.141.0

it:exec:proc

A process executing on a host. May be an actual (e.g., endpoint) or virtual (e.g., malware sandbox) host.

The base type for the form can be found at it:exec:proc.

Properties:

:host / it:exec:proc:host
The host that executed the process. May be an actual or a virtual / notional host.

The property type is it:host.

:exe / it:exec:proc:exe
The file considered the “main” executable for the process. For example, rundll32.exe may be considered the
“main” executable for DLLs loaded by that program.

The property type is file:bytes.

:cmd / it:exec:proc:cmd
The command string used to launch the process, including any command line parameters. It has the following
property options set:

• disp: {'hint': 'text'}

The property type is it:cmd.

:pid / it:exec:proc:pid
The process ID.

The property type is int.

:time / it:exec:proc:time
The start time for the process.

The property type is time.

:name / it:exec:proc:name
The display name specified by the process.

The property type is str.

:exited / it:exec:proc:exited
The time the process exited.

The property type is time.

:exitcode / it:exec:proc:exitcode
The exit code for the process.

The property type is int.

:user / it:exec:proc:user
The user name of the process owner. It has the following property options set:

• deprecated: True

The property type is inet:user.

:account / it:exec:proc:account
The account of the process owner.

The property type is it:account.

1122 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:path / it:exec:proc:path
The path to the executable of the process.

The property type is file:path.

:path:base / it:exec:proc:path:base
The file basename of the executable of the process.

The property type is file:base.

:src:exe / it:exec:proc:src:exe
The path to the executable which started the process.

The property type is file:path.

:src:proc / it:exec:proc:src:proc
The process which created the process.

The property type is it:exec:proc.

:killedby / it:exec:proc:killedby
The process which killed this process.

The property type is it:exec:proc.

:sandbox:file / it:exec:proc:sandbox:file
The initial sample given to a sandbox environment to analyze.

The property type is file:bytes.

it:exec:query

An instance of an executed query.

The base type for the form can be found at it:exec:query.

Properties:

:text / it:exec:query:text
The query string that was executed.

The property type is it:query.

:opts / it:exec:query:opts
An opaque JSON object containing query parameters and options.

The property type is data.

:api:url / it:exec:query:api:url
The URL of the API endpoint the query was sent to.

The property type is inet:url.

:language / it:exec:query:language
The name of the language that the query is expressed in.

The property type is str. Its type has the following options set:

• lower: True

• onespace: True

:exe / it:exec:query:exe
The executable file which caused the activity.

The property type is file:bytes.

12.2. Synapse Data Model - Forms 1123

Synapse Documentation, Release 2.141.0

:proc / it:exec:query:proc
The host process which caused the activity.

The property type is it:exec:proc.

:thread / it:exec:query:thread
The host thread which caused the activity.

The property type is it:exec:thread.

:host / it:exec:query:host
The host on which the activity occurred.

The property type is it:host.

:time / it:exec:query:time
The time that the activity started.

The property type is time.

:sandbox:file / it:exec:query:sandbox:file
The initial sample given to a sandbox environment to analyze.

The property type is file:bytes.

it:exec:reg:del

An instance of a host deleting a registry key.

The base type for the form can be found at it:exec:reg:del.

Properties:

:proc / it:exec:reg:del:proc
The main process executing code that deleted data from the registry.

The property type is it:exec:proc.

:host / it:exec:reg:del:host
The host running the process that deleted data from the registry. Typically the same host referenced in :proc, if
present.

The property type is it:host.

:exe / it:exec:reg:del:exe
The specific file containing code that deleted data from the registry. May or may not be the same :exe referenced
in :proc, if present.

The property type is file:bytes.

:time / it:exec:reg:del:time
The time the data from the registry was deleted.

The property type is time.

:reg / it:exec:reg:del:reg
The registry key or value that was deleted.

The property type is it:dev:regval.

:sandbox:file / it:exec:reg:del:sandbox:file
The initial sample given to a sandbox environment to analyze.

The property type is file:bytes.

1124 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

it:exec:reg:get

An instance of a host getting a registry key.

The base type for the form can be found at it:exec:reg:get.

Properties:

:proc / it:exec:reg:get:proc
The main process executing code that read the registry.

The property type is it:exec:proc.

:host / it:exec:reg:get:host
The host running the process that read the registry. Typically the same host referenced in :proc, if present.

The property type is it:host.

:exe / it:exec:reg:get:exe
The specific file containing code that read the registry. May or may not be the same :exe referenced in :proc, if
present.

The property type is file:bytes.

:time / it:exec:reg:get:time
The time the registry was read.

The property type is time.

:reg / it:exec:reg:get:reg
The registry key or value that was read.

The property type is it:dev:regval.

:sandbox:file / it:exec:reg:get:sandbox:file
The initial sample given to a sandbox environment to analyze.

The property type is file:bytes.

it:exec:reg:set

An instance of a host creating or setting a registry key.

The base type for the form can be found at it:exec:reg:set.

Properties:

:proc / it:exec:reg:set:proc
The main process executing code that wrote to the registry.

The property type is it:exec:proc.

:host / it:exec:reg:set:host
The host running the process that wrote to the registry. Typically the same host referenced in :proc, if present.

The property type is it:host.

:exe / it:exec:reg:set:exe
The specific file containing code that wrote to the registry. May or may not be the same :exe referenced in :proc,
if present.

The property type is file:bytes.

12.2. Synapse Data Model - Forms 1125

Synapse Documentation, Release 2.141.0

:time / it:exec:reg:set:time
The time the registry was written to.

The property type is time.

:reg / it:exec:reg:set:reg
The registry key or value that was written to.

The property type is it:dev:regval.

:sandbox:file / it:exec:reg:set:sandbox:file
The initial sample given to a sandbox environment to analyze.

The property type is file:bytes.

it:exec:thread

A thread executing in a process.

The base type for the form can be found at it:exec:thread.

Properties:

:proc / it:exec:thread:proc
The process which contains the thread.

The property type is it:exec:proc.

:created / it:exec:thread:created
The time the thread was created.

The property type is time.

:exited / it:exec:thread:exited
The time the thread exited.

The property type is time.

:exitcode / it:exec:thread:exitcode
The exit code or return value for the thread.

The property type is int.

:src:proc / it:exec:thread:src:proc
An external process which created the thread.

The property type is it:exec:proc.

:src:thread / it:exec:thread:src:thread
The thread which created this thread.

The property type is it:exec:thread.

:sandbox:file / it:exec:thread:sandbox:file
The initial sample given to a sandbox environment to analyze.

The property type is file:bytes.

1126 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

it:exec:url

An instance of a host requesting a URL.

The base type for the form can be found at it:exec:url.

Properties:

:proc / it:exec:url:proc
The main process executing code that requested the URL.

The property type is it:exec:proc.

:browser / it:exec:url:browser
The software version of the browser.

The property type is it:prod:softver.

:host / it:exec:url:host
The host running the process that requested the URL. Typically the same host referenced in :proc, if present.

The property type is it:host.

:exe / it:exec:url:exe
The specific file containing code that requested the URL. May or may not be the same :exe specified in :proc, if
present.

The property type is file:bytes.

:time / it:exec:url:time
The time the URL was requested.

The property type is time.

:url / it:exec:url:url
The URL that was requested.

The property type is inet:url.

:page:pdf / it:exec:url:page:pdf
The rendered DOM saved as a PDF file.

The property type is file:bytes.

:page:html / it:exec:url:page:html
The rendered DOM saved as an HTML file.

The property type is file:bytes.

:page:image / it:exec:url:page:image
The rendered DOM saved as an image.

The property type is file:bytes.

:http:request / it:exec:url:http:request
The HTTP request made to retrieve the initial URL contents.

The property type is inet:http:request.

:client / it:exec:url:client
The address of the client during the URL retrieval.

The property type is inet:client.

12.2. Synapse Data Model - Forms 1127

Synapse Documentation, Release 2.141.0

:client:ipv4 / it:exec:url:client:ipv4
The IPv4 of the client during the URL retrieval..

The property type is inet:ipv4.

:client:ipv6 / it:exec:url:client:ipv6
The IPv6 of the client during the URL retrieval..

The property type is inet:ipv6.

:client:port / it:exec:url:client:port
The client port during the URL retrieval..

The property type is inet:port.

:sandbox:file / it:exec:url:sandbox:file
The initial sample given to a sandbox environment to analyze.

The property type is file:bytes.

it:fs:file

A file on a host.

The base type for the form can be found at it:fs:file.

Properties:

:host / it:fs:file:host
The host containing the file.

The property type is it:host.

:path / it:fs:file:path
The path for the file.

The property type is file:path.

:path:dir / it:fs:file:path:dir
The parent directory of the file path (parsed from :path). It has the following property options set:

• Read Only: True

The property type is file:path.

:path:ext / it:fs:file:path:ext
The file extension of the file name (parsed from :path). It has the following property options set:

• Read Only: True

The property type is str. Its type has the following options set:

• lower: True

• strip: True

:path:base / it:fs:file:path:base
The final component of the file path (parsed from :path). It has the following property options set:

• Read Only: True

The property type is file:base.

1128 Chapter 12. Synapse Data Model

file:host
file:path

Synapse Documentation, Release 2.141.0

:file / it:fs:file:file
The file on the host.

The property type is file:bytes.

:ctime / it:fs:file:ctime
The file creation time.

The property type is time.

:mtime / it:fs:file:mtime
The file modification time.

The property type is time.

:atime / it:fs:file:atime
The file access time.

The property type is time.

:user / it:fs:file:user
The owner of the file.

The property type is inet:user.

:group / it:fs:file:group
The group owner of the file.

The property type is inet:user.

it:group

A GUID that represents a group on a host or network.

The base type for the form can be found at it:group.

Properties:

:name / it:group:name
The name of the group.

The property type is str. Its type has the following options set:

• lower: True

• onespace: True

:desc / it:group:desc
A brief description of the group.

The property type is str.

:host / it:group:host
The host where the group is registered.

The property type is it:host.

:domain / it:group:domain
The authentication domain where the group is registered.

The property type is it:domain.

:groups / it:group:groups
Groups that are a member of this group.

The property type is array. Its type has the following options set:

12.2. Synapse Data Model - Forms 1129

file:file
file:ctime
file:mtime
file:atime
file:user
file:group

Synapse Documentation, Release 2.141.0

• type: it:group

• uniq: True

• sorted: True

:posix:gid / it:group:posix:gid
The primary group ID of the account. It has the following property options set:

• Example: 1001

The property type is int.

:windows:sid / it:group:windows:sid
The Microsoft Windows Security Identifier of the group.

The property type is it:os:windows:sid.

it:host

A GUID that represents a host or system.

The base type for the form can be found at it:host.

Properties:

:name / it:host:name
The name of the host or system.

The property type is it:hostname.

:desc / it:host:desc
A free-form description of the host.

The property type is str.

:domain / it:host:domain
The authentication domain that the host is a member of.

The property type is it:domain.

:ipv4 / it:host:ipv4
The last known ipv4 address for the host.

The property type is inet:ipv4.

:latlong / it:host:latlong
The last known location for the host.

The property type is geo:latlong.

:place / it:host:place
The place where the host resides.

The property type is geo:place.

:loc / it:host:loc
The geo-political location string for the node.

The property type is loc.

:os / it:host:os
The operating system of the host.

The property type is it:prod:softver.

1130 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:os:name / it:host:os:name
A software product name for the host operating system. Used for entity resolution.

The property type is it:prod:softname.

:hardware / it:host:hardware
The hardware specification for this host.

The property type is it:prod:hardware.

:manu / it:host:manu
Please use :hardware:make. It has the following property options set:

• deprecated: True

The property type is str.

:model / it:host:model
Please use :hardware:model. It has the following property options set:

• deprecated: True

The property type is str.

:serial / it:host:serial
The serial number of the host.

The property type is str.

:operator / it:host:operator
The operator of the host.

The property type is ps:contact.

:org / it:host:org
The org that operates the given host.

The property type is ou:org.

:ext:id / it:host:ext:id
An external identifier for the host.

The property type is str.

:keyboard:layout / it:host:keyboard:layout
The primary keyboard layout configured on the host.

The property type is str. Its type has the following options set:

• lower: True

• onespace: True

:keyboard:language / it:host:keyboard:language
The primary keyboard input language configured on the host.

The property type is lang:language.

12.2. Synapse Data Model - Forms 1131

Synapse Documentation, Release 2.141.0

it:hostname

The name of a host or system.

The base type for the form can be found at it:hostname.

Properties:

it:hostsoft

A version of a software product which is present on a given host.

The base type for the form can be found at it:hostsoft.

Properties:

:host / it:hostsoft:host
Host with the software. It has the following property options set:

• Read Only: True

The property type is it:host.

:softver / it:hostsoft:softver
Software on the host. It has the following property options set:

• Read Only: True

The property type is it:prod:softver.

it:hosturl

A url hosted on or served by a host or system.

The base type for the form can be found at it:hosturl.

Properties:

:host / it:hosturl:host
Host serving a url. It has the following property options set:

• Read Only: True

The property type is it:host.

:url / it:hosturl:url
URL available on the host. It has the following property options set:

• Read Only: True

The property type is inet:url.

1132 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

it:log:event

A GUID representing an individual log event.

The base type for the form can be found at it:log:event.

Properties:

:mesg / it:log:event:mesg
The log message text.

The property type is str.

:type / it:log:event:type
A taxonometric type for the log event. It has the following property options set:

• Example: windows.eventlog.securitylog

The property type is it:log:event:type:taxonomy.

:severity / it:log:event:severity
A log level integer that increases with severity.

The property type is int. Its type has the following options set:

• enums: ((10, 'debug'), (20, 'info'), (30, 'notice'), (40, 'warning'), (50,
'err'), (60, 'crit'), (70, 'alert'), (80, 'emerg'))

:data / it:log:event:data
A raw JSON record of the log event.

The property type is data.

:ext:id / it:log:event:ext:id
An external id that uniquely identifies this log entry.

The property type is str.

:product / it:log:event:product
The software which produced the log entry.

The property type is it:prod:softver.

:exe / it:log:event:exe
The executable file which caused the activity.

The property type is file:bytes.

:proc / it:log:event:proc
The host process which caused the activity.

The property type is it:exec:proc.

:thread / it:log:event:thread
The host thread which caused the activity.

The property type is it:exec:thread.

:host / it:log:event:host
The host on which the activity occurred.

The property type is it:host.

:time / it:log:event:time
The time that the activity started.

The property type is time.

12.2. Synapse Data Model - Forms 1133

Synapse Documentation, Release 2.141.0

:sandbox:file / it:log:event:sandbox:file
The initial sample given to a sandbox environment to analyze.

The property type is file:bytes.

it:log:event:type:taxonomy

A taxonomy of log event types.

The base type for the form can be found at it:log:event:type:taxonomy.

Properties:

it:logon

A GUID that represents an individual logon/logoff event.

The base type for the form can be found at it:logon.

Properties:

:time / it:logon:time
The time the logon occurred.

The property type is time.

:success / it:logon:success
Set to false to indicate an unsuccessful logon attempt.

The property type is bool.

:logoff:time / it:logon:logoff:time
The time the logon session ended.

The property type is time.

:host / it:logon:host
The host that the account logged in to.

The property type is it:host.

:account / it:logon:account
The account that logged in.

The property type is it:account.

:creds / it:logon:creds
The credentials that were used for the logon.

The property type is auth:creds.

:duration / it:logon:duration
The duration of the logon session.

The property type is duration.

:client:host / it:logon:client:host
The host where the logon originated.

The property type is it:host.

1134 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:client:ipv4 / it:logon:client:ipv4
The IPv4 where the logon originated.

The property type is inet:ipv4.

:client:ipv6 / it:logon:client:ipv6
The IPv6 where the logon originated.

The property type is inet:ipv6.

it:mitre:attack:group

A Mitre ATT&CK Group ID.

The base type for the form can be found at it:mitre:attack:group.

An example of it:mitre:attack:group:

• G0100

Properties:

:org / it:mitre:attack:group:org
Used to map an ATT&CK group to a synapse ou:org.

The property type is ou:org.

:name / it:mitre:attack:group:name
The primary name for the ATT&CK group.

The property type is ou:name.

:names / it:mitre:attack:group:names
An array of alternate names for the ATT&CK group.

The property type is array. Its type has the following options set:

• type: ou:name

• uniq: True

• sorted: True

:desc / it:mitre:attack:group:desc
A description of the ATT&CK group. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:isnow / it:mitre:attack:group:isnow
If deprecated, this field may contain the current value for the group.

The property type is it:mitre:attack:group.

:url / it:mitre:attack:group:url
The URL that documents the ATT&CK group.

The property type is inet:url.

:tag / it:mitre:attack:group:tag
The synapse tag used to annotate nodes included in this ATT&CK group ID. It has the following property options
set:

• Example: cno.mitre.g0100

12.2. Synapse Data Model - Forms 1135

Synapse Documentation, Release 2.141.0

The property type is syn:tag.

:references / it:mitre:attack:group:references
An array of URLs that document the ATT&CK group.

The property type is array. Its type has the following options set:

• type: inet:url

• uniq: True

:techniques / it:mitre:attack:group:techniques
An array of ATT&CK technique IDs used by the group.

The property type is array. Its type has the following options set:

• type: it:mitre:attack:technique

• uniq: True

• sorted: True

• split: ,

:software / it:mitre:attack:group:software
An array of ATT&CK software IDs used by the group.

The property type is array. Its type has the following options set:

• type: it:mitre:attack:software

• uniq: True

• sorted: True

• split: ,

it:mitre:attack:mitigation

A Mitre ATT&CK Mitigation ID.

The base type for the form can be found at it:mitre:attack:mitigation.

An example of it:mitre:attack:mitigation:

• M1036

Properties:

:name / it:mitre:attack:mitigation:name
The primary name for the ATT&CK mitigation.

The property type is str. Its type has the following options set:

• strip: True

:matrix / it:mitre:attack:mitigation:matrix
The ATT&CK matrix which defines the mitigation.

The property type is it:mitre:attack:matrix.

:desc / it:mitre:attack:mitigation:desc
A description of the ATT&CK mitigation. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str. Its type has the following options set:

1136 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

• strip: True

:url / it:mitre:attack:mitigation:url
The URL that documents the ATT&CK mitigation.

The property type is inet:url.

:tag / it:mitre:attack:mitigation:tag
The synapse tag used to annotate nodes included in this ATT&CK mitigation. It has the following property
options set:

• Example: cno.mitre.m0100

The property type is syn:tag.

:references / it:mitre:attack:mitigation:references
An array of URLs that document the ATT&CK mitigation.

The property type is array. Its type has the following options set:

• type: inet:url

• uniq: True

:addresses / it:mitre:attack:mitigation:addresses
An array of ATT&CK technique IDs addressed by the mitigation.

The property type is array. Its type has the following options set:

• type: it:mitre:attack:technique

• uniq: True

• sorted: True

• split: ,

it:mitre:attack:software

A Mitre ATT&CK Software ID.

The base type for the form can be found at it:mitre:attack:software.

An example of it:mitre:attack:software:

• S0154

Properties:

:software / it:mitre:attack:software:software
Used to map an ATT&CK software to a synapse it:prod:soft.

The property type is it:prod:soft.

:name / it:mitre:attack:software:name
The primary name for the ATT&CK software.

The property type is it:prod:softname.

:names / it:mitre:attack:software:names
Associated names for the ATT&CK software.

The property type is array. Its type has the following options set:

• type: it:prod:softname

• uniq: True

12.2. Synapse Data Model - Forms 1137

Synapse Documentation, Release 2.141.0

• sorted: True

:desc / it:mitre:attack:software:desc
A description of the ATT&CK software. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str. Its type has the following options set:

• strip: True

:isnow / it:mitre:attack:software:isnow
If deprecated, this field may contain the current value for the software.

The property type is it:mitre:attack:software.

:url / it:mitre:attack:software:url
The URL that documents the ATT&CK software.

The property type is inet:url.

:tag / it:mitre:attack:software:tag
The synapse tag used to annotate nodes included in this ATT&CK software. It has the following property options
set:

• Example: cno.mitre.s0100

The property type is syn:tag.

:references / it:mitre:attack:software:references
An array of URLs that document the ATT&CK software.

The property type is array. Its type has the following options set:

• type: inet:url

• uniq: True

:techniques / it:mitre:attack:software:techniques
An array of techniques used by the software.

The property type is array. Its type has the following options set:

• type: it:mitre:attack:technique

• uniq: True

• sorted: True

• split: ,

it:mitre:attack:tactic

A Mitre ATT&CK Tactic ID.

The base type for the form can be found at it:mitre:attack:tactic.

An example of it:mitre:attack:tactic:

• TA0040

Properties:

:name / it:mitre:attack:tactic:name
The primary name for the ATT&CK tactic.

The property type is str. Its type has the following options set:

1138 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

• strip: True

:matrix / it:mitre:attack:tactic:matrix
The ATT&CK matrix which defines the tactic.

The property type is it:mitre:attack:matrix.

:desc / it:mitre:attack:tactic:desc
A description of the ATT&CK tactic. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:url / it:mitre:attack:tactic:url
The URL that documents the ATT&CK tactic.

The property type is inet:url.

:tag / it:mitre:attack:tactic:tag
The synapse tag used to annotate nodes included in this ATT&CK tactic. It has the following property options
set:

• Example: cno.mitre.ta0100

The property type is syn:tag.

:references / it:mitre:attack:tactic:references
An array of URLs that document the ATT&CK tactic.

The property type is array. Its type has the following options set:

• type: inet:url

• uniq: True

it:mitre:attack:technique

A Mitre ATT&CK Technique ID.

The base type for the form can be found at it:mitre:attack:technique.

An example of it:mitre:attack:technique:

• T1548

Properties:

:name / it:mitre:attack:technique:name
The primary name for the ATT&CK technique.

The property type is str. Its type has the following options set:

• strip: True

:matrix / it:mitre:attack:technique:matrix
The ATT&CK matrix which defines the technique.

The property type is it:mitre:attack:matrix.

:status / it:mitre:attack:technique:status
The status of this ATT&CK technique.

The property type is it:mitre:attack:status.

12.2. Synapse Data Model - Forms 1139

Synapse Documentation, Release 2.141.0

:isnow / it:mitre:attack:technique:isnow
If deprecated, this field may contain the current value for the technique.

The property type is it:mitre:attack:technique.

:desc / it:mitre:attack:technique:desc
A description of the ATT&CK technique. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str. Its type has the following options set:

• strip: True

:url / it:mitre:attack:technique:url
The URL that documents the ATT&CK technique.

The property type is inet:url.

:tag / it:mitre:attack:technique:tag
The synapse tag used to annotate nodes included in this ATT&CK technique. It has the following property
options set:

• Example: cno.mitre.t0100

The property type is syn:tag.

:references / it:mitre:attack:technique:references
An array of URLs that document the ATT&CK technique.

The property type is array. Its type has the following options set:

• type: inet:url

• uniq: True

:parent / it:mitre:attack:technique:parent
The parent ATT&CK technique on this sub-technique.

The property type is it:mitre:attack:technique.

:tactics / it:mitre:attack:technique:tactics
An array of ATT&CK tactics that include this technique.

The property type is array. Its type has the following options set:

• type: it:mitre:attack:tactic

• uniq: True

• sorted: True

• split: ,

it:network

A GUID that represents a logical network.

The base type for the form can be found at it:network.

Properties:

:name / it:network:name
The name of the network.

The property type is str. Its type has the following options set:

1140 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

• lower: True

• onespace: True

:desc / it:network:desc
A brief description of the network.

The property type is str.

:org / it:network:org
The org that owns/operates the network.

The property type is ou:org.

:net4 / it:network:net4
The optional contiguous IPv4 address range of this network.

The property type is inet:net4.

:net6 / it:network:net6
The optional contiguous IPv6 address range of this network.

The property type is inet:net6.

it:os:android:aaid

An android advertising identification string.

The base type for the form can be found at it:os:android:aaid.

Properties:

it:os:android:ibroadcast

The given software broadcasts the given Android intent.

The base type for the form can be found at it:os:android:ibroadcast.

Properties:

:app / it:os:android:ibroadcast:app
The app software which broadcasts the android intent. It has the following property options set:

• Read Only: True

The property type is it:prod:softver.

:intent / it:os:android:ibroadcast:intent
The android intent which is broadcast by the app. It has the following property options set:

• Read Only: True

The property type is it:os:android:intent.

12.2. Synapse Data Model - Forms 1141

Synapse Documentation, Release 2.141.0

it:os:android:ilisten

The given software listens for an android intent.

The base type for the form can be found at it:os:android:ilisten.

Properties:

:app / it:os:android:ilisten:app
The app software which listens for the android intent. It has the following property options set:

• Read Only: True

The property type is it:prod:softver.

:intent / it:os:android:ilisten:intent
The android intent which is listened for by the app. It has the following property options set:

• Read Only: True

The property type is it:os:android:intent.

it:os:android:intent

An android intent string.

The base type for the form can be found at it:os:android:intent.

Properties:

it:os:android:perm

An android permission string.

The base type for the form can be found at it:os:android:perm.

Properties:

it:os:android:reqperm

The given software requests the android permission.

The base type for the form can be found at it:os:android:reqperm.

Properties:

:app / it:os:android:reqperm:app
The android app which requests the permission. It has the following property options set:

• Read Only: True

The property type is it:prod:softver.

:perm / it:os:android:reqperm:perm
The android permission requested by the app. It has the following property options set:

• Read Only: True

The property type is it:os:android:perm.

1142 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

it:os:ios:idfa

An iOS advertising identification string.

The base type for the form can be found at it:os:ios:idfa.

Properties:

it:prod:component

A specific instance of an it:prod:hardware most often as part of an it:host.

The base type for the form can be found at it:prod:component.

Properties:

:hardware / it:prod:component:hardware
The hardware specification of this component.

The property type is it:prod:hardware.

:serial / it:prod:component:serial
The serial number of this component.

The property type is str.

:host / it:prod:component:host
The it:host which has this component installed.

The property type is it:host.

it:prod:hardware

A specification for a piece of IT hardware.

The base type for the form can be found at it:prod:hardware.

Properties:

:name / it:prod:hardware:name
The display name for this hardware specification.

The property type is str. Its type has the following options set:

• lower: True

• onespace: True

:type / it:prod:hardware:type
The type of hardware.

The property type is it:prod:hardwaretype.

:desc / it:prod:hardware:desc
A brief description of the hardware. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:cpe / it:prod:hardware:cpe
The NIST CPE 2.3 string specifying this hardware.

The property type is it:sec:cpe.

12.2. Synapse Data Model - Forms 1143

Synapse Documentation, Release 2.141.0

:make / it:prod:hardware:make
The name of the organization which manufactures this hardware.

The property type is ou:name.

:model / it:prod:hardware:model
The model name or number for this hardware specification.

The property type is str. Its type has the following options set:

• lower: True

• onespace: True

:version / it:prod:hardware:version
Version string associated with this hardware specification.

The property type is str. Its type has the following options set:

• lower: True

• onespace: True

:released / it:prod:hardware:released
The initial release date for this hardware.

The property type is time.

:parts / it:prod:hardware:parts
An array of it:prod:hadware parts included in this hardware specification.

The property type is array. Its type has the following options set:

• type: it:prod:hardware

• uniq: True

• sorted: True

it:prod:hardwaretype

An IT hardware type taxonomy.

The base type for the form can be found at it:prod:hardwaretype.

Properties:

:title / it:prod:hardwaretype:title
A brief title of the definition.

The property type is str.

:summary / it:prod:hardwaretype:summary
A summary of the definition. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:sort / it:prod:hardwaretype:sort
A display sort order for siblings.

The property type is int.

:base / it:prod:hardwaretype:base
The base taxon. It has the following property options set:

1144 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

• Read Only: True

The property type is taxon.

:depth / it:prod:hardwaretype:depth
The depth indexed from 0. It has the following property options set:

• Read Only: True

The property type is int.

:parent / it:prod:hardwaretype:parent
The taxonomy parent. It has the following property options set:

• Read Only: True

The property type is it:prod:hardwaretype.

it:prod:soft

A software product.

The base type for the form can be found at it:prod:soft.

Properties:

:name / it:prod:soft:name
Name of the software.

The property type is it:prod:softname.

:type / it:prod:soft:type
The software type.

The property type is it:prod:soft:taxonomy.

:names / it:prod:soft:names
Observed/variant names for this software.

The property type is array. Its type has the following options set:

• type: it:prod:softname

• uniq: True

• sorted: True

:desc / it:prod:soft:desc
A description of the software. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:desc:short / it:prod:soft:desc:short
A short description of the software.

The property type is str. Its type has the following options set:

• lower: True

:cpe / it:prod:soft:cpe
The NIST CPE 2.3 string specifying this software.

The property type is it:sec:cpe.

12.2. Synapse Data Model - Forms 1145

Synapse Documentation, Release 2.141.0

:author / it:prod:soft:author
The contact information of the org or person who authored the software.

The property type is ps:contact.

:author:org / it:prod:soft:author:org
Deprecated. Please use :author to link to a ps:contact. It has the following property options set:

• deprecated: True

The property type is ou:org.

:author:acct / it:prod:soft:author:acct
Deprecated. Please use :author to link to a ps:contact. It has the following property options set:

• deprecated: True

The property type is inet:web:acct.

:author:email / it:prod:soft:author:email
Deprecated. Please use :author to link to a ps:contact. It has the following property options set:

• deprecated: True

The property type is inet:email.

:author:person / it:prod:soft:author:person
Deprecated. Please use :author to link to a ps:contact. It has the following property options set:

• deprecated: True

The property type is ps:person.

:url / it:prod:soft:url
URL relevant for the software.

The property type is inet:url.

:isos / it:prod:soft:isos
Set to True if the software is an operating system.

The property type is bool.

:islib / it:prod:soft:islib
Set to True if the software is a library.

The property type is bool.

:techniques / it:prod:soft:techniques
Deprecated for scalability. Please use -(uses)> ou:technique. It has the following property options set:

• deprecated: True

The property type is array. Its type has the following options set:

• type: ou:technique

• sorted: True

• uniq: True

1146 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

it:prod:soft:taxonomy

A software type taxonomy.

The base type for the form can be found at it:prod:soft:taxonomy.

Properties:

it:prod:softfile

A file is distributed by a specific software version.

The base type for the form can be found at it:prod:softfile.

Properties:

:soft / it:prod:softfile:soft
The software which distributes the file. It has the following property options set:

• Read Only: True

The property type is it:prod:softver.

:file / it:prod:softfile:file
The file distributed by the software. It has the following property options set:

• Read Only: True

The property type is file:bytes.

:path / it:prod:softfile:path
The default installation path of the file.

The property type is file:path.

it:prod:softid

An identifier issued to a given host by a specific software application.

The base type for the form can be found at it:prod:softid.

Properties:

:id / it:prod:softid:id
The ID issued by the software to the host.

The property type is str.

:host / it:prod:softid:host
The host which was issued the ID by the software.

The property type is it:host.

:soft / it:prod:softid:soft
The software which issued the ID to the host.

The property type is it:prod:softver.

:soft:name / it:prod:softid:soft:name
The name of the software which issued the ID to the host.

The property type is it:prod:softname.

12.2. Synapse Data Model - Forms 1147

Synapse Documentation, Release 2.141.0

it:prod:softlib

A software version contains a library software version.

The base type for the form can be found at it:prod:softlib.

Properties:

:soft / it:prod:softlib:soft
The software version that contains the library. It has the following property options set:

• Read Only: True

The property type is it:prod:softver.

:lib / it:prod:softlib:lib
The library software version. It has the following property options set:

• Read Only: True

The property type is it:prod:softver.

it:prod:softname

A software product name.

The base type for the form can be found at it:prod:softname.

Properties:

it:prod:softos

The software version is known to be compatible with the given os software version.

The base type for the form can be found at it:prod:softos.

Properties:

:soft / it:prod:softos:soft
The software which can run on the operating system. It has the following property options set:

• Read Only: True

The property type is it:prod:softver.

:os / it:prod:softos:os
The operating system which the software can run on. It has the following property options set:

• Read Only: True

The property type is it:prod:softver.

1148 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

it:prod:softreg

A registry entry is created by a specific software version.

The base type for the form can be found at it:prod:softreg.

Properties:

:softver / it:prod:softreg:softver
The software which creates the registry entry. It has the following property options set:

• Read Only: True

The property type is it:prod:softver.

:regval / it:prod:softreg:regval
The registry entry created by the software. It has the following property options set:

• Read Only: True

The property type is it:dev:regval.

it:prod:softver

A specific version of a software product.

The base type for the form can be found at it:prod:softver.

Properties:

:software / it:prod:softver:software
Software associated with this version instance.

The property type is it:prod:soft.

:software:name / it:prod:softver:software:name
Deprecated. Please use it:prod:softver:name. It has the following property options set:

• deprecated: True

The property type is str. Its type has the following options set:

• lower: True

• strip: True

:name / it:prod:softver:name
Name of the software version.

The property type is it:prod:softname.

:names / it:prod:softver:names
Observed/variant names for this software version.

The property type is array. Its type has the following options set:

• type: it:prod:softname

• uniq: True

• sorted: True

:desc / it:prod:softver:desc
A description of the software. It has the following property options set:

• disp: {'hint': 'text'}

12.2. Synapse Data Model - Forms 1149

Synapse Documentation, Release 2.141.0

The property type is str.

:cpe / it:prod:softver:cpe
The NIST CPE 2.3 string specifying this software version.

The property type is it:sec:cpe.

:cves / it:prod:softver:cves
A list of CVEs that apply to this software version.

The property type is array. Its type has the following options set:

• type: it:sec:cve

• uniq: True

• sorted: True

:vers / it:prod:softver:vers
Version string associated with this version instance.

The property type is it:dev:str.

:vers:norm / it:prod:softver:vers:norm
Normalized version of the version string.

The property type is str. Its type has the following options set:

• lower: True

:arch / it:prod:softver:arch
Software architecture.

The property type is it:dev:str.

:released / it:prod:softver:released
Timestamp for when this version of the software was released.

The property type is time.

:semver / it:prod:softver:semver
System normalized semantic version number.

The property type is it:semver.

:semver:major / it:prod:softver:semver:major
Version major number.

The property type is int.

:semver:minor / it:prod:softver:semver:minor
Version minor number.

The property type is int.

:semver:patch / it:prod:softver:semver:patch
Version patch number.

The property type is int.

:semver:pre / it:prod:softver:semver:pre
Semver prerelease string.

The property type is str.

1150 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:semver:build / it:prod:softver:semver:build
Semver build string.

The property type is str.

:url / it:prod:softver:url
URL where a specific version of the software is available from.

The property type is inet:url.

it:query

A unique query string.

The base type for the form can be found at it:query.

Properties:

it:reveng:filefunc

An instance of a function in an executable.

The base type for the form can be found at it:reveng:filefunc.

Properties:

:function / it:reveng:filefunc:function
The guid matching the function. It has the following property options set:

• Read Only: True

The property type is it:reveng:function.

:file / it:reveng:filefunc:file
The file that contains the function. It has the following property options set:

• Read Only: True

The property type is file:bytes.

:va / it:reveng:filefunc:va
The virtual address of the first codeblock of the function.

The property type is int.

:rank / it:reveng:filefunc:rank
The function rank score used to evaluate if it exhibits interesting behavior.

The property type is int.

:complexity / it:reveng:filefunc:complexity
The complexity of the function.

The property type is int.

:funccalls / it:reveng:filefunc:funccalls
Other function calls within the scope of the function.

The property type is array. Its type has the following options set:

• type: it:reveng:filefunc

• uniq: True

• sorted: True

12.2. Synapse Data Model - Forms 1151

Synapse Documentation, Release 2.141.0

it:reveng:funcstr

A reference to a string inside a function.

The base type for the form can be found at it:reveng:funcstr.

Properties:

:function / it:reveng:funcstr:function
The guid matching the function. It has the following property options set:

• Read Only: True

The property type is it:reveng:function.

:string / it:reveng:funcstr:string
The string that the function references. It has the following property options set:

• Read Only: True

The property type is str.

it:reveng:function

A function inside an executable.

The base type for the form can be found at it:reveng:function.

Properties:

:name / it:reveng:function:name
The name of the function.

The property type is str.

:description / it:reveng:function:description
Notes concerning the function.

The property type is str.

:impcalls / it:reveng:function:impcalls
Calls to imported library functions within the scope of the function.

The property type is array. Its type has the following options set:

• type: it:reveng:impfunc

• uniq: True

• sorted: True

:strings / it:reveng:function:strings
An array of strings referenced within the function.

The property type is array. Its type has the following options set:

• type: it:dev:str

• uniq: True

1152 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

it:reveng:impfunc

A function from an imported library.

The base type for the form can be found at it:reveng:impfunc.

Properties:

it:screenshot

A screenshot of a host.

The base type for the form can be found at it:screenshot.

Properties:

:image / it:screenshot:image
The image file.

The property type is file:bytes.

:desc / it:screenshot:desc
A brief description of the screenshot. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:exe / it:screenshot:exe
The executable file which caused the activity.

The property type is file:bytes.

:proc / it:screenshot:proc
The host process which caused the activity.

The property type is it:exec:proc.

:thread / it:screenshot:thread
The host thread which caused the activity.

The property type is it:exec:thread.

:host / it:screenshot:host
The host on which the activity occurred.

The property type is it:host.

:time / it:screenshot:time
The time that the activity started.

The property type is time.

:sandbox:file / it:screenshot:sandbox:file
The initial sample given to a sandbox environment to analyze.

The property type is file:bytes.

12.2. Synapse Data Model - Forms 1153

Synapse Documentation, Release 2.141.0

it:sec:c2:config

An extracted C2 config from an executable.

The base type for the form can be found at it:sec:c2:config.

Properties:

:family / it:sec:c2:config:family
The name of the software family which uses the config.

The property type is it:prod:softname.

:file / it:sec:c2:config:file
The file that the C2 config was extracted from.

The property type is file:bytes.

:decoys / it:sec:c2:config:decoys
An array of URLs used as decoy connections to obfuscate the C2 servers.

The property type is array. Its type has the following options set:

• type: inet:url

:servers / it:sec:c2:config:servers
An array of connection URLs built from host/port/passwd combinations.

The property type is array. Its type has the following options set:

• type: inet:url

:proxies / it:sec:c2:config:proxies
An array of proxy URLs used to communicate with the C2 server.

The property type is array. Its type has the following options set:

• type: inet:url

:listens / it:sec:c2:config:listens
An array of listen URLs that the software should bind.

The property type is array. Its type has the following options set:

• type: inet:url

:dns:resolvers / it:sec:c2:config:dns:resolvers
An array of inet:servers to use when resolving DNS names.

The property type is array. Its type has the following options set:

• type: inet:server

:mutex / it:sec:c2:config:mutex
The mutex that the software uses to prevent multiple-installations.

The property type is it:dev:mutex.

:campaigncode / it:sec:c2:config:campaigncode
The operator selected string used to identify the campaign or group of targets.

The property type is it:dev:str.

:crypto:key / it:sec:c2:config:crypto:key
Static key material used to encrypt C2 communications.

The property type is crypto:key.

1154 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:connect:delay / it:sec:c2:config:connect:delay
The time delay from first execution to connecting to the C2 server.

The property type is duration.

:connect:interval / it:sec:c2:config:connect:interval
The configured duration to sleep between connections to the C2 server.

The property type is duration.

:raw / it:sec:c2:config:raw
A JSON blob containing the raw config extracted from the binary.

The property type is data.

:http:headers / it:sec:c2:config:http:headers
An array of HTTP headers that the sample should transmit to the C2 server.

The property type is array. Its type has the following options set:

• type: inet:http:header

it:sec:cpe

A NIST CPE 2.3 Formatted String.

The base type for the form can be found at it:sec:cpe.

Properties:

:v2_2 / it:sec:cpe:v2_2
The CPE 2.2 string which is equivalent to the primary property.

The property type is it:sec:cpe:v2_2.

:part / it:sec:cpe:part
The “part” field from the CPE 2.3 string. It has the following property options set:

• Read Only: True

The property type is str. Its type has the following options set:

• lower: True

• strip: True

:vendor / it:sec:cpe:vendor
The “vendor” field from the CPE 2.3 string. It has the following property options set:

• Read Only: True

The property type is ou:name.

:product / it:sec:cpe:product
The “product” field from the CPE 2.3 string. It has the following property options set:

• Read Only: True

The property type is str. Its type has the following options set:

• lower: True

• strip: True

:version / it:sec:cpe:version
The “version” field from the CPE 2.3 string. It has the following property options set:

12.2. Synapse Data Model - Forms 1155

Synapse Documentation, Release 2.141.0

• Read Only: True

The property type is str. Its type has the following options set:

• lower: True

• strip: True

:update / it:sec:cpe:update
The “update” field from the CPE 2.3 string. It has the following property options set:

• Read Only: True

The property type is str. Its type has the following options set:

• lower: True

• strip: True

:edition / it:sec:cpe:edition
The “edition” field from the CPE 2.3 string. It has the following property options set:

• Read Only: True

The property type is str. Its type has the following options set:

• lower: True

• strip: True

:language / it:sec:cpe:language
The “language” field from the CPE 2.3 string. It has the following property options set:

• Read Only: True

The property type is str. Its type has the following options set:

• lower: True

• strip: True

:sw_edition / it:sec:cpe:sw_edition
The “sw_edition” field from the CPE 2.3 string. It has the following property options set:

• Read Only: True

The property type is str. Its type has the following options set:

• lower: True

• strip: True

:target_sw / it:sec:cpe:target_sw
The “target_sw” field from the CPE 2.3 string. It has the following property options set:

• Read Only: True

The property type is str. Its type has the following options set:

• lower: True

• strip: True

:target_hw / it:sec:cpe:target_hw
The “target_hw” field from the CPE 2.3 string. It has the following property options set:

• Read Only: True

The property type is str. Its type has the following options set:

1156 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

• lower: True

• strip: True

:other / it:sec:cpe:other
The “other” field from the CPE 2.3 string. It has the following property options set:

• Read Only: True

The property type is str. Its type has the following options set:

• lower: True

• strip: True

it:sec:cve

A vulnerability as designated by a Common Vulnerabilities and Exposures (CVE) number.

The base type for the form can be found at it:sec:cve.

An example of it:sec:cve:

• cve-2012-0158

Properties:

:desc / it:sec:cve:desc
Deprecated. Please use risk:vuln:cve:desc. It has the following property options set:

• deprecated: True

The property type is str.

:url / it:sec:cve:url
Deprecated. Please use risk:vuln:cve:url. It has the following property options set:

• deprecated: True

The property type is inet:url.

:references / it:sec:cve:references
Deprecated. Please use risk:vuln:cve:references. It has the following property options set:

• deprecated: True

The property type is array. Its type has the following options set:

• type: inet:url

• uniq: True

• sorted: True

12.2. Synapse Data Model - Forms 1157

Synapse Documentation, Release 2.141.0

it:sec:cwe

NIST NVD Common Weaknesses Enumeration Specification.

The base type for the form can be found at it:sec:cwe.

An example of it:sec:cwe:

• CWE-120

Properties:

:name / it:sec:cwe:name
The CWE description field. It has the following property options set:

• Example: Buffer Copy without Checking Size of Input (Classic Buffer Overflow)

The property type is str.

:desc / it:sec:cwe:desc
The CWE description field. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:url / it:sec:cwe:url
A URL linking this CWE to a full description.

The property type is inet:url.

:parents / it:sec:cwe:parents
An array of ChildOf CWE Relationships.

The property type is array. Its type has the following options set:

• type: it:sec:cwe

• uniq: True

• sorted: True

• split: ,

it:sec:stix:bundle

A STIX bundle.

The base type for the form can be found at it:sec:stix:bundle.

Properties:

:id / it:sec:stix:bundle:id
The id field from the STIX bundle.

The property type is str.

1158 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

it:sec:stix:indicator

A STIX indicator pattern.

The base type for the form can be found at it:sec:stix:indicator.

Properties:

:id / it:sec:stix:indicator:id
The STIX id field from the indicator pattern.

The property type is str.

:name / it:sec:stix:indicator:name
The name of the STIX indicator pattern.

The property type is str.

:pattern / it:sec:stix:indicator:pattern
The STIX indicator pattern text.

The property type is str.

:created / it:sec:stix:indicator:created
The time that the indicator pattern was first created.

The property type is time.

:updated / it:sec:stix:indicator:updated
The time that the indicator pattern was last modified.

The property type is time.

:labels / it:sec:stix:indicator:labels
The label strings embedded in the STIX indicator pattern.

The property type is array. Its type has the following options set:

• type: str

• uniq: True

• sorted: True

lang:idiom

Deprecated. Please use lang:translation.

The base type for the form can be found at lang:idiom.

Properties:

:url / lang:idiom:url
Authoritative URL for the idiom.

The property type is inet:url.

:desc:en / lang:idiom:desc:en
English description. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

12.2. Synapse Data Model - Forms 1159

Synapse Documentation, Release 2.141.0

lang:language

A specific written or spoken language.

The base type for the form can be found at lang:language.

Properties:

:code / lang:language:code
The language code for this language.

The property type is lang:code.

:name / lang:language:name
The primary name of the language.

The property type is lang:name.

:names / lang:language:names
An array of alternative names for the language.

The property type is array. Its type has the following options set:

• type: lang:name

• sorted: True

• uniq: True

:skill / lang:language:skill
The skill used to annotate proficiency in the language.

The property type is ps:skill.

lang:name

A name used to refer to a language.

The base type for the form can be found at lang:name.

Properties:

lang:trans

Deprecated. Please use lang:translation.

The base type for the form can be found at lang:trans.

Properties:

:text:en / lang:trans:text:en
English translation. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:desc:en / lang:trans:desc:en
English description. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

1160 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

lang:translation

A translation of text from one language to another.

The base type for the form can be found at lang:translation.

Properties:

:input / lang:translation:input
The input text. It has the following property options set:

• Example: hola

The property type is str.

:input:lang / lang:translation:input:lang
The input language code.

The property type is lang:code.

:output / lang:translation:output
The output text. It has the following property options set:

• Example: hi

The property type is str.

:output:lang / lang:translation:output:lang
The output language code.

The property type is lang:code.

:desc / lang:translation:desc
A description of the meaning of the output. It has the following property options set:

• Example: A standard greeting

The property type is str.

:engine / lang:translation:engine
The translation engine version used.

The property type is it:prod:softver.

mat:item

A GUID assigned to a material object.

The base type for the form can be found at mat:item.

Properties:

:name / mat:item:name
The name of the material item.

The property type is str. Its type has the following options set:

• lower: True

:type / mat:item:type
The taxonomy type of the item.

The property type is mat:type.

12.2. Synapse Data Model - Forms 1161

Synapse Documentation, Release 2.141.0

:spec / mat:item:spec
The specification which defines this item.

The property type is mat:spec.

:place / mat:item:place
The most recent place the item is known to reside.

The property type is geo:place.

:latlong / mat:item:latlong
The last known lat/long location of the node.

The property type is geo:latlong.

:loc / mat:item:loc
The geo-political location string for the node.

The property type is loc.

mat:itemimage

The base type for compound node fields.

The base type for the form can be found at mat:itemimage.

Properties:

:item / mat:itemimage:item
The item contained within the image file. It has the following property options set:

• Read Only: True

The property type is mat:item.

:file / mat:itemimage:file
The file containing an image of the item. It has the following property options set:

• Read Only: True

The property type is file:bytes.

mat:spec

A GUID assigned to a material specification.

The base type for the form can be found at mat:spec.

Properties:

:name / mat:spec:name
The name of the material specification.

The property type is str. Its type has the following options set:

• lower: True

:type / mat:spec:type
The taxonomy type for the specification.

The property type is mat:type.

1162 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

mat:specimage

The base type for compound node fields.

The base type for the form can be found at mat:specimage.

Properties:

:spec / mat:specimage:spec
The spec contained within the image file. It has the following property options set:

• Read Only: True

The property type is mat:spec.

:file / mat:specimage:file
The file containing an image of the spec. It has the following property options set:

• Read Only: True

The property type is file:bytes.

media:news

A GUID for a news article or report.

The base type for the form can be found at media:news.

Properties:

:url / media:news:url
The (optional) URL where the news was published. It has the following property options set:

• Example: http://cnn.com/news/mars-lander.html

The property type is inet:url.

:url:fqdn / media:news:url:fqdn
The FQDN within the news URL. It has the following property options set:

• Example: cnn.com

The property type is inet:fqdn.

:type / media:news:type
A taxonomy for the type of reporting or news.

The property type is media:news:taxonomy.

:file / media:news:file
The (optional) file blob containing or published as the news.

The property type is file:bytes.

:title / media:news:title
Title/Headline for the news. It has the following property options set:

• Example: mars lander reaches mars

• disp: {'hint': 'text'}

The property type is str. Its type has the following options set:

• lower: True

12.2. Synapse Data Model - Forms 1163

news:url
news:url:fqdn
news:type
news:file
news:title

Synapse Documentation, Release 2.141.0

:summary / media:news:summary
A brief summary of the news item. It has the following property options set:

• Example: lorum ipsum

• disp: {'hint': 'text'}

The property type is str.

:publisher / media:news:publisher
The organization which published the news.

The property type is ou:org.

:publisher:name / media:news:publisher:name
The name of the publishing org used to publish the news.

The property type is ou:name.

:published / media:news:published
The date the news item was published. It has the following property options set:

• Example: 20161201180433

The property type is time.

:updated / media:news:updated
The last time the news item was updated. It has the following property options set:

• Example: 20161201180433

The property type is time. Its type has the following options set:

• ismax: True

:org / media:news:org
Deprecated. Please use :publisher:name. It has the following property options set:

• deprecated: True

The property type is ou:alias.

:author / media:news:author
Deprecated. Please use :authors array of ps:contact nodes. It has the following property options set:

• deprecated: True

The property type is ps:name.

:authors / media:news:authors
An array of authors of the news item.

The property type is array. Its type has the following options set:

• type: ps:contact

• split: ,

• uniq: True

• sorted: True

:rss:feed / media:news:rss:feed
The RSS feed that published the news.

The property type is inet:url.

1164 Chapter 12. Synapse Data Model

news:summary
news:publisher
news:publisher:name
news:published
news:updated
news:org
news:author
news:authors
news:rss:feed

Synapse Documentation, Release 2.141.0

:ext:id / media:news:ext:id
An external identifier specified by the publisher.

The property type is str.

:topics / media:news:topics
An array of relevant topics discussed in the report.

The property type is array. Its type has the following options set:

• type: media:topic

• uniq: True

• sorted: True

media:news:taxonomy

A taxonomy of types or sources of news.

The base type for the form can be found at media:news:taxonomy.

Properties:

media:topic

A topic string.

The base type for the form can be found at media:topic.

Properties:

:desc / media:topic:desc
A brief description of the topic.

The property type is str.

meta:event

An analytically relevant event in a curated timeline.

The base type for the form can be found at meta:event.

Properties:

:timeline / meta:event:timeline
The timeline containing the event.

The property type is meta:timeline.

:title / meta:event:title
A title for the event.

The property type is str.

:summary / meta:event:summary
A prose summary of the event. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

12.2. Synapse Data Model - Forms 1165

news:ext:id
news:topics

Synapse Documentation, Release 2.141.0

:time / meta:event:time
The time that the event occurred.

The property type is time.

:duration / meta:event:duration
The duration of the event.

The property type is duration.

:type / meta:event:type
Type of event.

The property type is meta:event:taxonomy.

meta:event:taxonomy

A taxonomy of event types for meta:event nodes.

The base type for the form can be found at meta:event:taxonomy.

Properties:

:title / meta:event:taxonomy:title
A brief title of the definition.

The property type is str.

:summary / meta:event:taxonomy:summary
A summary of the definition. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:sort / meta:event:taxonomy:sort
A display sort order for siblings.

The property type is int.

:base / meta:event:taxonomy:base
The base taxon. It has the following property options set:

• Read Only: True

The property type is taxon.

:depth / meta:event:taxonomy:depth
The depth indexed from 0. It has the following property options set:

• Read Only: True

The property type is int.

:parent / meta:event:taxonomy:parent
The taxonomy parent. It has the following property options set:

• Read Only: True

The property type is meta:event:taxonomy.

1166 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

meta:note

An analyst note about nodes linked with -(about)> edges.

The base type for the form can be found at meta:note.

Properties:

:type / meta:note:type
The note type.

The property type is meta:note:type:taxonomy.

:text / meta:note:text
The analyst authored note text. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:author / meta:note:author
The contact information of the author.

The property type is ps:contact.

:creator / meta:note:creator
The synapse user who authored the note.

The property type is syn:user.

:created / meta:note:created
The time the note was created.

The property type is time.

meta:note:type:taxonomy

An analyst note type taxonomy.

The base type for the form can be found at meta:note:type:taxonomy.

Properties:

:title / meta:note:type:taxonomy:title
A brief title of the definition.

The property type is str.

:summary / meta:note:type:taxonomy:summary
A summary of the definition. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:sort / meta:note:type:taxonomy:sort
A display sort order for siblings.

The property type is int.

:base / meta:note:type:taxonomy:base
The base taxon. It has the following property options set:

• Read Only: True

The property type is taxon.

12.2. Synapse Data Model - Forms 1167

Synapse Documentation, Release 2.141.0

:depth / meta:note:type:taxonomy:depth
The depth indexed from 0. It has the following property options set:

• Read Only: True

The property type is int.

:parent / meta:note:type:taxonomy:parent
The taxonomy parent. It has the following property options set:

• Read Only: True

The property type is meta:note:type:taxonomy.

meta:rule

A generic rule linked to matches with -(matches)> edges.

The base type for the form can be found at meta:rule.

Properties:

:name / meta:rule:name
A name for the rule.

The property type is str. Its type has the following options set:

• lower: True

• onespace: True

:desc / meta:rule:desc
A description of the rule. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:text / meta:rule:text
The text of the rule logic. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:author / meta:rule:author
The contact information of the rule author.

The property type is ps:contact.

:created / meta:rule:created
The time the rule was initially created.

The property type is time.

:updated / meta:rule:updated
The time the rule was most recently modified.

The property type is time.

:url / meta:rule:url
A URL which documents the rule.

The property type is inet:url.

1168 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:ext:id / meta:rule:ext:id
An external identifier for the rule.

The property type is str.

meta:ruleset

A set of rules linked with -(has)> edges.

The base type for the form can be found at meta:ruleset.

Properties:

:name / meta:ruleset:name
A name for the ruleset.

The property type is str. Its type has the following options set:

• lower: True

• onespace: True

:desc / meta:ruleset:desc
A description of the ruleset. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:author / meta:ruleset:author
The contact information of the ruleset author.

The property type is ps:contact.

:created / meta:ruleset:created
The time the ruleset was initially created.

The property type is time.

:updated / meta:ruleset:updated
The time the ruleset was most recently modified.

The property type is time.

meta:seen

Annotates that the data in a node was obtained from or observed by a given source.

The base type for the form can be found at meta:seen.

Properties:

:source / meta:seen:source
The source which observed or provided the node. It has the following property options set:

• Read Only: True

The property type is meta:source.

:node / meta:seen:node
The node which was observed by or received from the source. It has the following property options set:

• Read Only: True

The property type is ndef .

12.2. Synapse Data Model - Forms 1169

Synapse Documentation, Release 2.141.0

meta:source

A data source unique identifier.

The base type for the form can be found at meta:source.

Properties:

:name / meta:source:name
A human friendly name for the source.

The property type is str. Its type has the following options set:

• lower: True

:type / meta:source:type
An optional type field used to group sources.

The property type is str. Its type has the following options set:

• lower: True

meta:timeline

A curated timeline of analytically relevant events.

The base type for the form can be found at meta:timeline.

Properties:

:title / meta:timeline:title
A title for the timeline. It has the following property options set:

• Example: The history of the Vertex Project

The property type is str.

:summary / meta:timeline:summary
A prose summary of the timeline. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:type / meta:timeline:type
The type of timeline.

The property type is meta:timeline:taxonomy.

meta:timeline:taxonomy

A taxonomy of timeline types for meta:timeline nodes.

The base type for the form can be found at meta:timeline:taxonomy.

Properties:

:title / meta:timeline:taxonomy:title
A brief title of the definition.

The property type is str.

:summary / meta:timeline:taxonomy:summary
A summary of the definition. It has the following property options set:

1170 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

• disp: {'hint': 'text'}

The property type is str.

:sort / meta:timeline:taxonomy:sort
A display sort order for siblings.

The property type is int.

:base / meta:timeline:taxonomy:base
The base taxon. It has the following property options set:

• Read Only: True

The property type is taxon.

:depth / meta:timeline:taxonomy:depth
The depth indexed from 0. It has the following property options set:

• Read Only: True

The property type is int.

:parent / meta:timeline:taxonomy:parent
The taxonomy parent. It has the following property options set:

• Read Only: True

The property type is meta:timeline:taxonomy.

ou:attendee

A node representing a person attending a meeting, conference, or event.

The base type for the form can be found at ou:attendee.

Properties:

:person / ou:attendee:person
The contact information for the person who attended the event.

The property type is ps:contact.

:arrived / ou:attendee:arrived
The time when the person arrived.

The property type is time.

:departed / ou:attendee:departed
The time when the person departed.

The property type is time.

:roles / ou:attendee:roles
List of the roles the person had at the event.

The property type is array. Its type has the following options set:

• type: ou:role

• split: ,

• uniq: True

• sorted: True

12.2. Synapse Data Model - Forms 1171

Synapse Documentation, Release 2.141.0

:meet / ou:attendee:meet
The meeting that the person attended.

The property type is ou:meet.

:conference / ou:attendee:conference
The conference that the person attended.

The property type is ou:conference.

:conference:event / ou:attendee:conference:event
The conference event that the person attended.

The property type is ou:conference:event.

:contest / ou:attendee:contest
The contest that the person attended.

The property type is ou:contest.

:preso / ou:attendee:preso
The presentation that the person attended.

The property type is ou:preso.

ou:award

An award issued by an organization.

The base type for the form can be found at ou:award.

Properties:

:name / ou:award:name
The name of the award. It has the following property options set:

• Example: Bachelors of Science

The property type is str. Its type has the following options set:

• lower: True

• onespace: True

:type / ou:award:type
The type of award. It has the following property options set:

• Example: certification

The property type is str. Its type has the following options set:

• lower: True

• onespace: True

:org / ou:award:org
The organization which issues the award.

The property type is ou:org.

1172 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

ou:campaign

Represents an org’s activity in pursuit of a goal.

The base type for the form can be found at ou:campaign.

Properties:

:org / ou:campaign:org
The org carrying out the campaign.

The property type is ou:org.

:org:name / ou:campaign:org:name
The name of the org responsible for the campaign. Used for entity resolution.

The property type is ou:name.

:org:fqdn / ou:campaign:org:fqdn
The FQDN of the org responsible for the campaign. Used for entity resolution.

The property type is inet:fqdn.

:goal / ou:campaign:goal
The assessed primary goal of the campaign.

The property type is ou:goal.

:actors / ou:campaign:actors
Actors who participated in the campaign.

The property type is array. Its type has the following options set:

• type: ps:contact

• split: ,

• uniq: True

• sorted: True

:goals / ou:campaign:goals
Additional assessed goals of the campaign.

The property type is array. Its type has the following options set:

• type: ou:goal

• split: ,

• uniq: True

• sorted: True

:success / ou:campaign:success
Records the success/failure status of the campaign if known.

The property type is bool.

:name / ou:campaign:name
A terse name of the campaign. It has the following property options set:

• Example: operation overlord

The property type is ou:campname.

12.2. Synapse Data Model - Forms 1173

Synapse Documentation, Release 2.141.0

:names / ou:campaign:names
An array of alternate names for the campaign.

The property type is array. Its type has the following options set:

• type: ou:campname

• sorted: True

• uniq: True

:reporter / ou:campaign:reporter
The organization reporting on the campaign.

The property type is ou:org.

:reporter:name / ou:campaign:reporter:name
The name of the organization reporting on the campaign.

The property type is ou:name.

:type / ou:campaign:type
Deprecated. Use the :camptype taxonomy. It has the following property options set:

• deprecated: True

The property type is str.

:sophistication / ou:campaign:sophistication
The assessed sophistication of the campaign.

The property type is meta:sophistication.

:camptype / ou:campaign:camptype
The campaign type taxonomy. It has the following property options set:

• disp: {'hint': 'taxonomy'}

The property type is ou:camptype.

:desc / ou:campaign:desc
A description of the campaign. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:period / ou:campaign:period
The time interval when the organization was running the campaign.

The property type is ival.

:cost / ou:campaign:cost
The actual cost to the organization.

The property type is econ:price.

:budget / ou:campaign:budget
The budget allocated by the organization to execute the campaign.

The property type is econ:price.

:currency / ou:campaign:currency
The currency used to record econ:price properties.

The property type is econ:currency.

1174 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:goal:revenue / ou:campaign:goal:revenue
A goal for revenue resulting from the campaign.

The property type is econ:price.

:result:revenue / ou:campaign:result:revenue
The revenue resulting from the campaign.

The property type is econ:price.

:goal:pop / ou:campaign:goal:pop
A goal for the number of people affected by the campaign.

The property type is int.

:result:pop / ou:campaign:result:pop
The count of people affected by the campaign.

The property type is int.

:team / ou:campaign:team
The org team responsible for carrying out the campaign.

The property type is ou:team.

:conflict / ou:campaign:conflict
The conflict in which this campaign is a primary participant.

The property type is ou:conflict.

:techniques / ou:campaign:techniques
Deprecated for scalability. Please use -(uses)> ou:technique. It has the following property options set:

• deprecated: True

The property type is array. Its type has the following options set:

• type: ou:technique

• sorted: True

• uniq: True

:tag / ou:campaign:tag
The tag used to annotate nodes that are associated with the campaign.

The property type is syn:tag.

ou:campname

A campaign name.

The base type for the form can be found at ou:campname.

Properties:

12.2. Synapse Data Model - Forms 1175

Synapse Documentation, Release 2.141.0

ou:camptype

An campaign type taxonomy.

The base type for the form can be found at ou:camptype.

Properties:

:title / ou:camptype:title
A brief title of the definition.

The property type is str.

:summary / ou:camptype:summary
A summary of the definition. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:sort / ou:camptype:sort
A display sort order for siblings.

The property type is int.

:base / ou:camptype:base
The base taxon. It has the following property options set:

• Read Only: True

The property type is taxon.

:depth / ou:camptype:depth
The depth indexed from 0. It has the following property options set:

• Read Only: True

The property type is int.

:parent / ou:camptype:parent
The taxonomy parent. It has the following property options set:

• Read Only: True

The property type is ou:camptype.

ou:conference

A conference with a name and sponsoring org.

The base type for the form can be found at ou:conference.

Properties:

:org / ou:conference:org
The org which created/managed the conference.

The property type is ou:org.

:organizer / ou:conference:organizer
Contact information for the primary organizer of the conference.

The property type is ps:contact.

1176 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:sponsors / ou:conference:sponsors
An array of contacts which sponsored the conference.

The property type is array. Its type has the following options set:

• type: ps:contact

• uniq: True

• sorted: True

:name / ou:conference:name
The full name of the conference. It has the following property options set:

• Example: decfon 2017

The property type is str. Its type has the following options set:

• lower: True

:desc / ou:conference:desc
A description of the conference. It has the following property options set:

• Example: annual cybersecurity conference

• disp: {'hint': 'text'}

The property type is str. Its type has the following options set:

• lower: True

:base / ou:conference:base
The base name which is shared by all conference instances. It has the following property options set:

• Example: defcon

The property type is str. Its type has the following options set:

• lower: True

• strip: True

:start / ou:conference:start
The conference start date / time.

The property type is time.

:end / ou:conference:end
The conference end date / time.

The property type is time.

:place / ou:conference:place
The geo:place node where the conference was held.

The property type is geo:place.

:url / ou:conference:url
The inet:url node for the conference website.

The property type is inet:url.

12.2. Synapse Data Model - Forms 1177

Synapse Documentation, Release 2.141.0

ou:conference:attendee

Deprecated. Please use ou:attendee.

The base type for the form can be found at ou:conference:attendee.

Properties:

:conference / ou:conference:attendee:conference
The conference which was attended. It has the following property options set:

• Read Only: True

The property type is ou:conference.

:person / ou:conference:attendee:person
The person who attended the conference. It has the following property options set:

• Read Only: True

The property type is ps:person.

:arrived / ou:conference:attendee:arrived
The time when a person arrived to the conference.

The property type is time.

:departed / ou:conference:attendee:departed
The time when a person departed from the conference.

The property type is time.

:role:staff / ou:conference:attendee:role:staff
The person worked as staff at the conference.

The property type is bool.

:role:speaker / ou:conference:attendee:role:speaker
The person was a speaker or presenter at the conference.

The property type is bool.

:roles / ou:conference:attendee:roles
List of the roles the person had at the conference.

The property type is array. Its type has the following options set:

• type: str

• uniq: True

• sorted: True

ou:conference:event

A conference event with a name and associated conference.

The base type for the form can be found at ou:conference:event.

Properties:

:conference / ou:conference:event:conference
The conference to which the event is associated. It has the following property options set:

• Read Only: True

1178 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

The property type is ou:conference.

:organizer / ou:conference:event:organizer
Contact information for the primary organizer of the event.

The property type is ps:contact.

:sponsors / ou:conference:event:sponsors
An array of contacts which sponsored the event.

The property type is array. Its type has the following options set:

• type: ps:contact

• uniq: True

• sorted: True

:place / ou:conference:event:place
The geo:place where the event occurred.

The property type is geo:place.

:name / ou:conference:event:name
The name of the conference event. It has the following property options set:

• Example: foobar conference dinner

The property type is str. Its type has the following options set:

• lower: True

:desc / ou:conference:event:desc
A description of the conference event. It has the following property options set:

• Example: foobar conference networking dinner at ridge hotel

• disp: {'hint': 'text'}

The property type is str. Its type has the following options set:

• lower: True

:url / ou:conference:event:url
The inet:url node for the conference event website.

The property type is inet:url.

:contact / ou:conference:event:contact
Contact info for the event.

The property type is ps:contact.

:start / ou:conference:event:start
The event start date / time.

The property type is time.

:end / ou:conference:event:end
The event end date / time.

The property type is time.

12.2. Synapse Data Model - Forms 1179

Synapse Documentation, Release 2.141.0

ou:conference:event:attendee

Deprecated. Please use ou:attendee.

The base type for the form can be found at ou:conference:event:attendee.

Properties:

:event / ou:conference:event:attendee:event
The conference event which was attended. It has the following property options set:

• Read Only: True

The property type is ou:conference:event.

:person / ou:conference:event:attendee:person
The person who attended the conference event. It has the following property options set:

• Read Only: True

The property type is ps:person.

:arrived / ou:conference:event:attendee:arrived
The time when a person arrived to the conference event.

The property type is time.

:departed / ou:conference:event:attendee:departed
The time when a person departed from the conference event.

The property type is time.

:roles / ou:conference:event:attendee:roles
List of the roles the person had at the conference event.

The property type is array. Its type has the following options set:

• type: str

• uniq: True

• sorted: True

ou:conflict

Represents a conflict where two or more campaigns have mutually exclusive goals.

The base type for the form can be found at ou:conflict.

Properties:

:name / ou:conflict:name
The name of the conflict.

The property type is str. Its type has the following options set:

• onespace: True

:started / ou:conflict:started
The time the conflict began.

The property type is time.

1180 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:ended / ou:conflict:ended
The time the conflict ended.

The property type is time.

:timeline / ou:conflict:timeline
A timeline of significant events related to the conflict.

The property type is meta:timeline.

ou:contest

A competitive event resulting in a ranked set of participants.

The base type for the form can be found at ou:contest.

Properties:

:name / ou:contest:name
The name of the contest. It has the following property options set:

• Example: defcon ctf 2020

The property type is str. Its type has the following options set:

• lower: True

• onespace: True

:type / ou:contest:type
The type of contest. It has the following property options set:

• Example: cyber ctf

The property type is str. Its type has the following options set:

• lower: True

• onespace: True

:family / ou:contest:family
A name for a series of recurring contests. It has the following property options set:

• Example: defcon ctf

The property type is str. Its type has the following options set:

• lower: True

• onespace: True

:desc / ou:contest:desc
A description of the contest. It has the following property options set:

• Example: the capture-the-flag event hosted at defcon 2020

• disp: {'hint': 'text'}

The property type is str. Its type has the following options set:

• lower: True

:url / ou:contest:url
The contest website URL.

The property type is inet:url.

12.2. Synapse Data Model - Forms 1181

Synapse Documentation, Release 2.141.0

:start / ou:contest:start
The contest start date / time.

The property type is time.

:end / ou:contest:end
The contest end date / time.

The property type is time.

:loc / ou:contest:loc
The geopolitical affiliation of the contest.

The property type is loc.

:place / ou:contest:place
The geo:place where the contest was held.

The property type is geo:place.

:latlong / ou:contest:latlong
The latlong where the contest was held.

The property type is geo:latlong.

:conference / ou:contest:conference
The conference that the contest is associated with.

The property type is ou:conference.

:contests / ou:contest:contests
An array of sub-contests that contributed to the rankings.

The property type is array. Its type has the following options set:

• type: ou:contest

• split: ,

• uniq: True

• sorted: True

:sponsors / ou:contest:sponsors
Contact information for contest sponsors.

The property type is array. Its type has the following options set:

• type: ps:contact

• split: ,

• uniq: True

• sorted: True

:organizers / ou:contest:organizers
Contact information for contest organizers.

The property type is array. Its type has the following options set:

• type: ps:contact

• split: ,

• uniq: True

• sorted: True

1182 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:participants / ou:contest:participants
Contact information for contest participants.

The property type is array. Its type has the following options set:

• type: ps:contact

• split: ,

• uniq: True

• sorted: True

ou:contest:result

The results from a single contest participant.

The base type for the form can be found at ou:contest:result.

Properties:

:contest / ou:contest:result:contest
The contest. It has the following property options set:

• Read Only: True

The property type is ou:contest.

:participant / ou:contest:result:participant
The participant. It has the following property options set:

• Read Only: True

The property type is ps:contact.

:rank / ou:contest:result:rank
The rank order of the participant.

The property type is int.

:score / ou:contest:result:score
The score of the participant.

The property type is int.

:url / ou:contest:result:url
The contest result website URL.

The property type is inet:url.

ou:contract

An contract between multiple entities.

The base type for the form can be found at ou:contract.

Properties:

:title / ou:contract:title
A terse title for the contract.

The property type is str.

12.2. Synapse Data Model - Forms 1183

Synapse Documentation, Release 2.141.0

:type / ou:contract:type
The type of contract.

The property type is ou:conttype.

:sponsor / ou:contract:sponsor
The contract sponsor.

The property type is ps:contact.

:parties / ou:contract:parties
The non-sponsor entities bound by the contract.

The property type is array. Its type has the following options set:

• type: ps:contact

• uniq: True

• sorted: True

:document / ou:contract:document
The best/current contract document.

The property type is file:bytes.

:signed / ou:contract:signed
The date that the contract signing was complete.

The property type is time.

:begins / ou:contract:begins
The date that the contract goes into effect.

The property type is time.

:expires / ou:contract:expires
The date that the contract expires.

The property type is time.

:completed / ou:contract:completed
The date that the contract was completed.

The property type is time.

:terminated / ou:contract:terminated
The date that the contract was terminated.

The property type is time.

:award:price / ou:contract:award:price
The value of the contract at time of award.

The property type is econ:price.

:budget:price / ou:contract:budget:price
The amount of money budgeted for the contract.

The property type is econ:price.

:currency / ou:contract:currency
The currency of the econ:price values.

The property type is econ:currency.

1184 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:purchase / ou:contract:purchase
Purchase details of the contract.

The property type is econ:purchase.

:requirements / ou:contract:requirements
The requirements levied upon the parties.

The property type is array. Its type has the following options set:

• type: ou:goal

• uniq: True

• sorted: True

:types / ou:contract:types
A list of types that apply to the contract. It has the following property options set:

• deprecated: True

The property type is array. Its type has the following options set:

• type: ou:contract:type

• split: ,

• uniq: True

• sorted: True

ou:contribution

Represents a specific instance of contributing material support to a campaign.

The base type for the form can be found at ou:contribution.

Properties:

:from / ou:contribution:from
The contact information of the contributor.

The property type is ps:contact.

:campaign / ou:contribution:campaign
The campaign receiving the contribution.

The property type is ou:campaign.

:value / ou:contribution:value
The assessed value of the contribution.

The property type is econ:price.

:currency / ou:contribution:currency
The currency used for the assessed value.

The property type is econ:currency.

:time / ou:contribution:time
The time the contribution occurred.

The property type is time.

12.2. Synapse Data Model - Forms 1185

Synapse Documentation, Release 2.141.0

:material:spec / ou:contribution:material:spec
The specification of material items contributed.

The property type is mat:spec.

:material:count / ou:contribution:material:count
The number of material items contributed.

The property type is int.

:monetary:payment / ou:contribution:monetary:payment
Payment details for a monetary contribution.

The property type is econ:acct:payment.

:personnel:count / ou:contribution:personnel:count
Number of personnel contributed to the campaign.

The property type is int.

:personnel:jobtitle / ou:contribution:personnel:jobtitle
Title or designation for the contributed personnel.

The property type is ou:jobtitle.

ou:conttype

A contract type taxonomy.

The base type for the form can be found at ou:conttype.

Properties:

:title / ou:conttype:title
A brief title of the definition.

The property type is str.

:summary / ou:conttype:summary
A summary of the definition. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:sort / ou:conttype:sort
A display sort order for siblings.

The property type is int.

:base / ou:conttype:base
The base taxon. It has the following property options set:

• Read Only: True

The property type is taxon.

:depth / ou:conttype:depth
The depth indexed from 0. It has the following property options set:

• Read Only: True

The property type is int.

:parent / ou:conttype:parent
The taxonomy parent. It has the following property options set:

1186 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

• Read Only: True

The property type is ou:conttype.

ou:employment

An employment type taxonomy.

The base type for the form can be found at ou:employment.

An example of ou:employment:

• fulltime.salary

Properties:

:title / ou:employment:title
A brief title of the definition.

The property type is str.

:summary / ou:employment:summary
A summary of the definition. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:sort / ou:employment:sort
A display sort order for siblings.

The property type is int.

:base / ou:employment:base
The base taxon. It has the following property options set:

• Read Only: True

The property type is taxon.

:depth / ou:employment:depth
The depth indexed from 0. It has the following property options set:

• Read Only: True

The property type is int.

:parent / ou:employment:parent
The taxonomy parent. It has the following property options set:

• Read Only: True

The property type is ou:employment.

12.2. Synapse Data Model - Forms 1187

Synapse Documentation, Release 2.141.0

ou:goal

An assessed or stated goal which may be abstract or org specific.

The base type for the form can be found at ou:goal.

Properties:

:name / ou:goal:name
A terse name for the goal.

The property type is ou:goalname.

:names / ou:goal:names
An array of alternate names for the goal. Used to merge/resolve goals.

The property type is array. Its type has the following options set:

• type: ou:goalname

• sorted: True

• uniq: True

:type / ou:goal:type
A type taxonomy entry for the goal.

The property type is ou:goal:type:taxonomy.

:desc / ou:goal:desc
A description of the goal. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:prev / ou:goal:prev
Deprecated. Please use ou:goal:type taxonomy. It has the following property options set:

• deprecated: True

The property type is ou:goal.

ou:goal:type:taxonomy

A taxonomy of goal types.

The base type for the form can be found at ou:goal:type:taxonomy.

Properties:

:title / ou:goal:type:taxonomy:title
A brief title of the definition.

The property type is str.

:summary / ou:goal:type:taxonomy:summary
A summary of the definition. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

1188 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:sort / ou:goal:type:taxonomy:sort
A display sort order for siblings.

The property type is int.

:base / ou:goal:type:taxonomy:base
The base taxon. It has the following property options set:

• Read Only: True

The property type is taxon.

:depth / ou:goal:type:taxonomy:depth
The depth indexed from 0. It has the following property options set:

• Read Only: True

The property type is int.

:parent / ou:goal:type:taxonomy:parent
The taxonomy parent. It has the following property options set:

• Read Only: True

The property type is ou:goal:type:taxonomy.

ou:goalname

A goal name.

The base type for the form can be found at ou:goalname.

Properties:

ou:hasalias

The knowledge that an organization has an alias.

The base type for the form can be found at ou:hasalias.

Properties:

:org / ou:hasalias:org
The org guid which has the alias. It has the following property options set:

• Read Only: True

The property type is ou:org.

:alias / ou:hasalias:alias
Alias for the organization. It has the following property options set:

• Read Only: True

The property type is ou:alias.

12.2. Synapse Data Model - Forms 1189

Synapse Documentation, Release 2.141.0

ou:hasgoal

Deprecated. Please use ou:org:goals.

The base type for the form can be found at ou:hasgoal.

Properties:

:org / ou:hasgoal:org
The org which has the goal. It has the following property options set:

• Read Only: True

The property type is ou:org.

:goal / ou:hasgoal:goal
The goal which the org has. It has the following property options set:

• Read Only: True

The property type is ou:goal.

:stated / ou:hasgoal:stated
Set to true/false if the goal is known to be self stated.

The property type is bool.

:window / ou:hasgoal:window
Set if a goal has a limited time window.

The property type is ival.

ou:id:number

A unique id number issued by a specific organization.

The base type for the form can be found at ou:id:number.

Properties:

:type / ou:id:number:type
The type of org id. It has the following property options set:

• Read Only: True

The property type is ou:id:type.

:value / ou:id:number:value
The value of org id. It has the following property options set:

• Read Only: True

The property type is ou:id:value.

:status / ou:id:number:status
A freeform status such as valid, suspended, expired.

The property type is str. Its type has the following options set:

• lower: True

• strip: True

1190 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:issued / ou:id:number:issued
The time at which the org issued the ID number.

The property type is time.

:expires / ou:id:number:expires
The time at which the ID number expires.

The property type is time.

ou:id:type

A type of id number issued by an org.

The base type for the form can be found at ou:id:type.

Properties:

:org / ou:id:type:org
The org which issues id numbers of this type.

The property type is ou:org.

:name / ou:id:type:name
The friendly name of the id number type.

The property type is str.

ou:id:update

A status update to an org:id:number.

The base type for the form can be found at ou:id:update.

Properties:

:number / ou:id:update:number
The id number that was updated.

The property type is ou:id:number.

:status / ou:id:update:status
The updated status of the id number.

The property type is str. Its type has the following options set:

• strip: True

• lower: True

:time / ou:id:update:time
The date/time that the id number was updated.

The property type is time.

12.2. Synapse Data Model - Forms 1191

Synapse Documentation, Release 2.141.0

ou:industry

An industry classification type.

The base type for the form can be found at ou:industry.

Properties:

:name / ou:industry:name
The name of the industry.

The property type is ou:industryname.

:type / ou:industry:type
An taxonomy entry for the industry.

The property type is ou:industry:type:taxonomy.

:names / ou:industry:names
An array of alternative names for the industry.

The property type is array. Its type has the following options set:

• type: ou:industryname

• uniq: True

• sorted: True

:subs / ou:industry:subs
Deprecated. Please use ou:industry:type taxonomy.

The property type is array. Its type has the following options set:

• type: ou:industry

• split: ,

• uniq: True

• sorted: True

:sic / ou:industry:sic
An array of SIC codes that map to the industry.

The property type is array. Its type has the following options set:

• type: ou:sic

• split: ,

• uniq: True

• sorted: True

:naics / ou:industry:naics
An array of NAICS codes that map to the industry.

The property type is array. Its type has the following options set:

• type: ou:naics

• split: ,

• uniq: True

• sorted: True

1192 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:isic / ou:industry:isic
An array of ISIC codes that map to the industry.

The property type is array. Its type has the following options set:

• type: ou:isic

• split: ,

• uniq: True

• sorted: True

:desc / ou:industry:desc
A description of the industry. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

ou:industryname

The name of an industry.

The base type for the form can be found at ou:industryname.

Properties:

ou:jobtitle

A title for a position within an org.

The base type for the form can be found at ou:jobtitle.

Properties:

ou:jobtype

A title for a position within an org.

The base type for the form can be found at ou:jobtype.

An example of ou:jobtype:

• it.dev.python

Properties:

:title / ou:jobtype:title
A brief title of the definition.

The property type is str.

:summary / ou:jobtype:summary
A summary of the definition. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

12.2. Synapse Data Model - Forms 1193

Synapse Documentation, Release 2.141.0

:sort / ou:jobtype:sort
A display sort order for siblings.

The property type is int.

:base / ou:jobtype:base
The base taxon. It has the following property options set:

• Read Only: True

The property type is taxon.

:depth / ou:jobtype:depth
The depth indexed from 0. It has the following property options set:

• Read Only: True

The property type is int.

:parent / ou:jobtype:parent
The taxonomy parent. It has the following property options set:

• Read Only: True

The property type is ou:jobtype.

ou:meet

An informal meeting of people which has no title or sponsor. See also: ou:conference.

The base type for the form can be found at ou:meet.

Properties:

:name / ou:meet:name
A human friendly name for the meeting.

The property type is str. Its type has the following options set:

• lower: True

:start / ou:meet:start
The date / time the meet starts.

The property type is time.

:end / ou:meet:end
The date / time the meet ends.

The property type is time.

:place / ou:meet:place
The geo:place node where the meet was held.

The property type is geo:place.

1194 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

ou:meet:attendee

Deprecated. Please use ou:attendee.

The base type for the form can be found at ou:meet:attendee.

Properties:

:meet / ou:meet:attendee:meet
The meeting which was attended. It has the following property options set:

• Read Only: True

The property type is ou:meet.

:person / ou:meet:attendee:person
The person who attended the meeting. It has the following property options set:

• Read Only: True

The property type is ps:person.

:arrived / ou:meet:attendee:arrived
The time when a person arrived to the meeting.

The property type is time.

:departed / ou:meet:attendee:departed
The time when a person departed from the meeting.

The property type is time.

ou:member

Deprecated. Please use ou:position.

The base type for the form can be found at ou:member.

Properties:

:org / ou:member:org
The GUID of the org the person is a member of. It has the following property options set:

• Read Only: True

The property type is ou:org.

:person / ou:member:person
The GUID of the person that is a member of an org. It has the following property options set:

• Read Only: True

The property type is ps:person.

:title / ou:member:title
The persons normalized title.

The property type is str. Its type has the following options set:

• lower: True

• strip: True

12.2. Synapse Data Model - Forms 1195

Synapse Documentation, Release 2.141.0

:start / ou:member:start
Earliest known association of the person with the org.

The property type is time. Its type has the following options set:

• ismin: True

:end / ou:member:end
Most recent known association of the person with the org.

The property type is time. Its type has the following options set:

• ismax: True

ou:name

The name of an organization. This may be a formal name or informal name of the organization.

The base type for the form can be found at ou:name.

An example of ou:name:

• acme corporation

Properties:

ou:opening

A job/work opening within an org.

The base type for the form can be found at ou:opening.

Properties:

:org / ou:opening:org
The org which has the opening.

The property type is ou:org.

:orgname / ou:opening:orgname
The name of the organization as listed in the opening.

The property type is ou:name.

:orgfqdn / ou:opening:orgfqdn
The FQDN of the organization as listed in the opening.

The property type is inet:fqdn.

:posted / ou:opening:posted
The date/time that the job opening was posted.

The property type is time.

:removed / ou:opening:removed
The date/time that the job opening was removed.

The property type is time.

:postings / ou:opening:postings
URLs where the opening is listed.

The property type is array. Its type has the following options set:

• type: inet:url

1196 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

• uniq: True

• sorted: True

:contact / ou:opening:contact
The contact details to inquire about the opening.

The property type is ps:contact.

:loc / ou:opening:loc
The geopolitical boundary of the opening.

The property type is loc.

:jobtype / ou:opening:jobtype
The job type taxonomy.

The property type is ou:jobtype.

:employment / ou:opening:employment
The type of employment.

The property type is ou:employment.

:jobtitle / ou:opening:jobtitle
The title of the opening.

The property type is ou:jobtitle.

:remote / ou:opening:remote
Set to true if the opening will allow a fully remote worker.

The property type is bool.

:yearlypay / ou:opening:yearlypay
The yearly income associated with the opening.

The property type is econ:price.

:paycurrency / ou:opening:paycurrency
The currency that the yearly pay was delivered in.

The property type is econ:currency.

ou:org

A GUID for a human organization such as a company or military unit.

The base type for the form can be found at ou:org.

Properties:

:loc / ou:org:loc
Location for an organization.

The property type is loc.

:name / ou:org:name
The localized name of an organization.

The property type is ou:name.

:type / ou:org:type
The type of organization. It has the following property options set:

• deprecated: True

12.2. Synapse Data Model - Forms 1197

Synapse Documentation, Release 2.141.0

The property type is str. Its type has the following options set:

• lower: True

• strip: True

:orgtype / ou:org:orgtype
The type of organization. It has the following property options set:

• disp: {'hint': 'taxonomy'}

The property type is ou:orgtype.

:vitals / ou:org:vitals
The most recent/accurate ou:vitals for the org.

The property type is ou:vitals.

:desc / ou:org:desc
A description of the org. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:logo / ou:org:logo
An image file representing the logo for the organization.

The property type is file:bytes.

:names / ou:org:names
A list of alternate names for the organization.

The property type is array. Its type has the following options set:

• type: ou:name

• uniq: True

• sorted: True

:alias / ou:org:alias
The default alias for an organization.

The property type is ou:alias.

:phone / ou:org:phone
The primary phone number for the organization.

The property type is tel:phone.

:sic / ou:org:sic
The Standard Industrial Classification code for the organization. It has the following property options set:

• deprecated: True

The property type is ou:sic.

:naics / ou:org:naics
The North American Industry Classification System code for the organization. It has the following property
options set:

• deprecated: True

The property type is ou:naics.

1198 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:industries / ou:org:industries
The industries associated with the org.

The property type is array. Its type has the following options set:

• type: ou:industry

• uniq: True

• sorted: True

:us:cage / ou:org:us:cage
The Commercial and Government Entity (CAGE) code for the organization.

The property type is gov:us:cage.

:founded / ou:org:founded
The date on which the org was founded.

The property type is time.

:dissolved / ou:org:dissolved
The date on which the org was dissolved.

The property type is time.

:url / ou:org:url
The primary url for the organization.

The property type is inet:url.

:subs / ou:org:subs
An set of sub-organizations.

The property type is array. Its type has the following options set:

• type: ou:org

• uniq: True

• sorted: True

:orgchart / ou:org:orgchart
The root node for an orgchart made up ou:position nodes.

The property type is ou:position.

:hq / ou:org:hq
A collection of contact information for the “main office” of an org.

The property type is ps:contact.

:locations / ou:org:locations
An array of contacts for facilities operated by the org.

The property type is array. Its type has the following options set:

• type: ps:contact

• uniq: True

• sorted: True

:country / ou:org:country
The organization’s country of origin.

The property type is pol:country.

12.2. Synapse Data Model - Forms 1199

Synapse Documentation, Release 2.141.0

:country:code / ou:org:country:code
The 2 digit ISO 3166 country code for the organization’s country of origin.

The property type is pol:iso2.

:dns:mx / ou:org:dns:mx
An array of MX domains used by email addresses issued by the org.

The property type is array. Its type has the following options set:

• type: inet:fqdn

• uniq: True

• sorted: True

:techniques / ou:org:techniques
Deprecated for scalability. Please use -(uses)> ou:technique. It has the following property options set:

• deprecated: True

The property type is array. Its type has the following options set:

• type: ou:technique

• sorted: True

• uniq: True

:goals / ou:org:goals
The assessed goals of the organization.

The property type is array. Its type has the following options set:

• type: ou:goal

• sorted: True

• uniq: True

ou:org:has

An org owns, controls, or has exclusive use of an object or resource, potentially during a specific period of time.

The base type for the form can be found at ou:org:has.

Properties:

:org / ou:org:has:org
The org who owns or controls the object or resource. It has the following property options set:

• Read Only: True

The property type is ou:org.

:node / ou:org:has:node
The object or resource that is owned or controlled by the org. It has the following property options set:

• Read Only: True

The property type is ndef .

:node:form / ou:org:has:node:form
The form of the object or resource that is owned or controlled by the org. It has the following property options
set:

• Read Only: True

1200 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

The property type is str.

ou:orgnet4

An organization’s IPv4 netblock.

The base type for the form can be found at ou:orgnet4.

Properties:

:org / ou:orgnet4:org
The org guid which owns the netblock. It has the following property options set:

• Read Only: True

The property type is ou:org.

:net / ou:orgnet4:net
Netblock owned by the organization. It has the following property options set:

• Read Only: True

The property type is inet:net4.

:name / ou:orgnet4:name
The name that the organization assigns to this netblock.

The property type is str. Its type has the following options set:

• lower: True

• strip: True

ou:orgnet6

An organization’s IPv6 netblock.

The base type for the form can be found at ou:orgnet6.

Properties:

:org / ou:orgnet6:org
The org guid which owns the netblock. It has the following property options set:

• Read Only: True

The property type is ou:org.

:net / ou:orgnet6:net
Netblock owned by the organization. It has the following property options set:

• Read Only: True

The property type is inet:net6.

:name / ou:orgnet6:name
The name that the organization assigns to this netblock.

The property type is str. Its type has the following options set:

• lower: True

• strip: True

12.2. Synapse Data Model - Forms 1201

Synapse Documentation, Release 2.141.0

ou:orgtype

An org type taxonomy.

The base type for the form can be found at ou:orgtype.

Properties:

:title / ou:orgtype:title
A brief title of the definition.

The property type is str.

:summary / ou:orgtype:summary
A summary of the definition. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:sort / ou:orgtype:sort
A display sort order for siblings.

The property type is int.

:base / ou:orgtype:base
The base taxon. It has the following property options set:

• Read Only: True

The property type is taxon.

:depth / ou:orgtype:depth
The depth indexed from 0. It has the following property options set:

• Read Only: True

The property type is int.

:parent / ou:orgtype:parent
The taxonomy parent. It has the following property options set:

• Read Only: True

The property type is ou:orgtype.

ou:position

A position within an org. May be organized into an org chart.

The base type for the form can be found at ou:position.

Properties:

:org / ou:position:org
The org which has the position.

The property type is ou:org.

:team / ou:position:team
The team that the position is a member of.

The property type is ou:team.

1202 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:contact / ou:position:contact
The contact info for the person who holds the position.

The property type is ps:contact.

:title / ou:position:title
The title of the position.

The property type is str. Its type has the following options set:

• lower: True

• onespace: True

:reports / ou:position:reports
An array of positions which report to this position.

The property type is array. Its type has the following options set:

• type: ou:position

• uniq: True

• sorted: True

ou:preso

A webinar, conference talk, or other type of presentation.

The base type for the form can be found at ou:preso.

Properties:

:organizer / ou:preso:organizer
Contact information for the primary organizer of the presentation.

The property type is ps:contact.

:sponsors / ou:preso:sponsors
A set of contacts which sponsored the presentation.

The property type is array. Its type has the following options set:

• type: ps:contact

• uniq: True

• sorted: True

:presenters / ou:preso:presenters
A set of contacts which gave the presentation.

The property type is array. Its type has the following options set:

• type: ps:contact

• uniq: True

• sorted: True

:title / ou:preso:title
The full name of the presentation. It has the following property options set:

• Example: Synapse 101 - 2021/06/22

The property type is str. Its type has the following options set:

12.2. Synapse Data Model - Forms 1203

Synapse Documentation, Release 2.141.0

• lower: True

:desc / ou:preso:desc
A description of the presentation. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str. Its type has the following options set:

• lower: True

:time / ou:preso:time
The scheduled presentation start time.

The property type is time.

:duration / ou:preso:duration
The scheduled duration of the presentation.

The property type is duration.

:loc / ou:preso:loc
The geopolitical location string for where the presentation was given.

The property type is loc.

:place / ou:preso:place
The geo:place node where the presentation was held.

The property type is geo:place.

:deck:url / ou:preso:deck:url
The URL hosting a copy of the presentation materials.

The property type is inet:url.

:deck:file / ou:preso:deck:file
A file containing the presentation materials.

The property type is file:bytes.

:attendee:url / ou:preso:attendee:url
The URL visited by live attendees of the presentation.

The property type is inet:url.

:recording:url / ou:preso:recording:url
The URL hosting a recording of the presentation.

The property type is inet:url.

:recording:file / ou:preso:recording:file
A file containing a recording of the presentation.

The property type is file:bytes.

:conference / ou:preso:conference
The conference which hosted the presentation.

The property type is ou:conference.

1204 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

ou:suborg

Any parent/child relationship between two orgs. May represent ownership, organizational structure, etc.

The base type for the form can be found at ou:suborg.

Properties:

:org / ou:suborg:org
The org which owns the sub organization. It has the following property options set:

• Read Only: True

The property type is ou:org.

:sub / ou:suborg:sub
The sub org which owned by the org. It has the following property options set:

• Read Only: True

The property type is ou:org.

:perc / ou:suborg:perc
The optional percentage of sub which is owned by org.

The property type is int. Its type has the following options set:

• min: 0

• max: 100

:founded / ou:suborg:founded
The date on which the suborg relationship was founded.

The property type is time.

:dissolved / ou:suborg:dissolved
The date on which the suborg relationship was dissolved.

The property type is time.

:current / ou:suborg:current
Bool indicating if the suborg relationship still current.

The property type is bool.

ou:team

A GUID for a team within an organization.

The base type for the form can be found at ou:team.

Properties:

:org / ou:team:org
A GUID for a human organization such as a company or military unit.

The property type is ou:org.

:name / ou:team:name
The name of an organization. This may be a formal name or informal name of the organization.

The property type is ou:name.

12.2. Synapse Data Model - Forms 1205

Synapse Documentation, Release 2.141.0

ou:technique

A specific technique used to achieve a goal.

The base type for the form can be found at ou:technique.

Properties:

:name / ou:technique:name
The normalized name of the technique.

The property type is str. Its type has the following options set:

• lower: True

• onespace: True

:type / ou:technique:type
The taxonomy classification of the technique.

The property type is ou:technique:taxonomy.

:sophistication / ou:technique:sophistication
The assessed sophistication of the technique.

The property type is meta:sophistication.

:desc / ou:technique:desc
A description of the technique. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:tag / ou:technique:tag
The tag used to annotate nodes where the technique was employed.

The property type is syn:tag.

:mitre:attack:technique / ou:technique:mitre:attack:technique
A mapping to a Mitre ATT&CK technique if applicable.

The property type is it:mitre:attack:technique.

:reporter / ou:technique:reporter
The organization reporting on the technique.

The property type is ou:org.

:reporter:name / ou:technique:reporter:name
The name of the organization reporting on the technique.

The property type is ou:name.

1206 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

ou:technique:taxonomy

An analyst defined taxonomy to classify techniques in different disciplines.

The base type for the form can be found at ou:technique:taxonomy.

Properties:

:title / ou:technique:taxonomy:title
A brief title of the definition.

The property type is str.

:summary / ou:technique:taxonomy:summary
A summary of the definition. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:sort / ou:technique:taxonomy:sort
A display sort order for siblings.

The property type is int.

:base / ou:technique:taxonomy:base
The base taxon. It has the following property options set:

• Read Only: True

The property type is taxon.

:depth / ou:technique:taxonomy:depth
The depth indexed from 0. It has the following property options set:

• Read Only: True

The property type is int.

:parent / ou:technique:taxonomy:parent
The taxonomy parent. It has the following property options set:

• Read Only: True

The property type is ou:technique:taxonomy.

ou:user

A user name within an organization.

The base type for the form can be found at ou:user.

Properties:

:org / ou:user:org
The org guid which owns the netblock. It has the following property options set:

• Read Only: True

The property type is ou:org.

:user / ou:user:user
The username associated with the organization. It has the following property options set:

• Read Only: True

12.2. Synapse Data Model - Forms 1207

Synapse Documentation, Release 2.141.0

The property type is inet:user.

ou:vitals

Vital statistics about an org for a given time period.

The base type for the form can be found at ou:vitals.

Properties:

:asof / ou:vitals:asof
The time that the vitals represent.

The property type is time.

:org / ou:vitals:org
The resolved org.

The property type is ou:org.

:orgname / ou:vitals:orgname
The org name as reported by the source of the vitals.

The property type is ou:name.

:orgfqdn / ou:vitals:orgfqdn
The org FQDN as reported by the source of the vitals.

The property type is inet:fqdn.

:currency / ou:vitals:currency
The currency of the econ:price values.

The property type is econ:currency.

:costs / ou:vitals:costs
The costs/expenditures over the period.

The property type is econ:price.

:revenue / ou:vitals:revenue
The gross revenue over the period.

The property type is econ:price.

:profit / ou:vitals:profit
The net profit over the period.

The property type is econ:price.

:valuation / ou:vitals:valuation
The assessed value of the org.

The property type is econ:price.

:shares / ou:vitals:shares
The number of shares outstanding.

The property type is int.

:population / ou:vitals:population
The population of the org.

The property type is int.

1208 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:delta:costs / ou:vitals:delta:costs
The change in costs over last period.

The property type is econ:price.

:delta:revenue / ou:vitals:delta:revenue
The change in revenue over last period.

The property type is econ:price.

:delta:profit / ou:vitals:delta:profit
The change in profit over last period.

The property type is econ:price.

:delta:valuation / ou:vitals:delta:valuation
The change in valuation over last period.

The property type is econ:price.

:delta:population / ou:vitals:delta:population
The change in population over last period.

The property type is int.

pol:candidate

A candidate for office in a specific race.

The base type for the form can be found at pol:candidate.

Properties:

:contact / pol:candidate:contact
The contact information of the candidate.

The property type is ps:contact.

:race / pol:candidate:race
The race the candidate is participating in.

The property type is pol:race.

:campaign / pol:candidate:campaign
The official campaign to elect the candidate.

The property type is ou:campaign.

:winner / pol:candidate:winner
Records the outcome of the race.

The property type is bool.

:party / pol:candidate:party
The declared political party of the candidate.

The property type is ou:org.

:incumbent / pol:candidate:incumbent
Set to true if the candidate is an incumbent in this race.

The property type is bool.

12.2. Synapse Data Model - Forms 1209

Synapse Documentation, Release 2.141.0

pol:country

A GUID for a country.

The base type for the form can be found at pol:country.

Properties:

:flag / pol:country:flag
A thumbnail image of the flag of the country.

The property type is file:bytes.

:iso2 / pol:country:iso2
The 2 digit ISO 3166 country code.

The property type is pol:iso2.

:iso3 / pol:country:iso3
The 3 digit ISO 3166 country code.

The property type is pol:iso3.

:isonum / pol:country:isonum
The ISO integer country code.

The property type is pol:isonum.

:pop / pol:country:pop
Deprecated. Please use :vitals::population. It has the following property options set:

• deprecated: True

The property type is int.

:tld / pol:country:tld
A Fully Qualified Domain Name (FQDN).

The property type is inet:fqdn.

:name / pol:country:name
The name of the country.

The property type is geo:name.

:names / pol:country:names
An array of alternate or localized names for the country.

The property type is array. Its type has the following options set:

• type: geo:name

• uniq: True

• sorted: True

:government / pol:country:government
The ou:org node which represents the government of the country.

The property type is ou:org.

:place / pol:country:place
A geo:place node representing the geospatial properties of the country.

The property type is geo:place.

1210 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:founded / pol:country:founded
The date that the country was founded.

The property type is time.

:dissolved / pol:country:dissolved
The date that the country was dissolved.

The property type is time.

:vitals / pol:country:vitals
The most recent known vitals for the country.

The property type is pol:vitals.

pol:election

An election involving one or more races for office.

The base type for the form can be found at pol:election.

Properties:

:name / pol:election:name
The name of the election. It has the following property options set:

• Example: 2022 united states congressional midterm election

The property type is str. Its type has the following options set:

• onespace: True

• lower: True

:time / pol:election:time
The date of the election.

The property type is time.

pol:immigration:status

A node which tracks the immigration status of a contact.

The base type for the form can be found at pol:immigration:status.

Properties:

:contact / pol:immigration:status:contact
The contact information for the immigration status record.

The property type is ps:contact.

:country / pol:immigration:status:country
The country that the contact is/has immigrated to.

The property type is pol:country.

:type / pol:immigration:status:type
A taxonomy entry for the immigration status type. It has the following property options set:

• Example: citizen.naturalized

The property type is pol:immigration:status:type:taxonomy.

12.2. Synapse Data Model - Forms 1211

Synapse Documentation, Release 2.141.0

:state / pol:immigration:status:state
The state of the immigration status.

The property type is str. Its type has the following options set:

• enums: requested,active,rejected,revoked,renounced

:began / pol:immigration:status:began
The time when the status was granted to the contact.

The property type is time.

:ended / pol:immigration:status:ended
The time when the status no longer applied to the contact.

The property type is time.

pol:immigration:status:type:taxonomy

A taxonomy of immigration types.

The base type for the form can be found at pol:immigration:status:type:taxonomy.

Properties:

:title / pol:immigration:status:type:taxonomy:title
A brief title of the definition.

The property type is str.

:summary / pol:immigration:status:type:taxonomy:summary
A summary of the definition. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:sort / pol:immigration:status:type:taxonomy:sort
A display sort order for siblings.

The property type is int.

:base / pol:immigration:status:type:taxonomy:base
The base taxon. It has the following property options set:

• Read Only: True

The property type is taxon.

:depth / pol:immigration:status:type:taxonomy:depth
The depth indexed from 0. It has the following property options set:

• Read Only: True

The property type is int.

:parent / pol:immigration:status:type:taxonomy:parent
The taxonomy parent. It has the following property options set:

• Read Only: True

The property type is pol:immigration:status:type:taxonomy.

1212 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

pol:office

An elected or appointed office.

The base type for the form can be found at pol:office.

Properties:

:title / pol:office:title
The title of the political office. It has the following property options set:

• Example: united states senator

The property type is ou:jobtitle.

:position / pol:office:position
The position this office holds in the org chart for the governing body.

The property type is ou:position.

:termlimit / pol:office:termlimit
The maximum number of times a single person may hold the office.

The property type is int.

:govbody / pol:office:govbody
The governmental body which contains the office.

The property type is ou:org.

pol:pollingplace

An official place where ballots may be cast for a specific election.

The base type for the form can be found at pol:pollingplace.

Properties:

:election / pol:pollingplace:election
The election that the polling place is designated for.

The property type is pol:election.

:name / pol:pollingplace:name
The name of the polling place at the time of the election. This may differ from the official place name.

The property type is geo:name.

:place / pol:pollingplace:place
The place where votes were cast.

The property type is geo:place.

:opens / pol:pollingplace:opens
The time that the polling place is scheduled to open.

The property type is time.

:closes / pol:pollingplace:closes
The time that the polling place is scheduled to close.

The property type is time.

12.2. Synapse Data Model - Forms 1213

Synapse Documentation, Release 2.141.0

:opened / pol:pollingplace:opened
The time that the polling place opened.

The property type is time.

:closed / pol:pollingplace:closed
The time that the polling place closed.

The property type is time.

pol:race

An individual race for office.

The base type for the form can be found at pol:race.

Properties:

:election / pol:race:election
The election that includes the race.

The property type is pol:election.

:office / pol:race:office
The political office that the candidates in the race are running for.

The property type is pol:office.

:voters / pol:race:voters
The number of eligible voters for this race.

The property type is int.

:turnout / pol:race:turnout
The number of individuals who voted in this race.

The property type is int.

pol:term

A term in office held by a specific individual.

The base type for the form can be found at pol:term.

Properties:

:office / pol:term:office
The office held for the term.

The property type is pol:office.

:start / pol:term:start
The start of the term of office.

The property type is time.

:end / pol:term:end
The end of the term of office.

The property type is time.

1214 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:race / pol:term:race
The race that determined who held office during the term.

The property type is pol:race.

:contact / pol:term:contact
The contact information of the person who held office during the term.

The property type is ps:contact.

:party / pol:term:party
The political party of the person who held office during the term.

The property type is ou:org.

pol:vitals

A set of vital statistics about a country.

The base type for the form can be found at pol:vitals.

Properties:

:country / pol:vitals:country
The country that the statistics are about.

The property type is pol:country.

:asof / pol:vitals:asof
The time that the vitals were measured.

The property type is time.

:area / pol:vitals:area
The area of the country.

The property type is geo:area.

:population / pol:vitals:population
The total number of people living in the country.

The property type is int.

:currency / pol:vitals:currency
The national currency.

The property type is econ:currency.

:econ:currency / pol:vitals:econ:currency
The currency used to record price properties.

The property type is econ:currency.

:econ:gdp / pol:vitals:econ:gdp
The gross domestic product of the country.

The property type is econ:price.

12.2. Synapse Data Model - Forms 1215

Synapse Documentation, Release 2.141.0

proj:attachment

A file attachment added to a ticket or comment.

The base type for the form can be found at proj:attachment.

Properties:

:name / proj:attachment:name
The name of the file that was attached.

The property type is file:base.

:file / proj:attachment:file
The file that was attached.

The property type is file:bytes.

:creator / proj:attachment:creator
The synapse user who added the attachment.

The property type is syn:user.

:created / proj:attachment:created
The time the attachment was added.

The property type is time.

:ticket / proj:attachment:ticket
The ticket the attachment was added to.

The property type is proj:ticket.

:comment / proj:attachment:comment
The comment the attachment was added to.

The property type is proj:comment.

proj:comment

A user comment on a ticket.

The base type for the form can be found at proj:comment.

Properties:

:creator / proj:comment:creator
The synapse user who added the comment.

The property type is syn:user.

:created / proj:comment:created
The time the comment was added.

The property type is time.

:updated / proj:comment:updated
The last time the comment was updated.

The property type is time. Its type has the following options set:

• ismax: True

1216 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:ticket / proj:comment:ticket
The ticket the comment was added to.

The property type is proj:ticket.

:text / proj:comment:text
The text of the comment.

The property type is str.

proj:epic

A collection of tickets related to a topic.

The base type for the form can be found at proj:epic.

Properties:

:name / proj:epic:name
The name of the epic.

The property type is str. Its type has the following options set:

• onespace: True

:project / proj:epic:project
The project containing the epic.

The property type is proj:project.

:creator / proj:epic:creator
The synapse user who created the epic.

The property type is syn:user.

:created / proj:epic:created
The time the epic was created.

The property type is time.

:updated / proj:epic:updated
The last time the epic was updated.

The property type is time. Its type has the following options set:

• ismax: True

proj:project

A project in a ticketing system.

The base type for the form can be found at proj:project.

Properties:

:name / proj:project:name
The project name.

The property type is str. Its type has the following options set:

• lower: True

• onespace: True

12.2. Synapse Data Model - Forms 1217

Synapse Documentation, Release 2.141.0

:desc / proj:project:desc
The project description. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:creator / proj:project:creator
The synapse user who created the project.

The property type is syn:user.

:created / proj:project:created
The time the project was created.

The property type is time.

proj:sprint

A timeboxed period to complete a set amount of work.

The base type for the form can be found at proj:sprint.

Properties:

:name / proj:sprint:name
The name of the sprint.

The property type is str. Its type has the following options set:

• lower: True

• onespace: True

:status / proj:sprint:status
The sprint status.

The property type is str. Its type has the following options set:

• enums: planned,current,completed

:project / proj:sprint:project
The project containing the sprint.

The property type is proj:project.

:creator / proj:sprint:creator
The synapse user who created the sprint.

The property type is syn:user.

:created / proj:sprint:created
The date the sprint was created.

The property type is time.

:period / proj:sprint:period
The interval for the sprint.

The property type is ival.

:desc / proj:sprint:desc
A description of the sprint.

The property type is str.

1218 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

proj:ticket

A ticket in a ticketing system.

The base type for the form can be found at proj:ticket.

Properties:

:project / proj:ticket:project
The project containing the ticket.

The property type is proj:project.

:ext:id / proj:ticket:ext:id
A ticket ID from an external system.

The property type is str. Its type has the following options set:

• strip: True

:ext:url / proj:ticket:ext:url
A URL to the ticket in an external system.

The property type is inet:url.

:ext:creator / proj:ticket:ext:creator
Ticket creator contact information from an external system.

The property type is ps:contact.

:epic / proj:ticket:epic
The epic that includes the ticket.

The property type is proj:epic.

:created / proj:ticket:created
The time the ticket was created.

The property type is time.

:updated / proj:ticket:updated
The last time the ticket was updated.

The property type is time. Its type has the following options set:

• ismax: True

:name / proj:ticket:name
The name of the ticket.

The property type is str. Its type has the following options set:

• onespace: True

:desc / proj:ticket:desc
A description of the ticket.

The property type is str.

:points / proj:ticket:points
Optional SCRUM style story points value.

The property type is int.

:status / proj:ticket:status
The ticket completion status.

12.2. Synapse Data Model - Forms 1219

Synapse Documentation, Release 2.141.0

The property type is int. Its type has the following options set:

• enums: ((0, 'new'), (10, 'in validation'), (20, 'in backlog'), (30, 'in sprint'),
(40, 'in progress'), (50, 'in review'), (60, 'completed'), (70, 'done'), (80,
'blocked'))

:sprint / proj:ticket:sprint
The sprint that contains the ticket.

The property type is proj:sprint.

:priority / proj:ticket:priority
The priority of the ticket.

The property type is int. Its type has the following options set:

• enums: ((0, 'none'), (10, 'lowest'), (20, 'low'), (30, 'medium'), (40, 'high'),
(50, 'highest'))

:type / proj:ticket:type
The type of ticket. (eg story / bug).

The property type is str. Its type has the following options set:

• lower: True

• strip: True

:creator / proj:ticket:creator
The synapse user who created the ticket.

The property type is syn:user.

:assignee / proj:ticket:assignee
The synapse user who the ticket is assigned to.

The property type is syn:user.

ps:achievement

An instance of an individual receiving an award.

The base type for the form can be found at ps:achievement.

Properties:

:awardee / ps:achievement:awardee
The recipient of the award.

The property type is ps:contact.

:award / ps:achievement:award
The award bestowed on the awardee.

The property type is ou:award.

:awarded / ps:achievement:awarded
The date the award was granted to the awardee.

The property type is time.

:expires / ps:achievement:expires
The date the award or certification expires.

The property type is time.

1220 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:revoked / ps:achievement:revoked
The date the award was revoked by the org.

The property type is time.

ps:contact

A GUID for a contact info record.

The base type for the form can be found at ps:contact.

Properties:

:org / ps:contact:org
The org which this contact represents.

The property type is ou:org.

:type / ps:contact:type
The type of contact which may be used for entity resolution.

The property type is ps:contact:type:taxonomy.

:asof / ps:contact:asof
A date/time value. It has the following property options set:

• date: The time this contact was created or modified.

The property type is time.

:person / ps:contact:person
The ps:person GUID which owns this contact.

The property type is ps:person.

:vitals / ps:contact:vitals
The most recent known vitals for the contact.

The property type is ps:vitals.

:name / ps:contact:name
The person name listed for the contact.

The property type is ps:name.

:desc / ps:contact:desc
A description of this contact.

The property type is str.

:title / ps:contact:title
The job/org title listed for this contact.

The property type is ou:jobtitle.

:photo / ps:contact:photo
The photo listed for this contact.

The property type is file:bytes.

:orgname / ps:contact:orgname
The listed org/company name for this contact.

The property type is ou:name.

12.2. Synapse Data Model - Forms 1221

Synapse Documentation, Release 2.141.0

:orgfqdn / ps:contact:orgfqdn
The listed org/company FQDN for this contact.

The property type is inet:fqdn.

:user / ps:contact:user
The username or handle for this contact.

The property type is inet:user.

:web:acct / ps:contact:web:acct
The social media account for this contact.

The property type is inet:web:acct.

:web:group / ps:contact:web:group
A web group representing this contact.

The property type is inet:web:group.

:birth:place / ps:contact:birth:place
A fully resolved place of birth for this contact.

The property type is geo:place.

:birth:place:loc / ps:contact:birth:place:loc
The loc of the place of birth of this contact.

The property type is loc.

:birth:place:name / ps:contact:birth:place:name
The name of the place of birth of this contact.

The property type is geo:name.

:death:place / ps:contact:death:place
A fully resolved place of death for this contact.

The property type is geo:place.

:death:place:loc / ps:contact:death:place:loc
The loc of the place of death of this contact.

The property type is loc.

:death:place:name / ps:contact:death:place:name
The name of the place of death of this contact.

The property type is geo:name.

:dob / ps:contact:dob
The date of birth for this contact.

The property type is time.

:dod / ps:contact:dod
The date of death for this contact.

The property type is time.

:url / ps:contact:url
The home or main site for this contact.

The property type is inet:url.

1222 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:email / ps:contact:email
The main email address for this contact.

The property type is inet:email.

:email:work / ps:contact:email:work
The work email address for this contact.

The property type is inet:email.

:loc / ps:contact:loc
Best known contact geopolitical location.

The property type is loc.

:address / ps:contact:address
The street address listed for the contact. It has the following property options set:

• disp: {'hint': 'text'}

The property type is geo:address.

:place / ps:contact:place
The place associated with this contact.

The property type is geo:place.

:place:name / ps:contact:place:name
The reported name of the place associated with this contact.

The property type is geo:name.

:phone / ps:contact:phone
The main phone number for this contact.

The property type is tel:phone.

:phone:fax / ps:contact:phone:fax
The fax number for this contact.

The property type is tel:phone.

:phone:work / ps:contact:phone:work
The work phone number for this contact.

The property type is tel:phone.

:id:number / ps:contact:id:number
An ID number issued by an org and associated with this contact.

The property type is ou:id:number.

:adid / ps:contact:adid
A Advertising ID associated with this contact.

The property type is it:adid.

:imid / ps:contact:imid
An IMID associated with the contact.

The property type is tel:mob:imid.

:imid:imei / ps:contact:imid:imei
An IMEI associated with the contact.

The property type is tel:mob:imei.

12.2. Synapse Data Model - Forms 1223

Synapse Documentation, Release 2.141.0

:imid:imsi / ps:contact:imid:imsi
An IMSI associated with the contact.

The property type is tel:mob:imsi.

:names / ps:contact:names
An array of associated names/aliases for the person.

The property type is array. Its type has the following options set:

• type: ps:name

• uniq: True

• sorted: True

:orgnames / ps:contact:orgnames
An array of associated names/aliases for the organization.

The property type is array. Its type has the following options set:

• type: ou:name

• uniq: True

• sorted: True

:emails / ps:contact:emails
An array of secondary/associated email addresses.

The property type is array. Its type has the following options set:

• type: inet:email

• uniq: True

• sorted: True

:web:accts / ps:contact:web:accts
An array of secondary/associated web accounts.

The property type is array. Its type has the following options set:

• type: inet:web:acct

• uniq: True

• sorted: True

:id:numbers / ps:contact:id:numbers
An array of secondary/associated IDs.

The property type is array. Its type has the following options set:

• type: ou:id:number

• uniq: True

• sorted: True

:users / ps:contact:users
An array of secondary/associated user names.

The property type is array. Its type has the following options set:

• type: inet:user

• uniq: True

1224 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

• sorted: True

:crypto:address / ps:contact:crypto:address
A crypto currency address associated with the contact.

The property type is crypto:currency:address.

:lang / ps:contact:lang
The language specified for the contact.

The property type is lang:language.

:langs / ps:contact:langs
An array of alternative languages specified for the contact.

The property type is array. Its type has the following options set:

• type: lang:language

ps:contact:type:taxonomy

A taxonomy of contact types.

The base type for the form can be found at ps:contact:type:taxonomy.

Properties:

:title / ps:contact:type:taxonomy:title
A brief title of the definition.

The property type is str.

:summary / ps:contact:type:taxonomy:summary
A summary of the definition. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:sort / ps:contact:type:taxonomy:sort
A display sort order for siblings.

The property type is int.

:base / ps:contact:type:taxonomy:base
The base taxon. It has the following property options set:

• Read Only: True

The property type is taxon.

:depth / ps:contact:type:taxonomy:depth
The depth indexed from 0. It has the following property options set:

• Read Only: True

The property type is int.

:parent / ps:contact:type:taxonomy:parent
The taxonomy parent. It has the following property options set:

• Read Only: True

The property type is ps:contact:type:taxonomy.

12.2. Synapse Data Model - Forms 1225

Synapse Documentation, Release 2.141.0

ps:contactlist

A GUID for a list of associated contacts.

The base type for the form can be found at ps:contactlist.

Properties:

:contacts / ps:contactlist:contacts
The array of contacts contained in the list.

The property type is array. Its type has the following options set:

• type: ps:contact

• uniq: True

• split: ,

• sorted: True

:source:host / ps:contactlist:source:host
The host from which the contact list was extracted.

The property type is it:host.

:source:file / ps:contactlist:source:file
The file from which the contact list was extracted.

The property type is file:bytes.

:source:acct / ps:contactlist:source:acct
The web account from which the contact list was extracted.

The property type is inet:web:acct.

ps:education

A period of education for an individual.

The base type for the form can be found at ps:education.

Properties:

:student / ps:education:student
The contact of the person being educated.

The property type is ps:contact.

:institution / ps:education:institution
The contact info for the org providing educational services.

The property type is ps:contact.

:attended:first / ps:education:attended:first
The first date the student attended a class.

The property type is time.

:attended:last / ps:education:attended:last
The last date the student attended a class.

The property type is time.

1226 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:classes / ps:education:classes
The classes attended by the student.

The property type is array. Its type has the following options set:

• type: edu:class

• uniq: True

• sorted: True

:achievement / ps:education:achievement
The achievement awarded to the individual.

The property type is ps:achievement.

ps:name

An arbitrary, lower spaced string with normalized whitespace.

The base type for the form can be found at ps:name.

An example of ps:name:

• robert grey

Properties:

:sur / ps:name:sur
The surname part of the name.

The property type is ps:tokn.

:middle / ps:name:middle
The middle name part of the name.

The property type is ps:tokn.

:given / ps:name:given
The given name part of the name.

The property type is ps:tokn.

ps:person

A GUID for a person.

The base type for the form can be found at ps:person.

Properties:

:dob / ps:person:dob
The date on which the person was born.

The property type is time.

:dod / ps:person:dod
The date on which the person died.

The property type is time.

:img / ps:person:img
Deprecated: use ps:person:photo. It has the following property options set:

• deprecated: True

12.2. Synapse Data Model - Forms 1227

Synapse Documentation, Release 2.141.0

The property type is file:bytes.

:photo / ps:person:photo
The primary image of a person.

The property type is file:bytes.

:nick / ps:person:nick
A username commonly used by the person.

The property type is inet:user.

:vitals / ps:person:vitals
The most recent known vitals for the person.

The property type is ps:vitals.

:name / ps:person:name
The localized name for the person.

The property type is ps:name.

:name:sur / ps:person:name:sur
The surname of the person.

The property type is ps:tokn.

:name:middle / ps:person:name:middle
The middle name of the person.

The property type is ps:tokn.

:name:given / ps:person:name:given
The given name of the person.

The property type is ps:tokn.

:names / ps:person:names
Variations of the name for the person.

The property type is array. Its type has the following options set:

• type: ps:name

• uniq: True

• sorted: True

:nicks / ps:person:nicks
Usernames used by the person.

The property type is array. Its type has the following options set:

• type: inet:user

• uniq: True

• sorted: True

1228 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

ps:person:has

A person owns, controls, or has exclusive use of an object or resource, potentially during a specific period of time.

The base type for the form can be found at ps:person:has.

Properties:

:person / ps:person:has:person
The person who owns or controls the object or resource. It has the following property options set:

• Read Only: True

The property type is ps:person.

:node / ps:person:has:node
The object or resource that is owned or controlled by the person. It has the following property options set:

• Read Only: True

The property type is ndef .

:node:form / ps:person:has:node:form
The form of the object or resource that is owned or controlled by the person. It has the following property options
set:

• Read Only: True

The property type is str.

ps:persona

A GUID for a suspected person.

The base type for the form can be found at ps:persona.

Properties:

:person / ps:persona:person
The real person behind the persona.

The property type is ps:person.

:dob / ps:persona:dob
The Date of Birth (DOB) if known.

The property type is time.

:img / ps:persona:img
The primary image of a suspected person.

The property type is file:bytes.

:nick / ps:persona:nick
A username commonly used by the suspected person.

The property type is inet:user.

:name / ps:persona:name
The localized name for the suspected person.

The property type is ps:name.

12.2. Synapse Data Model - Forms 1229

Synapse Documentation, Release 2.141.0

:name:sur / ps:persona:name:sur
The surname of the suspected person.

The property type is ps:tokn.

:name:middle / ps:persona:name:middle
The middle name of the suspected person.

The property type is ps:tokn.

:name:given / ps:persona:name:given
The given name of the suspected person.

The property type is ps:tokn.

:names / ps:persona:names
Variations of the name for a persona.

The property type is array. Its type has the following options set:

• type: ps:name

• uniq: True

• sorted: True

:nicks / ps:persona:nicks
Usernames used by the persona.

The property type is array. Its type has the following options set:

• type: inet:user

• uniq: True

• sorted: True

ps:persona:has

A persona owns, controls, or has exclusive use of an object or resource, potentially during a specific period of time.

The base type for the form can be found at ps:persona:has.

Properties:

:persona / ps:persona:has:persona
The persona who owns or controls the object or resource. It has the following property options set:

• Read Only: True

The property type is ps:persona.

:node / ps:persona:has:node
The object or resource that is owned or controlled by the persona. It has the following property options set:

• Read Only: True

The property type is ndef .

:node:form / ps:persona:has:node:form
The form of the object or resource that is owned or controlled by the persona. It has the following property
options set:

• Read Only: True

The property type is str.

1230 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

ps:proficiency

The assessment that a given contact possesses a specific skill.

The base type for the form can be found at ps:proficiency.

Properties:

:skill / ps:proficiency:skill
The skill in which the contact is proficient.

The property type is ps:skill.

:contact / ps:proficiency:contact
The contact which is proficient in the skill.

The property type is ps:contact.

ps:skill

A specific skill which a person or organization may have.

The base type for the form can be found at ps:skill.

Properties:

:name / ps:skill:name
The name of the skill.

The property type is str. Its type has the following options set:

• lower: True

• onespace: True

:type / ps:skill:type
The type of skill as a taxonomy.

The property type is ps:skill:type:taxonomy.

ps:skill:type:taxonomy

A taxonomy of skill types.

The base type for the form can be found at ps:skill:type:taxonomy.

Properties:

:title / ps:skill:type:taxonomy:title
A brief title of the definition.

The property type is str.

:summary / ps:skill:type:taxonomy:summary
A summary of the definition. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:sort / ps:skill:type:taxonomy:sort
A display sort order for siblings.

The property type is int.

12.2. Synapse Data Model - Forms 1231

Synapse Documentation, Release 2.141.0

:base / ps:skill:type:taxonomy:base
The base taxon. It has the following property options set:

• Read Only: True

The property type is taxon.

:depth / ps:skill:type:taxonomy:depth
The depth indexed from 0. It has the following property options set:

• Read Only: True

The property type is int.

:parent / ps:skill:type:taxonomy:parent
The taxonomy parent. It has the following property options set:

• Read Only: True

The property type is ps:skill:type:taxonomy.

ps:tokn

A single name element (potentially given or sur).

The base type for the form can be found at ps:tokn.

An example of ps:tokn:

• robert

Properties:

ps:vitals

Statistics and demographic data about a person or contact.

The base type for the form can be found at ps:vitals.

Properties:

:asof / ps:vitals:asof
The time the vitals were gathered or computed.

The property type is time.

:contact / ps:vitals:contact
The contact that the vitals are about.

The property type is ps:contact.

:person / ps:vitals:person
The person that the vitals are about.

The property type is ps:person.

:height / ps:vitals:height
The height of the person or contact.

The property type is geo:dist.

:weight / ps:vitals:weight
The weight of the person or contact.

The property type is mass.

1232 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:econ:currency / ps:vitals:econ:currency
The currency that the price values are recorded using.

The property type is econ:currency.

:econ:net:worth / ps:vitals:econ:net:worth
The net worth of the contact.

The property type is econ:price.

:econ:annual:income / ps:vitals:econ:annual:income
The yearly income of the contact.

The property type is econ:price.

ps:workhist

A GUID representing entry in a contact’s work history.

The base type for the form can be found at ps:workhist.

Properties:

:contact / ps:workhist:contact
The contact which has the work history.

The property type is ps:contact.

:org / ps:workhist:org
The org that this work history orgname refers to.

The property type is ou:org.

:orgname / ps:workhist:orgname
The reported name of the org the contact worked for.

The property type is ou:name.

:orgfqdn / ps:workhist:orgfqdn
The reported fqdn of the org the contact worked for.

The property type is inet:fqdn.

:jobtype / ps:workhist:jobtype
The type of job.

The property type is ou:jobtype.

:employment / ps:workhist:employment
The type of employment.

The property type is ou:employment.

:jobtitle / ps:workhist:jobtitle
The job title.

The property type is ou:jobtitle.

:started / ps:workhist:started
The date that the contact began working.

The property type is time.

12.2. Synapse Data Model - Forms 1233

Synapse Documentation, Release 2.141.0

:ended / ps:workhist:ended
The date that the contact stopped working.

The property type is time.

:duration / ps:workhist:duration
The duration of the period of work.

The property type is duration.

:pay / ps:workhist:pay
The estimated/average yearly pay for the work.

The property type is econ:price.

:currency / ps:workhist:currency
The currency that the yearly pay was delivered in.

The property type is econ:currency.

risk:alert

An instance of an alert which indicates the presence of a risk.

The base type for the form can be found at risk:alert.

Properties:

:type / risk:alert:type
A type for the alert, as a taxonomy entry.

The property type is risk:alert:taxonomy.

:name / risk:alert:name
A brief name for the alert.

The property type is str.

:desc / risk:alert:desc
A free-form description / overview of the alert. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:benign / risk:alert:benign
Set to true if the alert has been confirmed benign. Set to false if malicious.

The property type is bool.

:priority / risk:alert:priority
A numeric value used to rank alerts by priority.

The property type is int.

:verdict / risk:alert:verdict
A verdict about why the alert is malicious or benign, as a taxonomy entry. It has the following property options
set:

• Example: benign.false_positive

The property type is risk:alert:verdict:taxonomy.

1234 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:engine / risk:alert:engine
The software that generated the alert.

The property type is it:prod:softver.

:detected / risk:alert:detected
The time the alerted condition was detected.

The property type is time.

:vuln / risk:alert:vuln
The optional vulnerability that the alert indicates.

The property type is risk:vuln.

:attack / risk:alert:attack
A confirmed attack that this alert indicates.

The property type is risk:attack.

:url / risk:alert:url
A URL which documents the alert.

The property type is inet:url.

:ext:id / risk:alert:ext:id
An external identifier for the alert.

The property type is str.

risk:alert:taxonomy

A taxonomy of alert types.

The base type for the form can be found at risk:alert:taxonomy.

Properties:

risk:alert:verdict:taxonomy

A taxonomy of verdicts for the origin and validity of the alert.

The base type for the form can be found at risk:alert:verdict:taxonomy.

Properties:

risk:attack

An instance of an actor attacking a target.

The base type for the form can be found at risk:attack.

Properties:

:desc / risk:attack:desc
A description of the attack. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

12.2. Synapse Data Model - Forms 1235

Synapse Documentation, Release 2.141.0

:type / risk:attack:type
A type for the attack, as a taxonomy entry. It has the following property options set:

• Example: cno.phishing

The property type is risk:attacktype.

:reporter / risk:attack:reporter
The organization reporting on the attack.

The property type is ou:org.

:reporter:name / risk:attack:reporter:name
The name of the organization reporting on the attack.

The property type is ou:name.

:time / risk:attack:time
Set if the time of the attack is known.

The property type is time.

:detected / risk:attack:detected
The first confirmed detection time of the attack.

The property type is time.

:success / risk:attack:success
Set if the attack was known to have succeeded or not.

The property type is bool.

:targeted / risk:attack:targeted
Set if the attack was assessed to be targeted or not.

The property type is bool.

:goal / risk:attack:goal
The tactical goal of this specific attack.

The property type is ou:goal.

:campaign / risk:attack:campaign
Set if the attack was part of a larger campaign.

The property type is ou:campaign.

:compromise / risk:attack:compromise
A compromise that this attack contributed to.

The property type is risk:compromise.

:severity / risk:attack:severity
An integer based relative severity score for the attack.

The property type is int.

:sophistication / risk:attack:sophistication
The assessed sophistication of the attack.

The property type is meta:sophistication.

:prev / risk:attack:prev
The previous/parent attack in a list or hierarchy.

The property type is risk:attack.

1236 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:actor:org / risk:attack:actor:org
Deprecated. Please use :attacker to allow entity resolution. It has the following property options set:

• deprecated: True

The property type is ou:org.

:actor:person / risk:attack:actor:person
Deprecated. Please use :attacker to allow entity resolution. It has the following property options set:

• deprecated: True

The property type is ps:person.

:attacker / risk:attack:attacker
Contact information representing the attacker.

The property type is ps:contact.

:target / risk:attack:target
Deprecated. Please use -(targets)> light weight edges. It has the following property options set:

• deprecated: True

The property type is ps:contact.

:target:org / risk:attack:target:org
Deprecated. Please use -(targets)> light weight edges. It has the following property options set:

• deprecated: True

The property type is ou:org.

:target:host / risk:attack:target:host
Deprecated. Please use -(targets)> light weight edges. It has the following property options set:

• deprecated: True

The property type is it:host.

:target:person / risk:attack:target:person
Deprecated. Please use -(targets)> light weight edges. It has the following property options set:

• deprecated: True

The property type is ps:person.

:target:place / risk:attack:target:place
Deprecated. Please use -(targets)> light weight edges. It has the following property options set:

• deprecated: True

The property type is geo:place.

:via:ipv4 / risk:attack:via:ipv4
Deprecated. Please use -(uses)> light weight edges. It has the following property options set:

• deprecated: True

The property type is inet:ipv4.

:via:ipv6 / risk:attack:via:ipv6
Deprecated. Please use -(uses)> light weight edges. It has the following property options set:

• deprecated: True

The property type is inet:ipv6.

12.2. Synapse Data Model - Forms 1237

Synapse Documentation, Release 2.141.0

:via:email / risk:attack:via:email
Deprecated. Please use -(uses)> light weight edges. It has the following property options set:

• deprecated: True

The property type is inet:email.

:via:phone / risk:attack:via:phone
Deprecated. Please use -(uses)> light weight edges. It has the following property options set:

• deprecated: True

The property type is tel:phone.

:used:vuln / risk:attack:used:vuln
Deprecated. Please use -(uses)> light weight edges. It has the following property options set:

• deprecated: True

The property type is risk:vuln.

:used:url / risk:attack:used:url
Deprecated. Please use -(uses)> light weight edges. It has the following property options set:

• deprecated: True

The property type is inet:url.

:used:host / risk:attack:used:host
Deprecated. Please use -(uses)> light weight edges. It has the following property options set:

• deprecated: True

The property type is it:host.

:used:email / risk:attack:used:email
Deprecated. Please use -(uses)> light weight edges. It has the following property options set:

• deprecated: True

The property type is inet:email.

:used:file / risk:attack:used:file
Deprecated. Please use -(uses)> light weight edges. It has the following property options set:

• deprecated: True

The property type is file:bytes.

:used:server / risk:attack:used:server
Deprecated. Please use -(uses)> light weight edges. It has the following property options set:

• deprecated: True

The property type is inet:server.

:used:software / risk:attack:used:software
Deprecated. Please use -(uses)> light weight edges. It has the following property options set:

• deprecated: True

The property type is it:prod:softver.

:techniques / risk:attack:techniques
Deprecated for scalability. Please use -(uses)> ou:technique. It has the following property options set:

• deprecated: True

1238 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

The property type is array. Its type has the following options set:

• type: ou:technique

• sorted: True

• uniq: True

:url / risk:attack:url
A URL which documents the attack.

The property type is inet:url.

:ext:id / risk:attack:ext:id
An external unique ID for the attack.

The property type is str.

risk:attacktype

A taxonomy of attack types.

The base type for the form can be found at risk:attacktype.

Properties:

:title / risk:attacktype:title
A brief title of the definition.

The property type is str.

:summary / risk:attacktype:summary
A summary of the definition. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:sort / risk:attacktype:sort
A display sort order for siblings.

The property type is int.

:base / risk:attacktype:base
The base taxon. It has the following property options set:

• Read Only: True

The property type is taxon.

:depth / risk:attacktype:depth
The depth indexed from 0. It has the following property options set:

• Read Only: True

The property type is int.

:parent / risk:attacktype:parent
The taxonomy parent. It has the following property options set:

• Read Only: True

The property type is risk:attacktype.

12.2. Synapse Data Model - Forms 1239

Synapse Documentation, Release 2.141.0

risk:availability

A taxonomy of availability status values.

The base type for the form can be found at risk:availability.

Properties:

:title / risk:availability:title
A brief title of the definition.

The property type is str.

:summary / risk:availability:summary
A summary of the definition. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:sort / risk:availability:sort
A display sort order for siblings.

The property type is int.

:base / risk:availability:base
The base taxon. It has the following property options set:

• Read Only: True

The property type is taxon.

:depth / risk:availability:depth
The depth indexed from 0. It has the following property options set:

• Read Only: True

The property type is int.

:parent / risk:availability:parent
The taxonomy parent. It has the following property options set:

• Read Only: True

The property type is risk:availability.

risk:compromise

An instance of a compromise and its aggregate impact.

The base type for the form can be found at risk:compromise.

Properties:

:name / risk:compromise:name
A brief name for the compromise event.

The property type is str. Its type has the following options set:

• lower: True

• onespace: True

:desc / risk:compromise:desc
A prose description of the compromise event. It has the following property options set:

1240 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

• disp: {'hint': 'text'}

The property type is str.

:reporter / risk:compromise:reporter
The organization reporting on the compromise.

The property type is ou:org.

:reporter:name / risk:compromise:reporter:name
The name of the organization reporting on the compromise.

The property type is ou:name.

:type / risk:compromise:type
A type for the compromise, as a taxonomy entry. It has the following property options set:

• Example: cno.breach

The property type is risk:compromisetype.

:vector / risk:compromise:vector
The attack assessed to be the initial compromise vector.

The property type is risk:attack.

:target / risk:compromise:target
Contact information representing the target.

The property type is ps:contact.

:attacker / risk:compromise:attacker
Contact information representing the attacker.

The property type is ps:contact.

:campaign / risk:compromise:campaign
The campaign that this compromise is part of.

The property type is ou:campaign.

:time / risk:compromise:time
Earliest known evidence of compromise.

The property type is time.

:lasttime / risk:compromise:lasttime
Last known evidence of compromise.

The property type is time.

:duration / risk:compromise:duration
The duration of the compromise.

The property type is duration.

:detected / risk:compromise:detected
The first confirmed detection time of the compromise.

The property type is time.

:loss:pii / risk:compromise:loss:pii
The number of records compromised which contain PII.

The property type is int.

12.2. Synapse Data Model - Forms 1241

Synapse Documentation, Release 2.141.0

:loss:econ / risk:compromise:loss:econ
The total economic cost of the compromise.

The property type is econ:price.

:loss:life / risk:compromise:loss:life
The total loss of life due to the compromise.

The property type is int.

:loss:bytes / risk:compromise:loss:bytes
An estimate of the volume of data compromised.

The property type is int.

:ransom:paid / risk:compromise:ransom:paid
The value of the ransom paid by the target.

The property type is econ:price.

:ransom:price / risk:compromise:ransom:price
The value of the ransom demanded by the attacker.

The property type is econ:price.

:response:cost / risk:compromise:response:cost
The economic cost of the response and mitigation efforts.

The property type is econ:price.

:theft:price / risk:compromise:theft:price
The total value of the theft of assets.

The property type is econ:price.

:econ:currency / risk:compromise:econ:currency
The currency type for the econ:price fields.

The property type is econ:currency.

:severity / risk:compromise:severity
An integer based relative severity score for the compromise.

The property type is int.

:goal / risk:compromise:goal
The assessed primary goal of the attacker for the compromise.

The property type is ou:goal.

:goals / risk:compromise:goals
An array of assessed attacker goals for the compromise.

The property type is array. Its type has the following options set:

• type: ou:goal

• sorted: True

• uniq: True

:techniques / risk:compromise:techniques
Deprecated for scalability. Please use -(uses)> ou:technique. It has the following property options set:

• deprecated: True

The property type is array. Its type has the following options set:

1242 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

• type: ou:technique

• sorted: True

• uniq: True

risk:compromisetype

A taxonomy of compromise types.

The base type for the form can be found at risk:compromisetype.

An example of risk:compromisetype:

• cno.breach

Properties:

:title / risk:compromisetype:title
A brief title of the definition.

The property type is str.

:summary / risk:compromisetype:summary
A summary of the definition. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:sort / risk:compromisetype:sort
A display sort order for siblings.

The property type is int.

:base / risk:compromisetype:base
The base taxon. It has the following property options set:

• Read Only: True

The property type is taxon.

:depth / risk:compromisetype:depth
The depth indexed from 0. It has the following property options set:

• Read Only: True

The property type is int.

:parent / risk:compromisetype:parent
The taxonomy parent. It has the following property options set:

• Read Only: True

The property type is risk:compromisetype.

12.2. Synapse Data Model - Forms 1243

Synapse Documentation, Release 2.141.0

risk:hasvuln

An instance of a vulnerability present in a target.

The base type for the form can be found at risk:hasvuln.

Properties:

:vuln / risk:hasvuln:vuln
The vulnerability present in the target.

The property type is risk:vuln.

:person / risk:hasvuln:person
The vulnerable person.

The property type is ps:person.

:org / risk:hasvuln:org
The vulnerable org.

The property type is ou:org.

:place / risk:hasvuln:place
The vulnerable place.

The property type is geo:place.

:software / risk:hasvuln:software
The vulnerable software.

The property type is it:prod:softver.

:hardware / risk:hasvuln:hardware
The vulnerable hardware.

The property type is it:prod:hardware.

:spec / risk:hasvuln:spec
The vulnerable material specification.

The property type is mat:spec.

:item / risk:hasvuln:item
The vulnerable material item.

The property type is mat:item.

:host / risk:hasvuln:host
The vulnerable host.

The property type is it:host.

risk:mitigation

A mitigation for a specific risk:vuln.

The base type for the form can be found at risk:mitigation.

Properties:

:vuln / risk:mitigation:vuln
The vulnerability that this mitigation addresses.

The property type is risk:vuln.

1244 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:name / risk:mitigation:name
A brief name for this risk mitigation.

The property type is str.

:desc / risk:mitigation:desc
A description of the mitigation approach for the vulnerability. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:software / risk:mitigation:software
A software version which implements a fix for the vulnerability.

The property type is it:prod:softver.

:hardware / risk:mitigation:hardware
A hardware version which implements a fix for the vulnerability.

The property type is it:prod:hardware.

risk:threat

A threat cluster or subgraph of threat activity, as reported by a specific organization.

The base type for the form can be found at risk:threat.

Properties:

:name / risk:threat:name
A brief descriptive name for the threat cluster. It has the following property options set:

• Example: apt1 (mandiant)

The property type is str. Its type has the following options set:

• lower: True

• onespace: True

:type / risk:threat:type
A type for the threat, as a taxonomy entry.

The property type is risk:threat:type:taxonomy.

:desc / risk:threat:desc
A description of the threat cluster.

The property type is str.

:tag / risk:threat:tag
The tag used to annotate nodes that are associated with the threat cluster.

The property type is syn:tag.

:active / risk:threat:active
An interval for when the threat cluster is assessed to have been active.

The property type is ival.

:reporter / risk:threat:reporter
The organization reporting on the threat cluster.

The property type is ou:org.

12.2. Synapse Data Model - Forms 1245

Synapse Documentation, Release 2.141.0

:reporter:name / risk:threat:reporter:name
The name of the organization reporting on the threat cluster.

The property type is ou:name.

:reporter:discovered / risk:threat:reporter:discovered
The time that the reporting organization first discovered the threat cluster.

The property type is time.

:reporter:published / risk:threat:reporter:published
The time that the reporting organization first publicly disclosed the threat cluster.

The property type is time.

:org / risk:threat:org
The authoritative organization for the threat cluster.

The property type is ou:org.

:org:loc / risk:threat:org:loc
The reporting organization’s assessed location of the threat cluster.

The property type is loc.

:org:name / risk:threat:org:name
The reporting organization’s name for the threat cluster. It has the following property options set:

• Example: apt1

The property type is ou:name.

:org:names / risk:threat:org:names
An array of alternate names for the threat cluster, according to the reporting organization.

The property type is array. Its type has the following options set:

• type: ou:name

• sorted: True

• uniq: True

:country / risk:threat:country
The reporting organization’s assessed country of origin of the threat cluster.

The property type is pol:country.

:country:code / risk:threat:country:code
The 2 digit ISO 3166 country code for the threat cluster’s assessed country of origin.

The property type is pol:iso2.

:goals / risk:threat:goals
The reporting organization’s assessed goals of the threat cluster.

The property type is array. Its type has the following options set:

• type: ou:goal

• sorted: True

• uniq: True

:sophistication / risk:threat:sophistication
The reporting organization’s assessed sophistication of the threat cluster.

The property type is meta:sophistication.

1246 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:techniques / risk:threat:techniques
Deprecated for scalability. Please use -(uses)> ou:technique. It has the following property options set:

• deprecated: True

The property type is array. Its type has the following options set:

• type: ou:technique

• sorted: True

• uniq: True

:merged:time / risk:threat:merged:time
The time that the reporting organization merged this threat cluster into another.

The property type is time.

:merged:isnow / risk:threat:merged:isnow
The threat cluster that the reporting organization merged this cluster into.

The property type is risk:threat.

risk:threat:type:taxonomy

A taxonomy of threat types.

The base type for the form can be found at risk:threat:type:taxonomy.

Properties:

risk:tool:software

A software tool used in threat activity, as reported by a specific organization.

The base type for the form can be found at risk:tool:software.

Properties:

:tag / risk:tool:software:tag
The tag used to annotate nodes that are associated with the tool. It has the following property options set:

• Example: rep.mandiant.tabcteng

The property type is syn:tag.

:desc / risk:tool:software:desc
A description of the tool.

The property type is str.

:type / risk:tool:software:type
A type for the tool, as a taxonomy entry.

The property type is risk:tool:software:taxonomy.

:used / risk:tool:software:used
An interval for when the tool is assessed to have been deployed.

The property type is ival.

:availability / risk:tool:software:availability
The reporting organization’s assessed availability of the tool.

The property type is risk:availability.

12.2. Synapse Data Model - Forms 1247

Synapse Documentation, Release 2.141.0

:sophistication / risk:tool:software:sophistication
The reporting organization’s assessed sophistication of the tool.

The property type is meta:sophistication.

:reporter / risk:tool:software:reporter
The organization reporting on the tool.

The property type is ou:org.

:reporter:name / risk:tool:software:reporter:name
The name of the organization reporting on the tool.

The property type is ou:name.

:reporter:discovered / risk:tool:software:reporter:discovered
The time that the reporting organization first discovered the tool.

The property type is time.

:reporter:published / risk:tool:software:reporter:published
The time that the reporting organization first publicly disclosed the tool.

The property type is time.

:soft / risk:tool:software:soft
The authoritative software family for the tool.

The property type is it:prod:soft.

:soft:name / risk:tool:software:soft:name
The reporting organization’s name for the tool.

The property type is it:prod:softname.

:soft:names / risk:tool:software:soft:names
An array of alternate names for the tool, according to the reporting organization.

The property type is array. Its type has the following options set:

• type: it:prod:softname

• uniq: True

• sorted: True

:techniques / risk:tool:software:techniques
Deprecated for scalability. Please use -(uses)> ou:technique. It has the following property options set:

• deprecated: True

The property type is array. Its type has the following options set:

• type: ou:technique

• uniq: True

• sorted: True

1248 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

risk:tool:software:taxonomy

A taxonomy of software / tool types.

The base type for the form can be found at risk:tool:software:taxonomy.

Properties:

:title / risk:tool:software:taxonomy:title
A brief title of the definition.

The property type is str.

:summary / risk:tool:software:taxonomy:summary
A summary of the definition. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:sort / risk:tool:software:taxonomy:sort
A display sort order for siblings.

The property type is int.

:base / risk:tool:software:taxonomy:base
The base taxon. It has the following property options set:

• Read Only: True

The property type is taxon.

:depth / risk:tool:software:taxonomy:depth
The depth indexed from 0. It has the following property options set:

• Read Only: True

The property type is int.

:parent / risk:tool:software:taxonomy:parent
The taxonomy parent. It has the following property options set:

• Read Only: True

The property type is risk:tool:software:taxonomy.

risk:vuln

A unique vulnerability.

The base type for the form can be found at risk:vuln.

Properties:

:name / risk:vuln:name
A user specified name for the vulnerability.

The property type is risk:vulnname.

:names / risk:vuln:names
An array of alternate names for the vulnerability.

The property type is array. Its type has the following options set:

• type: risk:vulnname

12.2. Synapse Data Model - Forms 1249

Synapse Documentation, Release 2.141.0

• sorted: True

• uniq: True

:type / risk:vuln:type
A taxonomy type entry for the vulnerability.

The property type is risk:vuln:type:taxonomy.

:desc / risk:vuln:desc
A description of the vulnerability. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:reporter / risk:vuln:reporter
The organization reporting on the vulnerability.

The property type is ou:org.

:reporter:name / risk:vuln:reporter:name
The name of the organization reporting on the vulnerability.

The property type is ou:name.

:mitigated / risk:vuln:mitigated
Set to true if a mitigation/fix is available for the vulnerability.

The property type is bool.

:exploited / risk:vuln:exploited
Set to true if the vulnerability has been exploited in the wild.

The property type is bool.

:timeline:discovered / risk:vuln:timeline:discovered
The earliest known discovery time for the vulnerability.

The property type is time. Its type has the following options set:

• ismin: True

:timeline:published / risk:vuln:timeline:published
The earliest known time the vulnerability was published.

The property type is time. Its type has the following options set:

• ismin: True

:timeline:vendor:notified / risk:vuln:timeline:vendor:notified
The earliest known vendor notification time for the vulnerability.

The property type is time. Its type has the following options set:

• ismin: True

:timeline:vendor:fixed / risk:vuln:timeline:vendor:fixed
The earliest known time the vendor issued a fix for the vulnerability.

The property type is time. Its type has the following options set:

• ismin: True

:timeline:exploited / risk:vuln:timeline:exploited
The earliest known time when the vulnerability was exploited in the wild.

The property type is time. Its type has the following options set:

1250 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

• ismin: True

:cve / risk:vuln:cve
The CVE ID of the vulnerability.

The property type is it:sec:cve.

:cve:desc / risk:vuln:cve:desc
The description of the vulnerability according to the CVE database. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:cve:url / risk:vuln:cve:url
A URL linking this vulnerability to the CVE description.

The property type is inet:url.

:cve:references / risk:vuln:cve:references
An array of documentation URLs provided by the CVE database.

The property type is array. Its type has the following options set:

• type: inet:url

• uniq: True

• sorted: True

:nist:nvd:source / risk:vuln:nist:nvd:source
The name of the organization which reported the vulnerability to NIST.

The property type is ou:name.

:nist:nvd:published / risk:vuln:nist:nvd:published
The date the vulnerability was first published in the NVD.

The property type is time.

:nist:nvd:modified / risk:vuln:nist:nvd:modified
The date the vulnerability was last modified in the NVD.

The property type is time. Its type has the following options set:

• ismax: True

:cisa:kev:name / risk:vuln:cisa:kev:name
The name of the vulnerability according to the CISA KEV database.

The property type is str.

:cisa:kev:desc / risk:vuln:cisa:kev:desc
The description of the vulnerability according to the CISA KEV database.

The property type is str.

:cisa:kev:action / risk:vuln:cisa:kev:action
The action to mitigate the vulnerability according to the CISA KEV database.

The property type is str.

:cisa:kev:vendor / risk:vuln:cisa:kev:vendor
The vendor name listed in the CISA KEV database.

The property type is ou:name.

12.2. Synapse Data Model - Forms 1251

Synapse Documentation, Release 2.141.0

:cisa:kev:product / risk:vuln:cisa:kev:product
The product name listed in the CISA KEV database.

The property type is it:prod:softname.

:cisa:kev:added / risk:vuln:cisa:kev:added
The date the vulnerability was added to the CISA KEV database.

The property type is time.

:cisa:kev:duedate / risk:vuln:cisa:kev:duedate
The date the action is due according to the CISA KEV database.

The property type is time.

:cvss:v2 / risk:vuln:cvss:v2
The CVSS v2 vector for the vulnerability.

The property type is cvss:v2.

:cvss:v2_0:score / risk:vuln:cvss:v2_0:score
The CVSS v2.0 overall score for the vulnerability.

The property type is float.

:cvss:v2_0:score:base / risk:vuln:cvss:v2_0:score:base
The CVSS v2.0 base score for the vulnerability.

The property type is float.

:cvss:v2_0:score:temporal / risk:vuln:cvss:v2_0:score:temporal
The CVSS v2.0 temporal score for the vulnerability.

The property type is float.

:cvss:v2_0:score:environmental / risk:vuln:cvss:v2_0:score:environmental
The CVSS v2.0 environmental score for the vulnerability.

The property type is float.

:cvss:v3 / risk:vuln:cvss:v3
The CVSS v3 vector for the vulnerability.

The property type is cvss:v3.

:cvss:v3_0:score / risk:vuln:cvss:v3_0:score
The CVSS v3.0 overall score for the vulnerability.

The property type is float.

:cvss:v3_0:score:base / risk:vuln:cvss:v3_0:score:base
The CVSS v3.0 base score for the vulnerability.

The property type is float.

:cvss:v3_0:score:temporal / risk:vuln:cvss:v3_0:score:temporal
The CVSS v3.0 temporal score for the vulnerability.

The property type is float.

:cvss:v3_0:score:environmental / risk:vuln:cvss:v3_0:score:environmental
The CVSS v3.0 environmental score for the vulnerability.

The property type is float.

1252 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:cvss:v3_1:score / risk:vuln:cvss:v3_1:score
The CVSS v3.1 overall score for the vulnerability.

The property type is float.

:cvss:v3_1:score:base / risk:vuln:cvss:v3_1:score:base
The CVSS v3.1 base score for the vulnerability.

The property type is float.

:cvss:v3_1:score:temporal / risk:vuln:cvss:v3_1:score:temporal
The CVSS v3.1 temporal score for the vulnerability.

The property type is float.

:cvss:v3_1:score:environmental / risk:vuln:cvss:v3_1:score:environmental
The CVSS v3.1 environmental score for the vulnerability.

The property type is float.

:cvss:av / risk:vuln:cvss:av
Deprecated. Please use :cvss:v3. It has the following property options set:

• deprecated: True

The property type is str. Its type has the following options set:

• enums: N,A,P,L

:cvss:ac / risk:vuln:cvss:ac
Deprecated. Please use :cvss:v3. It has the following property options set:

• disp: {'enums': (('Low', 'L'), ('High', 'H'))}

• deprecated: True

The property type is str. Its type has the following options set:

• enums: L,H

:cvss:pr / risk:vuln:cvss:pr
Deprecated. Please use :cvss:v3. It has the following property options set:

• disp: {'enums': ({'title': 'None', 'value': 'N', 'doc': 'FIXME privs stuff'},
{'title': 'Low', 'value': 'L', 'doc': 'FIXME privs stuff'}, {'title':
'High', 'value': 'H', 'doc': 'FIXME privs stuff'})}

• deprecated: True

The property type is str. Its type has the following options set:

• enums: N,L,H

:cvss:ui / risk:vuln:cvss:ui
Deprecated. Please use :cvss:v3. It has the following property options set:

• deprecated: True

The property type is str. Its type has the following options set:

• enums: N,R

:cvss:s / risk:vuln:cvss:s
Deprecated. Please use :cvss:v3. It has the following property options set:

• deprecated: True

The property type is str. Its type has the following options set:

12.2. Synapse Data Model - Forms 1253

Synapse Documentation, Release 2.141.0

• enums: U,C

:cvss:c / risk:vuln:cvss:c
Deprecated. Please use :cvss:v3. It has the following property options set:

• deprecated: True

The property type is str. Its type has the following options set:

• enums: N,L,H

:cvss:i / risk:vuln:cvss:i
Deprecated. Please use :cvss:v3. It has the following property options set:

• deprecated: True

The property type is str. Its type has the following options set:

• enums: N,L,H

:cvss:a / risk:vuln:cvss:a
Deprecated. Please use :cvss:v3. It has the following property options set:

• deprecated: True

The property type is str. Its type has the following options set:

• enums: N,L,H

:cvss:e / risk:vuln:cvss:e
Deprecated. Please use :cvss:v3. It has the following property options set:

• deprecated: True

The property type is str. Its type has the following options set:

• enums: X,U,P,F,H

:cvss:rl / risk:vuln:cvss:rl
Deprecated. Please use :cvss:v3. It has the following property options set:

• deprecated: True

The property type is str. Its type has the following options set:

• enums: X,O,T,W,U

:cvss:rc / risk:vuln:cvss:rc
Deprecated. Please use :cvss:v3. It has the following property options set:

• deprecated: True

The property type is str. Its type has the following options set:

• enums: X,U,R,C

:cvss:mav / risk:vuln:cvss:mav
Deprecated. Please use :cvss:v3. It has the following property options set:

• deprecated: True

The property type is str. Its type has the following options set:

• enums: X,N,A,L,P

:cvss:mac / risk:vuln:cvss:mac
Deprecated. Please use :cvss:v3. It has the following property options set:

• deprecated: True

1254 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

The property type is str. Its type has the following options set:

• enums: X,L,H

:cvss:mpr / risk:vuln:cvss:mpr
Deprecated. Please use :cvss:v3. It has the following property options set:

• deprecated: True

The property type is str. Its type has the following options set:

• enums: X,N,L,H

:cvss:mui / risk:vuln:cvss:mui
Deprecated. Please use :cvss:v3. It has the following property options set:

• deprecated: True

The property type is str. Its type has the following options set:

• enums: X,N,R

:cvss:ms / risk:vuln:cvss:ms
Deprecated. Please use :cvss:v3. It has the following property options set:

• deprecated: True

The property type is str. Its type has the following options set:

• enums: X,U,C

:cvss:mc / risk:vuln:cvss:mc
Deprecated. Please use :cvss:v3. It has the following property options set:

• deprecated: True

The property type is str. Its type has the following options set:

• enums: X,N,L,H

:cvss:mi / risk:vuln:cvss:mi
Deprecated. Please use :cvss:v3. It has the following property options set:

• deprecated: True

The property type is str. Its type has the following options set:

• enums: X,N,L,H

:cvss:ma / risk:vuln:cvss:ma
Deprecated. Please use :cvss:v3. It has the following property options set:

• deprecated: True

The property type is str. Its type has the following options set:

• enums: X,N,L,H

:cvss:cr / risk:vuln:cvss:cr
Deprecated. Please use :cvss:v3. It has the following property options set:

• deprecated: True

The property type is str. Its type has the following options set:

• enums: X,L,M,H

:cvss:ir / risk:vuln:cvss:ir
Deprecated. Please use :cvss:v3. It has the following property options set:

12.2. Synapse Data Model - Forms 1255

Synapse Documentation, Release 2.141.0

• deprecated: True

The property type is str. Its type has the following options set:

• enums: X,L,M,H

:cvss:ar / risk:vuln:cvss:ar
Deprecated. Please use :cvss:v3. It has the following property options set:

• deprecated: True

The property type is str. Its type has the following options set:

• enums: X,L,M,H

:cvss:score / risk:vuln:cvss:score
Deprecated. Please use version specific score properties. It has the following property options set:

• deprecated: True

The property type is float.

:cvss:score:base / risk:vuln:cvss:score:base
Deprecated. Please use version specific score properties. It has the following property options set:

• deprecated: True

The property type is float.

:cvss:score:temporal / risk:vuln:cvss:score:temporal
Deprecated. Please use version specific score properties. It has the following property options set:

• deprecated: True

The property type is float.

:cvss:score:environmental / risk:vuln:cvss:score:environmental
Deprecated. Please use version specific score properties. It has the following property options set:

• deprecated: True

The property type is float.

:cwes / risk:vuln:cwes
An array of MITRE CWE values that apply to the vulnerability.

The property type is array. Its type has the following options set:

• type: it:sec:cwe

• uniq: True

• sorted: True

risk:vuln:soft:range

A contiguous range of software versions which contain a vulnerability.

The base type for the form can be found at risk:vuln:soft:range.

Properties:

:vuln / risk:vuln:soft:range:vuln
The vulnerability present in this software version range.

The property type is risk:vuln.

1256 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:version:min / risk:vuln:soft:range:version:min
The minimum version which is vulnerable in this range.

The property type is it:prod:softver.

:version:max / risk:vuln:soft:range:version:max
The maximum version which is vulnerable in this range.

The property type is it:prod:softver.

risk:vuln:type:taxonomy

A taxonomy of vulnerability types.

The base type for the form can be found at risk:vuln:type:taxonomy.

Properties:

:title / risk:vuln:type:taxonomy:title
A brief title of the definition.

The property type is str.

:summary / risk:vuln:type:taxonomy:summary
A summary of the definition. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:sort / risk:vuln:type:taxonomy:sort
A display sort order for siblings.

The property type is int.

:base / risk:vuln:type:taxonomy:base
The base taxon. It has the following property options set:

• Read Only: True

The property type is taxon.

:depth / risk:vuln:type:taxonomy:depth
The depth indexed from 0. It has the following property options set:

• Read Only: True

The property type is int.

:parent / risk:vuln:type:taxonomy:parent
The taxonomy parent. It has the following property options set:

• Read Only: True

The property type is risk:vuln:type:taxonomy.

12.2. Synapse Data Model - Forms 1257

Synapse Documentation, Release 2.141.0

risk:vulnname

A vulnerability name such as log4j or rowhammer.

The base type for the form can be found at risk:vulnname.

Properties:

rsa:key

An RSA keypair modulus and public exponent.

The base type for the form can be found at rsa:key.

Properties:

:mod / rsa:key:mod
The RSA key modulus. It has the following property options set:

• Read Only: True

The property type is hex.

:pub:exp / rsa:key:pub:exp
The public exponent of the key. It has the following property options set:

• Read Only: True

The property type is int.

:bits / rsa:key:bits
The length of the modulus in bits.

The property type is int.

:priv:exp / rsa:key:priv:exp
The private exponent of the key.

The property type is hex.

:priv:p / rsa:key:priv:p
One of the two private primes.

The property type is hex.

:priv:q / rsa:key:priv:q
One of the two private primes.

The property type is hex.

syn:cmd

A Synapse storm command.

The base type for the form can be found at syn:cmd.

Properties:

:doc / syn:cmd:doc
Description of the command. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str. Its type has the following options set:

1258 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

• strip: True

:package / syn:cmd:package
Storm package which provided the command.

The property type is str. Its type has the following options set:

• strip: True

:svciden / syn:cmd:svciden
Storm service iden which provided the package.

The property type is guid. Its type has the following options set:

• strip: True

:input / syn:cmd:input
The list of forms accepted by the command as input. It has the following property options set:

• uniq: True

• sorted: True

• Read Only: True

The property type is array. Its type has the following options set:

• type: syn:form

:output / syn:cmd:output
The list of forms produced by the command as output. It has the following property options set:

• uniq: True

• sorted: True

• Read Only: True

The property type is array. Its type has the following options set:

• type: syn:form

:nodedata / syn:cmd:nodedata
The list of nodedata that may be added by the command. It has the following property options set:

• uniq: True

• sorted: True

• Read Only: True

The property type is array. Its type has the following options set:

• type: syn:nodedata

syn:cron

A Cortex cron job.

The base type for the form can be found at syn:cron.

Properties:

:doc / syn:cron:doc
A description of the cron job. It has the following property options set:

• disp: {'hint': 'text'}

12.2. Synapse Data Model - Forms 1259

Synapse Documentation, Release 2.141.0

The property type is str.

:name / syn:cron:name
A user friendly name/alias for the cron job.

The property type is str.

:storm / syn:cron:storm
The storm query executed by the cron job. It has the following property options set:

• Read Only: True

• disp: {'hint': 'text'}

The property type is str.

syn:form

A Synapse form used for representing nodes in the graph.

The base type for the form can be found at syn:form.

Properties:

:doc / syn:form:doc
The docstring for the form. It has the following property options set:

• Read Only: True

The property type is str. Its type has the following options set:

• strip: True

:type / syn:form:type
Synapse type for this form. It has the following property options set:

• Read Only: True

The property type is syn:type.

:runt / syn:form:runt
Whether or not the form is runtime only. It has the following property options set:

• Read Only: True

The property type is bool.

syn:prop

A Synapse property.

The base type for the form can be found at syn:prop.

Properties:

:doc / syn:prop:doc
Description of the property definition.

The property type is str. Its type has the following options set:

• strip: True

:form / syn:prop:form
The form of the property. It has the following property options set:

1260 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

• Read Only: True

The property type is syn:form.

:type / syn:prop:type
The synapse type for this property. It has the following property options set:

• Read Only: True

The property type is syn:type.

:relname / syn:prop:relname
Relative property name. It has the following property options set:

• Read Only: True

The property type is str. Its type has the following options set:

• strip: True

:univ / syn:prop:univ
Specifies if a prop is universal. It has the following property options set:

• Read Only: True

The property type is bool.

:base / syn:prop:base
Base name of the property. It has the following property options set:

• Read Only: True

The property type is str. Its type has the following options set:

• strip: True

:ro / syn:prop:ro
If the property is read-only after being set. It has the following property options set:

• Read Only: True

The property type is bool.

:extmodel / syn:prop:extmodel
If the property is an extended model property or not. It has the following property options set:

• Read Only: True

The property type is bool.

syn:splice

A splice from a layer.

The base type for the form can be found at syn:splice.

Properties:

:type / syn:splice:type
Type of splice. It has the following property options set:

• Read Only: True

The property type is str. Its type has the following options set:

• strip: True

12.2. Synapse Data Model - Forms 1261

Synapse Documentation, Release 2.141.0

:iden / syn:splice:iden
The iden of the node involved in the splice. It has the following property options set:

• Read Only: True

The property type is str.

:form / syn:splice:form
The form involved in the splice. It has the following property options set:

• Read Only: True

The property type is syn:form. Its type has the following options set:

• strip: True

:prop / syn:splice:prop
Property modified in the splice. It has the following property options set:

• Read Only: True

The property type is syn:prop. Its type has the following options set:

• strip: True

:tag / syn:splice:tag
Tag modified in the splice. It has the following property options set:

• Read Only: True

The property type is syn:tag. Its type has the following options set:

• strip: True

:valu / syn:splice:valu
The value being set in the splice. It has the following property options set:

• Read Only: True

The property type is data.

:oldv / syn:splice:oldv
The value before the splice. It has the following property options set:

• Read Only: True

The property type is data.

:user / syn:splice:user
The user who caused the splice. It has the following property options set:

• Read Only: True

The property type is guid.

:prov / syn:splice:prov
The provenance stack of the splice. It has the following property options set:

• Read Only: True

The property type is guid.

:time / syn:splice:time
The time the splice occurred. It has the following property options set:

• Read Only: True

The property type is time.

1262 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:splice / syn:splice:splice
The splice. It has the following property options set:

• Read Only: True

The property type is data.

syn:tag

The base type for a synapse tag.

The base type for the form can be found at syn:tag.

Properties:

:up / syn:tag:up
The parent tag for the tag. It has the following property options set:

• Read Only: True

The property type is syn:tag.

:isnow / syn:tag:isnow
Set to an updated tag if the tag has been renamed.

The property type is syn:tag.

:doc / syn:tag:doc
A short definition for the tag. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:doc:url / syn:tag:doc:url
A URL link to additional documentation about the tag.

The property type is inet:url.

:depth / syn:tag:depth
How deep the tag is in the hierarchy. It has the following property options set:

• Read Only: True

The property type is int.

:title / syn:tag:title
A display title for the tag.

The property type is str.

:base / syn:tag:base
The tag base name. Eg baz for foo.bar.baz . It has the following property options set:

• Read Only: True

The property type is str.

12.2. Synapse Data Model - Forms 1263

tag:up
tag:isnow
tag:doc
tag:doc:url
tag:depth
tag:title
tag:base

Synapse Documentation, Release 2.141.0

syn:tagprop

A user defined tag property.

The base type for the form can be found at syn:tagprop.

Properties:

:doc / syn:tagprop:doc
Description of the tagprop definition.

The property type is str. Its type has the following options set:

• strip: True

:type / syn:tagprop:type
The synapse type for this tagprop. It has the following property options set:

• Read Only: True

The property type is syn:type.

syn:trigger

A Cortex trigger.

The base type for the form can be found at syn:trigger.

Properties:

:vers / syn:trigger:vers
Trigger version. It has the following property options set:

• Read Only: True

The property type is int.

:doc / syn:trigger:doc
A documentation string describing the trigger. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:name / syn:trigger:name
A user friendly name/alias for the trigger.

The property type is str.

:cond / syn:trigger:cond
The trigger condition. It has the following property options set:

• Read Only: True

The property type is str. Its type has the following options set:

• strip: True

• lower: True

:user / syn:trigger:user
User who owns the trigger. It has the following property options set:

• Read Only: True

The property type is str.

1264 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:storm / syn:trigger:storm
The Storm query for the trigger. It has the following property options set:

• Read Only: True

• disp: {'hint': 'text'}

The property type is str.

:enabled / syn:trigger:enabled
Trigger enabled status. It has the following property options set:

• Read Only: True

The property type is bool.

:form / syn:trigger:form
Form the trigger is watching for.

The property type is str. Its type has the following options set:

• lower: True

• strip: True

:prop / syn:trigger:prop
Property the trigger is watching for.

The property type is str. Its type has the following options set:

• lower: True

• strip: True

:tag / syn:trigger:tag
Tag the trigger is watching for.

The property type is str. Its type has the following options set:

• lower: True

• strip: True

syn:type

A Synapse type used for normalizing nodes and properties.

The base type for the form can be found at syn:type.

Properties:

:doc / syn:type:doc
The docstring for the type. It has the following property options set:

• Read Only: True

The property type is str. Its type has the following options set:

• strip: True

:ctor / syn:type:ctor
The python ctor path for the type object. It has the following property options set:

• Read Only: True

The property type is str. Its type has the following options set:

12.2. Synapse Data Model - Forms 1265

Synapse Documentation, Release 2.141.0

• strip: True

:subof / syn:type:subof
Type which this inherits from. It has the following property options set:

• Read Only: True

The property type is syn:type.

:opts / syn:type:opts
Arbitrary type options. It has the following property options set:

• Read Only: True

The property type is data.

tel:call

A guid for a telephone call record.

The base type for the form can be found at tel:call.

Properties:

:src / tel:call:src
The source phone number for a call.

The property type is tel:phone.

:dst / tel:call:dst
The destination phone number for a call.

The property type is tel:phone.

:time / tel:call:time
The time the call was initiated.

The property type is time.

:duration / tel:call:duration
The duration of the call in seconds.

The property type is int.

:connected / tel:call:connected
Indicator of whether the call was connected.

The property type is bool.

:text / tel:call:text
The text transcription of the call. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:file / tel:call:file
A file containing related media.

The property type is file:bytes.

1266 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

tel:mob:carrier

The fusion of a MCC/MNC.

The base type for the form can be found at tel:mob:carrier.

Properties:

:mcc / tel:mob:carrier:mcc
ITU Mobile Country Code. It has the following property options set:

• Read Only: True

The property type is tel:mob:mcc.

:mnc / tel:mob:carrier:mnc
ITU Mobile Network Code. It has the following property options set:

• Read Only: True

The property type is tel:mob:mnc.

:org / tel:mob:carrier:org
Organization operating the carrier.

The property type is ou:org.

:loc / tel:mob:carrier:loc
Location the carrier operates from.

The property type is loc.

tel:mob:cell

A mobile cell site which a phone may connect to.

The base type for the form can be found at tel:mob:cell.

Properties:

:carrier / tel:mob:cell:carrier
Mobile carrier. It has the following property options set:

• Read Only: True

The property type is tel:mob:carrier.

:carrier:mcc / tel:mob:cell:carrier:mcc
Mobile Country Code. It has the following property options set:

• Read Only: True

The property type is tel:mob:mcc.

:carrier:mnc / tel:mob:cell:carrier:mnc
Mobile Network Code. It has the following property options set:

• Read Only: True

The property type is tel:mob:mnc.

:lac / tel:mob:cell:lac
Location Area Code. LTE networks may call this a TAC. It has the following property options set:

• Read Only: True

12.2. Synapse Data Model - Forms 1267

Synapse Documentation, Release 2.141.0

The property type is int.

:cid / tel:mob:cell:cid
The Cell ID. It has the following property options set:

• Read Only: True

The property type is int.

:radio / tel:mob:cell:radio
Cell radio type.

The property type is str. Its type has the following options set:

• lower: 1

• onespace: 1

:latlong / tel:mob:cell:latlong
Last known location of the cell site.

The property type is geo:latlong.

:loc / tel:mob:cell:loc
Location at which the cell is operated.

The property type is loc.

:place / tel:mob:cell:place
The place associated with the latlong property.

The property type is geo:place.

tel:mob:imei

An International Mobile Equipment Id.

The base type for the form can be found at tel:mob:imei.

An example of tel:mob:imei:

• 490154203237518

Properties:

:tac / tel:mob:imei:tac
The Type Allocate Code within the IMEI. It has the following property options set:

• Read Only: True

The property type is tel:mob:tac.

:serial / tel:mob:imei:serial
The serial number within the IMEI. It has the following property options set:

• Read Only: True

The property type is int.

1268 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

tel:mob:imid

Fused knowledge of an IMEI/IMSI used together.

The base type for the form can be found at tel:mob:imid.

An example of tel:mob:imid:

• (490154203237518, 310150123456789)

Properties:

:imei / tel:mob:imid:imei
The IMEI for the phone hardware. It has the following property options set:

• Read Only: True

The property type is tel:mob:imei.

:imsi / tel:mob:imid:imsi
The IMSI for the phone subscriber. It has the following property options set:

• Read Only: True

The property type is tel:mob:imsi.

tel:mob:imsi

An International Mobile Subscriber Id.

The base type for the form can be found at tel:mob:imsi.

An example of tel:mob:imsi:

• 310150123456789

Properties:

:mcc / tel:mob:imsi:mcc
The Mobile Country Code. It has the following property options set:

• Read Only: True

The property type is tel:mob:mcc.

tel:mob:imsiphone

Fused knowledge of an IMSI assigned phone number.

The base type for the form can be found at tel:mob:imsiphone.

An example of tel:mob:imsiphone:

• (310150123456789, "+7(495) 124-59-83")

Properties:

:phone / tel:mob:imsiphone:phone
The phone number assigned to the IMSI. It has the following property options set:

• Read Only: True

The property type is tel:phone.

12.2. Synapse Data Model - Forms 1269

Synapse Documentation, Release 2.141.0

:imsi / tel:mob:imsiphone:imsi
The IMSI with the assigned phone number. It has the following property options set:

• Read Only: True

The property type is tel:mob:imsi.

tel:mob:mcc

ITU Mobile Country Code.

The base type for the form can be found at tel:mob:mcc.

Properties:

:loc / tel:mob:mcc:loc
Location assigned to the MCC.

The property type is loc.

tel:mob:tac

A mobile Type Allocation Code.

The base type for the form can be found at tel:mob:tac.

An example of tel:mob:tac:

• 49015420

Properties:

:org / tel:mob:tac:org
The org guid for the manufacturer.

The property type is ou:org.

:manu / tel:mob:tac:manu
The TAC manufacturer name.

The property type is str. Its type has the following options set:

• lower: 1

:model / tel:mob:tac:model
The TAC model name.

The property type is str. Its type has the following options set:

• lower: 1

:internal / tel:mob:tac:internal
The TAC internal model name.

The property type is str. Its type has the following options set:

• lower: 1

1270 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

tel:mob:telem

A single mobile telemetry measurement.

The base type for the form can be found at tel:mob:telem.

Properties:

:time / tel:mob:telem:time
A date/time value.

The property type is time.

:latlong / tel:mob:telem:latlong
A Lat/Long string specifying a point on Earth.

The property type is geo:latlong.

:http:request / tel:mob:telem:http:request
The HTTP request that the telemetry was extracted from.

The property type is inet:http:request.

:host / tel:mob:telem:host
The host that generated the mobile telemetry data.

The property type is it:host.

:place / tel:mob:telem:place
The place representing the location of the mobile telemetry sample.

The property type is geo:place.

:loc / tel:mob:telem:loc
The geo-political location of the mobile telemetry sample.

The property type is loc.

:accuracy / tel:mob:telem:accuracy
The reported accuracy of the latlong telemetry reading.

The property type is geo:dist.

:cell / tel:mob:telem:cell
A mobile cell site which a phone may connect to.

The property type is tel:mob:cell.

:cell:carrier / tel:mob:telem:cell:carrier
The fusion of a MCC/MNC.

The property type is tel:mob:carrier.

:imsi / tel:mob:telem:imsi
An International Mobile Subscriber Id.

The property type is tel:mob:imsi.

:imei / tel:mob:telem:imei
An International Mobile Equipment Id.

The property type is tel:mob:imei.

:phone / tel:mob:telem:phone
A phone number.

The property type is tel:phone.

12.2. Synapse Data Model - Forms 1271

Synapse Documentation, Release 2.141.0

:mac / tel:mob:telem:mac
A 48-bit Media Access Control (MAC) address.

The property type is inet:mac.

:ipv4 / tel:mob:telem:ipv4
An IPv4 address.

The property type is inet:ipv4.

:ipv6 / tel:mob:telem:ipv6
An IPv6 address.

The property type is inet:ipv6.

:wifi / tel:mob:telem:wifi
An SSID/MAC address combination for a wireless access point.

The property type is inet:wifi:ap.

:wifi:ssid / tel:mob:telem:wifi:ssid
A WiFi service set identifier (SSID) name.

The property type is inet:wifi:ssid.

:wifi:bssid / tel:mob:telem:wifi:bssid
A 48-bit Media Access Control (MAC) address.

The property type is inet:mac.

:adid / tel:mob:telem:adid
An advertising identification string.

The property type is it:adid.

:aaid / tel:mob:telem:aaid
An android advertising identification string.

The property type is it:os:android:aaid.

:idfa / tel:mob:telem:idfa
An iOS advertising identification string.

The property type is it:os:ios:idfa.

:name / tel:mob:telem:name
An arbitrary, lower spaced string with normalized whitespace.

The property type is ps:name.

:email / tel:mob:telem:email
An e-mail address.

The property type is inet:email.

:acct / tel:mob:telem:acct
An account with a given Internet-based site or service.

The property type is inet:web:acct.

:app / tel:mob:telem:app
A specific version of a software product.

The property type is it:prod:softver.

1272 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:data / tel:mob:telem:data
Arbitrary json compatible data.

The property type is data.

tel:phone

A phone number.

The base type for the form can be found at tel:phone.

An example of tel:phone:

• +15558675309

Properties:

:loc / tel:phone:loc
The location associated with the number.

The property type is loc.

tel:txtmesg

A guid for an individual text message.

The base type for the form can be found at tel:txtmesg.

Properties:

:from / tel:txtmesg:from
The phone number assigned to the sender.

The property type is tel:phone.

:to / tel:txtmesg:to
The phone number assigned to the primary recipient.

The property type is tel:phone.

:recipients / tel:txtmesg:recipients
An array of phone numbers for additional recipients of the message.

The property type is array. Its type has the following options set:

• type: tel:phone

• uniq: True

• sorted: True

:svctype / tel:txtmesg:svctype
The message service type (sms, mms, rcs).

The property type is str. Its type has the following options set:

• enums: sms,mms,rcs

• strip: 1

• lower: 1

12.2. Synapse Data Model - Forms 1273

phone:loc

Synapse Documentation, Release 2.141.0

:time / tel:txtmesg:time
The time the message was sent.

The property type is time.

:text / tel:txtmesg:text
The text of the message. It has the following property options set:

• disp: {'hint': 'text'}

The property type is str.

:file / tel:txtmesg:file
A file containing related media.

The property type is file:bytes.

transport:air:craft

An individual aircraft.

The base type for the form can be found at transport:air:craft.

Properties:

:tailnum / transport:air:craft:tailnum
The aircraft tail number.

The property type is transport:air:tailnum.

:type / transport:air:craft:type
The type of aircraft.

The property type is str. Its type has the following options set:

• lower: True

• strip: True

:built / transport:air:craft:built
The date the aircraft was constructed.

The property type is time.

:make / transport:air:craft:make
The make of the aircraft.

The property type is str. Its type has the following options set:

• lower: True

• strip: True

:model / transport:air:craft:model
The model of the aircraft.

The property type is str. Its type has the following options set:

• lower: True

• strip: True

:serial / transport:air:craft:serial
The serial number of the aircraft.

The property type is str. Its type has the following options set:

1274 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

• strip: True

:operator / transport:air:craft:operator
Contact info representing the person or org that operates the aircraft.

The property type is ps:contact.

transport:air:flight

An individual instance of a flight.

The base type for the form can be found at transport:air:flight.

Properties:

:num / transport:air:flight:num
The flight number of this flight.

The property type is transport:air:flightnum.

:scheduled:departure / transport:air:flight:scheduled:departure
The time this flight was originally scheduled to depart.

The property type is time.

:scheduled:arrival / transport:air:flight:scheduled:arrival
The time this flight was originally scheduled to arrive.

The property type is time.

:departed / transport:air:flight:departed
The time this flight departed.

The property type is time.

:arrived / transport:air:flight:arrived
The time this flight arrived.

The property type is time.

:carrier / transport:air:flight:carrier
The org which operates the given flight number.

The property type is ou:org.

:craft / transport:air:flight:craft
The aircraft that flew this flight.

The property type is transport:air:craft.

:tailnum / transport:air:flight:tailnum
The tail/registration number at the time the aircraft flew this flight.

The property type is transport:air:tailnum.

:to:port / transport:air:flight:to:port
The destination airport of this flight.

The property type is transport:air:port.

:from:port / transport:air:flight:from:port
The origin airport of this flight.

The property type is transport:air:port.

12.2. Synapse Data Model - Forms 1275

Synapse Documentation, Release 2.141.0

:stops / transport:air:flight:stops
An ordered list of airport codes for stops which occurred during this flight.

The property type is array. Its type has the following options set:

• type: transport:air:port

:cancelled / transport:air:flight:cancelled
Set to true for cancelled flights.

The property type is bool.

transport:air:flightnum

A commercial flight designator including airline and serial.

The base type for the form can be found at transport:air:flightnum.

An example of transport:air:flightnum:

• ua2437

Properties:

:carrier / transport:air:flightnum:carrier
The org which operates the given flight number.

The property type is ou:org.

:to:port / transport:air:flightnum:to:port
The most recently registered destination for the flight number.

The property type is transport:air:port.

:from:port / transport:air:flightnum:from:port
The most recently registered origin for the flight number.

The property type is transport:air:port.

:stops / transport:air:flightnum:stops
An ordered list of aiport codes for the flight segments.

The property type is array. Its type has the following options set:

• type: transport:air:port

transport:air:occupant

An occupant of a specific flight.

The base type for the form can be found at transport:air:occupant.

Properties:

:type / transport:air:occupant:type
The type of occupant such as pilot, crew or passenger.

The property type is str. Its type has the following options set:

• lower: True

:flight / transport:air:occupant:flight
The flight that the occupant was aboard.

The property type is transport:air:flight.

1276 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:seat / transport:air:occupant:seat
The seat assigned to the occupant.

The property type is str. Its type has the following options set:

• lower: True

:contact / transport:air:occupant:contact
The contact information of the occupant.

The property type is ps:contact.

transport:air:port

An IATA assigned airport code.

The base type for the form can be found at transport:air:port.

Properties:

:name / transport:air:port:name
The name of the airport.

The property type is str. Its type has the following options set:

• lower: True

• onespace: True

:place / transport:air:port:place
The place where the IATA airport code is assigned.

The property type is geo:place.

transport:air:tailnum

An aircraft registration number or military aircraft serial number.

The base type for the form can be found at transport:air:tailnum.

An example of transport:air:tailnum:

• ff023

Properties:

:loc / transport:air:tailnum:loc
The geopolitical location that the tailnumber is allocated to.

The property type is loc.

:type / transport:air:tailnum:type
A type which may be specific to the country prefix.

The property type is str. Its type has the following options set:

• lower: True

• strip: True

12.2. Synapse Data Model - Forms 1277

Synapse Documentation, Release 2.141.0

transport:air:telem

A telemetry sample from an aircraft in transit.

The base type for the form can be found at transport:air:telem.

Properties:

:flight / transport:air:telem:flight
The flight being measured.

The property type is transport:air:flight.

:latlong / transport:air:telem:latlong
The lat/lon of the aircraft at the time.

The property type is geo:latlong.

:loc / transport:air:telem:loc
The location of the aircraft at the time.

The property type is loc.

:place / transport:air:telem:place
The place that the lat/lon geocodes to.

The property type is geo:place.

:accuracy / transport:air:telem:accuracy
The horizontal accuracy of the latlong sample.

The property type is geo:dist.

:course / transport:air:telem:course
The direction, in degrees from true North, that the aircraft is traveling.

The property type is transport:direction.

:heading / transport:air:telem:heading
The direction, in degrees from true North, that the nose of the aircraft is pointed.

The property type is transport:direction.

:speed / transport:air:telem:speed
The ground speed of the aircraft at the time.

The property type is velocity.

:airspeed / transport:air:telem:airspeed
The air speed of the aircraft at the time.

The property type is velocity.

:verticalspeed / transport:air:telem:verticalspeed
The relative vertical speed of the aircraft at the time.

The property type is velocity. Its type has the following options set:

• relative: True

:altitude / transport:air:telem:altitude
The altitude of the aircraft at the time.

The property type is geo:altitude.

1278 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:altitude:accuracy / transport:air:telem:altitude:accuracy
The vertical accuracy of the altitude measurement.

The property type is geo:dist.

:time / transport:air:telem:time
The time the telemetry sample was taken.

The property type is time.

transport:land:license

A license to operate a land vehicle issued to a contact.

The base type for the form can be found at transport:land:license.

Properties:

:id / transport:land:license:id
The license ID.

The property type is str. Its type has the following options set:

• strip: True

:contact / transport:land:license:contact
The contact info of the registrant.

The property type is ps:contact.

:issued / transport:land:license:issued
The time the license was issued.

The property type is time.

:expires / transport:land:license:expires
The time the license expires.

The property type is time.

:issuer / transport:land:license:issuer
The org which issued the license.

The property type is ou:org.

:issuer:name / transport:land:license:issuer:name
The name of the org which issued the license.

The property type is ou:name.

transport:land:registration

Registration issued to a contact for a land vehicle.

The base type for the form can be found at transport:land:registration.

Properties:

:id / transport:land:registration:id
The vehicle registration ID or license plate.

The property type is str. Its type has the following options set:

• strip: True

12.2. Synapse Data Model - Forms 1279

Synapse Documentation, Release 2.141.0

:contact / transport:land:registration:contact
The contact info of the registrant.

The property type is ps:contact.

:license / transport:land:registration:license
The license used to register the vehicle.

The property type is transport:land:license.

:issued / transport:land:registration:issued
The time the vehicle registration was issued.

The property type is time.

:expires / transport:land:registration:expires
The time the vehicle registration expires.

The property type is time.

:vehicle / transport:land:registration:vehicle
The vehicle being registered.

The property type is transport:land:vehicle.

:issuer / transport:land:registration:issuer
The org which issued the registration.

The property type is ou:org.

:issuer:name / transport:land:registration:issuer:name
The name of the org which issued the registration.

The property type is ou:name.

transport:land:vehicle

An individual vehicle.

The base type for the form can be found at transport:land:vehicle.

Properties:

:serial / transport:land:vehicle:serial
The serial number or VIN of the vehicle.

The property type is str. Its type has the following options set:

• strip: True

:built / transport:land:vehicle:built
The date the vehicle was constructed.

The property type is time.

:make / transport:land:vehicle:make
The make of the vehicle.

The property type is ou:name.

:model / transport:land:vehicle:model
The model of the vehicle.

The property type is str. Its type has the following options set:

• lower: True

1280 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

• onespace: True

:registration / transport:land:vehicle:registration
The current vehicle registration information.

The property type is transport:land:registration.

:owner / transport:land:vehicle:owner
The contact info of the owner of the vehicle.

The property type is ps:contact.

transport:sea:telem

A telemetry sample from a vessel in transit.

The base type for the form can be found at transport:sea:telem.

Properties:

:vessel / transport:sea:telem:vessel
The vessel being measured.

The property type is transport:sea:vessel.

:time / transport:sea:telem:time
The time the telemetry was sampled.

The property type is time.

:latlong / transport:sea:telem:latlong
The lat/lon of the vessel at the time.

The property type is geo:latlong.

:loc / transport:sea:telem:loc
The location of the vessel at the time.

The property type is loc.

:place / transport:sea:telem:place
The place that the lat/lon geocodes to.

The property type is geo:place.

:accuracy / transport:sea:telem:accuracy
The horizontal accuracy of the latlong sample.

The property type is geo:dist.

:course / transport:sea:telem:course
The direction, in degrees from true North, that the vessel is traveling.

The property type is transport:direction.

:heading / transport:sea:telem:heading
The direction, in degrees from true North, that the bow of the vessel is pointed.

The property type is transport:direction.

:speed / transport:sea:telem:speed
The speed of the vessel at the time.

The property type is velocity.

12.2. Synapse Data Model - Forms 1281

Synapse Documentation, Release 2.141.0

:draft / transport:sea:telem:draft
The keel depth at the time.

The property type is geo:dist.

:airdraft / transport:sea:telem:airdraft
The maximum height of the ship from the waterline.

The property type is geo:dist.

:destination / transport:sea:telem:destination
The fully resolved destination that the vessel has declared.

The property type is geo:place.

:destination:name / transport:sea:telem:destination:name
The name of the destination that the vessel has declared.

The property type is geo:name.

:destination:eta / transport:sea:telem:destination:eta
The estimated time of arrival that the vessel has declared.

The property type is time.

transport:sea:vessel

An individual sea vessel.

The base type for the form can be found at transport:sea:vessel.

Properties:

:imo / transport:sea:vessel:imo
The International Maritime Organization number for the vessel.

The property type is transport:sea:imo.

:name / transport:sea:vessel:name
The name of the vessel.

The property type is str. Its type has the following options set:

• lower: True

• onespace: True

:length / transport:sea:vessel:length
The official overall vessel length.

The property type is geo:dist.

:beam / transport:sea:vessel:beam
The official overall vessel beam.

The property type is geo:dist.

:flag / transport:sea:vessel:flag
The country the vessel is flagged to.

The property type is iso:3166:cc.

:mmsi / transport:sea:vessel:mmsi
The Maritime Mobile Service Identifier assigned to the vessel.

The property type is transport:sea:mmsi.

1282 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

:built / transport:sea:vessel:built
The year the vessel was constructed.

The property type is time.

:make / transport:sea:vessel:make
The make of the vessel.

The property type is str. Its type has the following options set:

• lower: True

• strip: True

:model / transport:sea:vessel:model
The model of the vessel.

The property type is str. Its type has the following options set:

• lower: True

• strip: True

:operator / transport:sea:vessel:operator
The contact information of the operator.

The property type is ps:contact.

12.2.2 Universal Properties

Universal props are system level properties which may be present on every node.

These properties are not specific to a particular form and exist outside of a particular namespace.

.created

The time the node was created in the cortex. It has the following property options set:

• Read Only: True

The universal property type is time. Its type has the following options set:

• ismin: True

.seen

The time interval for first/last observation of the node.

The universal property type is ival.

12.2. Synapse Data Model - Forms 1283

Synapse Documentation, Release 2.141.0

12.3 Datamodel Deprecation Policy

As the Synapse Data Model has grown and evolved over time, Vertex has found the need to deprecate model elements
which are no longer useful. These elements may represent relationships which are better captured with newer elements;
concepts which are better represented by convention; or other issues. As such, model elements (types, forms, and
properties) which are deprecated should no longer be used for new data modeling. Deprecated model elements will be
removed in a future Synapse release, no earlier than v3.0.0.

For deprecated model elements, suggested alternatives will be provided and example Storm queries which can be used
to migrate data in such a fashion.

12.3.1 Using Deprecated Model Elements

When Deprecated model elements are used in a Cortex, the following log events will be made:

• One startup, if a extended property definition uses a deprecated type to define it, a warning message will be
logged.

• If a extended property is added which uses a deprecated type to define it, a warning message will be logged.

• Any Types or Forms, from a datamodel loaded by a custom CoreModule, which use a deprecated model compo-
nent will cause a warning message to be logged. This includes any Array or Comp type model elements which
utilize a deprecated Type.

• If a property or tag property is set on a node which is deprecated or using a deprecated type, that will cause a
warning message to be logged and a warn message to be sent over the Storm runtime. This only occurs once per
given runtime.

• If a node is made using deprecated form or using a deprecated type, that will cause a warning message to be
logged and a warn message to be sent over the Storm runtime. This only occurs once per given runtime.

Deleting nodes which use deprecated model elements does not trigger warnings, since that would normally be done
after an associated data migration and would be excessive in the event of a large migration.

12.3.2 Deprecated Model Elements

The following elements are deprecated.

Types

• file:string

– -(refs)> it:dev:str

• it:reveng:funcstr

– Please use the :strings array property on the it:reveng:function form.

• lang:idiom

– Please use lang:translation instead.

• lang:trans

– Please use lang:translation instead.

• ou:hasalias

– ou:hasalias is deprecated in favor of the :alias property on ou:org nodes.

1284 Chapter 12. Synapse Data Model

Synapse Documentation, Release 2.141.0

• ou:meet:attendee

– ou:meet:attendee has been superseded by ou:attendee. ou:attendee has the :meet property to denote
what meeting the attendee attended.

• ou:conference:attendee

– ou:conference:attendee has been superseded by ou:attendee. ou:attendee has the :conference property
to denote what conference the attendee attended.

• ou:conference:event:attendee

– ou:conference:attendee has been superseded by ou:attendee. ou:attendee has the :conference property
to denote what conference event the attendee attended.

• ou:member

– ou:member has been superseded by ou:position.

• ps:persona

– Please use the ps:person or ps:contact types.

• ps:person:has

– Please use edge:has or a light edge.

• ps:persona:has

– Please use ps:person or ps:context in combination with an edge:has or a light edge.

Forms

Consistent with the deprecated types, the following forms are deprecated: - file:string - it:reveng:funcstr - lang:idiom
- lang:trans - ou:hasalias - ou:meet:attendee - ou:conference:attendee - ou:conference:event:attendee - ou:member -
ps:person:has - ps:persona - ps:persona:has

Properties

• ps:person

– :img

∗ ps:person:img has been renamed to ps:person:photo.

• it:prod:soft

– author:org, author:acct, author:email, and author:person

∗ These properties have been collected into the it:prod:soft:author property, which is typed as a
ps:contact.

• media:news

– :author

∗ The media:news:author property has been superseded by the array property of me-
dia:news:authors, which is an array of type ps:contact.

• file:subfile

– :name

∗ The file:subfile:name property has been superseded by the property file:subfile:path, which is
typed as file:path.

12.3. Datamodel Deprecation Policy 1285

Synapse Documentation, Release 2.141.0

• ou:org

– :naics and :sic

∗ The ou:org:naics and ou:org:sic properties has been collected into the ou:org:industries prop-
erty, which is an array of type ou:industry.

– :has

∗ Please use an edge:has node or a light edge.

• risk:attack

– :actor:org

∗ Please use the :attacker ps:contact property to allow entity resolution.

– :actor:person

∗ Please use the :attacker ps:contact property to allow entity resolution.

– :target:org

∗ Please use the :target ps:contact property to allow entity resolution.

– :target:person

∗ Please use the :target ps:contact property to allow entity resolution.

• ou:campaign

– :type

∗ Please use the :camptype taxonomy property.

• it:host

– :manu

∗ This property has been superseded by the it:prod:hardware:make property, which is typed as
ou:name.

– :model

∗ This property has been superseded by the it:prod:hardware:model property, which is typed as
string.

• it:exec:proc

– :user

∗ Please use the :account it:exec:proc property to link processes to users.

1286 Chapter 12. Synapse Data Model

CHAPTER

THIRTEEN

STORM LIBRARY DOCUMENTATION

This contains API documentation for Storm Libraries and Storm Types.

Storm Types (also called Storm Objects) are objects in the Storm Runtime that can represent values such as nodes
in the runtime or objects in the Cortex. Storm Types encompass objects from strings of characters (str), to objects
representing Cron Jobs in the Cortex (stormprims-storm-cronjob-f527), to nodes in the Cortex (stormprims-storm-
node-f527). These objects each have their own properties and methods defined on them that can be used to inspect or
edit that object. For instance, String Storm Types all have the upper method defined on them that returns a new instance
of that String, except with every letter turned uppercase (upper()). Storm Types help form the basis for programmatic
manipulation of objects and data in the Cortex.

Storm Libraries are ready-made tools in the Storm query language for creating, updating, or fetching data using Storm
Types. Storm libraries include functionality for making HTTP requests (via $lib.inet.http), scraping nodes from text
($lib.scrape), manipulating Cortex objects such as Queues ($lib.queue) and StormDmons ($lib.dmon), creating new
Cron Jobs ($lib.cron), and more. Many of these libraries accept or return Storm Types as part of their usage. For
instance, there is a library in Storm for interacting with OAuthv1 servers ($lib.inet.http.oauth.v1.client(ckey, csecret,
atoken, asecret, sigtype=QUERY)), and it accepts several String Storm Types as parameters and returns an OAuthV1
client object for later usage (stormprims-storm-oauth-v1-client-f527). Storm Libraries form a powerful bench of tools
for usage within the Storm query language.

The current sections are:

13.1 Storm Libraries

Storm Libraries represent powerful tools available inside of the Storm query language.

13.1.1 $lib

The Base Storm Library. This mainly contains utility functionality.

$lib.cast(name, valu)

Normalize a value as a Synapse Data Model Type.

Args:
name (str): The name of the model type to normalize the value as.

valu (any): The value to normalize.

Returns:
The normalized value. The return type is prim.

1287

Synapse Documentation, Release 2.141.0

$lib.copy(item)

Create and return a deep copy of the given storm object.

Note:
This is currently limited to msgpack compatible primitives.

Examples:
Make a copy of a list or dict:

$copy = $lib.copy($item)

Args:
item (prim): The item to make a copy of.

Returns:
A deep copy of the primitive object. The return type is prim.

$lib.debug

True if the current runtime has debugging enabled.

Note:
The debug state is inherited by sub-runtimes at instantiation time. Any changes to a runtime’s debug state do not
percolate automatically.

Examples:
Check if the runtime is in debug and print a message:

if $lib.debug {
$lib.print('Doing stuff!")

}

Update the current runtime to enable debugging:

$lib.debug = $lib.true

Returns:
The return type is boolean. When this is used to set the value, it does not have a return type.

$lib.dict(**kwargs)

Get a Storm Dict object.

Args:
**kwargs (any): Initial set of keyword argumetns to place into the dict.

Returns:
A dictionary object. The return type is dict.

1288 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

$lib.exit(mesg=None, **kwargs)

Cause a Storm Runtime to stop running.

Args:
mesg (str): Optional string to warn.

**kwargs (any): Keyword arguments to substitute into the mesg.

Returns:
The return type is null.

$lib.false

This constant represents a value of False that can be used in Storm.

Examples:
Conditionally print a statement based on the constant value:

cli> storm if $lib.false { $lib.print('Is True') } else { $lib.print('Is False') }
Is False

Returns:
The type is boolean.

$lib.fire(name, **info)

Fire an event onto the runtime.

Notes:
This fires events as storm:fire event types. The name of the event is placed into a type key, and any additional
keyword arguments are added to a dictionary under the data key.

Examples:
Fire an event called demo with some data:

cli> storm $foo='bar' $lib.fire('demo', foo=$foo, knight='ni')
...
('storm:fire', {'type': 'demo', 'data': {'foo': 'bar', 'knight': 'ni'}})
...

Args:
name (str): The name of the event to fire.

**info (any): Additional keyword arguments containing data to add to the event.

Returns:
The return type is null.

13.1. Storm Libraries 1289

Synapse Documentation, Release 2.141.0

$lib.guid(*args)

Get a random guid, or generate a guid from the arguments.

Args:
*args (prim): Arguments which are hashed to create a guid.

Returns:
A guid. The return type is str.

$lib.import(name, debug=False, reqvers=None)

Import a Storm module.

Args:
name (str): Name of the module to import.

debug (boolean): Enable debugging in the module.

reqvers (str): Version requirement for the imported module.

Returns:
A lib instance representing the imported package. The return type is lib.

$lib.len(item)

Get the length of a item.

This could represent the size of a string, or the number of keys in a dictionary, or the number of elements in an array.
It may also be used to iterate an emitter or yield function and count the total.

Args:
item (prim): The item to get the length of.

Returns:
The length of the item. The return type is int.

$lib.list(*vals)

Get a Storm List object.

Args:
*vals (any): Initial values to place in the list.

Returns:
A new list object. The return type is list.

1290 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

$lib.max(*args)

Get the maximum value in a list of arguments.

Args:
*args (any): List of arguments to evaluate.

Returns:
The largest argument. The return type is int.

$lib.min(*args)

Get the minimum value in a list of arguments.

Args:
*args (any): List of arguments to evaluate.

Returns:
The smallest argument. The return type is int.

$lib.null

This constant represents a value of None that can be used in Storm.

Examples:
Create a dictionary object with a key whose value is null, and call $lib.fire() with it:

cli> storm $d=$lib.dict(key=$lib.null) $lib.fire('demo', d=$d)
('storm:fire', {'type': 'demo', 'data': {'d': {'key': None}}})

Returns:
The type is null.

$lib.pprint(item, prefix=, clamp=None)

The pprint API should not be considered a stable interface.

Args:
item (any): Item to pprint

prefix (str): Line prefix.

clamp (int): Line clamping length.

Returns:
The return type is null.

13.1. Storm Libraries 1291

Synapse Documentation, Release 2.141.0

$lib.print(mesg, **kwargs)

Print a message to the runtime.

Examples:
Print a simple string:

cli> storm $lib.print("Hello world!")
Hello world!

Format and print string based on variables:

cli> storm $d=$lib.dict(key1=(1), key2="two")
for ($key, $value) in $d { $lib.print('{k} => {v}', k=$key, v=$value) }

key1 => 1
key2 => two

Use values off of a node to format and print string:

cli> storm inet:ipv4:asn
$lib.print("node: {ndef}, asn: {asn}", ndef=$node.ndef(), asn=:asn) | spin

node: ('inet:ipv4', 16909060), asn: 1138

Notes:
Arbitrary objects can be printed as well. They will have their Python __repr()__ printed.

Args:
mesg (str): String to print.

**kwargs (any): Keyword arguments to substitute into the mesg.

Returns:
The return type is null.

$lib.raise(name, mesg, **info)

Raise an exception in the storm runtime.

Args:
name (str): The name of the error condition to raise.

mesg (str): A friendly description of the specific error.

**info (any): Additional metadata to include in the exception.

Returns:
This function does not return. The return type is null.

1292 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

$lib.range(stop, start=None, step=None)

Generate a range of integers.

Examples:
Generate a sequence of integers based on the size of an array:

cli> storm $a=(foo,bar,(2)) for $i in $lib.range($lib.len($a)) {$lib.fire('test',␣
→˓indx=$i, valu=$a.$i)}
Executing query at 2021/03/22 19:25:48.835
('storm:fire', {'type': 'test', 'data': {'index': 0, 'valu': 'foo'}})
('storm:fire', {'type': 'test', 'data': {'index': 1, 'valu': 'bar'}})
('storm:fire', {'type': 'test', 'data': {'index': 2, 'valu': 2}})

Notes:
The range behavior is the same as the Python3 range() builtin Sequence type.

Args:
stop (int): The value to stop at.

start (int): The value to start at.

step (int): The range step size.

Yields:
The sequence of integers. The return type is int.

$lib.set(*vals)

Get a Storm Set object.

Args:
*vals (any): Initial values to place in the set.

Returns:
The new set. The return type is set.

$lib.sorted(valu, reverse=False)

Yield sorted values.

Args:
valu (any): An iterable object to sort.

reverse (boolean): Reverse the sort order.

Yields:
Yields the sorted output. The return type is any.

13.1. Storm Libraries 1293

Synapse Documentation, Release 2.141.0

$lib.text(*args)

Get a Storm Text object.

Args:
*args (str): An initial set of values to place in the Text. These values are joined together with an empty string.

Returns:
The new Text object. The return type is text.

$lib.true

This constant represents a value of True that can be used in Storm.

Examples:
Conditionally print a statement based on the constant value:

cli> storm if $lib.true { $lib.print('Is True') } else { $lib.print('Is False') }
Is True

Returns:
The type is boolean.

$lib.trycast(name, valu)

Attempt to normalize a value and return status and the normalized value.

Examples:
Do something if the value is a valid IPV4:

($ok, $ipv4) = $lib.trycast(inet:ipv4, 1.2.3.4)
if $ok { $dostuff($ipv4) }

Args:
name (str): The name of the model type to normalize the value as.

valu (any): The value to normalize.

Returns:
A list of (<bool>, <prim>) for status and normalized value. The return type is list.

$lib.undef

This constant can be used to unset variables and derefs.

Examples:
Unset the variable $foo:

$foo = $lib.undef

Remove a dictionary key bar:

$foo.bar = $lib.undef

Remove a list index of 0:

1294 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

$foo.0 = $lib.undef

Returns:
The type is undef.

$lib.warn(mesg, **kwargs)

Print a warning message to the runtime.

Notes:
Arbitrary objects can be warned as well. They will have their Python __repr()__ printed.

Args:
mesg (str): String to warn.

**kwargs (any): Keyword arguments to substitute into the mesg.

Returns:
The return type is null.

13.1.2 $lib.auth

A Storm Library for interacting with Auth in the Cortex.

$lib.auth.getPermDef(perm)

Return a single permission definition.

Args:
perm (list): A permission tuple.

Returns:
A permission definition or null. The return type is dict.

$lib.auth.getPermDefs()

Return a list of permission definitions.

Returns:
The list of permission definitions. The return type is list.

$lib.auth.ruleFromText(text)

Get a rule tuple from a text string.

Args:
text (str): The string to process.

Returns:
A tuple containing a bool and a list of permission parts. The return type is list.

13.1. Storm Libraries 1295

Synapse Documentation, Release 2.141.0

$lib.auth.textFromRule(rule)

Return a text string from a rule tuple.

Args:
rule (list): A rule tuple.

Returns:
The rule text. The return type is str.

13.1.3 $lib.auth.easyperm

A Storm Library for interacting with easy perm dictionaries.

$lib.auth.easyperm.allowed(edef, level)

Check if the current user has a permission level in an easy perm dictionary.

Args:
edef (dict): The easy perm dictionary to check.

level (str): The required permission level number.

Returns:
True if the user meets the requirement, false otherwise. The return type is boolean.

$lib.auth.easyperm.confirm(edef, level)

Require that the current user has a permission level in an easy perm dictionary.

Args:
edef (dict): The easy perm dictionary to check.

level (str): The required permission level number.

Returns:
The return type is null.

$lib.auth.easyperm.init(edef=None)

Add the easy perm structure to a new or existing dictionary.

Note:
The current user will be given admin permission in the new easy perm structure.

Args:
edef (dict): A dictionary to add easy perms to.

Returns:
Dictionary with the easy perm structure. The return type is dict.

1296 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

$lib.auth.easyperm.set(edef, scope, iden, level)

Set the permission level for a user or role in an easy perm dictionary.

Args:
edef (dict): The easy perm dictionary to modify.

scope (str): The scope, either “users” or “roles”.

iden (str): The user/role iden depending on scope.

level (int): The permission level number, or None to remove the permission.

Returns:
Dictionary with the updated easy perm structure. The return type is dict.

13.1.4 $lib.auth.gates

A Storm Library for interacting with Auth Gates in the Cortex.

$lib.auth.gates.get(iden)

Get a specific Gate by iden.

Args:
iden (str): The iden of the gate to retrieve.

Returns:
The auth:gate if it exists, otherwise null. The return type may be one of the following: null, auth:gate.

$lib.auth.gates.list()

Get a list of Gates in the Cortex.

Returns:
A list of auth:gate objects. The return type is list.

13.1.5 $lib.auth.roles

A Storm Library for interacting with Auth Roles in the Cortex.

$lib.auth.roles.add(name)

Add a Role to the Cortex.

Args:
name (str): The name of the role.

Returns:
The new role object. The return type is auth:role.

13.1. Storm Libraries 1297

Synapse Documentation, Release 2.141.0

$lib.auth.roles.byname(name)

Get a specific Role by name.

Args:
name (str): The name of the role to retrieve.

Returns:
The role by name, or null if it does not exist. The return type may be one of the following: null, auth:role.

$lib.auth.roles.del(iden)

Delete a Role from the Cortex.

Args:
iden (str): The iden of the role to delete.

Returns:
The return type is null.

$lib.auth.roles.get(iden)

Get a specific Role by iden.

Args:
iden (str): The iden of the role to retrieve.

Returns:
The auth:role object; or null if the role does not exist. The return type may be one of the following: null,
auth:role.

$lib.auth.roles.list()

Get a list of Roles in the Cortex.

Returns:
A list of auth:role objects. The return type is list.

13.1.6 $lib.auth.users

A Storm Library for interacting with Auth Users in the Cortex.

$lib.auth.users.add(name, passwd=None, email=None, iden=None)

Add a User to the Cortex.

Args:
name (str): The name of the user.

passwd (str): The user’s password.

email (str): The user’s email address.

iden (str): The iden to use to create the user.

1298 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

Returns:
The auth:user object for the new user. The return type is auth:user.

$lib.auth.users.byname(name)

Get a specific user by name.

Args:
name (str): The name of the user to retrieve.

Returns:
The auth:user object, or none if the user does not exist. The return type may be one of the following: null,
auth:user.

$lib.auth.users.del(iden)

Delete a User from the Cortex.

Args:
iden (str): The iden of the user to delete.

Returns:
The return type is null.

$lib.auth.users.get(iden)

Get a specific User by iden.

Args:
iden (str): The iden of the user to retrieve.

Returns:
The auth:user object, or none if the user does not exist. The return type may be one of the following: null,
auth:user.

$lib.auth.users.list()

Get a list of Users in the Cortex.

Returns:
A list of auth:user objects. The return type is list.

13.1.7 $lib.axon

A Storm library for interacting with the Cortex’s Axon.

13.1. Storm Libraries 1299

Synapse Documentation, Release 2.141.0

$lib.axon.csvrows(sha256, dialect=excel, **fmtparams)

Yields CSV rows from a CSV file stored in the Axon.

Notes:
The dialect and fmtparams expose the Python csv.reader() parameters.

Example:
Get the rows from a given csv file:

for $row in $lib.axon.csvrows($sha256) {
$dostuff($row)

}

Get the rows from a given tab separated file:

for $row in $lib.axon.csvrows($sha256, delimiter="\t") {
$dostuff($row)

}

Args:
sha256 (str): The SHA256 hash of the file.

dialect (str): The default CSV dialect to use.

**fmtparams (any): Format arguments.

yields:
A list of strings from the CSV file. The return type is list.

$lib.axon.del(sha256)

Remove the bytes from the Cortex’s Axon by sha256.

Example:
Delete files from the axon based on a tag:

file:bytes#foo +:sha256 $lib.axon.del(:sha256)

Args:
sha256 (hash:sha256): The sha256 of the bytes to remove from the Axon.

Returns:
True if the bytes were found and removed. The return type is boolean.

$lib.axon.dels(sha256s)

Remove multiple byte blobs from the Cortex’s Axon by a list of sha256 hashes.

Example:
Delete a list of files (by hash) from the Axon:

$list = ($hash0, $hash1, $hash2)
$lib.axon.dels($list)

Args:
sha256s (list): A list of sha256 hashes to remove from the Axon.

1300 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

Returns:
A list of boolean values that are True if the bytes were found. The return type is list.

$lib.axon.jsonlines(sha256)

Yields JSON objects from a JSON-lines file stored in the Axon.

Example:
Get the JSON objects from a given JSONL file:

for $item in $lib.axon.jsonlines($sha256) {
$dostuff($item)

}

Args:
sha256 (str): The SHA256 hash of the file.

yields:
A JSON object parsed from a line of text. The return type is any.

$lib.axon.list(offs=0, wait=False, timeout=None)

List (offset, sha256, size) tuples for files in the Axon in added order.

Example:
List files:

for ($offs, $sha256, $size) in $lib.axon.list() {
$lib.print($sha256)

}

Start list from offset 10:

for ($offs, $sha256, $size) in $lib.axon.list(10) {
$lib.print($sha256)

}

Args:
offs (int): The offset to start from.

wait (boolean): Wait for new results and yield them in realtime.

timeout (int): The maximum time to wait for a new result before returning.

yields:
Tuple of (offset, sha256, size) in added order. The return type is list.

13.1. Storm Libraries 1301

Synapse Documentation, Release 2.141.0

$lib.axon.metrics()

Get runtime metrics of the Axon.

Example:
Print the total number of files stored in the Axon:

$data = $lib.axon.metrics()
$lib.print("The Axon has {n} files", n=$data."file:count")

Returns:
A dictionary containing runtime data about the Axon. The return type is dict.

$lib.axon.readlines(sha256)

Yields lines of text from a plain-text file stored in the Axon.

Example:
Get the lines for a given file:

for $line in $lib.axon.readlines($sha256) {
$dostuff($line)

}

Args:
sha256 (str): The SHA256 hash of the file.

yields:
A line of text from the file. The return type is str.

$lib.axon.urlfile(*args, **kwargs)

Retrive the target URL using the wget() function and construct an inet:urlfile node from the response.

Notes:
This accepts the same arguments as $lib.axon.wget().

Args:
*args (any): Args from $lib.axon.wget().

**kwargs (any): Args from $lib.axon.wget().

Returns:
The inet:urlfile node on success, null on error. The return type may be one of the following: node, null.

$lib.axon.wget(url, headers=None, params=None, method=GET, json=None, body=None, ssl=True,
timeout=None, proxy=None)

A method to download an HTTP(S) resource into the Cortex’s Axon.

Notes:
The response body will be stored regardless of the status code. See the Axon.wget() API documentation to see
the complete structure of the response dictionary.

Example:
Get the Vertex Project website:

1302 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

$headers = $lib.dict()
$headers."User-Agent" = Foo/Bar

$resp = $lib.axon.wget("http://vertex.link", method=GET, headers=$headers)
if $resp.ok { $lib.print("Downloaded: {size} bytes", size=$resp.size) }

Args:
url (str): The URL to download

headers (dict): An optional dictionary of HTTP headers to send.

params (dict): An optional dictionary of URL parameters to add.

method (str): The HTTP method to use.

json (dict): A JSON object to send as the body.

body (bytes): Bytes to send as the body.

ssl (boolean): Set to False to disable SSL/TLS certificate verification.

timeout (int): Timeout for the download operation.

proxy: Set to a proxy URL string or $lib.false to disable proxy use. The input type may one one of the following:
bool, null, str.

Returns:
A status dictionary of metadata. The return type is dict.

$lib.axon.wput(sha256, url, headers=None, params=None, method=PUT, ssl=True, timeout=None,
proxy=None)

A method to upload a blob from the axon to an HTTP(S) endpoint.

Args:
sha256 (str): The sha256 of the file blob to upload.

url (str): The URL to upload the file to.

headers (dict): An optional dictionary of HTTP headers to send.

params (dict): An optional dictionary of URL parameters to add.

method (str): The HTTP method to use.

ssl (boolean): Set to False to disable SSL/TLS certificate verification.

timeout (int): Timeout for the download operation.

proxy: Set to a proxy URL string or $lib.false to disable proxy use. The input type may one one of the following:
bool, null, str.

Returns:
A status dictionary of metadata. The return type is dict.

13.1. Storm Libraries 1303

Synapse Documentation, Release 2.141.0

13.1.8 $lib.backup

A Storm Library for interacting with the backup APIs in the Cortex.

$lib.backup.del(name)

Remove a backup by name.

Args:
name (str): The name of the backup to remove.

Returns:
The return type is null.

$lib.backup.list()

Get a list of backup names.

Returns:
A list of backup names. The return type is list.

$lib.backup.run(name=None, wait=True)

Run a Cortex backup.

Args:
name (str): The name of the backup to generate.

wait (boolean): If true, wait for the backup to complete before returning.

Returns:
The name of the newly created backup. The return type is str.

13.1.9 $lib.base64

A Storm Library for encoding and decoding base64 data.

$lib.base64.decode(valu, urlsafe=True)

Decode a base64 string into a bytes object.

Args:
valu (str): The string to decode.

urlsafe (boolean): Perform the decoding in a urlsafe manner if true.

Returns:
A bytes object for the decoded data. The return type is bytes.

1304 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

$lib.base64.encode(valu, urlsafe=True)

Encode a bytes object to a base64 encoded string.

Args:
valu (bytes): The object to encode.

urlsafe (boolean): Perform the encoding in a urlsafe manner if true.

Returns:
A base64 encoded string. The return type is str.

13.1.10 $lib.basex

A Storm library which implements helpers for encoding and decoding strings using an arbitrary charset.

$lib.basex.decode(text, charset)

Decode a baseX string into bytes.

Args:
text (str): The hex string to be decoded into bytes.

charset (str): The charset used to decode the string.

Returns:
The decoded bytes. The return type is bytes.

$lib.basex.encode(byts, charset)

Encode bytes into a baseX string.

Args:
byts (bytes): The bytes to be encoded into a string.

charset (str): The charset used to encode the bytes.

Returns:
The encoded string. The return type is str.

13.1.11 $lib.bytes

A Storm Library for interacting with bytes storage.

$lib.bytes.has(sha256)

Check if the Axon the Cortex is configured to use has a given sha256 value.

Examples:
Check if the Axon has a given file:

13.1. Storm Libraries 1305

Synapse Documentation, Release 2.141.0

This example assumes the Axon does have the bytes
cli> storm if $lib.bytes.
→˓has(9f86d081884c7d659a2feaa0c55ad015a3bf4f1b2b0b822cd15d6c15b0f00a08) {

$lib.print("Has bytes")
} else {

$lib.print("Does not have bytes")
}

Has bytes

Args:
sha256 (str): The sha256 value to check.

Returns:
True if the Axon has the file, false if it does not. The return type is boolean.

$lib.bytes.hashset(sha256)

Return additional hashes of the bytes stored in the Axon for the given sha256.

Examples:
Get the md5 hash for a file given a variable named $sha256:

$hashset = $lib.bytes.hashset($sha256)
$md5 = $hashset.md5

Args:
sha256 (str): The sha256 value to calculate hashes for.

Returns:
A dictionary of additional hashes. The return type is dict.

$lib.bytes.put(byts)

Save the given bytes variable to the Axon the Cortex is configured to use.

Examples:
Save a base64 encoded buffer to the Axon:

cli> storm $s='dGVzdA==' $buf=$lib.base64.decode($s) ($size, $sha256)=$lib.bytes.
→˓put($buf)

$lib.print('size={size} sha256={sha256}', size=$size, sha256=$sha256)

size=4 sha256=9f86d081884c7d659a2feaa0c55ad015a3bf4f1b2b0b822cd15d6c15b0f00a08

Args:
byts (bytes): The bytes to save.

Returns:
A tuple of the file size and sha256 value. The return type is list.

1306 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

$lib.bytes.size(sha256)

Return the size of the bytes stored in the Axon for the given sha256.

Examples:
Get the size for a file given a variable named $sha256:

$size = $lib.bytes.size($sha256)

Args:
sha256 (str): The sha256 value to check.

Returns:
The size of the file or null if the file is not found. The return type may be one of the following: int, null.

$lib.bytes.upload(genr)

Upload a stream of bytes to the Axon as a file.

Examples:
Upload bytes from a generator:

($size, $sha256) = $lib.bytes.upload($getBytesChunks())

Args:
genr (generator): A generator which yields bytes.

Returns:
A tuple of the file size and sha256 value. The return type is list.

13.1.12 $lib.cell

A Storm Library for interacting with the Cortex.

$lib.cell.getBackupInfo()

Get information about recent backup activity.

Returns:
A dictionary containing backup information. The return type is dict.

$lib.cell.getCellInfo()

Return metadata specific for the Cortex.

Returns:
A dictionary containing metadata. The return type is dict.

13.1. Storm Libraries 1307

Synapse Documentation, Release 2.141.0

$lib.cell.getHealthCheck()

Get healthcheck information about the Cortex.

Returns:
A dictionary containing healthcheck information. The return type is dict.

$lib.cell.getMirrorUrls(name=None)

Get mirror Telepath URLs for an AHA configured service.

Args:
name (str): The name, or iden, of the service to get mirror URLs for (defaults to the Cortex if not provided).

Returns:
A list of Telepath URLs. The return type is list.

$lib.cell.getSystemInfo()

Get info about the system in which the Cortex is running.

Returns:
A dictionary containing system information. The return type is dict.

$lib.cell.hotFixesApply()

Apply known data migrations and fixes via storm.

Returns:
Tuple containing the current version after applying the fixes. The return type is list.

$lib.cell.hotFixesCheck()

Check to see if there are known hot fixes to apply.

Returns:
Bool indicating if there are hot fixes to apply or not. The return type is boolean.

$lib.cell.trimNexsLog(consumers=None, timeout=30)

Rotate and cull the Nexus log (and any consumers) at the current offset.

If the consumers argument is provided they will first be checked if online before rotating and raise otherwise. After
rotation, all consumers provided must catch-up to the offset to cull at within the specified timeout before executing the
cull, and will raise otherwise.

Args:
consumers (array): List of Telepath URLs for consumers of the Nexus log.

timeout (int): Time (in seconds) to wait for consumers to catch-up before culling.

Returns:
The offset that was culled (up to and including). The return type is int.

1308 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

$lib.cell.uptime(name=None)

Get update data for the Cortex or a connected Service.

Args:
name (str): The name, or iden, of the service to get uptime data for (defaults to the Cortex if not provided).

Returns:
A dictionary containing uptime data. The return type is dict.

13.1.13 $lib.compression.bzip2

A Storm library which implements helpers for bzip2 compression.

$lib.compression.bzip2.en(valu)

Compress bytes using bzip2 and return them.

Example:
Compress bytes with bzip2:

$foo = $lib.compression.bzip2.en($mybytez)

Args:
valu (bytes): The bytes to be compressed.

Returns:
The bzip2 compressed bytes. The return type is bytes.

$lib.compression.bzip2.un(valu)

Decompress bytes using bzip2 and return them.

Example:
Decompress bytes with bzip2:

$foo = $lib.compression.bzip2.un($mybytez)

Args:
valu (bytes): The bytes to be decompressed.

Returns:
Decompressed bytes. The return type is bytes.

13.1.14 $lib.compression.gzip

A Storm library which implements helpers for gzip compression.

13.1. Storm Libraries 1309

Synapse Documentation, Release 2.141.0

$lib.compression.gzip.en(valu)

Compress bytes using gzip and return them.

Example:
Compress bytes with gzip:

$foo = $lib.compression.gzip.en($mybytez)

Args:
valu (bytes): The bytes to be compressed.

Returns:
The gzip compressed bytes. The return type is bytes.

$lib.compression.gzip.un(valu)

Decompress bytes using gzip and return them.

Example:
Decompress bytes with gzip:

$foo = $lib.compression.gzip.un($mybytez)

Args:
valu (bytes): The bytes to be decompressed.

Returns:
Decompressed bytes. The return type is bytes.

13.1.15 $lib.compression.zlib

A Storm library which implements helpers for zlib compression.

$lib.compression.zlib.en(valu)

Compress bytes using zlib and return them.

Example:
Compress bytes with zlib:

$foo = $lib.compression.zlib.en($mybytez)

Args:
valu (bytes): The bytes to be compressed.

Returns:
The zlib compressed bytes. The return type is bytes.

1310 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

$lib.compression.zlib.un(valu)

Decompress bytes using zlib and return them.

Example:
Decompress bytes with zlib:

$foo = $lib.compression.zlib.un($mybytez)

Args:
valu (bytes): The bytes to be decompressed.

Returns:
Decompressed bytes. The return type is bytes.

13.1.16 $lib.cron

A Storm Library for interacting with Cron Jobs in the Cortex.

$lib.cron.add(**kwargs)

Add a recurring Cron Job to the Cortex.

Args:
**kwargs (any): Key-value parameters used to add the cron job.

Returns:
The new Cron Job. The return type is cronjob.

$lib.cron.at(**kwargs)

Add a non-recurring Cron Job to the Cortex.

Args:
**kwargs (any): Key-value parameters used to add the cron job.

Returns:
The new Cron Job. The return type is cronjob.

$lib.cron.del(prefix)

Delete a CronJob from the Cortex.

Args:
prefix (str): A prefix to match in order to identify a cron job to delete. Only a single matching prefix will be
deleted.

Returns:
The return type is null.

13.1. Storm Libraries 1311

Synapse Documentation, Release 2.141.0

$lib.cron.disable(prefix)

Disable a CronJob in the Cortex.

Args:
prefix (str): A prefix to match in order to identify a cron job to disable. Only a single matching prefix will be
disabled.

Returns:
The iden of the CronJob which was disabled. The return type is str.

$lib.cron.enable(prefix)

Enable a CronJob in the Cortex.

Args:
prefix (str): A prefix to match in order to identify a cron job to enable. Only a single matching prefix will be
enabled.

Returns:
The iden of the CronJob which was enabled. The return type is str.

$lib.cron.get(prefix)

Get a CronJob in the Cortex.

Args:
prefix (str): A prefix to match in order to identify a cron job to get. Only a single matching prefix will be retrieved.

Returns:
The requested cron job. The return type is cronjob.

$lib.cron.list()

List CronJobs in the Cortex.

Returns:
A list of cronjob objects.. The return type is list.

$lib.cron.mod(prefix, query)

Modify the Storm query for a CronJob in the Cortex.

Args:
prefix (str): A prefix to match in order to identify a cron job to modify. Only a single matching prefix will be
modified.

query: The new Storm query for the Cron Job. The input type may one one of the following: str, query.

Returns:
The iden of the CronJob which was modified. The return type is str.

1312 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

$lib.cron.move(prefix, view)

Move a cron job to a new view.

Args:
prefix (str): A prefix to match in order to identify a cron job to move. Only a single matching prefix will be
modified.

view (str): The iden of the view to move the CrobJob to

Returns:
The iden of the CronJob which was moved. The return type is str.

13.1.17 $lib.crypto.coin.ethereum

A Storm library which implements helpers for Ethereum.

$lib.crypto.coin.ethereum.eip55(addr)

Convert an Ethereum address to a checksummed address.

Args:
addr (str): The Ethereum address to be converted.

Returns:
A list of (<bool>, <addr>) for status and checksummed address. The return type is list.

13.1.18 $lib.crypto.hashes

A Storm Library for hashing bytes

$lib.crypto.hashes.md5(byts)

Retrieve an MD5 hash of a byte string.

Args:
byts (bytes): The bytes to hash.

Returns:
The hex digest of the MD5 hash of the input bytes. The return type is str.

$lib.crypto.hashes.sha1(byts)

Retrieve a SHA1 hash of a byte string.

Args:
byts (bytes): The bytes to hash.

Returns:
The hex digest of the SHA1 hash of the input bytes. The return type is str.

13.1. Storm Libraries 1313

Synapse Documentation, Release 2.141.0

$lib.crypto.hashes.sha256(byts)

Retrieve a SHA256 hash of a byte string.

Args:
byts (bytes): The bytes to hash.

Returns:
The hex digest of the SHA256 hash of the input bytes. The return type is str.

$lib.crypto.hashes.sha512(byts)

Retrieve a SHA512 hash of a byte string.

Args:
byts (bytes): The bytes to hash.

Returns:
The hex digest of the SHA512 hash of the input bytes. The return type is str.

13.1.19 $lib.crypto.hmac

A Storm library for computing RFC2104 HMAC values.

$lib.crypto.hmac.digest(key, mesg, alg=sha256)

Compute the digest value of a message using RFC2104 HMAC.

Examples:
Compute the HMAC-SHA256 digest for a message with a secret key:

$digest = $lib.crypto.hmac.digest(key=$secretKey.encode(), mesg=$mesg.encode())

Args:
key (bytes): The key to use for the HMAC calculation.

mesg (bytes): The message to use for the HMAC calculation.

alg (str): The digest algorithm to use.

Returns:
The binary digest of the HMAC value. The return type is bytes.

13.1.20 $lib.csv

A Storm Library for interacting with csvtool.

1314 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

$lib.csv.emit(*args, table=None)

Emit a csv:row event to the Storm runtime for the given args.

Args:
*args (any): Items which are emitted as a csv:row event.

table (str): The name of the table to emit data too. Optional.

Returns:
The return type is null.

13.1.21 $lib.dmon

A Storm Library for interacting with StormDmons.

$lib.dmon.add(text, name=noname, ddef=None)

Add a Storm Dmon to the Cortex.

Examples:
Add a dmon that executes a query:

$lib.dmon.add(${ myquery }, name='example dmon')

Args:
text: The Storm query to execute in the Dmon loop. The input type may one one of the following: str,
storm:query.

name (str): The name of the Dmon.

ddef (dict): Additional daemon definition fields.

Returns:
The iden of the newly created Storm Dmon. The return type is str.

$lib.dmon.bump(iden)

Restart the Dmon.

Args:
iden (str): The GUID of the dmon to restart.

Returns:
True if the Dmon is restarted; False if the iden does not exist. The return type is boolean.

13.1. Storm Libraries 1315

Synapse Documentation, Release 2.141.0

$lib.dmon.del(iden)

Delete a Storm Dmon by iden.

Args:
iden (str): The iden of the Storm Dmon to delete.

Returns:
The return type is null.

$lib.dmon.get(iden)

Get a Storm Dmon definition by iden.

Args:
iden (str): The iden of the Storm Dmon to get.

Returns:
A Storm Dmon definition dict. The return type is dict.

$lib.dmon.list()

Get a list of Storm Dmons.

Returns:
A list of Storm Dmon definitions. The return type is list.

$lib.dmon.log(iden)

Get the messages from a Storm Dmon.

Args:
iden (str): The iden of the Storm Dmon to get logs for.

Returns:
A list of messages from the StormDmon. The return type is list.

$lib.dmon.start(iden)

Start a storm dmon.

Args:
iden (str): The GUID of the dmon to start.

Returns:
$lib.true unless the dmon does not exist or was already started. The return type is boolean.

1316 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

$lib.dmon.stop(iden)

Stop a Storm Dmon.

Args:
iden (str): The GUID of the Dmon to stop.

Returns:
$lib.true unless the dmon does not exist or was already stopped. The return type is boolean.

13.1.22 $lib.export

A Storm Library for exporting data.

$lib.export.toaxon(query, opts=None)

Run a query as an export (fully resolving relationships between nodes in the output set) and save the resulting stream
of packed nodes to the axon.

Args:
query (str): A query to run as an export.

opts (dict): Storm runtime query option params.

Returns:
Returns a tuple of (size, sha256). The return type is list.

13.1.23 $lib.feed

A Storm Library for interacting with Cortex feed functions.

$lib.feed.genr(name, data)

Yield nodes being added to the graph by adding data with a given ingest type.

Notes:
This is using the Runtimes’s Snap to call addFeedNodes(). This only yields nodes if the feed function yields
nodes. If the generator is not entirely consumed there is no guarantee that all of the nodes which should be made
by the feed function will be made.

Args:
name (str): Name of the ingest function to send data too.

data (prim): Data to send to the ingest function.

Yields:
Yields Nodes as they are created by the ingest function. The return type is node.

13.1. Storm Libraries 1317

Synapse Documentation, Release 2.141.0

$lib.feed.ingest(name, data)

Add nodes to the graph with a given ingest type.

Notes:
This is using the Runtimes’s Snap to call addFeedData(), after setting the snap.strict mode to False. This will
cause node creation and property setting to produce warning messages, instead of causing the Storm Runtime to
be torn down.

Args:
name (str): Name of the ingest function to send data too.

data (prim): Data to send to the ingest function.

Returns:
The return type is null.

$lib.feed.list()

Get a list of feed functions.

Returns:
A list of feed functions. The return type is list.

13.1.24 $lib.gen

A Storm Library for secondary property based deconfliction.

$lib.gen.industryByName(name)

Returns an ou:industry by name, adding the node if it does not exist.

Args:
name (str): The name of the industry.

Returns:
An ou:industry node with the given name. The return type is node.

$lib.gen.langByCode(name, try=False)

Returns a lang:language node by language code, adding the node if it does not exist.

Args:
name (str): The language code for the language.

try (boolean): Type normalization will fail silently instead of raising an exception.

Returns:
A lang:language node with the given code. The return type is node.

1318 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

$lib.gen.langByName(name)

Returns a lang:language node by name, adding the node if it does not exist.

Args:
name (str): The name of the language.

Returns:
A lang:language node with the given name. The return type is node.

$lib.gen.newsByUrl(url, try=False)

Returns a media:news node by URL, adding the node if it does not exist.

Args:
url (inet:url): The URL where the news is published.

try (boolean): Type normalization will fail silently instead of raising an exception.

Returns:
A media:news node with the given URL. The return type is node.

$lib.gen.orgByFqdn(fqdn, try=False)

Returns an ou:org node by FQDN, adding the node if it does not exist.

Args:
fqdn (str): The FQDN of the org.

try (boolean): Type normalization will fail silently instead of raising an exception.

Returns:
An ou:org node with the given FQDN. The return type is node.

$lib.gen.orgByName(name)

Returns an ou:org by name, adding the node if it does not exist.

Args:
name (str): The name of the org.

Returns:
An ou:org node with the given name. The return type is node.

$lib.gen.orgHqByName(name)

Returns a ps:contact node for the ou:org, adding the node if it does not exist.

Args:
name (str): The name of the org.

Returns:
A ps:contact node for the ou:org with the given name. The return type is node.

13.1. Storm Libraries 1319

Synapse Documentation, Release 2.141.0

$lib.gen.polCountryByIso2(iso2, try=False)

Returns a pol:country node by deconflicting the :iso2 property.

Args:
iso2 (str): The pol:country:iso2 property.

try (boolean): Type normalization will fail silently instead of raising an exception.

Returns:
A pol:country node. The return type is node.

$lib.gen.psContactByEmail(type, email, try=False)

Returns a ps:contact by deconflicting the type and email address.

Args:
type (str): The ps:contact:type property.

email (str): The ps:contact:email property.

try (boolean): Type normalization will fail silently instead of raising an exception.

Returns:
A ps:contact node. The return type is node.

$lib.gen.riskThreat(name, reporter)

Returns a risk:threat node based on the threat and reporter names, adding the node if it does not exist.

Args:
name (str): The reported name of the threat cluster.

reporter (str): The name of the organization which reported the threat cluster.

Returns:
A risk:threat node. The return type is node.

$lib.gen.riskToolSoftware(name, reporter)

Returns a risk:tool:software node based on the tool and reporter names, adding the node if it does not exist.

Args:
name (str): The reported name of the tool.

reporter (str): The name of the organization which reported the tool.

Returns:
A risk:tool:software node. The return type is node.

1320 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

$lib.gen.softByName(name)

Returns it:prod:soft node by name, adding the node if it does not exist.

Args:
name (str): The name of the software.

Returns:
An it:prod:soft node with the given name. The return type is node.

$lib.gen.vulnByCve(cve, try=False)

Returns risk:vuln node by CVE, adding the node if it does not exist.

Args:
cve (str): The CVE id.

try (boolean): Type normalization will fail silently instead of raising an exception.

Returns:
A risk:vuln node with the given CVE. The return type is node.

13.1.25 $lib.globals

A Storm Library for interacting with global variables which are persistent across the Cortex.

$lib.globals.get(name, default=None)

Get a Cortex global variables.

Args:
name (str): Name of the variable.

default (prim): Default value to return if the variable is not set.

Returns:
The variable value. The return type is prim.

$lib.globals.list()

Get a list of variable names and values.

Returns:
A list of tuples with variable names and values that the user can access. The return type is list.

$lib.globals.pop(name, default=None)

Delete a variable value from the Cortex.

Args:
name (str): Name of the variable.

default (prim): Default value to return if the variable is not set.

Returns:
The variable value. The return type is prim.

13.1. Storm Libraries 1321

Synapse Documentation, Release 2.141.0

$lib.globals.set(name, valu)

Set a variable value in the Cortex.

Args:
name (str): The name of the variable to set.

valu (prim): The value to set.

Returns:
The variable value. The return type is prim.

13.1.26 $lib.graph

A Storm Library for interacting with graph projections in the Cortex.

$lib.graph.activate(iden)

Set the graph projection to use for the top level Storm Runtime.

Args:
iden (str): The iden of the graph projection to use.

Returns:
The return type is null.

$lib.graph.add(gdef)

Add a graph projection to the Cortex.

Example:
Add a graph projection named “Test Projection”:

$rules = ({
"name": "Test Projection",
"desc": "My test projection",
"degrees": 2,
"pivots": ["<- meta:seen <- meta:source"],
"filters": ["-#nope"],
"forms": {

"inet:fqdn": {
"pivots": ["<- *", "-> *"],
"filters": ["-inet:fqdn:issuffix=1"]

},
"*": {

"pivots": ["-> #"],
}

}
})
$lib.graph.add($rules)

Args:
gdef (dict): A graph projection definition.

1322 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

Returns:
The return type is null.

$lib.graph.del(iden)

Delete a graph projection from the Cortex.

Args:
iden (str): The iden of the graph projection to delete.

Returns:
The return type is null.

$lib.graph.get(iden=None)

Get a graph projection definition from the Cortex.

Args:
iden (str): The iden of the graph projection to get. If not specified, returns the current graph projection.

Returns:
A graph projection definition, or None if no iden was specified and there is currently no graph projection set.
The return type is dict.

$lib.graph.grant(gden, scope, iden, level)

Modify permissions granted to users/roles on a graph projection.

Args:
gden (str): Iden of the graph projection to modify.

scope (str): The scope, either “users” or “roles”.

iden (str): The user/role iden depending on scope.

level (int): The permission level number.

Returns:
The return type is null.

$lib.graph.list()

List the graph projections available in the Cortex.

Returns:
A list of graph projection definitions. The return type is list.

13.1. Storm Libraries 1323

Synapse Documentation, Release 2.141.0

$lib.graph.mod(iden, info)

Modify user editable properties of a graph projection.

Args:
iden (str): The iden of the graph projection to modify.

info (dict): A dictionary of the properties to edit.

Returns:
The return type is null.

13.1.27 $lib.hex

A Storm library which implements helpers for hexadecimal encoded strings.

$lib.hex.decode(valu)

Decode a hexadecimal string into bytes.

Args:
valu (str): The hex string to be decoded into bytes.

Returns:
The decoded bytes. The return type is bytes.

$lib.hex.encode(valu)

Encode bytes into a hexadecimal string.

Args:
valu (bytes): The bytes to be encoded into a hex string.

Returns:
The hex encoded string. The return type is str.

$lib.hex.fromint(valu, length, signed=False)

Convert an integer to a big endian hexadecimal string.

Args:
valu (int): The integer to be converted.

length (int): The number of bytes to use to represent the integer.

signed (bool): If true, convert as a signed value.

Returns:
The resulting hex string. The return type is str.

1324 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

$lib.hex.signext(valu, length)

Sign extension pad a hexadecimal encoded signed integer.

Args:
valu (str): The hex string to pad.

length (int): The number of characters to pad the string to.

Returns:
The sign extended hex string. The return type is str.

$lib.hex.toint(valu, signed=False)

Convert a big endian hexadecimal string to an integer.

Args:
valu (str): The hex string to be converted.

signed (bool): If true, convert to a signed integer.

Returns:
The resulting integer. The return type is int.

$lib.hex.trimext(valu)

Trim sign extension bytes from a hexadecimal encoded signed integer.

Args:
valu (str): The hex string to trim.

Returns:
The trimmed hex string. The return type is str.

13.1.28 $lib.inet.http

A Storm Library exposing an HTTP client API.

$lib.inet.http.codereason(code)

Get the reason phrase for an HTTP status code.

Examples:
Get the reason for a 404 status code:

$str=$lib.inet.http.codereason(404)

Args:
code (int): The HTTP status code.

Returns:
The reason phrase for the status code. The return type is str.

13.1. Storm Libraries 1325

Synapse Documentation, Release 2.141.0

$lib.inet.http.connect(url, headers=None, ssl_verify=True, timeout=300, params=None, proxy=None)

Connect a web socket to tx/rx JSON messages.

Args:
url (str): The URL to retrieve.

headers (dict): HTTP headers to send with the request.

ssl_verify (boolean): Perform SSL/TLS verification.

timeout (int): Total timeout for the request in seconds.

params (dict): Optional parameters which may be passed to the connection request.

proxy: Set to a proxy URL string or $lib.false to disable proxy use. The input type may one one of the following:
bool, null, str.

Returns:
A websocket object. The return type is inet:http:socket.

$lib.inet.http.get(url, headers=None, ssl_verify=True, params=None, timeout=300, al-
low_redirects=True, proxy=None)

Get the contents of a given URL.

Args:
url (str): The URL to retrieve.

headers (dict): HTTP headers to send with the request.

ssl_verify (boolean): Perform SSL/TLS verification.

params (dict): Optional parameters which may be passed to the request.

timeout (int): Total timeout for the request in seconds.

allow_redirects (bool): If set to false, do not follow redirects.

proxy: Set to a proxy URL string or $lib.false to disable proxy use. The input type may one one of the following:
bool, null, str.

Returns:
The response object. The return type is inet:http:resp.

$lib.inet.http.head(url, headers=None, ssl_verify=True, params=None, timeout=300, al-
low_redirects=False, proxy=None)

Get the HEAD response for a URL.

Args:
url (str): The URL to retrieve.

headers (dict): HTTP headers to send with the request.

ssl_verify (boolean): Perform SSL/TLS verification.

params (dict): Optional parameters which may be passed to the request.

timeout (int): Total timeout for the request in seconds.

allow_redirects (bool): If set to true, follow redirects.

1326 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

proxy: Set to a proxy URL string or $lib.false to disable proxy use. The input type may one one of the following:
bool, null, str.

Returns:
The response object. The return type is inet:http:resp.

$lib.inet.http.post(url, headers=None, json=None, body=None, ssl_verify=True, params=None, time-
out=300, allow_redirects=True, fields=None, proxy=None)

Post data to a given URL.

Args:
url (str): The URL to post to.

headers (dict): HTTP headers to send with the request.

json (prim): The data to post, as JSON object.

body (bytes): The data to post, as binary object.

ssl_verify (boolean): Perform SSL/TLS verification.

params (dict): Optional parameters which may be passed to the request.

timeout (int): Total timeout for the request in seconds.

allow_redirects (bool): If set to false, do not follow redirects.

fields (list): A list of info dictionaries containing the name, value or sha256, and additional parameters for fields to
post, as multipart/form-data. If a sha256 is specified, the request will be sent from the axon and the corresponding
file will be uploaded as the value for the field.

proxy: Set to a proxy URL string or $lib.false to disable proxy use. The input type may one one of the following:
bool, null, str.

Returns:
The response object. The return type is inet:http:resp.

$lib.inet.http.request(meth, url, headers=None, json=None, body=None, ssl_verify=True,
params=None, timeout=300, allow_redirects=True, fields=None, proxy=None)

Make an HTTP request using the given HTTP method to the url.

Args:
meth (str): The HTTP method. (ex. PUT)

url (str): The URL to send the request to.

headers (dict): HTTP headers to send with the request.

json (prim): The data to include in the body, as JSON object.

body (bytes): The data to include in the body, as binary object.

ssl_verify (boolean): Perform SSL/TLS verification.

params (dict): Optional parameters which may be passed to the request.

timeout (int): Total timeout for the request in seconds.

allow_redirects (bool): If set to false, do not follow redirects.

13.1. Storm Libraries 1327

Synapse Documentation, Release 2.141.0

fields (list): A list of info dictionaries containing the name, value or sha256, and additional parameters for fields to
post, as multipart/form-data. If a sha256 is specified, the request will be sent from the axon and the corresponding
file will be uploaded as the value for the field.

proxy: Set to a proxy URL string or $lib.false to disable proxy use. The input type may one one of the following:
bool, null, str.

Returns:
The response object. The return type is inet:http:resp.

$lib.inet.http.urldecode(text)

Urldecode a text string.

This will replace %xx escape characters with the special characters they represent and replace plus signs with spaces.

Examples:
Urlencode a string:

$str=$lib.inet.http.urldecode("http%3A%2F%2Fgo+ogle.com")

Args:
text (str): The text string.

Returns:
The urldecoded string. The return type is str.

$lib.inet.http.urlencode(text)

Urlencode a text string.

This will replace special characters in a string using the %xx escape and replace spaces with plus signs.

Examples:
Urlencode a string:

$str=$lib.inet.http.urlencode("http://go ogle.com")

Args:
text (str): The text string.

Returns:
The urlencoded string. The return type is str.

13.1.29 $lib.inet.http.oauth.v1

A Storm library to handle OAuth v1 authentication.

1328 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

$lib.inet.http.oauth.v1.client(ckey, csecret, atoken, asecret, sigtype=QUERY)

Initialize an OAuthV1 Client to use for signing/authentication.

Args:
ckey (str): The OAuthV1 Consumer Key to store and use for signing requests.

csecret (str): The OAuthV1 Consumer Secret used to sign requests.

atoken (str): The OAuthV1 Access Token (or resource owner key) to use to sign requests.)

asecret (str): The OAuthV1 Access Token Secret (or resource owner secret) to use to sign requests.

sigtype (str): Where to populate the signature (in the HTTP body, in the query parameters, or in the header)

Returns:
An OAuthV1 client to be used to sign requests. The return type is inet:http:oauth:v1:client.

13.1.30 $lib.inet.http.oauth.v2

A Storm library for managing OAuth V2 clients.

$lib.inet.http.oauth.v2.addProvider(conf)

Add a new provider configuration.

Example:
Add a new provider which uses the authorization code flow:

$iden = $lib.guid(example, provider, oauth)
$conf = ({

"iden": $iden,
"name": "example_provider",
"client_id": "yourclientid",
"client_secret": "yourclientsecret",
"scope": "first_scope second_scope",
"auth_uri": "https://provider.com/auth",
"token_uri": "https://provider.com/token",
"redirect_uri": "https://local.redirect.com/oauth",

})

// Optionally enable PKCE
$conf.extensions = ({"pkce": $lib.true})

// Optionally disable SSL verification
$conf.ssl_verify = $lib.false

// Optionally provide additional key-val parameters
// to include when calling the auth URI
$conf.extra_auth_params = ({"customparam": "foo"})

$lib.inet.http.oauth.v2.addProvider($conf)

Args:
conf (dict): A provider configuration.

13.1. Storm Libraries 1329

Synapse Documentation, Release 2.141.0

Returns:
The return type is null.

$lib.inet.http.oauth.v2.clearUserAccessToken(iden)

Clear the stored refresh data for the current user’s provider access token.

Args:
iden (str): The provider iden.

Returns:
The existing token state data or None if it did not exist. The return type is dict.

$lib.inet.http.oauth.v2.delProvider(iden)

Delete a provider configuration.

Args:
iden (str): The provider iden.

Returns:
The deleted provider configuration or None if it does not exist. The return type is dict.

$lib.inet.http.oauth.v2.getProvider(iden)

Get a provider configuration

Args:
iden (str): The provider iden.

Returns:
The provider configuration or None if it does not exist. The return type is dict.

$lib.inet.http.oauth.v2.getUserAccessToken(iden)

Get the provider access token for the current user.

Example:

Retrieve the token and handle needing an auth code:

$provideriden = $lib.globals.get("oauth:myprovider")

($ok, $data) = $lib.inet.http.oauth.v2.getUserAccessToken($provideriden)

if $ok {
// $data is the token to be used in a request

else {
// $data is a message stating why the token is not available
// caller should now handle retrieving a new auth code for the user

}

Args:
iden (str): The provider iden.

1330 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

Returns:
List of (<bool>, <token/mesg>) for status and data. The return type is list.

$lib.inet.http.oauth.v2.listProviders()

List provider configurations

Returns:
List of (iden, conf) tuples. The return type is list.

$lib.inet.http.oauth.v2.setUserAuthCode(iden, authcode, code_verifier=None)

Set the auth code for the current user.

Args:
iden (str): The provider iden.

authcode (str): The auth code for the user.

code_verifier (str): Optional PKCE code verifier.

Returns:
The return type is null.

13.1.31 $lib.inet.imap

A Storm library to connect to an IMAP server.

$lib.inet.imap.connect(host, port=993, timeout=30, ssl=True)

Open a connection to an IMAP server.

This method will wait for a “hello” response from the server before returning the inet:imap:server instance.

Args:
host (str): The IMAP hostname.

port (int): The IMAP server port.

timeout (int): The time to wait for all commands on the server to execute.

ssl (bool): Use SSL to connect to the IMAP server.

Returns:
A new inet:imap:server instance. The return type is inet:imap:server.

13.1.32 $lib.inet.ipv6

A Storm Library for providing ipv6 helpers.

13.1. Storm Libraries 1331

Synapse Documentation, Release 2.141.0

$lib.inet.ipv6.expand(valu)

Convert a IPv6 address to its expanded form.’

Notes:
The expanded form is also sometimes called the “long form” address.

Examples:
Expand a ipv6 address to its long form:

$expandedvalu = $lib.inet.ipv6.expand('2001:4860:4860::8888')

Args:
valu (str): IPv6 Address to expand

Returns:
The expanded form. The return type is str.

13.1.33 $lib.inet.smtp

A Storm Library for sending email messages via SMTP.

$lib.inet.smtp.message()

Construct a new email message.

Returns:
The newly constructed inet:smtp:message. The return type is inet:smtp:message.

13.1.34 $lib.inet.whois

A Storm Library for providing a consistent way to generate guids for WHOIS / Registration Data in Storm.

$lib.inet.whois.guid(props, form)

Provides standard patterns for creating guids for certain inet:whois forms.

Raises:
StormRuntimeError: If form is not supported in this method.

Args:
props (dict): Dictionary of properties used to create the form.

form (str): The inet:whois form to create the guid for.

Returns:
A guid for creating a the node for. The return type is str.

1332 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

13.1.35 $lib.infosec.cvss

A Storm library which implements CVSS score calculations.

$lib.infosec.cvss.calculate(node, save=True, vers=3.1)

Calculate the CVSS score values for an input risk:vuln node.

Args:
node (node): A risk:vuln node from the Storm runtime.

save (boolean): If true, save the computed scores to the node properties.

vers (str): The version of CVSS calculations to execute.

Returns:
A dictionary containing the computed score and subscores. The return type is dict.

$lib.infosec.cvss.calculateFromProps(props, vers=3.1)

Calculate the CVSS score values from a props dict.

Args:
props (dict): A props dictionary.

vers (str): The version of CVSS calculations to execute.

Returns:
A dictionary containing the computed score and subscores. The return type is dict.

$lib.infosec.cvss.saveVectToNode(node, text)

Parse a CVSS v3.1 vector and record properties on a risk:vuln node.

Args:
node (node): A risk:vuln node to record the CVSS properties on.

text (str): A CVSS vector string.

Returns:
The return type is null.

$lib.infosec.cvss.vectToProps(text)

Parse a CVSS v3.1 vector and return a dictionary of risk:vuln props.

Args:
text (str): A CVSS vector string.

Returns:
A dictionary of risk:vuln secondary props. The return type is dict.

13.1. Storm Libraries 1333

Synapse Documentation, Release 2.141.0

$lib.infosec.cvss.vectToScore(vect, vers=None)

Compute CVSS scores from a vector string.

Takes a CVSS vector string, attempts to automatically detect the version (defaults to CVSS3.1 if it cannot), and calcu-
lates the base, temporal, and environmental scores.

Raises:

• BadArg: An invalid vers string is provided

• BadDataValu: The vector string is invalid in some way. Possible reasons are malformed string, duplicated
metrics, missing mandatory metrics, and invalid metric values.

Args:

vect (str):
A valid CVSS vector string.

The following examples are valid formats:

• CVSS 2 with version: CVSS2#AV:L/AC:L/Au:M/C:P/I:C/A:N

• CVSS 2 with parentheses: (AV:L/AC:L/Au:M/C:P/I:C/A:N)

• CVSS 2 without parentheses: AV:L/AC:L/Au:M/C:P/I:C/A:N

• CVSS 3.0 with version: CVSS:3.0/AV:N/AC:H/PR:L/UI:R/S:U/C:L/I:L/A:L

• CVSS 3.1 with version: CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:L/I:L/A:L

• CVSS 3.0/3.1 with parentheses: (AV:N/AC:H/PR:L/UI:R/S:U/C:L/I:L/A:L)

• CVSS 3.0/3.1 without parentheses: AV:N/AC:H/PR:L/UI:R/S:U/C:L/I:L/A:L

vers (str):
A valid version string or None to autodetect the version from the vector string. Accepted values are: 2, 3.0,
3.1, None.

Returns:

A dictionary with the detected version, base score, temporal score, environmental score, overall
score, and normalized vector string. The normalized vector string will have metrics ordered in
specification order and metrics with undefined values will be removed. Example:

{
‘version’: ‘3.1’, ‘score’: 4.3, ‘base’: 5.0, ‘temporal’: 4.4, ‘environmental’: 4.3,
‘normalized’: ‘AV:N/AC:H/PR:L/UI:R/S:U/C:L/I:L/A:L’

}

The return type is dict.

13.1.36 $lib.iters

A Storm library for providing iterator helpers.

1334 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

$lib.iters.enum(genr)

Yield (<indx>, <item>) tuples from an iterable or generator.

Args:
genr (iter): An iterable or generator.

yields:
Yields (<indx>, <item>) tuples. The return type is list.

13.1.37 $lib.json

A Storm Library for interacting with Json data.

$lib.json.load(text)

Parse a JSON string and return the deserialized data.

Args:
text (str): The string to be deserialized.

Returns:
The JSON deserialized object. The return type is prim.

$lib.json.save(item)

Save an object as a JSON string.

Args:
item (any): The item to be serialized as a JSON string.

Returns:
The JSON serialized object. The return type is str.

$lib.json.schema(schema, use_default=True)

Get a JS schema validation object.

Args:
schema (dict): The JsonSchema to use.

use_default (boolean): Whether to insert default schema values into the validated data structure.

Returns:
A validation object that can be used to validate data structures. The return type is json:schema.

13.1. Storm Libraries 1335

Synapse Documentation, Release 2.141.0

13.1.38 $lib.jsonstor

Implements cortex JSON storage.

$lib.jsonstor.cacheget(path, key, asof=now, envl=False)

Retrieve data stored with cacheset() if it was stored more recently than the asof argument.

Args:
path (str|list): The base path to use for the cache key.

key (prim): The value to use for the GUID cache key.

asof (time): The max cache age.

envl (boolean): Return the full cache envelope.

Returns:
The cached value (or envelope) or null. The return type is prim.

$lib.jsonstor.cacheset(path, key, valu)

Set cache data with an envelope that tracks time for cacheget() use.

Args:
path (str|list): The base path to use for the cache key.

key (prim): The value to use for the GUID cache key.

valu (prim): The data to store.

Returns:
The cached asof time and path. The return type is dict.

$lib.jsonstor.del(path, prop=None)

Delete a stored JSON object or object.

Args:
path (str|list): A path string or list of path parts.

prop (str|list): A property name or list of name parts.

Returns:
True if the del operation was successful. The return type is boolean.

$lib.jsonstor.get(path, prop=None)

Return a stored JSON object or object property.

Args:
path (str|list): A path string or list of path parts.

prop (str|list): A property name or list of name parts.

Returns:
The previously stored value or $lib.null The return type is prim.

1336 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

$lib.jsonstor.iter(path=None)

Yield (<path>, <valu>) tuples for the JSON objects.

Args:
path (str|list): A path string or list of path parts.

Yields:
(<path>, <item>) tuples. The return type is list.

$lib.jsonstor.set(path, valu, prop=None)

Set a JSON object or object property.

Args:
path (str|list): A path string or list of path elements.

valu (prim): The value to set as the JSON object or object property.

prop (str|list): A property name or list of name parts.

Returns:
True if the set operation was successful. The return type is boolean.

13.1.39 $lib.layer

A Storm Library for interacting with Layers in the Cortex.

$lib.layer.add(ldef=None)

Add a layer to the Cortex.

Args:
ldef (dict): The layer definition dictionary.

Returns:
A layer object representing the new layer. The return type is layer.

$lib.layer.del(iden)

Delete a layer from the Cortex.

Args:
iden (str): The iden of the layer to delete.

Returns:
The return type is null.

13.1. Storm Libraries 1337

Synapse Documentation, Release 2.141.0

$lib.layer.get(iden=None)

Get a Layer from the Cortex.

Args:
iden (str): The iden of the layer to get. If not set, this defaults to the top layer of the current View.

Returns:
The storm layer object. The return type is layer.

$lib.layer.list()

List the layers in a Cortex

Returns:
List of layer objects. The return type is list.

13.1.40 $lib.lift

A Storm Library for interacting with lift helpers.

$lib.lift.byNodeData(name)

Lift nodes which have a given nodedata name set on them.

Args:
name (str): The name to of the nodedata key to lift by.

Yields:
Yields nodes to the pipeline. This must be used in conjunction with the yield keyword. The return type is node.

13.1.41 $lib.log

A Storm library which implements server side logging. These messages are logged to the synapse.storm.log logger.

$lib.log.debug(mesg, extra=None)

Log a message to the Cortex at the debug log level.

Notes:
This requires the storm.lib.log.debug permission to use.

Examples:
Log a debug message:

$lib.log.debug('I am a debug message!')

Log a debug message with extra information:

$lib.log.debug('Extra information included here.', extra=({"key": $valu}))

Args:
mesg (str): The message to log.

extra (dict): Extra key / value pairs to include when structured logging is enabled on the Cortex.

1338 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

Returns:
The return type is null.

$lib.log.error(mesg, extra=None)

Log a message to the Cortex at the error log level.

Notes:
This requires the storm.lib.log.error permission to use.

Examples:
Log an error message:

$lib.log.error('I am a error message!')

Log an error message with extra information:

$lib.log.error('Extra information included here.', extra=({"key": $valu}))

Args:
mesg (str): The message to log.

extra (dict): Extra key / value pairs to include when structured logging is enabled on the Cortex.

Returns:
The return type is null.

$lib.log.info(mesg, extra=None)

Log a message to the Cortex at the info log level.

Notes:
This requires the storm.lib.log.info permission to use.

Examples:
Log an info message:

$lib.log.info('I am a info message!')

Log an info message with extra information:

$lib.log.info('Extra information included here.', extra=({"key": $valu}))

Args:
mesg (str): The message to log.

extra (dict): Extra key / value pairs to include when structured logging is enabled on the Cortex.

Returns:
The return type is null.

13.1. Storm Libraries 1339

Synapse Documentation, Release 2.141.0

$lib.log.warning(mesg, extra=None)

Log a message to the Cortex at the warning log level.

Notes:
This requires the storm.lib.log.warning permission to use.

Examples:
Log a warning message:

$lib.log.warning('I am a warning message!')

Log a warning message with extra information:

$lib.log.warning('Extra information included here.', extra=({"key": $valu}))

Args:
mesg (str): The message to log.

extra (dict): Extra key / value pairs to include when structured logging is enabled on the Cortex.

Returns:
The return type is null.

13.1.42 $lib.macro

A Storm Library for interacting with the Storm Macros in the Cortex.

$lib.macro.del(name)

Delete a Storm Macro by name from the Cortex.

Args:
name (str): The name of the macro to delete.

Returns:
The return type is null.

$lib.macro.get(name)

Get a Storm Macro definition by name from the Cortex.

Args:
name (str): The name of the macro to get.

Returns:
A macro definition. The return type is dict.

1340 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

$lib.macro.grant(name, scope, iden, level)

Modify permissions granted to users/roles on a Storm Macro.

Args:
name (str): Name of the Storm Macro to modify.

scope (str): The scope, either “users” or “roles”.

iden (str): The user/role iden depending on scope.

level (int): The permission level number.

Returns:
The return type is null.

$lib.macro.list()

Get a list of Storm Macros in the Cortex.

Returns:
A list of dict objects containing Macro definitions. The return type is list.

$lib.macro.mod(name, info)

Modify user editable properties of a Storm Macro.

Args:
name (str): Name of the Storm Macro to modify.

info (dict): A dictionary of the properties to edit.

Returns:
The return type is null.

$lib.macro.set(name, storm)

Add or modify an existing Storm Macro in the Cortex.

Args:
name (str): Name of the Storm Macro to add or modify.

storm: The Storm query to add to the macro. The input type may one one of the following: str, storm:query.

Returns:
The return type is null.

13.1.43 $lib.math

A Storm library for performing math operations.

13.1. Storm Libraries 1341

Synapse Documentation, Release 2.141.0

$lib.math.number(value)

Convert a value to a Storm Number object.

Storm Numbers are high precision fixed point decimals corresponding to the the hugenum storage type.

This is not to be used for converting a string to an integer.

Args:
value (any): Value to convert.

Returns:
A Number object. The return type is number.

13.1.44 $lib.mime.html

A Storm library for manipulating HTML text.

$lib.mime.html.totext(html)

Return inner text from all tags within an HTML document.

Args:
html (str): The HTML text to be parsed.

Returns:
The newline-joined inner HTML text. The return type is str.

13.1.45 $lib.model

A Storm Library for interacting with the Data Model in the Cortex.

$lib.model.form(name)

Get a form object by name.

Args:
name (str): The name of the form to retrieve.

Returns:
The model:form instance if the form is present or null. The return type may be one of the following: model:form,
null.

$lib.model.prop(name)

Get a prop object by name.

Args:
name (str): The name of the prop to retrieve.

Returns:
The model:property instance if the type if present or null. The return type may be one of the following:
model:property, null.

1342 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

$lib.model.tagprop(name)

Get a tag property object by name.

Args:
name (str): The name of the tag prop to retrieve.

Returns:
The model:tagprop instance if the tag prop if present or null. The return type may be one of the following:
model:tagprop, null.

$lib.model.type(name)

Get a type object by name.

Args:
name (str): The name of the type to retrieve.

Returns:
The model:type instance if the type if present on the form or null. The return type may be one of the following:
model:type, null.

13.1.46 $lib.model.deprecated

A storm library for interacting with the model deprecation mechanism.

$lib.model.deprecated.lock(name, locked)

Set the locked property for a deprecated model element.

Args:
name (str): The full path of the model element to lock.

locked (boolean): The lock status.

Returns:
The return type is null.

$lib.model.deprecated.locks()

Get a dictionary of the data model elements which are deprecated and their lock status in the Cortex.

Returns:
A dictionary of named elements to their boolean lock values. The return type is dict.

13.1. Storm Libraries 1343

Synapse Documentation, Release 2.141.0

13.1.47 $lib.model.edge

A Storm Library for interacting with light edges and manipulating their key-value attributes.

$lib.model.edge.del(verb, key)

Delete a key from the key-value store for a verb.

Args:
verb (str): The name of the Edge verb to remove a key from.

key (str): The name of the key to remove from the key-value store.

Returns:
The return type is null.

$lib.model.edge.get(verb)

Get the key-value data for a given Edge verb.

Args:
verb (str): The Edge verb to look up.

Returns:
A dictionary representing the key-value data set on a verb. The return type is dict.

$lib.model.edge.list()

Get a list of (verb, key-value dictionary) pairs for Edge verbs in the current Cortex View.

Returns:
A list of (str, dict) tuples for each verb in the current Cortex View. The return type is list.

$lib.model.edge.set(verb, key, valu)

Set a key-value for a given Edge verb.

Args:
verb (str): The Edge verb to set a value for.

key (str): The key to set.

valu (str): The value to set.

Returns:
The return type is null.

1344 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

$lib.model.edge.validkeys()

Get a list of the valid keys that can be set on an Edge verb.

Returns:
A list of the valid keys. The return type is list.

13.1.48 $lib.model.ext

A Storm library for manipulating extended model elements.

$lib.model.ext.addForm(formname, basetype, typeopts, typeinfo)

Add an extended form definition to the data model.

Args:
formname (str): The name of the form to add.

basetype (str): The base type the form is derived from.

typeopts (dict): A Synapse type opts dictionary.

typeinfo (dict): A Synapse form info dictionary.

Returns:
The return type is null.

$lib.model.ext.addFormProp(formname, propname, typedef, propinfo)

Add an extended property definition to the data model.

Args:
formname (str): The name of the form to add the property to.

propname (str): The name of the extended property.

typedef (list): A Synapse type definition tuple.

propinfo (dict): A synapse property definition dictionary.

Returns:
The return type is null.

$lib.model.ext.addTagProp(propname, typedef, propinfo)

Add an extended tag property definition to the data model.

Args:
propname (str): The name of the tag property.

typedef (list): A Synapse type definition tuple.

propinfo (dict): A synapse property definition dictionary.

Returns:
The return type is null.

13.1. Storm Libraries 1345

Synapse Documentation, Release 2.141.0

$lib.model.ext.addUnivProp(propname, typedef, propinfo)

Add an extended universal property definition to the data model.

Args:
propname (str): The name of the universal property.

typedef (list): A Synapse type definition tuple.

propinfo (dict): A synapse property definition dictionary.

Returns:
The return type is null.

$lib.model.ext.delForm(formname)

Remove an extended form definition from the model.

Args:
formname (str): The extended form to remove.

Returns:
The return type is null.

$lib.model.ext.delFormProp(formname, propname)

Remove an extended property definition from the model.

Args:
formname (str): The form with the extended property.

propname (str): The extended property to remove.

Returns:
The return type is null.

$lib.model.ext.delTagProp(propname)

Remove an extended tag property definition from the model.

Args:
propname (str): Name of the tag property to remove.

Returns:
The return type is null.

$lib.model.ext.delUnivProp(propname)

Remove an extended universal property definition from the model.

Args:
propname (str): Name of the universal property to remove.

Returns:
The return type is null.

1346 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

13.1.49 $lib.model.tags

A Storm Library for interacting with tag specifications in the Cortex Data Model.

$lib.model.tags.del(tagname)

Delete a tag model specification.

Examples:
Delete the tag model specification for cno.threat:

$lib.model.tags.del(cno.threat)

Args:
tagname (str): The name of the tag.

Returns:
The return type is null.

$lib.model.tags.get(tagname)

Retrieve a tag model specification.

Examples:
Get the tag model specification for cno.threat:

$dict = $lib.model.tags.get(cno.threat)

Args:
tagname (str): The name of the tag.

Returns:
The tag model definition. The return type is dict.

$lib.model.tags.list()

List all tag model specifications.

Examples:
Iterate over the tag model specifications in the Cortex:

for ($name, $info) in $lib.model.tags.list() {
...

}

Returns:
List of tuples containing the tag name and model definition The return type is list.

13.1. Storm Libraries 1347

Synapse Documentation, Release 2.141.0

$lib.model.tags.pop(tagname, propname)

Pop and return a tag model property.

Examples:
Remove the regex list from the cno.threat tag model:

$regxlist = $lib.model.tags.pop(cno.threat, regex)

Args:
tagname (str): The name of the tag.

propname (str): The name of the tag model property.

Returns:
The value of the property. The return type is prim.

$lib.model.tags.set(tagname, propname, propvalu)

Set a tag model property for a tag.

Examples:
Create a tag model for the cno.cve tag:

$regx = ($lib.null, $lib.null, "[0-9]{4}", "[0-9]{5}")
$lib.model.tags.set(cno.cve, regex, $regx)

Args:
tagname (str): The name of the tag.

propname (str): The name of the tag model property.

propvalu (prim): The value to set.

Returns:
The return type is null.

13.1.50 $lib.notifications

A Storm library for a user interacting with their notifications.

$lib.notifications.del(indx)

Delete a previously delivered notification.

Args:
indx (int): The index number of the notification to delete.

retn:
Returns an ($ok, $valu) tuple. The return type is list.

1348 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

$lib.notifications.get(indx)

Return a notification by ID (or $lib.null).

Args:
indx (int): The index number of the notification to return.

retn:
The requested notification or $lib.null. The return type is dict.

$lib.notifications.list(size=None)

Yield (<indx>, <mesg>) tuples for a user’s notifications.

Args:
size (int): The max number of notifications to yield.

Yields:
Yields (useriden, time, mesgtype, msgdata) tuples. The return type is list.

13.1.51 $lib.pipe

A Storm library for interacting with non-persistent queues.

$lib.pipe.gen(filler, size=10000)

Generate and return a Storm Pipe.

Notes:
The filler query is run in parallel with $pipe. This requires the permission storm.pipe.gen to use.

Examples:
Fill a pipe with a query and consume it with another:

$pipe = $lib.pipe.gen(${ $pipe.puts((1, 2, 3)) })

for $items in $pipe.slices(size=2) {
$dostuff($items)

}

Args:
filler: A Storm query to fill the Pipe. The input type may one one of the following: str, storm:query.

size (int): Maximum size of the pipe.

Returns:
The pipe containing query results. The return type is pipe.

13.1. Storm Libraries 1349

Synapse Documentation, Release 2.141.0

13.1.52 $lib.pkg

A Storm Library for interacting with Storm Packages.

$lib.pkg.add(pkgdef, verify=False)

Add a Storm Package to the Cortex.

Args:
pkgdef (dict): A Storm Package definition.

verify (boolean): Verify storm package signature.

Returns:
The return type is null.

$lib.pkg.del(name)

Delete a Storm Package from the Cortex.

Args:
name (str): The name of the package to delete.

Returns:
The return type is null.

$lib.pkg.deps(pkgdef)

Verify the dependencies for a Storm Package.

Args:
pkgdef (dict): A Storm Package definition.

Returns:
A dictionary listing dependencies and if they are met. The return type is dict.

$lib.pkg.get(name)

Get a Storm Package from the Cortex.

Args:
name (str): A Storm Package name.

Returns:
The Storm package definition. The return type is dict.

1350 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

$lib.pkg.has(name)

Check if a Storm Package is available in the Cortex.

Args:
name (str): A Storm Package name to check for the existence of.

Returns:
True if the package exists in the Cortex, False if it does not. The return type is boolean.

$lib.pkg.list()

Get a list of Storm Packages loaded in the Cortex.

Returns:
A list of Storm Package definitions. The return type is list.

13.1.53 $lib.projects

A Storm Library for interacting with Projects in the Cortex.

$lib.projects.add(name, desc=)

Add a new project

Args:
name (str): The name of the Project to add

desc (str): A description of the overall project

Returns:
The newly created proj:project object The return type is proj:project.

$lib.projects.del(name)

Delete an existing project

Args:
name (str): The name of the Project to delete

Returns:
True if the project exists and gets deleted, otherwise False The return type is boolean.

$lib.projects.get(name)

Retrieve a project by name

Args:
name (str): The name of the Project to get

Returns:
The proj:project `object, if it exists, otherwise null The return type is :ref:`stormprims-proj-project-f527.

13.1. Storm Libraries 1351

Synapse Documentation, Release 2.141.0

13.1.54 $lib.ps

A Storm Library for interacting with running tasks on the Cortex.

$lib.ps.kill(prefix)

Stop a running task on the Cortex.

Args:
prefix (str): The prefix of the task to stop. Tasks will only be stopped if there is a single prefix match.

Returns:
True if the task was cancelled, False otherwise. The return type is boolean.

$lib.ps.list()

List tasks the current user can access.

Returns:
A list of task definitions. The return type is list.

13.1.55 $lib.queue

A Storm Library for interacting with persistent Queues in the Cortex.

$lib.queue.add(name)

Add a Queue to the Cortex with a given name.

Args:
name (str): The name of the queue to add.

Returns:
The return type is queue.

$lib.queue.del(name)

Delete a given named Queue.

Args:
name (str): The name of the queue to delete.

Returns:
The return type is null.

1352 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

$lib.queue.gen(name)

Add or get a Storm Queue in a single operation.

Args:
name (str): The name of the Queue to add or get.

Returns:
The return type is queue.

$lib.queue.get(name)

Get an existing Storm Queue object.

Args:
name (str): The name of the Queue to get.

Returns:
A queue object. The return type is queue.

$lib.queue.list()

Get a list of the Queues in the Cortex.

Returns:
A list of queue definitions the current user is allowed to interact with. The return type is list.

13.1.56 $lib.random

A Storm library for generating random values.

$lib.random.int(maxval, minval=0)

Generate a random integer.

Args:
maxval (int): The maximum random value.

minval (int): The minimum random value.

Returns:
A random integer in the range min-max inclusive. The return type is int.

13.1.57 $lib.regex

A Storm library for searching/matching with regular expressions.

13.1. Storm Libraries 1353

Synapse Documentation, Release 2.141.0

$lib.regex.findall(pattern, text, flags=0)

Search the given text for the patterns and return a list of matching strings.

Note:
If multiple matching groups are specified, the return value is a list of lists of strings.

Example:

Extract the matching strings from a piece of text:

for $x in $lib.regex.findall("G[0-9]{4}", "G0006 and G0001") {
$dostuff($x)

}

Args:
pattern (str): The regular expression pattern.

text (str): The text to match.

flags (int): Regex flags to control the match behavior.

Returns:
A list of lists of strings for the matching groups in the pattern. The return type is list.

$lib.regex.flags.i

Regex flag to indicate that case insensitive matches are allowed.

Returns:
The type is int.

$lib.regex.flags.m

Regex flag to indicate that multiline matches are allowed.

Returns:
The type is int.

$lib.regex.matches(pattern, text, flags=0)

Check if text matches a pattern. Returns $lib.true if the text matches the pattern, otherwise $lib.false.

Notes:
This API requires the pattern to match at the start of the string.

Example:
Check if the variable matches a expression:

if $lib.regex.matches("^[0-9]+.[0-9]+.[0-9]+$", $text) {
$lib.print("It's semver! ...probably")

}

Args:
pattern (str): The regular expression pattern.

text (str): The text to match.

1354 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

flags (int): Regex flags to control the match behavior.

Returns:
True if there is a match, False otherwise. The return type is boolean.

$lib.regex.replace(pattern, replace, text, flags=0)

Replace any substrings that match the given regular expression with the specified replacement.

Example:
Replace a portion of a string with a new part based on a regex:

$norm = $lib.regex.replace("\sAND\s", " & ", "Ham and eggs!", $lib.regex.flags.i)

Args:
pattern (str): The regular expression pattern.

replace (str): The text to replace matching sub strings.

text (str): The input text to search/replace.

flags (int): Regex flags to control the match behavior.

Returns:
The new string with matches replaced. The return type is str.

$lib.regex.search(pattern, text, flags=0)

Search the given text for the pattern and return the matching groups.

Note:
In order to get the matching groups, patterns must use parentheses to indicate the start and stop of the regex to
return portions of. If groups are not used, a successful match will return a empty list and a unsuccessful match
will return $lib.null.

Example:
Extract the matching groups from a piece of text:

$m = $lib.regex.search("^([0-9])+.([0-9])+.([0-9])+$", $text)
if $m {

($maj, $min, $pat) = $m
}

Args:
pattern (str): The regular expression pattern.

text (str): The text to match.

flags (int): Regex flags to control the match behavior.

Returns:
A list of strings for the matching groups in the pattern. The return type is list.

13.1. Storm Libraries 1355

Synapse Documentation, Release 2.141.0

13.1.58 $lib.scrape

A Storm Library for providing helpers for scraping nodes from text.

$lib.scrape.context(text)

Attempt to scrape information from a blob of text, getting the context information about the values found.

Notes:
This does call the scrape Storm interface if that behavior is enabled on the Cortex.

Examples:
Scrape some text and make nodes out of it:

for ($form, $valu, $info) in $lib.scrape.context($text) {
[(*$form ?= $valu)]

}

Args:
text (str): The text to scrape

yields:
A dictionary of scraped values, rule types, and offsets scraped from the text. The return type is dict.

$lib.scrape.genMatches(text, pattern, fangs=None, flags=2)

genMatches is a generic helper function for constructing scrape interfaces using pure Storm.

It accepts the text, a regex pattern, and produce results that can easily be used to create

Notes:
The pattern must have a named regular expression match for the key valu using the named group syntax. For
example (somekey\s)(?P<valu>[a-z0-9]+)\s.

Examples:
A scrape implementation with a regex that matches name keys in text:

$re="(Name\:\s)(?P<valu>[a-z0-9]+)\s"
$form="ps:name"

function scrape(text, form) {
$ret = $lib.list()
for ($valu, $info) in $lib.scrape.genMatches($text, $re) {

$ret.append(($form, $valu, $info))
}
return ($ret)

}

Args:
text (str): The text to scrape

pattern (str): The regular expression pattern to match against.

fangs (list): A list of (src, dst) pairs to refang from text. The src must be equal or larger than the dst in length.

flags (int): Regex flags to use (defaults to IGNORECASE).

1356 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

yields:
The return type is list.

$lib.scrape.ndefs(text)

Attempt to scrape node form, value tuples from a blob of text.

Examples:
Scrape some text and attempt to make nodes out of it:

for ($form, $valu) in $lib.scrape($text) {
[(*$form ?= $valu)]

}

Args:
text (str): The text to scrape

yields:
A list of (form, value) tuples scraped from the text. The return type is list.

13.1.59 $lib.service

A Storm Library for interacting with Storm Services.

$lib.service.add(name, url)

Add a Storm Service to the Cortex.

Args:
name (str): Name of the Storm Service to add.

url (str): The Telepath URL to the Storm Service.

Returns:
The Storm Service definition. The return type is dict.

$lib.service.del(iden)

Remove a Storm Service from the Cortex.

Args:
iden (str): The iden of the service to remove.

Returns:
The return type is null.

13.1. Storm Libraries 1357

Synapse Documentation, Release 2.141.0

$lib.service.get(name)

Get a Storm Service definition.

Args:
name (str): The local name, local iden, or remote name, of the service to get the definition for.

Returns:
A Storm Service definition. The return type is dict.

$lib.service.has(name)

Check if a Storm Service is available in the Cortex.

Args:
name (str): The local name, local iden, or remote name, of the service to check for the existence of.

Returns:
True if the service exists in the Cortex, False if it does not. The return type is boolean.

$lib.service.list()

List the Storm Service definitions for the Cortex.

Notes:
The definition dictionaries have an additional ready key added to them to indicate if the Cortex is currently
connected to the Storm Service or not.

Returns:
A list of Storm Service definitions. The return type is list.

$lib.service.wait(name, timeout=None)

Wait for a given service to be ready.

Notes:
If a timeout value is not specified, this will block a Storm query until the service is available.

Args:
name (str): The name, or iden, of the service to wait for.

timeout (int): Number of seconds to wait for the service.

Returns:
Returns true if the service is available, false on a timeout waiting for the service to be ready. The return type is
boolean.

1358 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

13.1.60 $lib.stats

A Storm Library for statistics related functionality.

$lib.stats.tally()

Get a Tally object.

Returns:
A new tally object. The return type is stat:tally.

13.1.61 $lib.stix

A Storm Library for interacting with Stix Version 2.1 CS02.

$lib.stix.lift(bundle)

Lift nodes from a STIX Bundle made by Synapse.

Notes:
This lifts nodes using the Node definitions embedded into the bundle when created by Synapse using custom
extension properties.

Examples:
Lifting nodes from a STIX bundle:

yield $lib.stix($bundle)

Args:
bundle (dict): The STIX bundle to lift nodes from.

Yields:
Yields nodes The return type is node.

$lib.stix.validate(bundle)

Validate a STIX Bundle.

Notes:
This returns a dictionary containing the following values:

{
'ok': <boolean> - False if bundle is invalid, True otherwise.
'mesg': <str> - An error message if there was an error when validating the␣

→˓bundle.
'results': The results of validating the bundle.

}

Args:
bundle (dict): The stix bundle to validate.

Returns:
Results dictionary. The return type is dict.

13.1. Storm Libraries 1359

Synapse Documentation, Release 2.141.0

13.1.62 $lib.stix.export

A Storm Library for exporting to STIX version 2.1 CS02.

$lib.stix.export.bundle(config=None)

Return a new empty STIX bundle.

The config argument maps synapse forms to stix types and allows you to specify how to resolve STIX properties and
relationships. The config expects to following format:

{
"maxsize": 10000,

"forms": {
<formname>: {

"default": <stixtype0>,
"stix": {

<stixtype0>: {
"props": {

<stix_prop_name>: <storm_with_return>,
...

},
"rels": (

(<relname>, <target_stixtype>, <storm>),
...

),
"revs": (

(<revname>, <source_stixtype>, <storm>),
...

)
},
<stixtype1>: ...

},
},

},
},

For example, the default config includes the following entry to map ou:campaign nodes to stix campaigns:

{ "forms": {
"ou:campaign": {

"default": "campaign",
"stix": {

"campaign": {
"props": {

"name": "{+:name return(:name)} return($node.repr())",
"description": "+:desc return(:desc)",
"objective": "+:goal :goal -> ou:goal +:name return(:name)",
"created": "return($lib.stix.export.timestamp(.created))",
"modified": "return($lib.stix.export.timestamp(.created))",

},
"rels": (

(continues on next page)

1360 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

(continued from previous page)

("attributed-to", "threat-actor", ":org -> ou:org"),
("originates-from", "location", ":org -> ou:org :hq -> geo:place"),
("targets", "identity", "-> risk:attack :target:org -> ou:org"),
("targets", "identity", "-> risk:attack :target:person -> ps:person

→˓"),
),

},
},

}},

You may also specify pivots on a per form+stixtype basis to automate pivoting to additional nodes to include in the
bundle:

{"forms": {
"inet:fqdn":

...
"domain-name": {

...
"pivots": [

{"storm": "-> inet:dns:a -> inet:ipv4", "stixtype": "ipv4-addr"}
]

{
}

}

Note:
The default config is an evolving set of mappings. If you need to guarantee stable output please specify a config.

Args:
config (dict): The STIX bundle export config to use.

Returns:
A new stix:bundle instance. The return type is stix:bundle.

$lib.stix.export.config()

Construct a default STIX bundle export config.

Returns:
A default STIX bundle export config. The return type is dict.

$lib.stix.export.timestamp(tick)

Format an epoch milliseconds timestamp for use in STIX output.

Args:
tick (time): The epoch milliseconds timestamp.

Returns:
A STIX formatted timestamp string. The return type is str.

13.1. Storm Libraries 1361

Synapse Documentation, Release 2.141.0

13.1.63 $lib.stix.import

A Storm Library for importing Stix Version 2.1 data.

$lib.stix.import.config()

Return an editable copy of the default STIX ingest config.

Returns:
A copy of the default STIX ingest configuration. The return type is dict.

$lib.stix.import.ingest(bundle, config=None)

Import nodes from a STIX bundle.

Args:
bundle (dict): The STIX bundle to ingest.

config (dict): An optional STIX ingest configuration.

Yields:
Yields nodes The return type is node.

13.1.64 $lib.storm

A Storm library for evaluating dynamic storm expressions.

$lib.storm.eval(text, cast=None)

Evaluate a storm runtime value and optionally cast/coerce it.

Args:
text (str): A storm expression string.

cast (str): A type to cast the result to.

Returns:
The value of the expression and optional cast. The return type is any.

13.1.65 $lib.str

A Storm Library for interacting with strings.

$lib.str.concat(*args)

Concatenate a set of strings together.

Args:
*args (any): Items to join together.

Returns:
The joined string. The return type is str.

1362 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

$lib.str.format(text, **kwargs)

Format a text string.

Examples:
Format a string with a fixed argument and a variable:

cli> storm $list=(1,2,3,4)
$str=$lib.str.format('Hello {name}, your list is {list}!', name='Reader', list=

→˓$list)
$lib.print($str)

Hello Reader, your list is ['1', '2', '3', '4']!

Args:
text (str): The base text string.

**kwargs (any): Keyword values which are substituted into the string.

Returns:
The new string. The return type is str.

$lib.str.join(sepr, items)

Join items into a string using a separator.

Examples:
Join together a list of strings with a dot separator:

cli> storm $foo=$lib.str.join('.', ('rep', 'vtx', 'tag')) $lib.print($foo)

rep.vtx.tag

Args:
sepr (str): The separator used to join strings with.

items (list): A list of items to join together.

Returns:
The joined string. The return type is str.

13.1.66 $lib.tags

Storm utility functions for tags.

$lib.tags.prefix(names, prefix, ispart=False)

Normalize and prefix a list of syn:tag:part values so they can be applied.

Examples:
Add tag prefixes and then use them to tag nodes:

$tags = $lib.tags.prefix($result.tags, vtx.visi)
{ for $tag in $tags { [+#$tag] } }

13.1. Storm Libraries 1363

Synapse Documentation, Release 2.141.0

Args:
names (list): A list of syn:tag:part values to normalize and prefix.

prefix (str): The string prefix to add to the syn:tag:part values.

ispart (boolean): Whether the names have already been normalized. Normalization will be skipped if set to true.

Returns:
A list of normalized and prefixed syn:tag values. The return type is list.

13.1.67 $lib.telepath

A Storm Library for making Telepath connections to remote services.

$lib.telepath.open(url)

Open and return a Telepath RPC proxy.

Args:
url (str): The Telepath URL to connect to.

Returns:
A object representing a Telepath Proxy. The return type is telepath:proxy.

13.1.68 $lib.time

A Storm Library for interacting with timestamps.

$lib.time.day(tick)

Returns the day part of a time value.

Args:
tick (time): A time value.

Returns:
The day part of the time expression. The return type is int.

$lib.time.dayofmonth(tick)

Returns the index (beginning with 0) of the day within the month.

Args:
tick (time): A time value.

Returns:
The index of the day within month. The return type is int.

1364 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

$lib.time.dayofweek(tick)

Returns the index (beginning with monday as 0) of the day within the week.

Args:
tick (time): A time value.

Returns:
The index of the day within week. The return type is int.

$lib.time.dayofyear(tick)

Returns the index (beginning with 0) of the day within the year.

Args:
tick (time): A time value.

Returns:
The index of the day within year. The return type is int.

$lib.time.format(valu, format)

Format a Synapse timestamp into a string value using datetime.strftime().

Examples:
Format a timestamp into a string:

cli> storm $now=$lib.time.now() $str=$lib.time.format($now, '%A %d, %B %Y') $lib.
→˓print($str)

Tuesday 14, July 2020

Args:
valu (int): A timestamp in epoch milliseconds.

format (str): The strftime format string.

Returns:
The formatted time string. The return type is str.

$lib.time.fromunix(secs)

Normalize a timestamp from a unix epoch time in seconds to milliseconds.

Examples:
Convert a timestamp from seconds to millis and format it:

cli> storm $seconds=1594684800 $millis=$lib.time.fromunix($seconds)
$str=$lib.time.format($millis, '%A %d, %B %Y') $lib.print($str)

Tuesday 14, July 2020

Args:
secs (int): Unix epoch time in seconds.

Returns:
The normalized time in milliseconds. The return type is int.

13.1. Storm Libraries 1365

Synapse Documentation, Release 2.141.0

$lib.time.hour(tick)

Returns the hour part of a time value.

Args:
tick (time): A time value.

Returns:
The hour part of the time expression. The return type is int.

$lib.time.minute(tick)

Returns the minute part of a time value.

Args:
tick (time): A time value.

Returns:
The minute part of the time expression. The return type is int.

$lib.time.month(tick)

Returns the month part of a time value.

Args:
tick (time): A time value.

Returns:
The month part of the time expression. The return type is int.

$lib.time.monthofyear(tick)

Returns the index (beginning with 0) of the month within the year.

Args:
tick (time): A time value.

Returns:
The index of the month within year. The return type is int.

$lib.time.now()

Get the current epoch time in milliseconds.

Returns:
Epoch time in milliseconds. The return type is int.

1366 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

$lib.time.parse(valu, format, errok=False)

Parse a timestamp string using datetime.strptime() into an epoch timestamp.

Examples:
Parse a string as for its month/day/year value into a timestamp:

cli> storm $s='06/01/2020' $ts=$lib.time.parse($s, '%m/%d/%Y') $lib.print($ts)

1590969600000

Args:
valu (str): The timestamp string to parse.

format (str): The format string to use for parsing.

errok (boolean): If set, parsing errors will return $lib.null instead of raising an exception.

Returns:
The epoch timestamp for the string. The return type is int.

$lib.time.second(tick)

Returns the second part of a time value.

Args:
tick (time): A time value.

Returns:
The second part of the time expression. The return type is int.

$lib.time.sleep(valu)

Pause the processing of data in the storm query.

Notes:
This has the effect of clearing the Snap’s cache, so any node lifts performed after the $lib.time.sleep(...)
executes will be lifted directly from storage.

Args:
valu (int): The number of seconds to pause for.

Returns:
The return type is null.

$lib.time.ticker(tick, count=None)

Periodically pause the processing of data in the storm query.

Notes:
This has the effect of clearing the Snap’s cache, so any node lifts performed after each tick will be lifted directly
from storage.

Args:
tick (int): The amount of time to wait between each tick, in seconds.

count (int): The number of times to pause the query before exiting the loop. This defaults to None and will yield
forever if not set.

13.1. Storm Libraries 1367

Synapse Documentation, Release 2.141.0

Yields:
This yields the current tick count after each time it wakes up. The return type is int.

$lib.time.toUTC(tick, timezone)

Adjust an epoch milliseconds timestamp to UTC from the given timezone.

Args:
tick (time): A time value.

timezone (str): A timezone name. See python pytz docs for options.

Returns:
An ($ok, $valu) tuple. The return type is list.

$lib.time.year(tick)

Returns the year part of a time value.

Args:
tick (time): A time value.

Returns:
The year part of the time expression. The return type is int.

13.1.69 $lib.trigger

A Storm Library for interacting with Triggers in the Cortex.

$lib.trigger.add(tdef)

Add a Trigger to the Cortex.

Args:
tdef (dict): A Trigger definition.

Returns:
The new trigger. The return type is trigger.

$lib.trigger.del(prefix)

Delete a Trigger from the Cortex.

Args:
prefix (str): A prefix to match in order to identify a trigger to delete. Only a single matching prefix will be
deleted.

Returns:
The iden of the deleted trigger which matched the prefix. The return type is str.

1368 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

$lib.trigger.disable(prefix)

Disable a Trigger in the Cortex.

Args:
prefix (str): A prefix to match in order to identify a trigger to disable. Only a single matching prefix will be
disabled.

Returns:
The iden of the trigger that was disabled. The return type is str.

$lib.trigger.enable(prefix)

Enable a Trigger in the Cortex.

Args:
prefix (str): A prefix to match in order to identify a trigger to enable. Only a single matching prefix will be
enabled.

Returns:
The iden of the trigger that was enabled. The return type is str.

$lib.trigger.get(iden)

Get a Trigger in the Cortex.

Args:
iden (str): The iden of the Trigger to get.

Returns:
The requested trigger object. The return type is trigger.

$lib.trigger.list()

Get a list of Triggers in the current view.

Returns:
A list of trigger objects the user is allowed to access. The return type is list.

$lib.trigger.mod(prefix, query)

Modify an existing Trigger in the Cortex.

Args:
prefix (str): A prefix to match in order to identify a trigger to modify. Only a single matching prefix will be
modified.

query: The new Storm query to set as the trigger query. The input type may one one of the following: str,
storm:query.

Returns:
The iden of the modified Trigger The return type is str.

13.1. Storm Libraries 1369

Synapse Documentation, Release 2.141.0

13.1.70 $lib.user

A Storm Library for interacting with data about the current user.

$lib.user.allowed(permname, gateiden=None, default=False)

Check if the current user has a given permission.

Args:
permname (str): The permission string to check.

gateiden (str): The authgate iden.

default (boolean): The default value.

Returns:
True if the user has the requested permission, false otherwise. The return type is boolean.

$lib.user.iden

The user GUID for the current storm user.

Returns:
The type is str.

$lib.user.name()

Get the name of the current runtime user.

Returns:
The username. The return type is str.

$lib.user.profile

Get a Hive dictionary representing the current user’s profile information.

Returns:
The type is hive:dict.

$lib.user.vars

Get a Hive dictionary representing the current user’s persistent variables.

Returns:
The type is hive:dict.

1370 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

13.1.71 $lib.vars

A Storm Library for interacting with runtime variables.

$lib.vars.del(name)

Unset a variable in the current Runtime.

Args:
name (str): The variable name to remove.

Returns:
The return type is null.

$lib.vars.get(name, defv=None)

Get the value of a variable from the current Runtime.

Args:
name (str): Name of the variable to get.

defv (prim): The default value returned if the variable is not set in the runtime.

Returns:
The value of the variable. The return type is any.

$lib.vars.list()

Get a list of variables from the current Runtime.

Returns:
A list of variable names and their values for the current Runtime. The return type is list.

$lib.vars.set(name, valu)

Set the value of a variable in the current Runtime.

Args:
name (str): Name of the variable to set.

valu (prim): The value to set the variable too.

Returns:
The return type is null.

13.1.72 $lib.version

A Storm Library for interacting with version information.

13.1. Storm Libraries 1371

Synapse Documentation, Release 2.141.0

$lib.version.commit()

The synapse commit hash for the local Cortex.

Returns:
The commit hash. The return type is str.

$lib.version.matches(vertup, reqstr)

Check if the given version triple meets the requirements string.

Examples:
Check if the synapse version is in a range:

$synver = $lib.version.synapse()
if $lib.version.matches($synver, ">=2.9.0") {

$dostuff()
}

Args:
vertup (list): Triple of major, minor, and patch version integers.

reqstr (str): The version string to compare against.

Returns:
True if the version meets the requirements, False otherwise. The return type is boolean.

$lib.version.synapse()

The synapse version tuple for the local Cortex.

Returns:
The version triple. The return type is list.

13.1.73 $lib.view

A Storm Library for interacting with Views in the Cortex.

$lib.view.add(layers, name=None)

Add a View to the Cortex.

Args:
layers (list): A list of layer idens which make up the view.

name (str): The name of the view.

Returns:
A view object representing the new View. The return type is view.

1372 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

$lib.view.del(iden)

Delete a View from the Cortex.

Args:
iden (str): The iden of the View to delete.

Returns:
The return type is null.

$lib.view.get(iden=None)

Get a View from the Cortex.

Args:
iden (str): The iden of the View to get. If not specified, returns the current View.

Returns:
The storm view object. The return type is view.

$lib.view.list(deporder=False)

List the Views in the Cortex.

Args:
deporder (bool): Return the lists in bottom-up dependency order.

Returns:
List of view objects. The return type is list.

13.1.74 $lib.xml

A Storm library for parsing XML.

$lib.xml.parse(valu)

Parse an XML string into an xml:element tree.

Args:
valu (str): The XML string to parse into an xml:element tree.

Returns:
An xml:element for the root node of the XML tree. The return type is xml:element.

13.1.75 $lib.yaml

A Storm Library for saving/loading YAML data.

13.1. Storm Libraries 1373

Synapse Documentation, Release 2.141.0

$lib.yaml.load(valu)

Decode a YAML string/bytes into an object.

Args:
valu (str): The string to decode.

Returns:
The decoded primitive object. The return type is prim.

$lib.yaml.save(valu, sort_keys=True)

Encode data as a YAML string.

Args:
valu (object): The object to encode.

sort_keys (boolean): Sort object keys.

Returns:
A YAML string. The return type is str.

13.2 Storm Types

Storm Objects are used as view objects for manipulating data in the Storm Runtime and in the Cortex itself.

13.2.1 auth:gate

Implements the Storm API for an AuthGate.

iden

The iden of the AuthGate.

Returns:
The type is str.

roles

The role idens which are a member of the Authgate.

Returns:
The type is list.

1374 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

type

The type of the AuthGate.

Returns:
The type is str.

users

The user idens which are a member of the Authgate.

Returns:
The type is list.

13.2.2 auth:role

Implements the Storm API for a Role.

addRule(rule, gateiden=None, indx=None)

Add a rule to the Role

Args:
rule (list): The rule tuple to added to the Role.

gateiden (str): The gate iden used for the rule.

indx (int): The position of the rule as a 0 based index.

Returns:
The return type is null.

delRule(rule, gateiden=None)

Remove a rule from the Role.

Args:
rule (list): The rule tuple to removed from the Role.

gateiden (str): The gate iden used for the rule.

Returns:
The return type is null.

gates()

Return a list of auth gates that the role has rules for.

Returns:
A list of auth:gates that the role has rules for. The return type is list.

13.2. Storm Types 1375

Synapse Documentation, Release 2.141.0

get(name)

Get a arbitrary property from the Role definition.

Args:
name (str): The name of the property to return.

Returns:
The requested value. The return type is prim.

getRules(gateiden=None)

Get the rules for the role and optional auth gate.

Args:
gateiden (str): The gate iden used for the rules.

Returns:
A list of rules. The return type is list.

iden

The Role iden.

Returns:
The type is str.

name

A role’s name. This can also be used to set the role name.

Example:
Change a role’s name:

$role=$lib.auth.roles.byname(analyst) $role.name=superheroes

Returns:
The return type is str. When this is used to set the value, it does not have a return type.

pack()

Get the packed version of the Role.

Returns:
The packed Role definition. The return type is dict.

1376 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

popRule(indx, gateiden=None)

Remove a rule by index from the Role.

Args:
indx (int): The index of the rule to remove.

gateiden (str): The gate iden used for the rule.

Returns:
The rule which was removed. The return type is list.

setRules(rules, gateiden=None)

Replace the rules on the Role with new rules.

Args:
rules (list): A list of rules to set on the Role.

gateiden (str): The gate iden used for the rules.

Returns:
The return type is null.

13.2.3 auth:user

Implements the Storm API for a User.

addRule(rule, gateiden=None, indx=None)

Add a rule to the User.

Args:
rule (list): The rule tuple to add to the User.

gateiden (str): The gate iden used for the rule.

indx (int): The position of the rule as a 0 based index.

Returns:
The return type is null.

allowed(permname, gateiden=None, default=False)

Check if the user has a given permission.

Args:
permname (str): The permission string to check.

gateiden (str): The authgate iden.

default (boolean): The default value.

Returns:
True if the rule is allowed, False otherwise. The return type is boolean.

13.2. Storm Types 1377

Synapse Documentation, Release 2.141.0

delRule(rule, gateiden=None)

Remove a rule from the User.

Args:
rule (list): The rule tuple to removed from the User.

gateiden (str): The gate iden used for the rule.

Returns:
The return type is null.

email

A user’s email. This can also be used to set the user’s email.

Example:
Change a user’s email address:

$user=$lib.auth.users.byname(bob) $user.email="robert@bobcorp.net"

Returns:
The return type may be one of the following: str, null. When this is used to set the value, it does not have a
return type.

gates()

Return a list of auth gates that the user has rules for.

Returns:
A list of auth:gates that the user has rules for. The return type is list.

get(name)

Get a arbitrary property from the User definition.

Args:
name (str): The name of the property to return.

Returns:
The requested value. The return type is prim.

getAllowedReason(permname, gateiden=None, default=False)

Return an allowed status and reason for the given perm.

Args:
permname (str): The permission string to check.

gateiden (str): The authgate iden.

default (boolean): The default value.

Returns:
An (allowed, reason) tuple. The return type is list.

1378 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

getRules(gateiden=None)

Get the rules for the user and optional auth gate.

Args:
gateiden (str): The gate iden used for the rules.

Returns:
A list of rules. The return type is list.

grant(iden, indx=None)

Grant a Role to the User.

Args:
iden (str): The iden of the Role.

indx (int): The position of the Role as a 0 based index.

Returns:
The return type is null.

iden

The User iden.

Returns:
The type is str.

name

A user’s name. This can also be used to set a user’s name.

Example:
Change a user’s name:

$user=$lib.auth.users.byname(bob) $user.name=robert

Returns:
The return type is str. When this is used to set the value, it does not have a return type.

notify(mesgtype, mesgdata)

Send an arbitrary user notification.

Args:
mesgtype (str): The notification type.

mesgdata (dict): The notification data.

Returns:
The return type is null.

13.2. Storm Types 1379

Synapse Documentation, Release 2.141.0

pack()

Get the packed version of the User.

Returns:
The packed User definition. The return type is dict.

popRule(indx, gateiden=None)

Remove a rule by index from the User.

Args:
indx (int): The index of the rule to remove.

gateiden (str): The gate iden used for the rule.

Returns:
The rule which was removed. The return type is list.

profile

A user profile dictionary. This can be used as an application level key-value store.

Example:
Set a value:

$user=$lib.auth.users.byname(bob) $user.profile.somekey="somevalue"

Get a value:

$user=$lib.auth.users.byname(bob) $value = $user.profile.somekey

Returns:
The return type is auth:user:profile.

revoke(iden)

Remove a Role from the User

Args:
iden (str): The iden of the Role.

Returns:
The return type is null.

roles()

Get the Roles for the User.

Returns:
A list of auth:roles which the user is a member of. The return type is list.

1380 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

setAdmin(admin, gateiden=None)

Set the Admin flag for the user.

Args:
admin (boolean): True to make the User an admin, false to remove their admin status.

gateiden (str): The gate iden used for the operation.

Returns:
The return type is null.

setEmail(email)

Set the email address of the User.

Args:
email (str): The email address to set for the User.

Returns:
The return type is null.

setLocked(locked)

Set the locked status for a user.

Args:
locked (boolean): True to lock the user, false to unlock them.

Returns:
The return type is null.

setPasswd(passwd)

Set the Users password.

Args:
passwd (str): The new password for the user. This is best passed into the runtime as a variable.

Returns:
The return type is null.

setRoles(idens)

Replace all the Roles of the User with a new list of roles.

Notes:
The roleiden for the “all” role must be present in the new list of roles. This replaces all existing roles that the
user has with the new roles.

Args:
idens (list): The idens to of the Role.

Returns:
The return type is null.

13.2. Storm Types 1381

Synapse Documentation, Release 2.141.0

setRules(rules, gateiden=None)

Replace the rules on the User with new rules.

Args:
rules (list): A list of rule tuples.

gateiden (str): The gate iden used for the rules.

Returns:
The return type is null.

tell(text)

Send a tell notification to a user.

Args:
text (str): The text of the message to send.

Returns:
The return type is null.

vars

Get a dictionary representing the user’s persistent variables.

Returns:
The return type is auth:user:vars.

13.2.4 auth:user:json

Implements per-user JSON storage.

del(path, prop=None)

Delete a stored JSON object or object property for the user.

Args:
path (str|list): A path string or list of path parts.

prop (str|list): A property name or list of name parts.

Returns:
True if the del operation was successful. The return type is boolean.

get(path, prop=None)

Return a stored JSON object or object property for the user.

Args:
path (str|list): A path string or list of path parts.

prop (str|list): A property name or list of name parts.

Returns:
The previously stored value or $lib.null The return type is prim.

1382 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

iter(path=None)

Yield (<path>, <valu>) tuples for the users JSON objects.

Args:
path (str|list): A path string or list of path parts.

Yields:
(<path>, <item>) tuples. The return type is list.

set(path, valu, prop=None)

Set a JSON object or object property for the user.

Args:
path (str|list): A path string or list of path elements.

valu (prim): The value to set as the JSON object or object property.

prop (str|list): A property name or list of name parts.

Returns:
True if the set operation was successful. The return type is boolean.

13.2.5 auth:user:profile

The Storm deref/setitem/iter convention on top of User profile information.

13.2.6 auth:user:vars

The Storm deref/setitem/iter convention on top of User vars information.

13.2.7 boolean

Implements the Storm API for a boolean instance.

13.2.8 bytes

Implements the Storm API for a Bytes object.

bunzip()

Decompress the bytes using bzip2.

Example:
Decompress bytes with bzip2:

$foo = $mybytez.bunzip()

Returns:
Decompressed bytes. The return type is bytes.

13.2. Storm Types 1383

Synapse Documentation, Release 2.141.0

bzip()

Compress the bytes using bzip2 and return them.

Example:
Compress bytes with bzip:

$foo = $mybytez.bzip()

Returns:
The bzip2 compressed bytes. The return type is bytes.

decode(encoding=utf8, errors=surrogatepass)

Decode bytes to a string.

Args:
encoding (str): The encoding to use.

errors (str): The error handling scheme to use.

Returns:
The decoded string. The return type is str.

gunzip()

Decompress the bytes using gzip and return them.

Example:
Decompress bytes with bzip2:

$foo = $mybytez.gunzip()

Returns:
Decompressed bytes. The return type is bytes.

gzip()

Compress the bytes using gzip and return them.

Example:
Compress bytes with gzip:

$foo = $mybytez.gzip()

Returns:
The gzip compressed bytes. The return type is bytes.

1384 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

json(encoding=None, errors=surrogatepass)

Load JSON data from bytes.

Notes:
The bytes must be UTF8, UTF16 or UTF32 encoded.

Example:
Load bytes to a object:

$foo = $mybytez.json()

Args:
encoding (str): Specify an encoding to use.

errors (str): Specify an error handling scheme to use.

Returns:
The deserialized object. The return type is prim.

slice(start, end=None)

Slice a subset of bytes from an existing bytes.

Examples:
Slice from index to 1 to 5:

$subbyts = $byts.slice(1,5)

Slice from index 3 to the end of the bytes:

$subbyts = $byts.slice(3)

Args:
start (int): The starting byte index.

end (int): The ending byte index. If not specified, slice to the end.

Returns:
The slice of bytes. The return type is bytes.

unpack(fmt, offset=0)

Unpack structures from bytes using python struct.unpack syntax.

Examples:
Unpack 3 unsigned 16 bit integers in little endian format:

($x, $y, $z) = $byts.unpack("<HHH")

Args:
fmt (str): A python struck.pack format string.

offset (int): An offset to begin unpacking from.

Returns:
The unpacked primitive values. The return type is list.

13.2. Storm Types 1385

Synapse Documentation, Release 2.141.0

13.2.9 cmdopts

A dictionary like object that holds a reference to a command options namespace. (This allows late-evaluation of
command arguments rather than forcing capture)

13.2.10 cronjob

Implements the Storm api for a cronjob instance.

iden

The iden of the Cron Job.

Returns:
The type is str.

pack()

Get the Cronjob definition.

Returns:
The definition. The return type is dict.

pprint()

Get a dictionary containing user friendly strings for printing the CronJob.

Returns:
A dictionary containing structured data about a cronjob for display purposes. The return type is dict.

set(name, valu)

Set an editable field in the cron job definition.

Example:
Change the name of a cron job:

$lib.cron.get($iden).set(name, "foo bar cron job")

Args:
name (str): The name of the field being set

valu (any): The value to set on the definition.

Returns:
The cronjob The return type is cronjob.

1386 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

13.2.11 dict

Implements the Storm API for a Dictionary object.

13.2.12 hive:dict

A Storm Primitive representing a HiveDict.

get(name, default=None)

Get the named value from the HiveDict.

Args:
name (str): The name of the value.

default (prim): The default value to return if the name is not set.

Returns:
The requested value. The return type is prim.

list()

List the keys and values in the HiveDict.

Returns:
A list of tuples containing key, value pairs. The return type is list.

pop(name, default=None)

Remove a value out of the HiveDict.

Args:
name (str): The name of the value.

default (prim): The default value to return if the name is not set.

Returns:
The requested value. The return type is prim.

set(name, valu)

Set a value in the HiveDict.

Args:
name (str): The name of the value to set

valu (prim): The value to store in the HiveDict

Returns:
Old value of the dictionary if the value was previously set, or none. The return type may be one of the following:
null, prim.

13.2. Storm Types 1387

Synapse Documentation, Release 2.141.0

13.2.13 inet:http:oauth:v1:client

A client for doing OAuth V1 Authentication from Storm.

sign(baseurl, method=GET, headers=None, params=None, body=None)

Sign an OAuth request to a particular URL.

Args:
baseurl (str): The base url to sign and query.

method (dict): The HTTP Method to use as part of signing.

headers (dict): Optional headers used for signing. Can override the “Content-Type” header if the signature type
is set to SIG_BODY

params (dict): Optional query parameters to pass to url construction and/or signing.

body (bytes): Optional HTTP body to pass to request signing.

Returns:
A 3-element tuple of ($url, $headers, $body). The OAuth signature elements will be embedded in the element
specified when constructing the client. The return type is list.

13.2.14 inet:http:resp

Implements the Storm API for a HTTP response.

body

The raw HTTP response body as bytes.

Returns:
The type is bytes.

code

The HTTP status code. It is -1 if an exception occurred.

Returns:
The type is int.

err

Tufo of the error type and information if an exception occurred.

Returns:
The type is list.

1388 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

headers

The HTTP Response headers.

Returns:
The type is dict.

json(encoding=None, errors=surrogatepass)

Get the JSON deserialized response.

Args:
encoding (str): Specify an encoding to use.

errors (str): Specify an error handling scheme to use.

Returns:
The return type is prim.

msgpack()

Yield the msgpack deserialized objects.

Yields:
Unpacked values. The return type is prim.

reason

The reason phrase for the HTTP status code.

Returns:
The type is str.

13.2.15 inet:http:socket

Implements the Storm API for a Websocket.

rx(timeout=None)

Receive a message from the web socket.

Args:
timeout (int): The timeout to wait for

Returns:
An ($ok, $valu) tuple. The return type is list.

13.2. Storm Types 1389

Synapse Documentation, Release 2.141.0

tx(mesg)

Transmit a message over the web socket.

Args:
mesg (dict): A JSON compatible message.

Returns:
An ($ok, $valu) tuple. The return type is list.

13.2.16 inet:imap:server

An IMAP server for retrieving email messages.

delete(uid_set)

Mark an RFC2060 UID message as deleted and expunge the mailbox.

The command uses the +FLAGS.SILENT command and applies the Deleted flag. The actual behavior of these com-
mands are mailbox configuration dependent.

Examples:
Mark a single message as deleted and expunge:

($ok, $valu) = $server.delete("8182")

Mark ranges of messages as deleted and expunge:

($ok, $valu) = $server.delete("1:3,6:9")

Args:
uid_set (str): The UID message set to apply the flag to.

Returns:
An ($ok, $valu) tuple. The return type is list.

fetch(uid)

Fetch a message by UID in RFC822 format.

The message is saved to the Axon, and a file:bytes node is returned.

Examples:
Fetch a message, save to the Axon, and yield file:bytes node:

yield $server.fetch("8182")

Args:
uid (str): The single message UID.

Returns:
The file:bytes node representing the message. The return type is node.

1390 Chapter 13. Storm Library Documentation

file:bytes

Synapse Documentation, Release 2.141.0

list(reference_name=””, pattern=*)

List mailbox names.

By default this method uses a reference_name and pattern to return all mailboxes from the root.

Args:
reference_name (str): The mailbox reference name.

pattern (str): The pattern to filter by.

Returns:
An ($ok, $valu) tuple where $valu is a list of names if $ok=True. The return type is list.

login(user, passwd)

Login to the IMAP server.

Args:
user (str): The username to login with.

passwd (str): The password to login with.

Returns:
An ($ok, $valu) tuple. The return type is list.

markSeen(uid_set)

Mark messages as seen by an RFC2060 UID message set.

The command uses the +FLAGS.SILENT command and applies the Seen flag.

Examples:
Mark a single messsage as seen:

($ok, $valu) = $server.markSeen("8182")

Mark ranges of messages as seen:

($ok, $valu) = $server.markSeen("1:3,6:9")

Args:
uid_set (str): The UID message set to apply the flag to.

Returns:
An ($ok, $valu) tuple. The return type is list.

search(*args)

Search for messages using RFC2060 syntax.

Examples:
Retrieve all messages:

($ok, $uids) = $server.search("ALL")

Search by FROM and SINCE:

13.2. Storm Types 1391

Synapse Documentation, Release 2.141.0

($ok, $uids) = $server.search("FROM", "visi@vertex.link", "SINCE", "01-Oct-2021")

Search by a subject substring:

($ok, $uids) = $search.search("HEADER", "Subject", "An email subject")

Args:
*args (str): A set of search criteria to use.

Returns:
An ($ok, $valu) tuple, where $valu is a list of UIDs if $ok=True. The return type is list.

select(mailbox=INBOX)

Select a mailbox to use in subsequent commands.

Args:
mailbox (str): The mailbox name to select.

Returns:
An ($ok, $valu) tuple. The return type is list.

13.2.17 inet:smtp:message

An SMTP message to compose and send.

headers

A dictionary of email header values.

Returns:
The type is dict.

html

The HTML body of the email message. This can also be used to set an HTML body in the message.

Returns:
The return type is str. When this is used to set the value, it does not have a return type.

recipients

An array of RCPT TO email addresses.

Returns:
The type is list.

1392 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

send(host, port=25, user=None, passwd=None, usetls=False, starttls=False, timeout=60)

Transmit a message over the web socket.

Args:
host (str): The hostname or IP address of the SMTP server.

port (int): The port that the SMTP server is listening on.

user (str): The user name to use authenticating to the SMTP server.

passwd (str): The password to use authenticating to the SMTP server.

usetls (bool): Initiate a TLS connection to the SMTP server.

starttls (bool): Use the STARTTLS directive with the SMTP server.

timeout (int): The timeout (in seconds) to wait for message delivery.

Returns:
An ($ok, $valu) tuple. The return type is list.

sender

The inet:email to use in the MAIL FROM request. This can also be used to set the sender for the message.

Returns:
The return type is str. When this is used to set the value, it does not have a return type.

text

The text body of the email message. This can also be used to set the body of the message.

Returns:
The return type is str. When this is used to set the value, it does not have a return type.

13.2.18 json:schema

A JsonSchema validation object for use in validating data structures in Storm.

schema()

The schema belonging to this object.

Returns:
A copy of the schema used for this object. The return type is dict.

13.2. Storm Types 1393

Synapse Documentation, Release 2.141.0

validate(item)

Validate a structure against the Json Schema

Args:
item (prim): A JSON structure to validate (dict, list, etc. . .)

Returns:
An ($ok, $valu) tuple. If $ok is True, then $valu should be used as the validated data structure. If $ok is False,
$valu is a dictionary with a “mesg” key. The return type is list.

13.2.19 layer

Implements the Storm api for a layer instance.

addPull(url, offs=0)

Configure the layer to pull edits from a remote layer/feed.

Args:
url (str): The telepath URL to a layer/feed.

offs (int): The offset to begin from.

Returns:
Dictionary containing the pull definition. The return type is dict.

addPush(url, offs=0)

Configure the layer to push edits to a remote layer/feed.

Args:
url (str): A telepath URL of the target layer/feed.

offs (int): The local layer offset to begin pushing from

Returns:
Dictionary containing the push definition. The return type is dict.

delPull(iden)

Remove a pull config from the layer.

Args:
iden (str): The iden of the push config to remove.

Returns:
The return type is null.

1394 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

delPush(iden)

Remove a push config from the layer.

Args:
iden (str): The iden of the push config to remove.

Returns:
The return type is null.

edits(offs=0, wait=True, size=None)

Yield (offs, nodeedits) tuples from the given offset.

Args:
offs (int): Offset to start getting nodeedits from the layer at.

wait (boolean): If true, wait for new edits, otherwise exit the generator when there are no more edits.

size (int): The maximum number of nodeedits to yield.

Yields:
Yields offset, nodeedit tuples from a given offset. The return type is list.

get(name, defv=None)

Get a arbitrary value in the Layer definition.

Args:
name (str): Name of the value to get.

defv (prim): The default value returned if the name is not set in the Layer.

Returns:
The value requested or the default value. The return type is prim.

getEdges()

Yield (n1iden, verb, n2iden) tuples for any light edges in the layer.

Example:
Iterate the light edges in $layer:

for ($n1iden, $verb, $n2iden) in $layer.getEdges() {
$lib.print(`{$n1iden} -({$verb})> {$n2iden}`)

}

Yields:
Yields (<n1iden>, <verb>, <n2iden>) tuples The return type is list.

13.2. Storm Types 1395

Synapse Documentation, Release 2.141.0

getEdgesByN1(nodeid)

Yield (verb, n2iden) tuples for any light edges in the layer for the source node id.

Example:
Iterate the N1 edges for $node:

for ($verb, $n2iden) in $layer.getEdgesByN1($node.iden()) {
$lib.print(`-({$verb})> {$n2iden}`)

}

Args:
nodeid (str): The hex string of the node id.

Yields:
Yields (<verb>, <n2iden>) tuples The return type is list.

getEdgesByN2(nodeid)

Yield (verb, n1iden) tuples for any light edges in the layer for the target node id.

Example:
Iterate the N2 edges for $node:

for ($verb, $n1iden) in $layer.getEdgesByN2($node.iden()) {
$lib.print(`-({$verb})> {$n1iden}`)

}

Args:
nodeid (str): The hex string of the node id.

Yields:
Yields (<verb>, <n1iden>) tuples The return type is list.

getFormCounts()

Get the formcounts for the Layer.

Example:
Get the formcounts for the current Layer:

$counts = $lib.layer.get().getFormCounts()

Returns:
Dictionary containing form names and the count of the nodes in the Layer. The return type is dict.

1396 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

getMirrorStatus()

Return a dictionary of the mirror synchronization status for the layer.

Returns:
An info dictionary describing mirror sync status. The return type is dict.

getPropCount(propname, maxsize=None)

Get the number of property rows in the layer for the given full form or property name.

Args:
propname (str): The property or form name to look up.

maxsize (int): The maximum number of rows to look up.

Returns:
The count of rows. The return type is int.

getStorNode(nodeid)

Retrieve the raw storage node for the specified node id.

Args:
nodeid (str): The hex string of the node id.

Returns:
The storage node dictionary. The return type is dict.

getStorNodes()

Get buid, sode tuples representing the data stored in the layer.

Notes:
The storage nodes represent only the data stored in the layer and may not represent whole nodes.

Yields:
Tuple of buid, sode values. The return type is list.

getTagCount(tagname, formname=None)

Return the number of tag rows in the layer for the given tag and optional form.

Examples:
Get the number of inet:ipv4 nodes with the $foo.bar tag:

$count = $lib.layer.get().getTagCount(foo.bar, formname=inet:ipv4)

Args:
tagname (str): The name of the tag to look up.

formname (str): The form to constrain the look up by.

Returns:
The count of tag rows. The return type is int.

13.2. Storm Types 1397

Synapse Documentation, Release 2.141.0

iden

The iden of the Layer.

Returns:
The type is str.

liftByProp(propname, propvalu=None, propcmpr==)

Lift and yield nodes with the property and optional value set within the layer.

Example:
Yield all nodes with the property ou:org:name set in the top layer:

yield $lib.layer.get().liftByProp(ou:org:name)

Yield all nodes with the property ou:org:name=woot in the top layer:

yield $lib.layer.get().liftByProp(ou:org:name, woot)

Yield all nodes with the property ou:org:name^=woot in the top layer:

yield $lib.layer.get().liftByProp(ou:org:name, woot, "^=")

Args:
propname (str): The full property name to lift by.

propvalu (obj): The value for the property.

propcmpr (str): The comparison operation to use on the value.

Yields:
Yields nodes. The return type is node.

liftByTag(tagname, formname=None)

Lift and yield nodes with the tag set within the layer.

Example:
Yield all nodes with the tag #foo set in the layer:

yield $lib.layer.get().liftByTag(foo)

Yield all inet:fqdn with the tag #foo set in the layer:

yield $lib.layer.get().liftByTag(foo, inet:fqdn)

Args:
tagname (str): The tag name to lift by.

formname (str): The optional form to lift.

Yields:
Yields nodes. The return type is node.

1398 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

pack()

Get the Layer definition.

Returns:
Dictionary containing the Layer definition. The return type is dict.

repr()

Get a string representation of the Layer.

Returns:
A string that can be printed, representing a Layer. The return type is str.

set(name, valu)

Set a arbitrary value in the Layer definition.

Args:
name (str): The name to set.

valu (any): The value to set.

Returns:
The return type is null.

verify(config=None)

Verify consistency between the node storage and indexes in the given layer.

Example:
Get all messages about consistency issues in the default layer:

for $mesg in $lib.layer.get().verify() {
$lib.print($mesg)

}

Notes:
The config format argument and message format yielded by this API is considered BETA and may be subject to
change! The formats will be documented when the convention stabilizes.

Args:
config (dict): The scan config to use (default all enabled).

Yields:
Yields messages describing any index inconsistencies. The return type is list.

13.2. Storm Types 1399

Synapse Documentation, Release 2.141.0

13.2.20 list

Implements the Storm API for a List instance.

append(valu)

Append a value to the list.

Args:
valu (any): The item to append to the list.

Returns:
The return type is null.

extend(valu)

Extend a list using another iterable.

Examples:
Populate a list by extending it with to other lists:

$list = $lib.list()

$foo = (f, o, o)
$bar = (b, a, r)

$list.extend($foo)
$list.extend($bar)

// $list is now (f, o, o, b, a, r)

Args:
valu (list): A list or other iterable.

Returns:
The return type is null.

has(valu)

Check it a value is in the list.

Args:
valu (any): The value to check.

Returns:
True if the item is in the list, false otherwise. The return type is boolean.

1400 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

index(valu)

Return a single field from the list by index.

Args:
valu (int): The list index value.

Returns:
The item present in the list at the index position. The return type is any.

length()

Get the length of the list. This is deprecated; please use .size() instead.

Returns:
The size of the list. The return type is int.

pop()

Pop and return the last entry in the list.

Returns:
The last item from the list. The return type is any.

reverse()

Reverse the order of the list in place

Returns:
The return type is null.

size()

Return the length of the list.

Returns:
The size of the list. The return type is int.

slice(start, end=None)

Get a slice of the list.

Examples:
Slice from index to 1 to 5:

$x=(f, o, o, b, a, r)
$y=$x.slice(1,5) // (o, o, b, a)

Slice from index 3 to the end of the list:

$y=$x.slice(3) // (b, a, r)

13.2. Storm Types 1401

Synapse Documentation, Release 2.141.0

Args:
start (int): The starting index.

end (int): The ending index. If not specified, slice to the end of the list.

Returns:
The slice of the list. The return type is list.

sort(reverse=False)

Sort the list in place.

Args:
reverse (bool): Sort the list in reverse order.

Returns:
The return type is null.

13.2.21 model:form

Implements the Storm API for a Form.

name

The name of the Form

Returns:
The type is str.

prop(name)

Get a Property on the Form

Args:
name (str): The property to retrieve.

Returns:
The model:property instance if the property if present on the form or null. The return type may be one of the
following: model:property, null.

type

Get the Type for the form.

Returns:
The return type is model:type.

1402 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

13.2.22 model:property

Implements the Storm API for a Property.

form

Get the Form for the Property.

Returns:
The return type may be one of the following: model:form, null.

full

The full name of the Property.

Returns:
The type is str.

name

The short name of the Property.

Returns:
The type is str.

type

Get the Type for the Property.

Returns:
The return type is model:type.

13.2.23 model:tagprop

Implements the Storm API for a Tag Property.

name

The name of the Tag Property.

Returns:
The type is str.

13.2. Storm Types 1403

Synapse Documentation, Release 2.141.0

type

Get the Type for the Tag Property.

Returns:
The return type is model:type.

13.2.24 model:type

A Storm types wrapper around a lib.types.Type

name

The name of the Type.

Returns:
The type is str.

norm(valu)

Get the norm and info for the Type.

Args:
valu (any): The value to norm.

Returns:
A tuple of the normed value and its information dictionary. The return type is list.

repr(valu)

Get the repr of a value for the Type.

Args:
valu (any): The value to get the repr of.

Returns:
The string form of the value as represented by the type. The return type is str.

stortype

The storetype of the Type.

Returns:
The type is int.

1404 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

13.2.25 node

Implements the Storm api for a node instance.

addEdge(verb, iden)

Add a light-weight edge.

Args:
verb (str): The edge verb to add.

iden (str): The node id of the destination node.

Returns:
The return type is null.

delEdge(verb, iden)

Remove a light-weight edge.

Args:
verb (str): The edge verb to remove.

iden (str): The node id of the destination node to remove.

Returns:
The return type is null.

difftags(tags, prefix=None, apply=False)

Get and optionally apply the difference between the current set of tags and another set.

Args:
tags (list): The set to compare against.

prefix (str): An optional prefix to match tags under.

apply (boolean): If true, apply the diff.

Returns:
The tags which have been added/deleted in the new set. The return type is dict.

edges(verb=None, reverse=False)

Yields the (verb, iden) tuples for this nodes edges.

Args:
verb (str): If provided, only return edges with this verb.

reverse (boolean): If true, yield edges with this node as the dest rather than source.

Yields:
A tuple of (verb, iden) values for this nodes edges. The return type is list.

13.2. Storm Types 1405

Synapse Documentation, Release 2.141.0

form()

Get the form of the Node.

Returns:
The form of the Node. The return type is str.

getByLayer()

Return a dict you can use to lookup which props/tags came from which layers.

Returns:
property / tag lookup dictionary. The return type is dict.

getStorNodes()

Return a list of “storage nodes” which were fused from the layers to make this node.

Returns:
List of storage node objects. The return type is list.

globtags(glob)

Get a list of the tag components from a Node which match a tag glob expression.

Args:
glob (str): The glob expression to match.

Returns:
The components of tags which match the wildcard component of a glob expression. The return type is list.

iden()

Get the iden of the Node.

Returns:
The nodes iden. The return type is str.

isform(name)

Check if a Node is a given form.

Args:
name (str): The form to compare the Node against.

Returns:
True if the form matches, false otherwise. The return type is boolean.

1406 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

ndef()

Get the form and primary property of the Node.

Returns:
A tuple of the form and primary property. The return type is list.

pack(dorepr=False)

Return the serializable/packed version of the Node.

Args:
dorepr (boolean): Include repr information for human readable versions of properties.

Returns:
A tuple containing the ndef and property bag of the node. The return type is list.

repr(name=None, defv=None)

Get the repr for the primary property or secondary property of a Node.

Args:
name (str): The name of the secondary property to get the repr for.

defv (str): The default value to return if the secondary property does not exist

Returns:
The string representation of the requested value. The return type is str.

tags(glob=None, leaf=False)

Get a list of the tags on the Node.

Notes:
When providing a glob argument, the following rules are used. A single asterisk(*) will replace exactly one
dot-delimited component of a tag. A double asterisk(**) will replace one or more of any character.

Args:
glob (str): A tag glob expression. If this is provided, only tags which match the expression are returned.

leaf (bool): If true, only leaf tags are included in the returned tags.

Returns:
A list of tags on the node. If a glob match is provided, only matching tags are returned. The return type is list.

value()

Get the value of the primary property of the Node.

Returns:
The primary property. The return type is prim.

13.2. Storm Types 1407

Synapse Documentation, Release 2.141.0

13.2.26 node:data

A Storm Primitive representing the NodeData stored for a Node.

cacheget(name, asof=now)

Retrieve data stored with cacheset() if it was stored more recently than the asof argument.

Args:
name (str): The name of the data to load.

asof (time): The max cache age.

Returns:
The cached value or null. The return type is prim.

cacheset(name, valu)

Set a node data value with an envelope that tracks time for cache use.

Args:
name (str): The name of the data to set.

valu (prim): The data to store.

Returns:
The return type is null.

get(name)

Get the Node data for a given name for the Node.

Args:
name (str): Name of the data to get.

Returns:
The stored node data. The return type is prim.

has(name)

Check if the Node data has the given key set on it

Args:
name (str): Name of the data to check for.

Returns:
True if the key is found, otherwise false. The return type is boolean.

1408 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

list()

Get a list of the Node data names on the Node.

Returns:
List of the names of values stored on the node. The return type is list.

load(name)

Load the Node data onto the Node so that the Node data is packed and returned by the runtime.

Args:
name (str): The name of the data to load.

Returns:
The return type is null.

pop(name)

Pop (remove) a the Node data from the Node.

Args:
name (str): The name of the data to remove from the node.

Returns:
The data removed. The return type is prim.

set(name, valu)

Set the Node data for a given name on the Node.

Args:
name (str): The name of the data.

valu (prim): The data to store.

Returns:
The return type is null.

13.2.27 node:path

Implements the Storm API for the Path object.

idens()

The list of Node idens which this Path has been forked from during pivot operations.

Returns:
A list of node idens. The return type is list.

13.2. Storm Types 1409

Synapse Documentation, Release 2.141.0

listvars()

List variables available in the path of a storm query.

Returns:
List of tuples containing the name and value of path variables. The return type is list.

meta

The PathMeta object for the Path.

Returns:
The type is node:path:meta.

vars

The PathVars object for the Path.

Returns:
The type is node:path:vars.

13.2.28 node:path:meta

Put the storm deref/setitem/iter convention on top of path meta information.

13.2.29 node:path:vars

Put the storm deref/setitem/iter convention on top of path variables.

13.2.30 node:props

A Storm Primitive representing the properties on a Node.

get(name)

Get a specific property value by name.

Args:
name (str): The name of the property to return.

Returns:
The requested value. The return type is prim.

1410 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

list()

List the properties and their values from the $node.

Returns:
A list of (name, value) tuples. The return type is list.

set(prop, valu)

Set a specific property value by name.

Args:
prop (str): The name of the property to set.

valu (prim): The value to set the property to.

Returns:
The set value. The return type is prim.

13.2.31 number

Implements the Storm API for a Number instance.

Storm Numbers are high precision fixed point decimals corresponding to the the hugenum storage type.

scaleb(other)

Return the number multiplied by 10**other.

Example:
Multiply the value by 10**-18:

$baz.scaleb(-18)

Args:
other (int): The amount to adjust the exponent.

Returns:
The exponent adjusted number. The return type is number.

tofloat()

Return the number as a float.

Returns:
The number as a float. The return type is float.

13.2. Storm Types 1411

Synapse Documentation, Release 2.141.0

toint(rounding=None)

Return the number as an integer.

By default, decimal places will be truncated. Optionally, rounding rules can be specified by providing the name of a
Python decimal rounding mode to the ‘rounding’ argument.

Example:
Round the value stored in $baz up instead of truncating:

$baz.toint(rounding=ROUND_UP)

Args:
rounding (str): An optional rounding mode to use.

Returns:
The number as an integer. The return type is int.

tostr()

Return the number as a string.

Returns:
The number as a string. The return type is str.

13.2.32 pipe

A Storm Pipe provides fast ephemeral queues.

put(item)

Add a single item to the Pipe.

Args:
item (any): An object to add to the Pipe.

Returns:
The return type is null.

puts(items)

Add a list of items to the Pipe.

Args:
items (list): A list of items to add.

Returns:
The return type is null.

1412 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

size()

Retrieve the number of items in the Pipe.

Returns:
The number of items in the Pipe. The return type is int.

slice(size=1000)

Return a list of up to size items from the Pipe.

Args:
size (int): The max number of items to return.

Returns:
A list of at least 1 item from the Pipe. The return type is list.

slices(size=1000)

Yield lists of up to size items from the Pipe.

Notes:
The loop will exit when the Pipe is closed and empty.

Examples:
Operation on slices from a pipe one at a time:

for $slice in $pipe.slices(1000) {
for $item in $slice { $dostuff($item) }

}

Operate on slices from a pipe in bulk:

for $slice in $pipe.slices(1000) {
$dostuff_batch($slice)

}

Args:
size (int): The max number of items to yield per slice.

Yields:
Yields objects from the Pipe. The return type is any.

13.2.33 proj:comment

Implements the Storm API for a ProjectTicketComment

13.2. Storm Types 1413

Synapse Documentation, Release 2.141.0

del()

Delete the comment.

Returns:
True if the ProjectTicketComment was deleted The return type is boolean.

text

The comment text. This can be used to set the text as well.

Returns:
The return type may be one of the following: str, null. When this is used to set the value, it does not have a
return type.

13.2.34 proj:comments

Implements the Storm API for ProjectTicketComments objects, which are collections of comments associated with a
ticket.

add(text)

Add a comment to the ticket.

Args:
text (str): The text for the new ProjectTicketComment.

Returns:
The newly created proj:comment object The return type is proj:comment.

get(guid)

Get a ticket comment by guid.

Args:
guid (str): The guid of the ProjectTicketComment to get.

Returns:
The proj:comment object The return type is proj:comment.

13.2.35 proj:epic

Implements the Storm API for a ProjectEpic

1414 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

name

The name of the Epic. This can be used to set the name as well.

Returns:
The return type may be one of the following: str, null. When this is used to set the value, it does not have a
return type.

13.2.36 proj:epics

Implements the Storm API for ProjectEpics objects, which are collections of ProjectEpic objects associated with a
particular Project

add(name)

Add an epic.

Args:
name (str): The name for the new ProjectEpic.

Returns:
The newly created proj:epic object The return type is proj:epic.

del(name)

Delete an epic by name.

Args:
name (str): The name of the ProjectEpic to delete.

Returns:
True if the ProjectEpic can be found and deleted, otherwise False The return type is boolean.

get(name)

Get an epic by name.

Args:
name (str): The name (or iden) of the ProjectEpic to get.

Returns:
The proj:epic object The return type is proj:epic.

13.2.37 proj:project

Implements the Storm API for Project objects, which are used for managing a scrum style project in the Cortex

13.2. Storm Types 1415

Synapse Documentation, Release 2.141.0

epics

A proj:epics object that contains the epics associated with the given project.

Returns:
The return type is proj:epics.

name

The name of the project. This can also be used to set the name of the project.

Returns:
The return type may be one of the following: str, null. When this is used to set the value, it does not have a
return type.

sprints

A proj:sprints object that contains the sprints associated with the given project.

Returns:
The return type is proj:sprints.

tickets

A proj:tickets object that contains the tickets associated with the given project.

Returns:
The return type is proj:tickets.

13.2.38 proj:sprint

Implements the Storm API for a ProjectSprint

desc

A description of the sprint. This can also be used to set the description.

Returns:
The return type may be one of the following: str, null. When this is used to set the value, it does not have a
return type.

name

The name of the sprint. This can also be used to set the name.

Returns:
The return type may be one of the following: str, null. When this is used to set the value, it does not have a
return type.

1416 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

status

The status of the sprint. This can also be used to set the status.

Returns:
The return type may be one of the following: int, null. When this is used to set the value, it does not have a
return type.

tickets

Yields out the tickets associated with the given sprint (no call needed).

Returns:
The return type is generator.

13.2.39 proj:sprints

Implements the Storm API for ProjectSprints objects, which are collections of sprints associated with a single project

add(name, period=None)

Add a sprint.

Args:
name (str): The name for the new ProjectSprint.

period (ival): The time interval the ProjectSprint runs for

Returns:
The newly created proj:sprint object The return type is proj:sprint.

del(name)

Delete a sprint by name.

Args:
name (str): The name of the Sprint to delete.

Returns:
True if the ProjectSprint can be found and deleted, otherwise False The return type is boolean.

get(name)

Get a sprint by name.

Args:
name (str): The name (or iden) of the ProjectSprint to get.

Returns:
The proj:sprint object The return type is proj:sprint.

13.2. Storm Types 1417

Synapse Documentation, Release 2.141.0

13.2.40 proj:ticket

Implements the Storm API for a ProjectTicket.

assignee

The user the ticket is assigned to. This can be used to set the assignee of the ticket.

Returns:
The return type may be one of the following: int, null. When this is used to set the value, it does not have a
return type.

comments

A proj:comments object that contains comments associated with the given ticket.

Returns:
The return type is proj:comments.

desc

A description of the ticket. This can be used to set the description.

Returns:
The return type may be one of the following: str, null. When this is used to set the value, it does not have a
return type.

epic

The epic associated with the ticket. This can be used to set the epic.

Returns:
The return type may be one of the following: str, null. When this is used to set the value, it does not have a
return type.

name

The name of the ticket. This can be used to set the name of the ticket.

Returns:
The return type may be one of the following: str, null. When this is used to set the value, it does not have a
return type.

1418 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

priority

An integer value from the enums [0, 10, 20, 30, 40, 50] of the priority of the ticket. This can be used to set the priority
of the ticket.

Returns:
The return type may be one of the following: int, null. When this is used to set the value, it does not have a
return type.

sprint

The sprint the ticket is in. This can be used to set the sprint this ticket is in.

Returns:
The return type may be one of the following: int, null. When this is used to set the value, it does not have a
return type.

status

The status of the ticket. This can be used to set the status of the ticket.

Returns:
The return type may be one of the following: int, null. When this is used to set the value, it does not have a
return type.

13.2.41 proj:tickets

Implements the Storm API for ProjectTickets objects, which are collections of tickets associated with a project

add(name, desc=)

Add a ticket.

Args:
name (str): The name for the new ProjectTicket.

desc (str): A description of the new ticket

Returns:
The newly created proj:ticket object The return type is proj:ticket.

del(name)

Delete a sprint by name.

Args:
name (str): The name of the ProjectTicket to delete.

Returns:
True if the ProjectTicket can be found and deleted, otherwise False The return type is boolean.

13.2. Storm Types 1419

Synapse Documentation, Release 2.141.0

get(name)

Get a ticket by name.

Args:
name (str): The name (or iden) of the ProjectTicket to get.

Returns:
The proj:ticket object The return type is proj:ticket.

13.2.42 queue

A StormLib API instance of a named channel in the Cortex multiqueue.

cull(offs)

Remove items from the queue up to, and including, the offset.

Args:
offs (int): The offset which to cull records from the queue.

Returns:
The return type is null.

get(offs=0, cull=True, wait=True)

Get a particular item from the Queue.

Args:
offs (int): The offset to retrieve an item from.

cull (boolean): Culls items up to, but not including, the specified offset.

wait (boolean): Wait for the offset to be available before returning the item.

Returns:
A tuple of the offset and the item from the queue. If wait is false and the offset is not present, null is returned.
The return type is list.

gets(offs=0, wait=True, cull=False, size=None)

Get multiple items from the Queue as a iterator.

Args:
offs (int): The offset to retrieve an items from.

wait (boolean): Wait for the offset to be available before returning the item.

cull (boolean): Culls items up to, but not including, the specified offset.

size (int): The maximum number of items to yield

Yields:
Yields tuples of the offset and item. The return type is list.

1420 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

name

The name of the Queue.

Returns:
The type is str.

pop(offs=None, wait=False)

Pop a item from the Queue at a specific offset.

Args:
offs (int): Offset to pop the item from. If not specified, the first item in the queue will be popped.

wait (boolean): Wait for an item to be available to pop.

Returns:
The offset and item popped from the queue. If there is no item at the offset or the queue is empty and wait is
false, it returns null. The return type is list.

put(item)

Put an item into the queue.

Args:
item (prim): The item being put into the queue.

Returns:
The return type is null.

puts(items)

Put multiple items into the Queue.

Args:
items (list): The items to put into the Queue.

Returns:
The return type is null.

size()

Get the number of items in the Queue.

Returns:
The number of items in the Queue. The return type is int.

13.2. Storm Types 1421

Synapse Documentation, Release 2.141.0

13.2.43 set

Implements the Storm API for a Set object.

add(*items)

Add a item to the set. Each argument is added to the set.

Args:
*items (any): The items to add to the set.

Returns:
The return type is null.

adds(*items)

Add the contents of a iterable items to the set.

Args:
*items (any): Iterables items to add to the set.

Returns:
The return type is null.

has(item)

Check if a item is a member of the set.

Args:
item (any): The item to check the set for membership.

Returns:
True if the item is in the set, false otherwise. The return type is boolean.

list()

Get a list of the current members of the set.

Returns:
A list containing the members of the set. The return type is list.

rem(*items)

Remove an item from the set.

Args:
*items (any): Items to be removed from the set.

Returns:
The return type is null.

1422 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

rems(*items)

Remove the contents of a iterable object from the set.

Args:
*items (any): Iterables items to remove from the set.

Returns:
The return type is null.

size()

Get the size of the set.

Returns:
The size of the set. The return type is int.

13.2.44 stat:tally

A tally object.

An example of using it:

$tally = $lib.stats.tally()

$tally.inc(foo)

for $name, $total in $tally {
$doStuff($name, $total)

}

get(name)

Get the value of a given counter.

Args:
name (str): The name of the counter to get.

Returns:
The value of the counter, or 0 if the counter does not exist. The return type is int.

inc(name, valu=1)

Increment a given counter.

Args:
name (str): The name of the counter to increment.

valu (int): The value to increment the counter by.

Returns:
The return type is null.

13.2. Storm Types 1423

Synapse Documentation, Release 2.141.0

sorted(byname=False, reverse=False)

Get a list of (counter, value) tuples in sorted order.

Args:
byname (bool): Sort by counter name instead of value.

reverse (bool): Sort in descending order instead of ascending order.

Returns:
List of (counter, value) tuples in sorted order. The return type is list.

13.2.45 stix:bundle

Implements the Storm API for creating and packing a STIX bundle for v2.1

add(node, stixtype=None)

Make one or more STIX objects from a node, and add it to the bundle.

Examples:
Example Storm which would be called remotely via the callStorm() API:

init { $bundle = $lib.stix.bundle() }
#aka.feye.thr.apt1
$bundle.add($node)
fini { return($bundle) }

Args:
node (node): The node to make a STIX object from.

stixtype (str): The explicit name of the STIX type to map the node to. This will override the default mapping.

Returns:
The stable STIX id of the added object. The return type is str.

pack()

Return the bundle as a STIX JSON object.

Returns:
The return type is dict.

size()

Return the number of STIX objects currently in the bundle.

Returns:
The return type is int.

1424 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

13.2.46 storm:query

A storm primitive representing an embedded query.

exec()

Execute the Query in a sub-runtime.

Notes:
The .exec() method can return a value if the Storm query contains a return(...) statement in it.

Returns:
A value specified with a return statement, or none. The return type may be one of the following: null, any.

size(limit=1000)

Execute the Query in a sub-runtime and return the number of nodes yielded.

Args:
limit (int): Limit the maximum number of nodes produced by the query.

Returns:
The number of nodes yielded by the query. The return type is int.

13.2.47 str

Implements the Storm API for a String object.

encode(encoding=utf8)

Encoding a string value to bytes.

Args:
encoding (str): Encoding to use. Defaults to utf8.

Returns:
The encoded string. The return type is bytes.

endswith(text)

Check if a string ends with text.

Args:
text (str): The text to check.

Returns:
True if the text ends with the string, false otherwise. The return type is boolean.

13.2. Storm Types 1425

Synapse Documentation, Release 2.141.0

find(valu)

Find the offset of a given string within another.

Examples:
Find values in the string asdf:

$x = asdf
$x.find(d) // returns 2
$x.find(v) // returns null

Args:
valu (str): The substring to find.

Returns:
The first offset of substring or null. The return type is int.

format(**kwargs)

Format a text string from an existing string.

Examples:
Format a string with a fixed argument and a variable:

$template='Hello {name}, list is {list}!' $list=(1,2,3,4) $new=$template.
→˓format(name='Reader', list=$list)

Args:
**kwargs (any): Keyword values which are substituted into the string.

Returns:
The new string. The return type is str.

ljust(size, fillchar=)

Left justify the string.

Args:
size (int): The length of character to left justify.

fillchar (str): The character to use for padding.

Returns:
The left justified string. The return type is str.

lower()

Get a lowercased copy the of the string.

Examples:
Printing a lowercased string:

$foo="Duck"
$lib.print($foo.lower())

Returns:
The lowercased string. The return type is str.

1426 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

lstrip(chars=None)

Remove leading characters from a string.

Examples:
Removing whitespace and specific characters:

$strippedFoo = $foo.lstrip()
$strippedBar = $bar.lstrip(w)

Args:
chars (str): A list of characters to remove. If not specified, whitespace is stripped.

Returns:
The stripped string. The return type is str.

replace(oldv, newv, maxv=None)

Replace occurrences of a string with a new string, optionally restricting the number of replacements.

Example:
Replace instances of the string “bar” with the string “baz”:

$foo.replace('bar', 'baz')

Args:
oldv (str): The value to replace.

newv (str): The value to add into the string.

maxv (int): The maximum number of occurrences to replace.

Returns:
The new string with replaced instances. The return type is str.

reverse()

Get a reversed copy of the string.

Examples:
Printing a reversed string:

$foo="foobar"
$lib.print($foo.reverse())

Returns:
The reversed string. The return type is str.

13.2. Storm Types 1427

Synapse Documentation, Release 2.141.0

rjust(size, fillchar=)

Right justify the string.

Args:
size (int): The length of character to right justify.

fillchar (str): The character to use for padding.

Returns:
The right justified string. The return type is str.

rsplit(text, maxsplit=-1)

Split the string into multiple parts, from the right, based on a separator.

Example:
Split a string on the colon character:

($foo, $bar) = $baz.rsplit(":", maxsplit=1)

Args:
text (str): The text to split the string up with.

maxsplit (int): The max number of splits.

Returns:
A list of parts representing the split string. The return type is list.

rstrip(chars=None)

Remove trailing characters from a string.

Examples:
Removing whitespace and specific characters:

$strippedFoo = $foo.rstrip()
$strippedBar = $bar.rstrip(asdf)

Args:
chars (str): A list of characters to remove. If not specified, whitespace is stripped.

Returns:
The stripped string. The return type is str.

size()

Return the length of the string.

Returns:
The size of the string. The return type is int.

1428 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

slice(start, end=None)

Get a substring slice of the string.

Examples:
Slice from index to 1 to 5:

$x="foobar"
$y=$x.slice(1,5) // "ooba"

Slice from index 3 to the end of the string:

$y=$x.slice(3) // "bar"

Args:
start (int): The starting character index.

end (int): The ending character index. If not specified, slice to the end of the string

Returns:
The slice substring. The return type is str.

split(text, maxsplit=-1)

Split the string into multiple parts based on a separator.

Example:
Split a string on the colon character:

($foo, $bar) = $baz.split(":")

Args:
text (str): The text to split the string up with.

maxsplit (int): The max number of splits.

Returns:
A list of parts representing the split string. The return type is list.

startswith(text)

Check if a string starts with text.

Args:
text (str): The text to check.

Returns:
True if the text starts with the string, false otherwise. The return type is boolean.

13.2. Storm Types 1429

Synapse Documentation, Release 2.141.0

strip(chars=None)

Remove leading and trailing characters from a string.

Examples:
Removing whitespace and specific characters:

$strippedFoo = $foo.strip()
$strippedBar = $bar.strip(asdf)

Args:
chars (str): A list of characters to remove. If not specified, whitespace is stripped.

Returns:
The stripped string. The return type is str.

upper()

Get a uppercased copy the of the string.

Examples:
Printing a uppercased string:

$foo="Duck"
$lib.print($foo.upper())

Returns:
The uppercased string. The return type is str.

13.2.48 telepath:proxy

Implements the Storm API for a Telepath proxy.

These can be created via $lib.telepath.open(). Storm Service objects are also Telepath proxy objects.

Methods called off of these objects are executed like regular Telepath RMI calls.

An example of calling a method which returns data:

$prox = $lib.telepath.open($url)
$result = $prox.doWork($data)
return ($result)

An example of calling a method which is a generator:

$prox = $lib.telepath.open($url)
for $item in = $prox.genrStuff($data) {

$doStuff($item)
}

1430 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

13.2.49 text

A mutable text type for simple text construction.

add(text, **kwargs)

Add text to the Text object.

Args:
text (str): The text to add.

**kwargs (any): Keyword arguments used to format the text.

Returns:
The return type is null.

str()

Get the text content as a string.

Returns:
The current string of the text object. The return type is str.

13.2.50 trigger

Implements the Storm API for a Trigger.

iden

The Trigger iden.

Returns:
The type is str.

move(viewiden)

Modify the Trigger to run in a different View.

Args:
viewiden (str): The iden of the new View for the Trigger to run in.

Returns:
The return type is null.

13.2. Storm Types 1431

Synapse Documentation, Release 2.141.0

pack()

Get the trigger definition.

Returns:
The definition. The return type is dict.

set(name, valu)

Set information in the Trigger.

Args:
name (str): Name of the key to set.

valu (prim): The data to set

Returns:
The return type is null.

13.2.51 view

Implements the Storm api for a View instance.

addNode(form, valu, props=None)

Transactionally add a single node and all it’s properties. If any validation fails, no changes are made.

Args:
form (str): The form name.

valu (prim): The primary property value.

props (dict): An optional dictionary of props.

Returns:
The node if the view is the current view, otherwise null. The return type is node.

addNodeEdits(edits)

Add NodeEdits to the view.

Args:
edits (list): A list of nodeedits.

Returns:
The return type is null.

1432 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

fork(name=None)

Fork a View in the Cortex.

Args:
name (str): The name of the new view.

Returns:
The view object for the new View. The return type is view.

get(name, defv=None)

Get a view configuration option.

Args:
name (str): Name of the value to get.

defv (prim): The default value returned if the name is not set in the View.

Returns:
The value requested or the default value. The return type is prim.

getEdgeVerbs()

Get the Edge verbs which exist in the View.

Yields:
Yields the edge verbs used by Layers which make up the View. The return type is str.

getEdges(verb=None)

Get node information for Edges in the View.

Args:
verb (str): The name of the Edges verb to iterate over.

Yields:
Yields tuples containing the source iden, verb, and destination iden. The return type is list.

getFormCounts()

Get the formcounts for the View.

Example:
Get the formcounts for the current View:

$counts = $lib.view.get().getFormCounts()

Returns:
Dictionary containing form names and the count of the nodes in the View’s Layers. The return type is dict.

13.2. Storm Types 1433

Synapse Documentation, Release 2.141.0

iden

The iden of the View.

Returns:
The type is str.

layers

The layer objects associated with the view.

Returns:
The type is list.

merge(force=False)

Merge a forked View back into its parent View.

Args:
force (boolean): Force the view to merge if possible.

Returns:
The return type is null.

pack()

Get the View definition.

Returns:
Dictionary containing the View definition. The return type is dict.

parent

The parent View. Will be $lib.null if the view is not a fork.

Returns:
The type is str.

repr()

Get a string representation of the View.

Returns:
A list of lines that can be printed, representing a View. The return type is list.

1434 Chapter 13. Storm Library Documentation

Synapse Documentation, Release 2.141.0

set(name, valu)

Set a view configuration option.

Current runtime updatable view options include:

name (str)
A terse name for the View.

desc (str)
A description of the View.

parent (str)
The parent View iden.

nomerge (bool)
Setting to $lib.true will prevent the layer from being merged.

layers (list(str))
Set the list of layer idens for a non-forked view. Layers are specified in precedence order with the
first layer in the list being the write layer.

To maintain consistency with the view.fork() semantics, setting the “parent” option on a view has a few limitations:

• The view must not already have a parent

• The view must not have more than 1 layer

Args:
name (str): The name of the value to set.

valu (prim): The value to set.

Returns:
The return type is null.

triggers

The trigger objects associated with the view.

Returns:
The type is list.

wipeLayer()

Delete all nodes and nodedata from the write layer. Triggers will be run.

Returns:
The return type is null.

13.2. Storm Types 1435

Synapse Documentation, Release 2.141.0

13.2.52 xml:element

A Storm object for dealing with elements in an XML tree.

attrs

The element attributes list.

Returns:
The type is dict.

find(name, nested=True)

Find all nested elements with the specified tag name.

Args:
name (str): The name of the XML tag.

nested (bool): Set to $lib.false to only find direct children.

Returns:
A generator which yields xml:elements. The return type is generator.

get(name)

Get a single child element by XML tag name.

Args:
name (str): The name of the child XML element tag.

Returns:
The child XML element or $lib.null The return type is xml:element.

name

The element tag name.

Returns:
The type is str.

text

The element text body.

Returns:
The type is str.

1436 Chapter 13. Storm Library Documentation

CHAPTER

FOURTEEN

SYNAPSE POWER-UPS

Power-Ups are part of The Vertex Project’s commercial offering, Synapse Enterprise. Synapse Enterprise is an on-
premises solution that includes Optic (the Synapse UI) and all of the Power-Ups. The license includes unlimited
users and does not limit the amount of data or number of instances you deploy. We take a white-glove approach to
each deployment where we’re with you every step of the way from planning deployment sizes to helping to train your
analysts.

Feel free to contact us or request a demo instance.

Power-Ups provide specific add-on capabilities to Synapse via Storm Packages and Services. For example, Power-Ups
may provide connectivity to external databases, third-party data sources, or enable functionality such as the ability to
manage YARA rules, scans, and matches.

For an introduction to Power-Ups from our analysts and seeing them in use, see the following video introducing them:

The Vertex Project is constantly releasing new Power-Ups and expanding features of existing Power-Ups. If you join
the #synapse-releases channel in Synapse Slack, you can get realtime notices of these updates!

14.1 Rapid Power-Ups

Rapid Power-Ups are delivered to a Cortex as Storm packages directly, without requiring any additional containers to
be deployed. This allows users to rapidly expand the power of their Synapse deployments without needing to engage
with additional operations teams in their environments. For an introduction to Rapid Power-Ups and some information
about publicly available Power-Ups, see the following blog post.

See the Rapid Power-Ups List for a complete list of all available Rapid Power-Ups.

14.1.1 Getting Started with Rapid Power-Ups

Vertex maintains a package repository which allows for loading public and private packages.

If you are a Synapse User Interface user, you can navigate to the Power-Ups Tool to register your Cortex and configure
packages.

Alternatively, one can use the storm tool to get started with Rapid Power-Ups in their Cortex.

See our blog article for a step-by step guide to registering your Cortex to install the free synapse-misp,
synapse-mitre-attack, and synapse-tor Power-Ups.

1437

https://vertex.link
https://synapse.docs.vertex.link/projects/optic/en/latest/index.html
https://vertex.link/contact-us
https://vertex.link/request-a-demo
https://v.vtx.lk/join-slack
https://vertex.link/blogs/synapse-power-ups/
https://synapse.docs.vertex.link/projects/rapid-powerups/en/latest/storm-packages/index_packages.html
https://vertex.link/blogs/synapse-power-ups/

Synapse Documentation, Release 2.141.0

14.2 Advanced Power-Ups

Advanced Power-Ups are enhancements to a Cortex which require the deployment of additional containers in order to
run their services.

Documentation for specific Advanced Power-Ups can be found here:

• Synapse Backup

• Synapse Fileparser

• Synapse Maxmind

• Synapse GCS

• Synapse Metrics

• Synapse Nettools

• Synapse NSRL

• Synapse Playwright

• Synapse Rapid7

• Synapse Rapid7 SonarRDNS

• Synapse S3

• Synapse Search

• Synapse Sidepocket

• Synapse Swarm

• Synapse Yara

• Synapse Axon Azure

1438 Chapter 14. Synapse Power-Ups

https://synapse.docs.vertex.link/projects/backup/en/latest/
https://synapse.docs.vertex.link/projects/fileparser/en/latest/
https://synapse.docs.vertex.link/projects/maxmind/en/latest/
https://synapse.docs.vertex.link/projects/gcs/en/latest/
https://synapse.docs.vertex.link/projects/metrics/en/latest/
https://synapse.docs.vertex.link/projects/nettools/en/latest/
https://synapse.docs.vertex.link/projects/nsrl/en/latest/
https://synapse.docs.vertex.link/projects/playwright/en/latest/
https://synapse.docs.vertex.link/projects/rapid7/en/latest/
https://synapse.docs.vertex.link/projects/rapid7-sonarrdns/en/latest/
https://synapse.docs.vertex.link/projects/s3/en/latest/
https://synapse.docs.vertex.link/projects/search/en/latest/
https://synapse.docs.vertex.link/projects/sidepocket/en/latest/
https://synapse.docs.vertex.link/projects/swarm/en/latest/
https://synapse.docs.vertex.link/projects/yara/en/latest/
https://synapse.docs.vertex.link/projects/axon-azure/en/latest/

CHAPTER

FIFTEEN

SYNAPSE USER INTERFACE

Optic (the Synapse UI) is part of The Vertex Project’s commercial offering, Synapse Enterprise. Synapse Enterprise
is an on-premises solution that includes Optic and all of the Power-Ups. The license includes unlimited users and does
not limit the amount of data or number of instances you deploy. We take a white-glove approach to each deployment
where we’re with you every step of the way from planning deployment sizes to helping to train your analysts.

Feel free to contact us or request a demo instance.

For additional information see the Optic Documentation.

1439

https://vertex.link
https://synapse.docs.vertex.link/projects/optic/en/latest/index.html
https://vertex.link/contact-us
https://vertex.link/request-a-demo
https://synapse.docs.vertex.link/projects/optic/en/latest/index.html

Synapse Documentation, Release 2.141.0

1440 Chapter 15. Synapse User Interface

CHAPTER

SIXTEEN

SYNAPSE SUPPORT

Information for Vertex support.

16.1 Slack

Best effort chat based support is available through the Synapse Slack. You can find Vertex Project analysts, engineers,
and other users who can help with questions you may have.

16.2 Service Desk

Commercial customers have access to the Vertex Support Service Desk. This is the ideal place for customers to submit
issues, modeling questions, and feature requests.

1441

https://v.vtx.lk/join-slack
https://vertexproject.atlassian.net/servicedesk/customer/portals

Synapse Documentation, Release 2.141.0

1442 Chapter 16. Synapse Support

CHAPTER

SEVENTEEN

SYNAPSE CHANGELOG

17.1 v2.141.0 - 2023-07-07

17.1.1 Model Changes

• Update to the it and lang models. (#3219)

it:host
The form had the following properties added to it:

keyboard:language
The primary keyboard input language configured on the host.

keyboard:layout
The primary keyboard layout configured on the host.

lang:language
The form had the following property added to it:

code
The language code for this language.

17.1.2 Features and Enhancements

• Update $lib.infosec.cvss.vectToScore() to include a normalized CVSS vector in the output. (#3211)

• Optimize the addition and removal of lightweight edges when operating on N1 edges in Storm. (#3214)

• Added $lib.gen.langByCode. (#3219)

17.1.3 Bugfixes

• Fix bug with regular expression comparisons for some types. (#3213)

• Fix a TypeError being raised when passing a heavy Number object to $lib.math.number(). (#3215)

• Fix an issue with the Cell backup space checks. They now properly calculate the amount of free space when the
Cell backup directory is configured on a separate volume from the Cell storage directory. (#3216)

• Prevent the yield operator from directly emitting nodes into the Storm pipeline if those node objects came from
a different view. Nodes previously lifted in this manner must be lifted by calling the iden() function on the
object to ensure the node being lifted into the pipeline reflects the current view. (#3218)

1443

https://github.com/vertexproject/synapse/pull/3219
https://github.com/vertexproject/synapse/pull/3211
https://github.com/vertexproject/synapse/pull/3214
https://github.com/vertexproject/synapse/pull/3219
https://github.com/vertexproject/synapse/pull/3213
https://github.com/vertexproject/synapse/pull/3215
https://github.com/vertexproject/synapse/pull/3216
https://github.com/vertexproject/synapse/pull/3218

Synapse Documentation, Release 2.141.0

• Always remove the mirror configuration option from cell.mods.yaml when provisioning a service via Aha.
The previous behavior prevented the correct restoration of a service from a backup which had been changed from
being a leader to being a mirror. (#3220)

17.2 v2.140.1 - 2023-06-30

17.2.1 Bugfixes

• Fix a typo which prevented the Synapse package for v2.140.0 from being published on PyPI. (#3212)

17.3 v2.140.0 - 2023-06-30

17.3.1 Announcement

Synapse now only supports Python 3.11+.

17.3.2 Model Changes

• Update to the inet, file, and org models. (#3192) (#3202) (#3207)

file:archive:entry
Add a type to capture an archive entry representing a file and metadata from within a parent archive file.

time
Time values with precision beyond milliseconds are now truncated to millsecond values.

hex
Hex types now have whitespace and colon (:) characters stripped from them when lifting and normalizing
them.

inet:ipv6
Add comparators for >=, >, <=, < operations when lifting and filtering IPV6 values.

ou:naics
Update the type to allow recording NIACS sector and subsector prefixes.

17.3.3 Features and Enhancements

• Synapse now only supports Python 3.11+. The library will now fail to import on earlier Python interpeters, and
the published modules on PyPI will no longer install on Python versions < 3.11. (#3156)

• Replace setup.py with a pyproject.toml file. (#3156) (#3195)

• Usages of hashlib.md5() and hashlib.sha1() have been updated to add the usedforsecurity=False
argument. (#3163)

• The Storm diff command is now marked as safe for readonly execution. (#3207)

• Add a svc:set event to the Behold API message stream. This event is fired when a Cortex connects to a Storm
Service. (#3205)

1444 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/3220
https://github.com/vertexproject/synapse/pull/3212
https://github.com/vertexproject/synapse/pull/3192
https://github.com/vertexproject/synapse/pull/3202
https://github.com/vertexproject/synapse/pull/3207
https://github.com/vertexproject/synapse/pull/3156
https://github.com/vertexproject/synapse/pull/3156
https://github.com/vertexproject/synapse/pull/3195
https://github.com/vertexproject/synapse/pull/3163
https://github.com/vertexproject/synapse/pull/3207
https://github.com/vertexproject/synapse/pull/3205

Synapse Documentation, Release 2.141.0

17.3.4 Bugfixes

• Catch ZeroDivisionError and decimal.InvalidOperation errors in Storm expressions and raise a
StormRuntimeError. (#3203)

• Fix a bug where synapse.lib.platforms.linux.getTotalMemory() did not return the correct value in a
process running in cgroupsv1 without a maximum memory limit set. (#3198)

• Fix a bug where a Cron job could be created with an invalid Storm query. Cron jobs now have their queries
parsed as part of creation to ensure that they are valid Storm. $lib.cron APIs now accept heavy Storm query
objects as query inputs. (#3201) (#3207)

• Field data sent via Storm $lib.inet.http APIs that uses a multipart upload without a valid name field now
raises a BadArg error. Previously this would result in a Python TypeError. (#3199) (#3206)

17.3.5 Deprecations

• Remove the deprecated synapse.common.lockfile() function. (#3191)

17.4 v2.139.0 - 2023-06-16

17.4.1 Announcement

Due to the introduction of several powerful new APIs and performance improvements, Synapse will be updating to
only support Python >=3.11. Our current plan is to drop support for Python <=3.10 in ~4 weeks on 2023-06-19. The
next release after 2023-06-19 will include changes that are not backward compatible to earlier versions of Python.

If you currently deploy Synapse Open-Source or Synapse Enterprise via the standard docker containers, you will be
unaffected. If you install Synapse via PyPI, you will need to ensure that your environment is updated to Python 3.11+.

17.4.2 Model Changes

• Update it:sec:cpe normalization to extend truncated CPE2.3 strings. (#3186)

17.4.3 Features and Enhancements

• The str type now accepts float values to normalize. (#3174)

17.4.4 Bugfixes

• Fix an issue where the file:bytes:sha256 property set handler could fail during data merging. (#3180)

• Fix an issue where iterating light edges on nodes could result in degraded Cortex performance. (#3186)

17.4. v2.139.0 - 2023-06-16 1445

https://github.com/vertexproject/synapse/pull/3203
https://github.com/vertexproject/synapse/pull/3198
https://github.com/vertexproject/synapse/pull/3201
https://github.com/vertexproject/synapse/pull/3207
https://github.com/vertexproject/synapse/pull/3199
https://github.com/vertexproject/synapse/pull/3206
https://github.com/vertexproject/synapse/issue/3191
https://github.com/vertexproject/synapse/pull/3186
https://github.com/vertexproject/synapse/pull/3174
https://github.com/vertexproject/synapse/pull/3180
https://github.com/vertexproject/synapse/pull/3186

Synapse Documentation, Release 2.141.0

17.4.5 Improved Documentation

• Update the Cortex admin guide to include additional examples for setting up user and role permissions. (#3187)

17.5 v2.138.0 - 2023-06-13

17.5.1 Features and Enhancements

• Add it:sec:cwe to the list of types identified with scrape APIs. (#3182)

• Update the calculations done by $lib.infosec.cvss.vectToScore() to more closely emulate the NVD
CVSS calculator. (#3181)

17.5.2 Bugfixes

• Fix an issue with synapse.tools.storm where the !export command did not use the view specified when
starting the tool. (#3184)

• The synapse.common.getSslCtx() API now only attempts to load files in the target directory. This avoids
confusing errors that may be logged when the target directory contains sub directories. (#3179)

• Fix an edge case in $lib.infosec.cvss.vectToScore() when calculating CVSS v2 scores. (#3181)

17.5.3 Deprecations

• Mark the Python function synapse.common.lockfile() as deprecated. It will be removed in v2.140.0.
(#3183)

17.6 v2.137.0 - 2023-06-09

17.6.1 Automatic Migrations

• Migrate any inet:url nodes with :user and :passwd properties which may have been URL encoded. These
values are now decoded. (#3169)

• Migrate the storage type for the file:bytes:mime:pe:imphash property. (#3173)

• See Data Migration for more information about automatic migrations.

17.6.2 Model Changes

• Updates to the geospace, inet, infotech, org, risk, and transport models. (#3169)

it:mitre:attack:matrix
Add a type to capture the enumeration of MITRE ATT&CK matrix values.

inet:egress
Add a form to capture a host using a specific network egress client address.

it:prod:softreg
Add a form to capture a registry entry is created by a specific software version.

1446 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/3187
https://github.com/vertexproject/synapse/pull/3182
https://github.com/vertexproject/synapse/pull/3181
https://github.com/vertexproject/synapse/pull/3184
https://github.com/vertexproject/synapse/pull/3179
https://github.com/vertexproject/synapse/pull/3181
https://github.com/vertexproject/synapse/issue/3183
https://github.com/vertexproject/synapse/pull/3169
https://github.com/vertexproject/synapse/pull/3173
https://github.com/vertexproject/synapse/pull/3169

Synapse Documentation, Release 2.141.0

transport:land:vehicle
Add a form to capture an individual vehicle.

transport:land:registration
Add a form to capture the registration issued to a contact for a land vehicle.

transport:land:license
Add a form to capture the license to operate a land vehicle issued to a contact.

inet:http:request
The form had the following property added to it:

referer
The referer URL parsed from the “Referer:” header in the request.

inet:search:query
The form had the following property added to it:

request
The HTTP request used to issue the query.

it:mitre:attack:tactic
The form had the following property added to it:

matrix
The ATT&CK matrix which defines the tactic.

it:mitre:attack:technique
The form had the following property added to it:

matrix
The ATT&CK matrix which defines the technique.

it:mitre:attack:mitigation
The form had the following property added to it:

matrix
The ATT&CK matrix which defines the mitigation.

it:app:snort:rule
The form had the following property added to it:

engine
The snort engine ID which can parse and evaluate the rule text.

it:app:yara:rule
The form had the following properties added to it:

ext:id
The YARA rule ID from an external system.

url
A URL which documents the YARA rule.

ou:campaign
The form had the following property added to it:

tag
The tag used to annotate nodes that are associated with the campaign.

ou:org
The form had the following properties added to it:

17.6. v2.137.0 - 2023-06-09 1447

Synapse Documentation, Release 2.141.0

country
The organization’s country of origin.

country:code
The 2 digit ISO 3166 country code for the organization’s country of origin.

risk:threat
The form had the following properties added to it:

country
The reporting organization’s assessed country of origin of the threat cluster.

country:code
The 2 digit ISO 3166 country code for the threat cluster’s assessed country of origin.

risk:compromise
The form had the following property added to it:

vector
The attack assessed to be the initial compromise vector.

detects
When used with a meta:rule node, the edge indicates the rule was designed to detect instances of the
target node.

When used with an it:app:snort:rule node, the edge indicates the rule was designed to detect instances
of the target node.

When used with an it:app:yara:rule node, the edge indicates the rule was designed to detect instances
of the target node.

contains
When used between two geo:place nodes, the edge indicates the source place completely contains the
target place.

geo:place
The form had the following property marked as deprecated:

– parent

17.6.3 Features and Enhancements

• Add a modulo arithmetic operator (%) to Storm expression parsing. (#3168)

• Add $lib.auth.easyperm Storm library for interacting with objects that use a simplified permissions model.
(#3167)

• Add .vars attribute to the Storm auth:user object. This can be used to access user variables. (#3167)

• Add $lib.infosec.cvss.vectToScore() to calculate CVSS scores. (#3171)

• The Storm delnode command node now requires the use of --force to delete a node which has lightweight
edges pointing to it. (#3176)

• The STIX export configuration may now include a synapse_extension value set to $lib.false to disable
the Synapse STIX extension data from being added to objects in the bundle. (#3177)

• Remove whitespace stripping from Storm queries prior to parsing them. This allows any error highlighting
information to accurately reflect the query submitted to the Cortex. (#3175)

1448 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/3168
https://github.com/vertexproject/synapse/pull/3167
https://github.com/vertexproject/synapse/pull/3167
https://github.com/vertexproject/synapse/pull/3171
https://github.com/vertexproject/synapse/pull/3176
https://github.com/vertexproject/synapse/pull/3177
https://github.com/vertexproject/synapse/pull/3175

Synapse Documentation, Release 2.141.0

17.6.4 Bugfixes

• Fix an issue where raising an integer value to a fractional power in Storm was not handled correctly. (#3170)

• Handle a SyntaxError that may occur during Storm parsing due to a change in CPython 3.11.4. (#3170)

• The inet:url type now URL decodes the user and passwd properties when normalizing them. Thank you
captainGeech42 for the bug report. (#2568) (#3169)

• The URL parser in synapse.lib.urlhelp now URL decodes the user and passwd values when parsing URLs.
(#3178)

17.6.5 Deprecations

• Mark the Storm functions $lib.infosec.cvss.saveVectToNode() and $lib.infosec.cvss.
vectToProps() as deprecated. (#3178)

17.7 v2.136.0 - 2023-06-02

17.7.1 Model Changes

• Boolean values in the Synapse model now have lowercase true and false repr values. (#3159)

• The trailing . on the taxonomy repr has been removed. (#3159)

17.7.2 Features and Enhancements

• Normalize tag names when performing lift and filter operations. (#3094)

• Add $lib.compression.bzip2, $lib.compression.gzip, and $lib.compression.zlib Storm libraries
to assist with compressing and decompressing bytes. (#3155) (#3162)

• Add a new Cell configuration option, https:parse:proxy:remoteip. When this is set to true, the Cell
HTTPS server will parse X-Forwarded-For and X-Real-IP headers to determine the remote IP of an request.
(#3160)

• Update the allowed versions of the fastjsonschema and pycryptodome libraries. Update the required version
of the vcrpy library to account for changes in urllib3. Remove the pinned requirement for the requests
library. (#3164)

17.7.3 Bugfixes

• Prevent zero length tag lift operations. (#3094)

• Fix an issue where tag properties with the type ival, or time types with ismin or ismax options set, were not
properly merged when being set. (#3161)

• Fix a missing mesg value on NoSuchForm exception raised by the layer liftByTag() API. (#3165)

17.7. v2.136.0 - 2023-06-02 1449

https://github.com/vertexproject/synapse/pull/3170
https://github.com/vertexproject/synapse/pull/3170
https://github.com/vertexproject/synapse/issue/2568
https://github.com/vertexproject/synapse/pull/3169
https://github.com/vertexproject/synapse/issue/3178
https://github.com/vertexproject/synapse/issue/3178
https://github.com/vertexproject/synapse/pull/3159
https://github.com/vertexproject/synapse/pull/3159
https://github.com/vertexproject/synapse/pull/3094
https://github.com/vertexproject/synapse/pull/3155
https://github.com/vertexproject/synapse/pull/3162
https://github.com/vertexproject/synapse/pull/3160
https://github.com/vertexproject/synapse/pull/3164
https://github.com/vertexproject/synapse/pull/3094
https://github.com/vertexproject/synapse/pull/3161
https://github.com/vertexproject/synapse/pull/3165

Synapse Documentation, Release 2.141.0

17.8 v2.135.0 - 2023-05-24

17.8.1 Features and Enhancements

• Add a --index option to the Storm auth.user.grant command. (#3150)

• Add additional type handling in the Storm view and layer set() APIs. (#3147)

• Add a new Storm command, auth.perms.list, to list all of the permissions registered with the Cortex. (#3135)
(#3154)

17.8.2 Bugfixes

• Fix an issue where attempting a tag lift with a variable containing a zero-length string would raise an MDB error.
(#3094)

• Fix an issue in the Axon csvrows() and readlines() APIs where certain exceptions would not be raised.
(#3141)

• Fix an issue with the Storm runas command which prevented it being used with a privileged Storm runtime.
(#3147)

• Fix support for Storm list objects in $lib.max() and $lib.min(). (#3153)

17.8.3 Improved Documentation

• Update the Cortex admin guide to include the output of the auth.perms.list command. (#3135)

17.9 v2.134.0 - 2023-05-17

17.9.1 Model Changes

• Updates to the risk model. (#3137)

addresses
When used with a risk:mitigation and a ou:technique node, the edge indicates the mitigation ad-
dresses the technique.

17.9.2 Features and Enhancements

• Add a --forms option to the Storm scrape command. This can be used to limit the forms that are made
from scraping the input text. The scrape command now uses the View scrape interface to generate its matches,
which may include scrape functionality added via power-ups. The scrape command no longer produces warning
messages when matched text is not valid for making nodes. (#3127)

• Add a revs definition to the STIX export configuration, to allow for adding in reverse relationships. (#3137)

• Add a --delbytes option to the Storm delnode command. This can be used to delete the bytes from an Axon
when deleting a file:bytes node. (#3140)

• Add support for printing nice versions of the Storm model:form, model:property, model:tagprop, and
model:type objects. (#3134) (#3139)

1450 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/3150
https://github.com/vertexproject/synapse/pull/3147
https://github.com/vertexproject/synapse/pull/3135
https://github.com/vertexproject/synapse/pull/3154
https://github.com/vertexproject/synapse/pull/3094
https://github.com/vertexproject/synapse/pull/3141
https://github.com/vertexproject/synapse/pull/3147
https://github.com/vertexproject/synapse/pull/3153
https://github.com/vertexproject/synapse/pull/3135
https://github.com/vertexproject/synapse/pull/3137
https://github.com/vertexproject/synapse/pull/3127
https://github.com/vertexproject/synapse/pull/3137
https://github.com/vertexproject/synapse/pull/3140
https://github.com/vertexproject/synapse/pull/3134
https://github.com/vertexproject/synapse/pull/3139

Synapse Documentation, Release 2.141.0

17.9.3 Bugfixes

• Fix an exception that was raised when setting the parent of a View. (#3131) (#3132)

• Fix an issue with the text scrape regular expressions misidentifying the ftp:// scheme. (#3127)

• Correctly handle readonly properties in the Storm copyto command. (#3142)

• Fix an issue were partial service backups were not able to be removed. (#3143) (#3145)

17.10 v2.133.1 - 2023-05-09

17.10.1 Bugfixes

• Fix an issue where the Storm query hashing added in v2.133.0 did not account for handling erroneous surrogate
pairs in query text. (#3130)

17.10.2 Improved Documentation

• Update the Storm API Guide to include the hash key in the init message. (#3130)

17.11 v2.133.0 - 2023-05-08

17.11.1 Model Changes

• Updates to the risk model. (#3123)

risk:vuln
The risk:vuln form had the following properties added to it:

cvss:v2
The CVSS v2 vector for the vulnerability.

cvss:v2_0:score
The CVSS v2.0 overall score for the vulnerability.

cvss:v2_0:score:base
The CVSS v2.0 base score for the vulnerability.

cvss:v2_0:score:temporal
The CVSS v2.0 temporal score for the vulnerability.

cvss:v2_0:score:environmental
The CVSS v2.0 environmental score for the vulnerability.

cvss:v3
The CVSS v3 vector for the vulnerability.

cvss:v3_0:score
The CVSS v3.0 overall score for the vulnerability.

cvss:v3_0:score:base
The CVSS v3.0 base score for the vulnerability.

cvss:v3_0:scare:temporal
The CVSS v3.0 temporal score for the vulnerability.

17.10. v2.133.1 - 2023-05-09 1451

https://github.com/vertexproject/synapse/pull/3131
https://github.com/vertexproject/synapse/pull/3132
https://github.com/vertexproject/synapse/pull/3127
https://github.com/vertexproject/synapse/pull/3142
https://github.com/vertexproject/synapse/pull/3143
https://github.com/vertexproject/synapse/pull/3145
https://github.com/vertexproject/synapse/pull/3130
https://github.com/vertexproject/synapse/pull/3130
https://github.com/vertexproject/synapse/pull/3123

Synapse Documentation, Release 2.141.0

cvss:v3_0:score:environmental
The CVSS v3.0 environmental score for the vulnerability.

cvss:v3_1:score
The CVSS v3.1 overall score for the vulnerability.

cvss:v3_1:score:base
The CVSS v3.1 base score for the vulnerability.

cvss:v3_1:scare:temporal
The CVSS v3.1 temporal score for the vulnerability.

cvss:v3_1:score:environmental
The CVSS v3.1 environmental score for the vulnerability.

risk:vuln
The risk:vuln form had the following properties marked as deprecated:

– cvss:av

– cvss:ac

– cvss:pr

– cvss:ui

– cvss:s

– cvss:c

– cvss:i

– cvss:a

– cvss:e

– cvss:rl

– cvss:rc

– cvss:mav

– cvss:mac

– cvss:mpr

– cvss:mui

– cvss:ms

– cvss:mc

– cvss:mi

– cvss:ma

– cvss:cr

– cvss:ir

– cvss:ar

– cvss:score

– cvss:score:temporal

– cvss:score:environmental

1452 Chapter 17. Synapse Changelog

Synapse Documentation, Release 2.141.0

17.11.2 Features and Enhancements

• Update the base Synapse images to use Debian bookworm and use Python 3.11 as the Python runtime. For users
which build custom images from our published images, see additional information at Working with Synapse
Images for changes which may affect you. (#3025)

• Add a highlight parameter to BadSyntaxError and some exceptions raised during the execution of a Storm
block. This contains detailed information about where an error occurred in the Storm code. (#3063)

• Allow callers to specify an iden value when creating a Storm Dmon or a trigger. (#3121)

• Add support for STIX export configs to specify pivots to include additional nodes. (#3122)

• The Storm auth.user.addrule and auth.role.addrule now have an optional --index argument that al-
lows specifying the rule location as a 0-based index value. (#3124)

• The Storm auth.user.show command now shows the user’s admin status on authgates. (#3124)

• Add a --only-url flag to the synapse.tools.aha.provision.service and synapse.tools.aha.
provision.user CLI tools. When set, the tool only prints the URL to stdout. (#3125)

• Add additional layer validation in the View schema. (#3128)

• Update the allowed version of the cryptography, coverage, idna, pycryptodome, python-bitcoin, and
vcrpy libraries. (#3025)

17.11.3 Bugfixes

• Ensure the CLI tools synapse.tools.cellauth, synapse.tools.csvtool, and synapse.tools.
easycert now return 1 on an execution failure. In some cases they previously returned -1. (#3118)

17.12 v2.132.0 - 2023-05-02

17.12.1 Features and Enhancements

• Update the minimum required version of the fastjsonschema, lark, and pytz libraries. Update the allowed
version of the packaging and scalecodec libraries. (#3118)

17.12.2 Bugfixes

• Cap the maximum version of the requests library until downstream use of that library has been updated to
account for changes in urllib3. (#3119)

• Properly add parent scope vars to background command context. (#3120)

17.12. v2.132.0 - 2023-05-02 1453

https://github.com/vertexproject/synapse/pull/3025
https://github.com/vertexproject/synapse/pull/3063
https://github.com/vertexproject/synapse/pull/3121
https://github.com/vertexproject/synapse/pull/3122
https://github.com/vertexproject/synapse/pull/3124
https://github.com/vertexproject/synapse/pull/3124
https://github.com/vertexproject/synapse/pull/3125
https://github.com/vertexproject/synapse/pull/3128
https://github.com/vertexproject/synapse/pull/3025
https://github.com/vertexproject/synapse/pull/3118
https://github.com/vertexproject/synapse/pull/3118
https://github.com/vertexproject/synapse/pull/3119
https://github.com/vertexproject/synapse/pull/3120

Synapse Documentation, Release 2.141.0

17.13 v2.131.0 - 2023-05-02

17.13.1 Automatic Migrations

• Migrate the ou:campaign:name property from a str to an ou:campname type and create the ou:campname
nodes as needed. (#3082)

• Migrate the risk:vuln:type property from a str to a risk:vuln:type:taxonomy type and create the
risk:vuln:type:taxonomy nodes as needed. (#3082)

• See Data Migration for more information about automatic migrations.

17.13.2 Features and Enhancements

• Updates to the dns, inet, it, org, ps, and risk models. (#3082) (#3108) (#3113)

inet:dns:answer
Add a mx:priority property to record the priority of the MX response.

inet:dns:dynreg
Add a form to record the registration of a domain with a dynamic DNS provider.

inet:proto
Add a form to record a network protocol name.

inet:web:attachment
Add a form to record the instance of a file being sent to a web service by an account.

inet:web:file
Deprecate the client, client:ipv4, and client:ipv6 properties in favor of using
inet:web:attachment.

inet:web:logon
Remove incorrect readonly markings for properties.

it:app:snort:rule
Add an id property to record the snort rule id. Add an author property to record contact information for
the rule author. Add created and updated properties to track when the rule was created and last updated.
Add an enabled property to record if the rule should be used for snort evaluation engines. Add a family
property to record the software family the rule is designed to detect.

it:prod:softid
Add a form to record an identifier issued to a given host by a specific software application.

ou:campname
Add a form to record the name of campaigns.

ou:campaign
Change the name and names secondary properties from str to ou:campname types.

ps:contact
Add a place:name to record the name of the place associated with the contact.

risk:threat
Add an active property to record the interval of time when the threat cluster is assessed to have been
active. Add a reporter:published property to record the time that a reporting organization first publicly
disclosed the threat cluster.

1454 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/3082
https://github.com/vertexproject/synapse/pull/3082
https://github.com/vertexproject/synapse/pull/3082
https://github.com/vertexproject/synapse/pull/3108
https://github.com/vertexproject/synapse/pull/3113

Synapse Documentation, Release 2.141.0

risk:tool:software
Add a used property to record the interval when the tool is assessed to have been deployed. Add a
reporter:discovered property to record the time that a reporting organization first discovered the tool.
Add a reporter:published property to record the time that a reporting organization first publicly dis-
closed the tool.

risk:vuln:soft:range
Add a form to record a contiguous range of software versions which contain a vulnerability.

risk:vuln
Change the type property from a str to a risk:vuln:type:taxonomy.

risk:vuln:type:taxonomy
Add a form to record a taxonomy of vulnerability types.

• Add a new Storm command, auth.user.allowed that can be used to check if a user is allowed to use a given
permission and why. (#3114)

• Add a new Storm command, gen.ou.campaign, to assist with generating or creating ou:campaign nodes.
(#3082)

• Add a boolean default key to the permissions schema definition. This allows a Storm package permission to
note what its default value is. (#3099)

• Data model migrations which fail to normalize existing secondary values into their new types now store those
values in Node data on the affected nodes and remove those bad properties from the affected nodes. (#3117)

17.13.3 Bugfixes

• Fix an issue with the search functionality in our documentation missing the required jQuery library. (#3111)

• Unique nodes when performing multi-layer lifts on secondary properties without a value. (#3110)

17.13.4 Improved Documentation

• Add a section about managing data model deprecations to the Synapse Admin guide. (#3102)

17.13.5 Deprecations

• Remove the deprecated synapse.lib.httpapi.HandlerBase.user() and synapse.lib.httpapi.
HandlerBase.getUserBody() functions. Remove the deprecated synapse.axon.AxonFileHandler.
axon() function. (#3115)

17.14 v2.130.2 - 2023-04-26

17.14.1 Bugfixes

• Fix an issue where the proxy argument was not being passed to the Axon when attempting to post a file via
Storm with the $lib.inet.http.post() API. (#3109)

• Fix an issue where adding a readonly layer that does not already exist would raise an error. (#3106)

17.14. v2.130.2 - 2023-04-26 1455

https://github.com/vertexproject/synapse/pull/3114
https://github.com/vertexproject/synapse/pull/3082
https://github.com/vertexproject/synapse/pull/3099
https://github.com/vertexproject/synapse/pull/3117
https://github.com/vertexproject/synapse/pull/3111
https://github.com/vertexproject/synapse/pull/3110
https://github.com/vertexproject/synapse/pull/3102
https://github.com/vertexproject/synapse/pull/3115
https://github.com/vertexproject/synapse/pull/3109
https://github.com/vertexproject/synapse/pull/3106

Synapse Documentation, Release 2.141.0

17.15 v2.130.1 - 2023-04-25

17.15.1 Bugfixes

• Fix a race condition in a Telepath unit test which was happening during CI testing. (#3104)

17.16 v2.130.0 - 2023-04-25

17.16.1 Features and Enhancements

• Updates to the infotech model. (#3095)

it:host
Add an ext:id property for recording an external identifier for a host.

• Add support for deleting node properties by assigning $lib.undef to the property to be removed through
$node.props. (#3098)

• The Cell.ahaclient is longer cached in the synapse.telepath.aha_clients dictionary. This isolates the
Cell connection to Aha from other clients. (#3008)

• When the Cell mirror loop exits, it now reports the current ready status to the Aha service. This allows a service
to mark itself as “not ready” when the loop restarts and it is a follower, since it may no longer be in the realtime
change window. (#3008)

• Update the required versions of the nbconvert, sphinx and hide-code libraries used for building documen-
tation. Increased the allowed ranges for the pygments and jupyter-client libraries. (#3103)

17.16.2 Bugfixes

• Fix an issue in backtick format strings where single quotes in certain positions would raise a syntax error. (#3096)

• Fix an issue where permissions were not correctly checked when assigning a property value through $node.
props. (#3098)

• Fix an issue where the Cell would report a static ready value to the Aha service upon reconnecting, instead
of the current ready status. The Cell.ahainfo value was replaced with a Cell.getAhaInfo() API which
returns the current information to report to the Aha service. (#3008)

17.17 v2.129.0 - 2023-04-17

17.17.1 Features and Enhancements

• Updates to the ou and risk models. (#3080)

ou:campaign
Add a names property to record alternative names for the campaign. Add reporter and reporter:name
properties to record information about a reporter of the campaign.

risk:attack
Add reporter and reporter:name properties to record information about a reporter of the attack.

1456 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/3104
https://github.com/vertexproject/synapse/pull/3095
https://github.com/vertexproject/synapse/pull/3098
https://github.com/vertexproject/synapse/pull/3008
https://github.com/vertexproject/synapse/pull/3008
https://github.com/vertexproject/synapse/pull/3103
https://github.com/vertexproject/synapse/pull/3096
https://github.com/vertexproject/synapse/pull/3098
https://github.com/vertexproject/synapse/pull/3008
https://github.com/vertexproject/synapse/pull/3080

Synapse Documentation, Release 2.141.0

risk:compromise
Add reporter and reporter:name properties to record information about a reporter of the compromise.

risk:vuln
Add reporter and reporter:name properties to record information about a reporter of the vulnerability.

• Add leader status to the synapse.tools.aha.list tool output. This will only be available if a leader has been
registered for the service. (#3078)

• Add support for private values in Storm modules, which are specified by beginning the name with a double
underscore (__). These values cannot be dereferenced outside of the module they are declared in. (#3079)

• Update error messages for Axon.wget, Axon.wput, and Axon.postfiles to include more helpful information.
(#3077)

• Update it:semver string normalization to attempt parsing improperly formatted semver values. (#3080)

• Update Axon to always pass size value when saving bytes. (#3084)

17.17.2 Bugfixes

• Add missing toprim() calls on arguments to some auth:user and auth:role APIs. (#3086)

• Fix the regular expression used to validate custom STIX types. (#3093)

17.17.3 Improved Documentation

• Add sections on user and role permissions to the Synapse Admin guide. (#3073)

17.18 v2.128.0 - 2023-04-11

17.18.1 Automatic Migrations

• Migrate the file:bytes:mime:pe:imphash property from a guid to a hash:md5 type and create the
hash:md5 nodes as needed. (#3056)

• Migrate the ou:goal:name property from a str to a ou:goalname type and create the ou:goalname nodes as
needed. (#3056)

• Migrate the ou:goal:type property from a str to a ou:goal:type:taxonomy type and create the
ou:goal:type:taxonomy nodes as needed. (#3056)

• See Data Migration for more information about automatic migrations.

17.18.2 Features and Enhancements

• Updates to the belief, file, lang, it, meta, ou, pol, and risk models. (#3056)

belief:tenet
Add a desc property to record the description of the tenet.

file:bytes
Change the type of the mime:pe:imphash from guid to hash:md5.

inet:flow
Add a raw property which may be used to store additional protocol data about the flow.

17.18. v2.128.0 - 2023-04-11 1457

https://github.com/vertexproject/synapse/pull/3078
https://github.com/vertexproject/synapse/pull/3079
https://github.com/vertexproject/synapse/pull/3077
https://github.com/vertexproject/synapse/pull/3080
https://github.com/vertexproject/synapse/pull/3084
https://github.com/vertexproject/synapse/pull/3086
https://github.com/vertexproject/synapse/pull/3093
https://github.com/vertexproject/synapse/pull/3073
https://github.com/vertexproject/synapse/pull/3056
https://github.com/vertexproject/synapse/pull/3056
https://github.com/vertexproject/synapse/pull/3056
https://github.com/vertexproject/synapse/pull/3056

Synapse Documentation, Release 2.141.0

it:app:snort:rule
Add a desc property to record a brief description of the snort rule.

ou:goal
Change the type of name from str to ou:goalname. Change the type of type from str to
ou:goal:type:taxonomy. Add a names array to record alternative names for the goal. Deprecate the
prev property in favor of types.

ou:goalname
Add a form to record the name of a goal.

ou:goalname:type:taxonomy
Add a taxonomy of goal types.

ou:industry
Add a type property to record the industry taxonomy.

ou:industry:type:taxonomy
Add a taxonomy to record industry types.

pol:immigration:status
Add a form to track the immigration status of a contact.

pol:immigration:status:type:taxonomy
Add a taxonomy of immigration types.

risk:attack
Add a detected property to record the first confirmed detection time of the attack. Add a url property
to record a URL that documents the attack. Add a ext:id property to record an external identifier for the
attack.

risk:compromise
Add a detected property to record the first confirmed detection time of the compromise.

• Add a Storm command copyto that can be used to create a copy of a node from the current view to a different
view. (#3061)

• Add the current View iden to the structured log output of a Cortex executing a Storm query. (#3068)

• Update the allowed versions of the lmdb, msgpack, tornado and xxhash libraries. (#3070)

• Add Python 3.11 tests to the CircleCI configuration. Update some unit tests to account for Python 3.11 related
changes. (#3070)

• Allow dereferencing from Storm expressions. (#3071)

• Add an ispart parameter to $lib.tags.prefix to skip syn:tag:part normalization of tag names. (#3074)

• Add getEdges(), getEdgesByN1(), and getEdgesByN2() APIs to the layer object. (#3076)

17.18.3 Bugfixes

• Fix an issue which prevented the auth.user.revoke Storm command from executing. (#3069)

• Fix an issue where $node.data.list() only returned the node data from the topmost layer containing node
data. It now returns all the node data accessible for the node from the current view. (#3061)

1458 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/3061
https://github.com/vertexproject/synapse/pull/3068
https://github.com/vertexproject/synapse/pull/3070
https://github.com/vertexproject/synapse/pull/3070
https://github.com/vertexproject/synapse/pull/3071
https://github.com/vertexproject/synapse/pull/3074
https://github.com/vertexproject/synapse/pull/3076
https://github.com/vertexproject/synapse/pull/3069
https://github.com/vertexproject/synapse/pull/3061

Synapse Documentation, Release 2.141.0

17.18.4 Improved Documentation

• Update the Developer guide to note that the underlying Python runtime in Synapse images may change between
releases. (#3070)

17.19 v2.127.0 - 2023-04-05

17.19.1 Features and Enhancements

• Set Link high water mark to one byte in preparation for Python 3.11 support. (#3064)

• Allow specifying dictionary keys in Storm with expressions and backtick format strings. (#3065)

• Allow using deref syntax (*$form) when lifting by form with tag (*$form#tag) and form with tagprop
(*$form#tag:tagprop). (#3065)

• Add cron:start and cron:stop messages to the events emitted by the behold() API on the Cortex. These
events are only emitted by the leader. (#3062)

17.19.2 Bugfixes

• Fix an issue where an Aha service running on a non-default port would not have that port included in the default
Aha URLs. (#3049)

• Restore the view.addNode() Storm API behavior where making a node on a View object that corresponds to
the currently executing view re-used the current Snap object. This allows nodeedits to be emitted from the Storm
message stream. (#3066)

17.20 v2.126.0 - 2023-03-30

17.20.1 Features and Enhancements

• Add additional Storm commands to assist with managing Users and Roles in the Cortex. (#2923) (#3054)

auth.gate.show
Shows the definition for an AuthGate.

auth.role.delrule
Used to delete a rule from a Role.

auth.role.mod
Used to modify properties of a Role.

auth.role.del
Used to delete a Role.

auth.role.show
Shows the definition for a Role.

auth.role.list
List all Roles.

auth.user.delrule
Used to delete a rule from a User.

17.19. v2.127.0 - 2023-04-05 1459

https://github.com/vertexproject/synapse/pull/3070
https://github.com/vertexproject/synapse/pull/3064
https://github.com/vertexproject/synapse/pull/3065
https://github.com/vertexproject/synapse/pull/3065
https://github.com/vertexproject/synapse/pull/3062
https://github.com/vertexproject/synapse/pull/3049
https://github.com/vertexproject/synapse/pull/3066
https://github.com/vertexproject/synapse/pull/2923
https://github.com/vertexproject/synapse/pull/3054

Synapse Documentation, Release 2.141.0

auth.user.grant
Used to grant a Role to a User.

auth.user.revoke
Used to revoke a Role from a User.

auth.role.mod
Used to modify properties of a User.

auth.user.show
Shows the definition of a User.

auth.user.list
List all Users.

• Update some of the auth related objects in Storm: (#2923)

auth:role
Add popRule() and getRules() functions. Add a .gates accessor to get all of the AuthGates associated
with a role.

auth:user
Add popRule() and getRules() functions. Add a .gates accessor to get all of the AuthGates associated
with a user.

• Add $lib.auth.textFromRule(), $lib.auth.getPermDefs() and $lib.auth.getPermDef() Storm li-
brary APIs to assist with working with permissions. (#2923)

• Add a new Storm library function, $lib.iters.enum(), to assist with enumerating an iterable object in Storm.
(#2923)

• Update the NoSuchName exceptions which can be raised by Aha during service provisioning to clarify they are
likely caused by re-using the one-time use URL. (#3047)

• Update gen.ou.org.hq command to set ps:contact:org if unset. (#3052)

• Add an optional flag for Storm package dependencies. (#3058)

• Add .], [., http[:, https[:, hxxp[: and hxxps[: to the list of known defanging strategies which are
identified and replaced during text scraping. (#3057)

17.20.2 Bugfixes

• Fix an issue where passing a non-string value to $lib.time.parse with errok=$lib.true would still raise
an exception. (#3046)

• Fix an issue where context managers could potentially not release resources after exiting. (#3055)

• Fix an issue where variables with non-string names could be passed into Storm runtimes. (#3059)

• Fix an issue with the Cardano regex used for scraping addresses. (#3057)

• Fix an issue where scraping a partial Cardano address could raise an error. (#3057)

• Fix an issue where the Storm API view.addNode() checked permissions against the incorrect authgate. This
API now only returns a node if the View object is the same as the View the Storm query is executing in. (#3060)

1460 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2923
https://github.com/vertexproject/synapse/pull/2923
https://github.com/vertexproject/synapse/pull/2923
https://github.com/vertexproject/synapse/pull/3047
https://github.com/vertexproject/synapse/pull/3052
https://github.com/vertexproject/synapse/pull/3058
https://github.com/vertexproject/synapse/pull/3057
https://github.com/vertexproject/synapse/pull/3046
https://github.com/vertexproject/synapse/pull/3055
https://github.com/vertexproject/synapse/pull/3059
https://github.com/vertexproject/synapse/pull/3057
https://github.com/vertexproject/synapse/pull/3057
https://github.com/vertexproject/synapse/pull/3060

Synapse Documentation, Release 2.141.0

17.20.3 Improved Documentation

• Fix link to Storm tool in Synapse Power-Ups section. (#3053)

• Add Kubernetes deployment examples, which show deploying Synapse services with Aha based provisioning.
Add an example showing one mechanism to set sysctl’s in a managed Kubernetes deployment. (#3047)

17.21 v2.125.0 - 2023-03-14

17.21.1 Features and Enhancements

• Add a size() method on the STIX bundle object. (#3043)

• Update the minimum version of the aio-socks library to 0.8.0. Update some unittests related to SOCKS proxy
support to account for multiple versions of the python-socks library. (#3044)

17.21.2 Improved Documentation

• Update the Synapse documentation to add PDF and HTMLZip formats.

17.22 v2.124.0 - 2023-03-09

17.22.1 Features and Enhancements

• Added --try option to gen.risk.vuln, gen.pol.country, gen.pol.country.government, and gen.ps.
contact.email commands and their associated Storm functions. (#3030)

• Added $lib.gen.orgHqByName and $lib.gen.langByName. (#3030)

• Added the configuration option onboot:optimize to all services to allow devops to delay service startup and
allow LMDB to optimize storage for both size and performance. May also be set by environment variable
SYN_<SERVICE>_ONBOOT_OPTIMIZE=1 (#3001)

• Ensure that AuthDeny exceptions include the user iden in the user key, and the name in the username field.
Previously the AuthDeny exceptions had multiple identifiers for these fields. (#3035)

• Add an optional --view argument to the synapse.tools.storm CLI tool. This allows a user to specify their
working View for the Storm CLI. This was contributed by captainGeech42. (#2937)

• Updates to synapse.lib.scope and the Scope class. A Scope.copy() method has been added to create a
shallow copy of a Scope. A module level clone(task) function has been added which clones the current task
scope to the target task. Async Tasks created with Base.schedCoro() calls now get a shallow copy of the
parent task scope. (#3021)

• Add a new Storm command, batch, to assist in processing nodes in batched sets. (#3034)

• Add global permissions, `storm.macro.admin and storm.macro.edit, to allow users to administer or edit
macros. (#3037)

• Mark the following Storm APIs as safe to execute in read-only queries: $lib.auth.users.get(), $lib.auth.
users.list(), $lib.auth.users.byname(), $lib.auth.roles.get(), $lib.auth.roles.list(),
$lib.auth.roles.byname(), $lib.auth.gates.get() and $lib.auth.gates.list(). (#3038)

• Added uplink key to getCellInfo(), which indicates whether the Cell is currently connected to an upstream
mirror. (#3041)

17.21. v2.125.0 - 2023-03-14 1461

https://github.com/vertexproject/synapse/pull/3053
https://github.com/vertexproject/synapse/pull/3047
https://github.com/vertexproject/synapse/pull/3043
https://github.com/vertexproject/synapse/pull/3044
https://github.com/vertexproject/synapse/pull/3030
https://github.com/vertexproject/synapse/pull/3030
https://github.com/vertexproject/synapse/pull/3001
https://github.com/vertexproject/synapse/pull/3035
https://github.com/vertexproject/synapse/pull/2937
https://github.com/vertexproject/synapse/pull/3021
https://github.com/vertexproject/synapse/pull/3034
https://github.com/vertexproject/synapse/pull/3037
https://github.com/vertexproject/synapse/pull/3038
https://github.com/vertexproject/synapse/pull/3041

Synapse Documentation, Release 2.141.0

17.22.2 Bugfixes

• Fix an issue in the Storm grammar where part of a query could potentially be incorrectly parsed as an unquoted
case statement. (#3032)

• Fix an issue where exceptions could be raised which contained data that was not JSON serializable. $lib.raise
arguments must now also be JSON safe. (#3029)

• Fix an issue where a spawned process returning a non-pickleable exception would not be handled properly.
(#3036)

• Fix an issue where a locked user could login to a Synapse service on a TLS Telepath connection if the connection
presented a trusted client certificate for the locked user. (#3035)

• Fix a bug in Scope.enter() where the added scope frame was not removed when the context manager was
exited. (#3021)

• Restoring a service via the SYN_RESTORE_HTTPS_URL environment variable could timeout when downloading
the file. The total timeout for this process has been disabled. (#3042)

17.22.3 Improved Documentation

• Update the Synapse glossary to add terms related to the permissions system. (#3031)

• Update the model docstrings for the risk model. (#3027)

17.22.4 Deprecations

• The ctor support in Scope has been removed. The population of the global default scope with environment
variables has been removed. (#3021)

17.23 v2.123.0 - 2023-02-22

17.23.1 Automatic Migrations

• If the risk:vuln:cvss:av property equals V it is migrated to P. (#3013)

• Parse inet:http:cookie nodes to populate the newly added :name and :value properties. (#3015)

• See Data Migration for more information about automatic migrations.

17.23.2 Features and Enhancements

• Added the belief model which includes the following new forms: (#3015)

belief:system
A belief system such as an ideology, philosophy, or religion.

belief:tenet
A concrete tenet potentially shared by multiple belief systems.

belief:subscriber
A contact which subscribes to a belief system.

1462 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/3032
https://github.com/vertexproject/synapse/pull/3029
https://github.com/vertexproject/synapse/pull/3036
https://github.com/vertexproject/synapse/pull/3035
https://github.com/vertexproject/synapse/pull/3021
https://github.com/vertexproject/synapse/pull/3042
https://github.com/vertexproject/synapse/pull/3031
https://github.com/vertexproject/synapse/pull/3027
https://github.com/vertexproject/synapse/pull/3021
https://github.com/vertexproject/synapse/pull/3013
https://github.com/vertexproject/synapse/pull/3015
https://github.com/vertexproject/synapse/pull/3015

Synapse Documentation, Release 2.141.0

belief:system:type:taxonomy
A hierarchical taxonomy of belief system types.

• Added declaration for risk:compromise -(uses)> ou:technique light-weight edges. (#3015)

• Updated inet:http:session and inet:http:request forms to include the following property: (#3015)

:cookies
An array of inet:http:cookie values associated with the node.

• Updated the inet:http:cookie form to include the following properties: (#3015)

name
The name of the cookie preceding the equal sign.

value
The value of the cookie after the equal sign if present.

• Added logic to allow constructing multiple inet:http:cookie nodes by automatically splitting on ; such as
foo=bar; baz=faz (#3015)

• Updated it:log:event to add the following properties: (#3015)

type
An it:log:event:type:taxonomy type for the log entry.

ext:id
An external ID that uniquely identifies this log entry.

product
An it:prod:softver of the product which produced the log entry.

• Updated the risk:compromise form to include the following properties: (#3015)

goal
An ou:goal node representing the assessed primary goal of the compromise.

goals
An array of ou:goal nodes representing additional goals of the compromise.

• Updated risk:attack and risk:compromise forms to deprecate the techniques property in favor of using
-(uses)> ou:technique light-weight edges. (#3015)

• Updates to the inet:dns, and media models. (#3005) (#3017)

inet:dns:answer
Remove all read-only flags present on the secondary properties for this form.

media:news
Add an updated property to record last time the news item was updated.

• Updated inet:flow to include the following properties: (#3017)

src:ssh:key
The key sent by the client as part of an SSH session setup.

dst:ssh:key
The key sent by the server as part of an SSH session setup.

src:ssl:cert
The x509 certificate sent by the client as part of an SSL/TLS negotiation.

dst:ssl:cert
The x509 certificate sent by the server as part of an SSL/TLS negotiation.

17.23. v2.123.0 - 2023-02-22 1463

https://github.com/vertexproject/synapse/pull/3015
https://github.com/vertexproject/synapse/pull/3015
https://github.com/vertexproject/synapse/pull/3015
https://github.com/vertexproject/synapse/pull/3015
https://github.com/vertexproject/synapse/pull/3015
https://github.com/vertexproject/synapse/pull/3015
https://github.com/vertexproject/synapse/pull/3015
https://github.com/vertexproject/synapse/pull/3005
https://github.com/vertexproject/synapse/pull/3017
https://github.com/vertexproject/synapse/pull/3017

Synapse Documentation, Release 2.141.0

src:rdp:hostname
The hostname sent by the client as part of an RDP session setup.

src:rdp:keyboard:layout
The keyboard layout sent by the client as part of an RDP session setup.

• Add synapse.utils.stormcov, a Coverage.py plugin for measuring code coverage of Storm files. (#2961)

• Clean up several references to the cell.auth object in HTTP API handlers. Move the logic in /api/v1/auth/
onepass/issue API handler to the base Cell. (#2998) (#3004)

• Clarify the error message encountered by a Synapse mirrored service if the mirror gets desynchronized from its
upstream service. (#3006)

• Update how read-only properties are handled during merges. The .created property will always be set when
merging a node down. If two nodes have other conflicting read-only property values, those will now emit a
warning in the Storm runtime. (#2989)

• The Axon.wget() API response now includes HTTP request history, which is added when the API request
encounters redirects. The $lib.axon.wget() Storm API now includes information about the original request
URL. This data is now used to create inet:urlredir nodes, such as when the Storm wget command is used
to retrieve a file. (#3011)

• Ensure that BadTypeValu exceptions raised when normalizing invalid data with the time type includes the value
in the exception message. (#3009)

• Add a callback on Slab size expansion to trigger a free disk space check on the related cell. (#3016)

• Add support for choices in Storm command arguments. (#3019)

• Add an optional parameter to the Storm uniq command to allow specifying a relative property or variable to
operate on rather than node iden. (#3018)

• Synapse HTTP API logs now include the user iden and username when that information is available. For deploy-
ments with structured logging enabled, the HTTP path, HTTP status code, user iden, and username are added to
that log message. (#3007)

• Add web_useriden and web_username attributes to the Synapse HTTP Handler class. These are used for
HTTP request logging to populate the user iden and username data. These are automatically set when a user
authenticates using a session token or via basic authentication. The HTTP Session tracking now tracks the
username at the time the session was created. The _web_user value, which previously pointed to a heavy
HiveUser object, is no longer populated by default. (#3007)

• Add $lib.inet.http.codereason Storm API for translating HTTP status codes to reason phrases.
inet:http:resp objects now also have a reason value populated. (#3023)

• Update the minimum version of the cryptography library to 39.0.1 and the minimum version of the
pyopenssl library to 23.0.0. (#3022)

17.23.3 Bugfixes

• The Storm wget command created inet:urlfile nodes with the url property of the resolved URL from
aiohttp. This made it so that a user could not pivot from an inet:url node which had a URL encoded
parameter string to the resulting inet:urlfile node. The inet:urlfile nodes are now made with the original
request URL to allow that pivoting to occur. (#3011)

• The Axon.wget() and $lib.axon.wget() APIs returned URLs in the url field of their responses which did
not contain fragment identifiers. These API responses now include the fragment identifier if it was present in the
resolved URL. (#3011)

1464 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2961
https://github.com/vertexproject/synapse/pull/2998
https://github.com/vertexproject/synapse/pull/3004
https://github.com/vertexproject/synapse/pull/3006
https://github.com/vertexproject/synapse/pull/2989
https://github.com/vertexproject/synapse/pull/3011
https://github.com/vertexproject/synapse/pull/3009
https://github.com/vertexproject/synapse/pull/3016
https://github.com/vertexproject/synapse/pull/3019
https://github.com/vertexproject/synapse/pull/3018
https://github.com/vertexproject/synapse/pull/3007
https://github.com/vertexproject/synapse/pull/3007
https://github.com/vertexproject/synapse/pull/3023
https://github.com/vertexproject/synapse/pull/3022
https://github.com/vertexproject/synapse/pull/3011
https://github.com/vertexproject/synapse/pull/3011

Synapse Documentation, Release 2.141.0

• The Storm tree command did not properly handle Storm query arguments which were declared as storm:query
types. (#3012)

• Remove an unnecessary permission check in the Storm movenodes command which could cause the command
to fail. (#3002)

• When a user email address was provided to the HTTP API /api/v1/auth/adduser, the handler did not properly
set the email using change controlled APIs, so that information would not be sent to mirrored cells. The email
is now being set properly. (#2998)

• The risk:vuln:cvss:av enum incorrectly included V instead of P. (#3013)

• Fix an issue where the ismax specification on time types did not merge time values correctly. (#3017)

• Fix an issue where using a function call to specify the tag in a tagprop operation would not be correctly parsed.
(#3020)

17.23.4 Improved Documentation

• Update copyright notice to always include the current year. (#3010)

17.23.5 Deprecations

• The synapse.lib.httpapi.Handler.user() and synapse.lib.httpapi.Handler.getUserBody()
methods are marked as deprecated. These methods will be removed in Synapse v2.130.0. (#3007)

17.24 v2.122.0 - 2023-01-27

17.24.1 Features and Enhancements

• Updates to the biz, file, lang, meta, pol, and risk models. (#2984)

biz:service
Add a launched property to record when the operator first made the service available.

file:bytes
Add exe:compiler and exe:packer properties to track the software used to compile and encode the file.

lang:language
Add a new guid form to represent a written or spoken language.

lang:name
Add a new form to record the name of a language.

meta:node
Add a type property to record the note type.

meta:note:type:taxonomy
Add a form to record an analyst defined taxonomy of note types.

pol:country
Correct the vitals property type from ps:vitals to pol:vitals.

ps:contact
Add a lang property to record the language specified for the contact.

Add a langs property to record the alternative languages specified for the contact.

17.24. v2.122.0 - 2023-01-27 1465

https://github.com/vertexproject/synapse/pull/3012
https://github.com/vertexproject/synapse/pull/3002
https://github.com/vertexproject/synapse/pull/2998
https://github.com/vertexproject/synapse/pull/3013
https://github.com/vertexproject/synapse/pull/3017
https://github.com/vertexproject/synapse/pull/3020
https://github.com/vertexproject/synapse/pull/3010
https://github.com/vertexproject/synapse/pull/3007
https://github.com/vertexproject/synapse/pull/2984

Synapse Documentation, Release 2.141.0

ps:skill
Add a form to record a specific skill which a person or organization may have.

ps:skill:type:taxonomy
Add a form to record a taxonomy of skill types.

ps:proficiency
Add a form to record the assessment that a given contact possesses a specific skill.

risk:alert
Add a priority property that can be used to rank alerts by priority.

risk:compromise
Add a severity property that can be used as a relative severity score for the compromise.

risk:threat
Add a type property to record the type of the threat cluster.

risk:threat:type:taxonomy
Add a form to record a taxonomy of threat types.

• Add support for Python 3.10 to Synapse. (#2962)

• Update the Synapse docker containers to be built from a Debian based image, instead of an Ubuntu based image.
These images now use Python 3.10 as the Python runtime. (#2962)

• Add an optional --type argument to the Storm note.add command. (#2984)

• Add a Storm command, gen.lang.language, to lift or generate a lang:language node by name. (#2984)

• Update the allowed versions of the cbor2 library; and upgrade the versions of aiostmplib and aiohttp-socks
to their latest versions. (#2986)

• The X-XSS-Protection header was removed from the default HTTP API handlers. This header is non-
standard and only supported by Safari browsers. Service deployments which rely on this header should use
the https:headers configuration option to inject that header into their HTTP responses. (#2997)

17.24.2 Bugfixes

• Malformed hash values normalized as file:bytes raised exceptions which were not properly caught, causing
Storm ?= syntax to fail. Malformed values are now properly handled in file:bytes. (#3000)

17.24.3 Improved Documentation

• Update the Storm filters user guide to include expression filters (#2997)

• Update Storm type-specific behavior user guide to clarify guid deconfliction use cases and some associated best
practices. (#2997)

• Update Storm command reference user guide to document gen.* commands. (#2997)

1466 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2962
https://github.com/vertexproject/synapse/pull/2962
https://github.com/vertexproject/synapse/pull/2984
https://github.com/vertexproject/synapse/pull/2984
https://github.com/vertexproject/synapse/pull/2986
https://github.com/vertexproject/synapse/pull/2997
https://github.com/vertexproject/synapse/pull/3000
https://github.com/vertexproject/synapse/pull/2997
https://github.com/vertexproject/synapse/pull/2997
https://github.com/vertexproject/synapse/pull/2997

Synapse Documentation, Release 2.141.0

17.24.4 Deprecations

• The Cortex APIs provStacks() and getProvStack(iden) have been removed. (#2995)

17.25 v2.121.1 - 2022-01-23

17.25.1 Bugfixes

• When creating Storm Macros using v2.121.0, the creator of the Macro was incorrectly set to the root user. This
is now set to the user that created the macro using the Storm macro.set command or the $lib.macro.set()
API. (#2993)

17.26 v2.121.0 - 2022-01-20

17.26.1 Automatic Migrations

• Storm Macros stored in the Cortex are migrated from the Hive to the Cortex LMDB slab. (#2973)

• See Data Migration for more information about automatic migrations.

17.26.2 Features and Enhancements

• Updates to the inet and org models. (#2982) (#2987)

inet:dns:soa
The fqdn, ns and email properties had the read-only flag removed from them.

ou:org
Add a goals property to record the assessed goals of the organization.

• Add extended permissions for Storm Macro functionality using a new simplified permissions system. This allows
users to opt into assigning users or roles the permission to read, write, administrate, or deny access to their
Macros. These permissions can be set by the Storm $lib.macro.grant() API. (#2973)

• Add extended information about a Storm Macro, including its creation time, update time, and a description. The
Macro name, description and Storm can now be set via the Storm $lib.macro.mod() API. (#2973)

• Allow users and Power-Ups to store graph projection definitions in the Cortex. Graph projections have the same
simplified permissions system applied to them as introduced for Storm Macros. Storm users can now also load a
stored graph projection into a running Storm query. These new features are exposed via the Storm $lib.graph
APIs. (#2914)

• The disk space required to make the backup of a Synapse service is now checked prior to a live backup being
made. If there is insufficient storage to make the backup on the volume storing the backup, a LowSpace exception
will be raised. (#2990)

17.25. v2.121.1 - 2022-01-23 1467

https://github.com/vertexproject/synapse/pull/2995
https://github.com/vertexproject/synapse/pull/2993
https://github.com/vertexproject/synapse/pull/2973
https://github.com/vertexproject/synapse/pull/2982
https://github.com/vertexproject/synapse/pull/2987
https://github.com/vertexproject/synapse/pull/2973
https://github.com/vertexproject/synapse/pull/2973
https://github.com/vertexproject/synapse/pull/2914
https://github.com/vertexproject/synapse/pull/2990

Synapse Documentation, Release 2.141.0

17.26.3 Bugfixes

• When normalizing the inet:email type, an unclear Python ValueError could have been raised to a user. This
is now caught and a specific BadTypeValu exception is raised. (#2982)

• The synapse.exc.StormRaise exception caused an error when recreating the exception on the client side of
a Telepath connection. This exception will now raise properly on the caller side. (#2985)

• When using the Storm diff command to examine a forked View, if a node was deleted out from the base layer
and edited in the fork, an exception would be raised. This situation is now properly handled. (#2988)

17.26.4 Improved Documentation

• Update the Storm User Guide section on variables for clarity. (#2968)

• Correct Provenance API deprecation notice from v2.221.0 to v2.122.0. (#2981)

17.27 v2.120.0 - 2023-01-11

17.27.1 Features and Enhancements

• Update to the risk models. (#2978)

risk:threat
Add a merge:time and merged:isnow properties to track when a threat cluster was merged with another
threat cluster.

risk:alert
Add an engine property to track the software engine that generated the alert.

• Add events for trigger:add, trigger:del, and trigger:set to the Beholder API. (#2975)

17.27.2 Bugfixes

• Fix an infinite loop in synapse.tools.storm when using the tool in an environment without write access to
the history file. (#2977)

17.28 v2.119.0 - 2023-01-09

17.28.1 Features and Enhancements

• Updates to the biz, econ, org, and risk models. (#2931)

biz:listing
Add a form to track a specific product or service listed for sale at a given price by a specific seller.

biz:service
Add a form to track a service performed by a specific organization.

biz:service:type
Add a form to record an analyst defined taxonomy of business services.

1468 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2982
https://github.com/vertexproject/synapse/pull/2985
https://github.com/vertexproject/synapse/pull/2988
https://github.com/vertexproject/synapse/pull/2968
https://github.com/vertexproject/synapse/pull/2981
https://github.com/vertexproject/synapse/pull/2978
https://github.com/vertexproject/synapse/pull/2975
https://github.com/vertexproject/synapse/pull/2977
https://github.com/vertexproject/synapse/pull/2931

Synapse Documentation, Release 2.141.0

biz:bundle
Add a service property to record the service included in the bundle.

Deprecate the deal and purchase secondary properties in favor of econ:receipt:item to represent
bundles being sold.

biz:product
Add a price:currency property to denote the currency of the prices.

Add a maker property to represent the contact information for the maker of a product.

Deprecate the madeby:org, madeby:orgname, madeby:orgfqdn properties in favor of using the new
maker property.

econ:receipt:item
Add a form to represent a line item included as part of a purchase.

econ:acquired
Deprecate the form in favor of an acquired light edge.

ou:campaign
Add a budget property to record the budget allocated for the campaign.

Add a currency property to record the currency of the econ:price secondary properties.

Add a result:revenue property to record the revenue resulting from the campaign.

Add a result:pop property to record the count of people affected by the campaign.

risk:alert:verdict:taxonomy
Add a form to record an analyst defined taxonomy of the origin and validity of an alert.

risk:alert
Add a benign property to record if the alert has been confirmed as benign or malicious.

Add a verdict property to record the analyst verdict taxonomy about why an alert is marked as benign or
malicious.

• Annotate the following light edges. (#2931)

acquired
When used with an econ:purchase node, the edge indicates the purchase was used to acquire the target
node.

ipwhois
When used with an inet:whois:iprec node and inet:ipv4 or inet:ipv6 nodes, the edge indicates
the source IP whois record describes the target IP address.

• Add a new Cell configuration option, limit:disk:free. This represents the minimum percentage of free disk
space on the volume hosting a Synapse service that is required in order to start up. This value is also monitored
every minute and will disable the Cell Nexus if the free space drops below the specified value. This value defaults
to five percent (5 %) free disk space. (#2920)

17.28. v2.119.0 - 2023-01-09 1469

https://github.com/vertexproject/synapse/pull/2931
https://github.com/vertexproject/synapse/pull/2920

Synapse Documentation, Release 2.141.0

17.28.2 Improved Documentation

• Add a Devops task related to configuration of the free space requirement. (#2920)

17.29 v2.118.0 - 2023-01-06

17.29.1 Features and Enhancements

• Updates to the inet, pol, and ps models. (#2970) (#2971)

inet:tunnel
Add a form to represent the specific sequence of hosts forwarding connections, such as a VPN or proxy.

inet:tunnel:type:taxonomy
Add a form to record an analyst defined taxonomy of network tunnel types.

pol:country
Add a government property to represent the organization for the government of the country.

ps:contact
Add a type property to record the taxonomy of the node. This may be used for entity resolution.

ps:contact:type:taxonomy
Add a form to record an analyst defined taxonomy of contact types.

• Add the following Storm commands to help with analyst generation of several guid node types: (#2970)

gen.it.prod.soft
Lift (or create) an it:prod:soft node based on the software name.

gen.ou.industry
Lift (or create) an ou:industry node based on the industry name.

gen.ou.org
Lift (or create) an ou:org node based on the organization name.

gen.ou.org.hq
Lift (or create) the primary ps:contact node for the ou:org based on the organization name.

gen.pol.country
Lift (or create) a pol:country node based on the 2 letter ISO-3166 country code.

gen.pol.country.government
Lift (or create) the ou:org node representing a country’s government based on the 2 letter ISO-3166 coun-
try code.

gen.ps.contact.email
Lift (or create) the ps:contact node by deconflicting the email and type.

gen.risk.threat
Lift (or create) a risk:threat node based on the threat name and reporter name.

gen.risk.tool.software
Lift (or create) a risk:tool:software node based on the tool name and reporter name.

gen.risk.vuln
Lift (or create) a risk:vuln node based on the CVE.

1470 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2920
https://github.com/vertexproject/synapse/pull/2970
https://github.com/vertexproject/synapse/pull/2971
https://github.com/vertexproject/synapse/pull/2970

Synapse Documentation, Release 2.141.0

• Add $lib.gen.riskThreat(), $lib.gen.riskToolSoftware(), $lib.gen.psContactByEmail(),
and $lib.gen.polCountryByIso2() Storm API functions to assist in generating risk:threat,
risk:tool:software, ps:contact and pol:country nodes. (#2970)

• Update the CRL bundled within Synapse to revoke the The Vertex Project Code Signer 00 key. (#2972)

17.29.2 Bugfixes

• Fix an issue in the Axon csvrows() and readlines() APIs which could cause the Axon service to hang.
(#2969)

17.30 v2.117.0 - 2023-01-04

17.30.1 Automatic Migrations

• The risk:tool:software:soft:names and risk:tool:software:techniques properties are migrated to
being unique arrays. (#2950)

• See Data Migration for more information about automatic migrations.

17.30.2 Features and Enhancements

• Updates to the risk model. (#2950)

risk:tool:software
The soft:names and techniques properties are converted into sorted and uniqued arrays.

• Add support to the Cortex addStormPkg() and $lib.pkg.add() APIs to load Storm Packages which have
been signed to allow cryptographic signature verification. Root CA and intermediate CA certificates have been
embedded into Synapse to allow for verification of Rapid Power-Ups signed by The Vertex Project. (#2940)
(#2957) (#2963)

• Update synapse.tools.genpkg to add optional code signing to Storm packages that it creates. (#2940)

• Update synapse.tools.genpkg to require the packages it produces will be JSON compatible when serialized,
to avoid possible type coercion issues introduced by the Python json library. (#2958)

• Update synapse.tools.easycert to allow for creating code signing certificates and managing certificate re-
vocation lists (CRLs). (#2940)

• Add the Nexus index (nexsindx) value to the data returned by the getCellInfo() APIs. (#2949)

• Allow the Storm backtick format strings to work with multiline strings. (#2956)

• The Storm Bytes.json() method now raises exceptions that are SynErr subclasses when encountering er-
rors. This method has been updated to add optional encoding and errors arguments, to control how data is
deserialized. (#2945)

• Add support for registering an OAuth2 provider in the Cortex and having user tokens automatically refreshed in
the background. These APIs are exposed in Storm under the $lib.inet.http.oauth.v2 library. (#2910)

• STIX validation no longer caches any downloaded files it may use when attempting to validate STIX objects.
(#2966)

• Modified the behavior of Storm emitter functions to remove the read-ahead behavior. (#2953)

17.30. v2.117.0 - 2023-01-04 1471

https://github.com/vertexproject/synapse/pull/2970
https://github.com/vertexproject/synapse/pull/2972
https://github.com/vertexproject/synapse/pull/2969
https://github.com/vertexproject/synapse/pull/2950
https://github.com/vertexproject/synapse/pull/2950
https://github.com/vertexproject/synapse/pull/2940
https://github.com/vertexproject/synapse/pull/2957
https://github.com/vertexproject/synapse/pull/2963
https://github.com/vertexproject/synapse/pull/2940
https://github.com/vertexproject/synapse/pull/2958
https://github.com/vertexproject/synapse/pull/2940
https://github.com/vertexproject/synapse/pull/2949
https://github.com/vertexproject/synapse/pull/2956
https://github.com/vertexproject/synapse/pull/2945
https://github.com/vertexproject/synapse/pull/2910
https://github.com/vertexproject/synapse/pull/2966
https://github.com/vertexproject/synapse/pull/2953

Synapse Documentation, Release 2.141.0

17.30.3 Bugfixes

• Fix some error messages in the Snap which did not properly add variables to the message. (#2951)

• Fix an error in the synapse.tools.aha.enroll command example. (#2948)

• Fix an error with the merge command creating No form named None warnings in the Cortex logs. (#2952)

• Fix the Storm inet:smtp:message getter and setter for the html property so it will correctly produce HTML
formatted messages. (#2955)

• Several certdir APIs previously allowed through openssl.crypto.X509StoreContextError and
openssl.crypto.Error exceptions. These now raise Synapse BadCertVerify and BadCertBytes excep-
tions. (#2940)

• Fix an issue where a Storm package’s modconf values were mutable. (#2964)

17.30.4 Improved Documentation

• Removed outdated Kubernetes related devops documentation as it is in the process of being rewritten. (#2948)

17.30.5 Deprecations

• The Cortex APIs provStacks() and getProvStack(iden) and the corresponding Cortex configuration option
provenance:en have been marked as deprecated and are planned to be removed in v2.122.0. (#2682)

17.31 v2.116.0 - 2022-12-14

17.31.1 Automatic Migrations

• The ou:contract:award:price and ou:contract:budget:price properties are migrated from
econ:currency to econ:price types. (#2943)

• See Data Migration for more information about automatic migrations.

17.31.2 Features and Enhancements

• Updates to the ou model. (#2943)

ou:contract
The award:price and budget:price properties had their types changed from econ:currency to
econ:price. Add a currency secondary property to record the currency of the econ:price values.

1472 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2951
https://github.com/vertexproject/synapse/pull/2948
https://github.com/vertexproject/synapse/pull/2952
https://github.com/vertexproject/synapse/pull/2955
https://github.com/vertexproject/synapse/pull/2940
https://github.com/vertexproject/synapse/pull/2964
https://github.com/vertexproject/synapse/pull/2948
https://github.com/vertexproject/synapse/pull/2682
https://github.com/vertexproject/synapse/pull/2943
https://github.com/vertexproject/synapse/pull/2943

Synapse Documentation, Release 2.141.0

17.31.3 Bugfixes

• The synapse.tools.genpkg tool could raise a Python TypeError when the specified package file did not
exist. It now raises a NoSuchFile exception. (#2941)

• When a service is provisioned with an aha:provision URL placed in a cell.yaml file, that could create an
issue when a mirror is deployed from that service, preventing it from starting up a second time. Services now
remove the aha:provision key from a cell.yaml file when they are booted from a mirror if the URL does
not match the boot URL. (#2939)

• When deleting a node from the Cortex, secondary properties defined as arrays were not checked for their refer-
ences to other nodes. These references are now properly checked prior to node deletion. (#2942)

17.31.4 Improved Documentation

• Add a Devops task for stamping custom users into Synapse containers to run services with arbitrary user and
group id values. (#2921)

• Remove an invalid reference to insecure mode in HTTP API documentation. (#2938)

17.32 v2.115.1 - 2022-12-02

17.32.1 Features and Enhancements

• Patch release to include an updated version of the pytest library in containers.

17.33 v2.115.0 - 2022-12-01

17.33.1 Automatic Migrations

• The inet:flow:dst:softnames and inet:flow:dst:softnames properties are migrated from
it:dev:str to it:prod:softname types. (#2930)

• See Data Migration for more information about automatic migrations.

17.33.2 Features and Enhancements

• Updates to the inet model. (#2930)

inet:flow
The dst:softnames and src:softnames properties had their types changed from it:dev:str values
to it:prod:softname.

• Add support for secondary property pivots where the target property is an array type. (#2922)

• The Storm API $lib.bytes.has() now returns a false value when the input is null. (#2924)

• When unpacking loop values in Storm, use the primitive value when the item being unpacked is a Storm primitive.
(#2928)

• Add a --del option to the synapse.tools.moduser tool to allow removing a user from a service. (#2933)

17.32. v2.115.1 - 2022-12-02 1473

https://github.com/vertexproject/synapse/pull/2941
https://github.com/vertexproject/synapse/pull/2939
https://github.com/vertexproject/synapse/pull/2942
https://github.com/vertexproject/synapse/pull/2921
https://github.com/vertexproject/synapse/pull/2938
https://github.com/vertexproject/synapse/pull/2930
https://github.com/vertexproject/synapse/pull/2930
https://github.com/vertexproject/synapse/pull/2922
https://github.com/vertexproject/synapse/pull/2924
https://github.com/vertexproject/synapse/pull/2928
https://github.com/vertexproject/synapse/pull/2933

Synapse Documentation, Release 2.141.0

• Add entrypoint hooks to the Aha, Axon, Cortex, Cryotank, and JsonStor containers that allow a user to hook the
container boot process. (#2919)

• Temporary files created by the Axon, Cortex and base Cell class are now created in the cell local tmp directory.
In many deployments, this would be located in /vertex/storage/tmp. (#2925)

• Update the allowed versions of the cbor2 and pycryptodome libraries. For users installing synapse[dev],
coverage, pytest, pytest-cov and pytest-xdist are also updated to their latest versions. (#2935)

17.33.3 Bugfixes

• When a Storm Dmon definition lacked a view iden, it would previously default to using the Cortex default view.
Dmons now prefer to use the user default view before using the Cortex default view. This situation would only
happen with Dmons created via the Telepath API where the view iden was not provided in the Dmon definition.
(#2929)

• Non-integer mask values provided to inet:cidr4 types now raise a BadTypeValu exception. (#2932)

• Fix an incorrect call to os.unlink in synapse.tools.aha.enroll. (#2926)

17.33.4 Improved Documentation

• Update the automation section of the Synapse User guide, expanding upon the use of cron jobs and triggers
across views and forks. (#2917)

17.34 v2.114.0 - 2022-11-15

17.34.1 Features and Enhancements

• Updates to the crypto model. (#2909)

crypto:key
Add iv and mode properties to record initialization vectors and cipher modes used with a key.

• Allow the creator for Cron jobs and the user for Triggers to be set. This can be used to effectively change the
ownership of these automation elements. (#2908)

• When Storm package onload queries produce print, warning, or error messages, those now have the package
name included in the message that is logged. (#2913)

• Update the Storm package schema to allow declaring configuration variables. (#2880)

17.34.2 Bugfixes

• The delCertPath() APIs in synapse.lib.easycert no longer attempt to create a file path on disk when
removing the reference count to a certificate path. (#2907)

• Fix error handling when Axon is streaming files with the readlines() and csvrows() APIs. (#2911)

• The Storm trigger.list command failed to print triggers which were created in a Cortex prior to v2.71.0.
These triggers no longer generate an exception when listed. (#2915)

• Fix an error in the HTTP API example documentation for the requests example. (#2918)

1474 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2919
https://github.com/vertexproject/synapse/pull/2925
https://github.com/vertexproject/synapse/pull/2935
https://github.com/vertexproject/synapse/pull/2929
https://github.com/vertexproject/synapse/pull/2932
https://github.com/vertexproject/synapse/pull/2926
https://github.com/vertexproject/synapse/pull/2917
https://github.com/vertexproject/synapse/pull/2909
https://github.com/vertexproject/synapse/pull/2908
https://github.com/vertexproject/synapse/pull/2913
https://github.com/vertexproject/synapse/pull/2880
https://github.com/vertexproject/synapse/pull/2907
https://github.com/vertexproject/synapse/pull/2911
https://github.com/vertexproject/synapse/pull/2915
https://github.com/vertexproject/synapse/pull/2918

Synapse Documentation, Release 2.141.0

17.34.3 Improved Documentation

• Add a Devops task to enable the Python warnings filter to log the use of deprecated Synapse APIs. Python APIs
which have been deprecated have had their docstrings updated to reflect their deprecation status. (#2905)

17.35 v2.113.0 - 2022-11-04

17.35.1 Automatic Migrations

• The risk:tool:software:type property is migrated to the risk:tool:software:taxonomy type. (#2900)

• See Data Migration for more information about automatic migrations.

17.35.2 Features and Enhancements

• Updates to the inet, infotech, media, meta, org, and risk models. (#2897) (#2900) (#2903)

inet:email:message:link
Add a text property to record the displayed hypertext link if it was not a raw URL.

inet:web:acct
Add a banner property representing the banner image for the account.

inet:web:mesg
Add a deleted property to mark if a message was deleted.

inet:web:post:link
Add a form to record a link contained in the post text.

it:mitre:attack:group
Add an isnow property to record the potential for MITRE groups to be deprecated and renamed.

it:mitre:attack:software
Add an isnow property to record the potential for MITRE software to be deprecated and renamed.

it:prod:soft:taxonomy
Add a form to record an analyst defined taxonomy of software.

it:prod:soft
Add a type property to record the taxonomy of the software. Deprecated the techniques property in
favor of the uses light edge.

it:sec:cve
Deprecated the desc, url and references properties in favor of using the risk:vuln:cve:desc,
risk:vuln:cve:url, and risk:vuln:cve:references properties.

media:news
Add a topics array property to record a list of relevant topics in the article.

media:topic
Add a form for recording different media topics.

meta:rule
Add a url property to record a URL that documents as rule.

Add an ext:id property to record an external identifier for the rule.

17.35. v2.113.0 - 2022-11-04 1475

https://github.com/vertexproject/synapse/pull/2905
https://github.com/vertexproject/synapse/pull/2900
https://github.com/vertexproject/synapse/pull/2897
https://github.com/vertexproject/synapse/pull/2900
https://github.com/vertexproject/synapse/pull/2903

Synapse Documentation, Release 2.141.0

meta:sophistication
Add a form to record sophistication score with named values: very low, low, medium, high, and very
high.

ou:campaign
Add a sophistication property to record the assessed sophistication of a campaign.

Deprecate the techniques property in favor of using the uses light edge.

ou:hasgoal
Deprecate the ou:hasgoal form in favor of using the ou:org:goals property.

ou:org
Deprecate the techniques property in favor of using the uses light edge.

ou:technique
Add a sophistication property to record the assessed sophistication of a technique.

risk:alert
Add a url property for a URL that documents the alert.

Add an ext:id property to record an external ID for the alert.

risk:attack
Add a sophistication property to record the assessed sophistication of an attack.

risk:availability
Add a taxonomy for availability status values.

risk:threat
Add a sophistication property to record the assessed sophistication of a threat cluster.

Deprecate the techniques property in favor of the uses light edge.

risk:tool:software
Add an availability property to record the assessed availability of the tool.

Add a sophistication property to record the assessed sophistication of the software.

Migrate the type property to risk:tool:software:taxonomy.

Deprecate the techniques property in favor of the uses light edge.

risk:tool:software:taxonomy
Rename the type risk:tool:taxonomy to risk:tool:software:taxonomy.

risk:vuln
Add a mitigated property to record if a mitigation or fix is available for the vulnerability.

Add an exploited property to record if the vulnerability has been exploited in the wild.

Add timeline:discovered, timeline:published, timeline:vendor:notified,
timeline:vendor:fixed, and timeline:exploited properties to record the timeline for signif-
icant events on a vulnerability.

Add cve:desc, cve:url, and cve:references secondary properties to record information about the
CVE associated with a vulnerability.

Add `nist:nvd:source to record the name of the organization which reported the vulnerability in the
NVD.

Add nist:nvd:published and nist:nvd:modified to record when the vulnerability was first pub-
lished, and later modified, in the NVD.

1476 Chapter 17. Synapse Changelog

Synapse Documentation, Release 2.141.0

Add cisa:kev:name, cisa:kev:desc, cisa:kev:action, cisa:kev:vendor, cisa:kev:product,
cisa:kev:added, cisa:kev:duedate properties to record information about the CISA KEV database
entry for the vulnerability.

• Annotate the following light edges. (#2900)

seen
When used with meta:source nodes, the edge indicates the target node was observed by the source node.

stole
When used with a risk:compromise node, the edge indicates the target node was stolen or copied as a
result of the compromise.

targets
When used with risk:attack, the edge indicates the target node is targeted by the attack.

When used with risk:attack and ou:industry nodes, the edge indicates the attack targeted the industry

When used with risk:threat, the edge indicates the target node is targeted by the threat cluster.

When used with risk:threat and ou:industry nodes, the edge indicates the threat cluster targets the
industry.

uses
When used with ou:campaign and ou:technique nodes, the edge indicates the campaign used a given
technique.

When used with ou:org and ou:technique nodes, the edge indicates the organization used a given tech-
nique.

When used with risk:threat, the edge indicates the target node was used to facilitate the attack.

When used with risk:attack and ou:technique nodes, the edge indicates the attack used a given tech-
nique.

When used with risk:attack and risk:vuln nodes, the edge indicates the attack used the vulnerability.

When used with risk:tool:software, the edge indicates the target node is used by the tool.

When used with risk:tool:software and ou:technique nodes, the edge indicates the tool uses the
technique.

When used with risk:tool:software and risk:vuln nodes, the edge indicates the tool used the vul-
nerability.

When used with risk:threat, the edge indicates the target node was used by threat cluster.

When used with risk:threat and ou:technique nodes, the edge indicates the threat cluster uses the
technique.

When used with risk:threat and risk:vuln nodes, the edge indicates the threat cluster uses the vul-
nerability.

• Add $lib.gen.vulnByCve() to help generate risk:vuln nodes for CVEs. (#2903)

• Add a unary negation operator to Storm expression syntax. (#2886)

• Add $lib.crypto.hmac.digest() to compute RFC2104 digests in Storm. (#2902)

• Update the Storm inet:http:resp.json() method to add optional encoding and errors arguments, to
control how data is deserialized. (#2898)

• Update the Storm bytes.decode() method to add an optional errors argument, to control how errors are
handled when decoding data. (#2898)

• Logging of role and user permission changes now includes the authgate iden for the changes. (#2891)

17.35. v2.113.0 - 2022-11-04 1477

https://github.com/vertexproject/synapse/pull/2900
https://github.com/vertexproject/synapse/pull/2903
https://github.com/vertexproject/synapse/pull/2886
https://github.com/vertexproject/synapse/pull/2902
https://github.com/vertexproject/synapse/pull/2898
https://github.com/vertexproject/synapse/pull/2898
https://github.com/vertexproject/synapse/pull/2891

Synapse Documentation, Release 2.141.0

17.35.3 Bugfixes

• Catch RecursionError exceptions that can occur in very deep Storm pipelines. (#2890)

17.35.4 Improved Documentation

• Update the Storm reference guide to explain backtick format strings. (#2899)

• Update guid section on Storm type-specific behavior doc with some additional guid generation examples.
(#2901)

• Update Storm control flow documentation to include init, fini, and try / catch examples. (#2901)

• Add examples for creating extended model forms and properties to the Synapse admin guide. (#2904)

17.36 v2.112.0 - 2022-10-18

17.36.1 Features and Enhancements

• Add --email as an argument to synapse.tools.moduser to allow setting a user’s email address. (#2891)

• Add support for hxxp[s]: prefixes in scrape functions. (#2887)

• Make the SYNDEV_NEXUS_REPLAY resolution use s_common.envbool() in the SynTest.
withNexusReplay() helper. Add withNexusReplay() calls to all test helpers which make Cells which
previously did not have it available. (#2889) (#2890)

• Add implementations of getPermDef() and getPermDefs() to the base Cell class. (#2888)

17.36.2 Bugfixes

• Fix an idempotency issue in the JsonStor multiqueue implementation. (#2890)

17.36.3 Improved Documentation

• Add Synapse-GCS (Google Cloud Storage) Advanced Power-Up to the Power-Ups list.

17.37 v2.111.0 - 2022-10-12

17.37.1 Features and Enhancements

• Update the Storm grammar to allow specifying a tag property with a variable. (#2881)

• Add log messages for user and role management activities in the Cell. (#2877)

• The logging of service provisioning steps on Aha and when services were starting up was previously done at the
DEBUG level. These are now done at the INFO level. (#2883)

• The vertexproject/synapse: docker images now have the environment variable SYN_LOG_LEVEL set to
INFO. Previously this was WARNING. (#2883)

1478 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2890
https://github.com/vertexproject/synapse/pull/2899
https://github.com/vertexproject/synapse/pull/2901
https://github.com/vertexproject/synapse/pull/2901
https://github.com/vertexproject/synapse/pull/2904
https://github.com/vertexproject/synapse/pull/2891
https://github.com/vertexproject/synapse/pull/2887
https://github.com/vertexproject/synapse/pull/2889
https://github.com/vertexproject/synapse/pull/2890
https://github.com/vertexproject/synapse/pull/2888
https://github.com/vertexproject/synapse/pull/2890
https://github.com/vertexproject/synapse/pull/2881
https://github.com/vertexproject/synapse/pull/2877
https://github.com/vertexproject/synapse/pull/2883
https://github.com/vertexproject/synapse/pull/2883

Synapse Documentation, Release 2.141.0

17.37.2 Bugfixes

• Move the Nexus runMirrorLoop task to hang off of the Telepath Proxy and not the Telepath client. This results
in a faster teardown of the runMirrorLoop task during Nexus shutdown. (#2878)

• Remove duplicate tokens presented to users in Storm syntax errors. (#2879)

• When bootstrapping a service mirror with Aha provisioning, the prov.done file that was left in the service
storage directory was the value from the upstream service, and not the service that has been provisioned. This
resulted in NoSuchName exceptions when restarting mirrors. The bootstrapping process now records the correct
value in the prov.done file. (#2882)

17.38 v2.110.0 - 2022-10-07

17.38.1 Features and Enhancements

• Updates to the geo model. (#2872)

geo:telem
Add an accuracy property to record the accuracy of the telemetry reading.

• Add Nexus support to the Axon, to enable mirrored Axon deployments. (#2871)

• Add Nexus support for HTTP API sessions. (#2869)

• Add support for runtime string formatting in Storm. This is done with backtick (`) encapsulated strings. An
example of this is $world='world' $lib.print(`hello {$world}`) (#2870) (#2875)

• Expose user profile storage on the auth:user object, with the profile ctor. (#2876)

• Storm package command names are now validated against the same regex used by the grammar. The synapse.
tools.genpkg tool now validates the compiled package against the same schema used by the Cortex. (#2864)

• Add $lib.gen.newsByUrl() and $lib.gen.softByName() to help generate media:news and
it:prod:soft nodes, respectively. (#2866)

• Add a new realtime event stream system to the Cell, accessible remotely via CellApi.behold() and a websocket
endpoint, /api/v1/behold. This can be used to get realtime changes about services, such as user creation or
modification events; or layer and view change events in the Cortex. (#2851)

• Update stored user password hashing to use PBKDF2. Passwords are migrated to this format as successful user
logins are performed. (#2868)

• Add the ability to restore a backup tarball from a URL to the Cell startup process. When a Cell starts via
initFromArgv(), if the environment variable SYN_RESTORE_HTTPS_URL is present, that value will be used to
retrieve a tarball via HTTPS and extract it to the service local storage, removing any existing data in the directory.
This is done prior to any Aha based provisioning. (#2859)

17.38. v2.110.0 - 2022-10-07 1479

https://github.com/vertexproject/synapse/pull/2878
https://github.com/vertexproject/synapse/pull/2879
https://github.com/vertexproject/synapse/pull/2882
https://github.com/vertexproject/synapse/pull/2872
https://github.com/vertexproject/synapse/pull/2871
https://github.com/vertexproject/synapse/pull/2869
https://github.com/vertexproject/synapse/pull/2870
https://github.com/vertexproject/synapse/pull/2875
https://github.com/vertexproject/synapse/pull/2876
https://github.com/vertexproject/synapse/pull/2864
https://github.com/vertexproject/synapse/pull/2866
https://github.com/vertexproject/synapse/pull/2851
https://github.com/vertexproject/synapse/pull/2868
https://github.com/vertexproject/synapse/pull/2859

Synapse Documentation, Release 2.141.0

17.38.2 Bugfixes

• The embedded Axon inside of a Cortex (used when the axon config option is not set) did not properly have its
cell parent set to the Cortex. This has been corrected. (#2857)

• Fix a typo in the cron.move help. (#2858)

17.38.3 Improved Documentation

• Update Storm and Storm HTTP API documentation to show the set of opts and different types of message that
may be streamed by from Storm APIs. Add example HTTP API client code to the Synapse repository. (#2834)

• Update the Data Model and Analytical model background documentation. Expand on the discussion of light
edges use. Expand discussion of tags versus forms, linking the two via :tag props. (#2848)

17.38.4 Deprecations

• The Cortex HTTP API endpoint /api/v1/storm/nodes has been marked as deprecated. (#2682)

• Add deprecation notes to the help for the Storm splice.undo and splice.list commands. (#2861)

• Provisional Telepath support for Consul based lookups was removed. (#2873)

17.39 v2.109.0 - 2022-09-27

17.39.1 Features and Enhancements

• Add a format() API to str variables in Storm. (#2849)

• Update the Telepath user resolution for TLS links to prefer resolving users by the Cell aha:network over the
certificate common name. (#2850)

• Update all Synapse tools which make telepath connections to use the withTeleEnv() helper. (#2844)

• Update the Telepath and HTTPs TLS listeners to drop RSA based key exchanges and disable client initiated
renegotiation. (#2845)

• Update the minimum allowed versions of the aioimaplib and oauthlib libraries. (#2847) (#2854)

17.39.2 Bugfixes

• Correct default Telepath cell:// paths in Synapse tools. (#2853)

• Fix typos in the inline documentation for several model elements. (#2852)

• Adjust expression syntax rules in Storm grammar to remove incorrect whitespace sensitivity in certain expression
operators. (#2846)

1480 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2857
https://github.com/vertexproject/synapse/pull/2858
https://github.com/vertexproject/synapse/pull/2834
https://github.com/vertexproject/synapse/pull/2848
https://github.com/vertexproject/synapse/pull/2682
https://github.com/vertexproject/synapse/pull/2861
https://github.com/vertexproject/synapse/pull/2873
https://github.com/vertexproject/synapse/pull/2849
https://github.com/vertexproject/synapse/pull/2850
https://github.com/vertexproject/synapse/pull/2844
https://github.com/vertexproject/synapse/pull/2845
https://github.com/vertexproject/synapse/pull/2847
https://github.com/vertexproject/synapse/pull/2854
https://github.com/vertexproject/synapse/pull/2853
https://github.com/vertexproject/synapse/pull/2852
https://github.com/vertexproject/synapse/pull/2846

Synapse Documentation, Release 2.141.0

17.39.3 Improved Documentation

• Update Storm and Storm HTTP API documentation to show the set of opts and different types of message that
may be streamed by from Storm APIs. Add example HTTP API client code to the Synapse repository. (#2834)

• Update the Data Model and Analytical model background documentation. Expand on the discussion of light
edges use. Expand discussion of tags versus forms, linking the two via :tag props. (#2848)

17.40 v2.108.0 - 2022-09-12

17.40.1 Features and Enhancements

• Update the Telepath TLS connections to require a minimum TLS version of 1.2. (#2833)

• Update the Axon implementation to use the initServiceStorage() and initServiceRuntime() methods,
instead of overriding __anit__. (#2837)

• Update the minimum allowed versions of the aiosmtplib and regex libraries. (#2832) (#2841)

17.40.2 Bugfixes

• Catch LarkError exceptions in all Storm query parsing modes. (#2840)

• Catch FileNotFound errors in synapse.tools.healthcheck. This could be caused by the tool running
during container startup, and prior to a service making its Unix listening socket available. (#2836)

• Fix an issue in Axon.csvrows() where invalid data would cause processing of a file to stop. (#2835)

• Address a deprecation warning in the Synapse codebase. (#2842)

• Correct the type of syn:splice:splice to be data. Previously it was str. (#2839)

17.40.3 Improved Documentation

• Replace livenessProbe references with readinessProbe in the Kubernetes documentation and examples.
The startupProbe.failureThreshold value was increased to its maximum value. (#2838)

• Fix a typo in the Rapid Power-Up documentation. (#2831)

17.41 v2.107.0 - 2022-09-01

17.41.1 Automatic Migrations

• Migrate the risk:alert:type property to a taxonomy type and create new nodes as needed. (#2828)

• Migrate the pol:country:name property to a geo:name type and create new nodes as needed. (#2828)

• See Data Migration for more information about automatic migrations.

17.40. v2.108.0 - 2022-09-12 1481

https://github.com/vertexproject/synapse/pull/2834
https://github.com/vertexproject/synapse/pull/2848
https://github.com/vertexproject/synapse/pull/2833
https://github.com/vertexproject/synapse/pull/2837
https://github.com/vertexproject/synapse/pull/2832
https://github.com/vertexproject/synapse/pull/2841
https://github.com/vertexproject/synapse/pull/2840
https://github.com/vertexproject/synapse/pull/2836
https://github.com/vertexproject/synapse/pull/2835
https://github.com/vertexproject/synapse/pull/2842
https://github.com/vertexproject/synapse/pull/2839
https://github.com/vertexproject/synapse/pull/2838
https://github.com/vertexproject/synapse/pull/2831
https://github.com/vertexproject/synapse/pull/2828
https://github.com/vertexproject/synapse/pull/2828

Synapse Documentation, Release 2.141.0

17.41.2 Features and Enhancements

• Updates to the geo, inet, media, pol, proj, and risk models. (#2828) (#2829)

geo:area
Add a new type to record the size of a geographic area.

geo:place:taxonomy
Add a form to record an analyst defined taxonomy of different places.

geo:place
Add a type property to record the taxonomy of a place.

inet:web:memb
This form has been deprecated.

inet:web:member
Add a guid form that represents a web account’s membership in a channel or group.

media:news:taxonomy
Add a form to record an analyst defined taxonomy of different types or sources of news.

media:news
Add a type property to record the taxonomy of the news. Add an ext:id property to record an external
identifier provided by a publisher.

pol:vitals
Add a guid form to record the vitals for a country.

pol:country
Add names, place, dissolved and vitals secondary properties. The name is changed from a str to a
geo:name type. Deprecate the pop secondary property.

pol:candidate
Add an incumbent property to note if the candidate was an incumbent in a race.

proj
Add missing docstrings to the proj model forms.

risk:alert:taxonomy
Add a form to record an analyst defined taxonomy of alert types.

risk:alert
The type property is changed from a str to the risk:alert:taxonomy type.

• Add ** as a power operator for Storm expression syntax. (#2827)

• Add a new test helper, synapse.test.utils.StormPkgTest to assist with testing Rapid Power-Ups. (#2819)

• Add $lib.axon.metrics() to get the metrics from the Axon that the Cortex is connected to. (#2818)

• Add pack() methods to the auth:user and auth:role objects. This API returns the definitions of the User
and Role objects. (#2823)

• Change the Storm Package require values to log debug messages instead of raising exceptions if the require-
ments are not met. Add a $lib.pkg.deps() API that allows inspecting if a package has its dependencies met
or has conflicts. (#2820)

1482 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2828
https://github.com/vertexproject/synapse/pull/2829
https://github.com/vertexproject/synapse/pull/2827
https://github.com/vertexproject/synapse/pull/2819
https://github.com/vertexproject/synapse/pull/2818
https://github.com/vertexproject/synapse/pull/2823
https://github.com/vertexproject/synapse/pull/2820

Synapse Documentation, Release 2.141.0

17.41.3 Bugfixes

• Prevent None objects from being normalized as tag parts from variables in Storm. (#2822)

• Avoid intermediate conversion to floats during storage operations related to Synapse Number objects in Storm.
(#2825)

17.41.4 Improved Documentation

• Add Developer documentation for writing Rapid Power-Ups. (#2803)

• Add the synapse.tests.utils package to the Synapse API autodocs. (#2819)

• Update Devops documentation to note the storage requirements for taking backups of Synapse services. (#2824)

• Update the Storm min and max command help to clarify their usage. (#2826)

17.42 v2.106.0 - 2022-08-23

17.42.1 Features and Enhancements

• Add a new tool, synapse.tools.axon2axon, for copying the data from one Axon to another Axon. (#2813)
(#2816)

17.42.2 Bugfixes

• Subquery filters did not update runtime variables in the outer scope. This behavior has been updated to make
subquery filter behavior consistent with regular subqueries. (#2815)

• Fix an issue with converting the Number Storm primitive into its Python primitive. (#2811)

17.43 v2.105.0 - 2022-08-19

17.43.1 Features and Enhancements

• Add a Number primitive to Storm to facilitate fixed point math operations. Values in expressions which are
parsed as floating point values will now be Numbers by default. Values can also be cast to Numbers with $lib.
math.number(). (#2762)

• Add $lib.basex.encode() and $lib.basex.decode() for encoding and decoding strings using arbitrary
charsets. (#2807)

• The tag removal operator (-#) now accepts lists of tags to remove. (#2808)

• Add a $node.difftags() API to calculate and optionally apply the difference between a list of tags and those
present on a node. (#2808)

• Scraped Ethereum addresses are now returned in their EIP55 checksummed form. This change also applies to
lookup mode. (#2809)

• Updates to the mat, ps, and risk models. (#2804)

mass
Add a type for storing mass with grams as a base unit.

17.42. v2.106.0 - 2022-08-23 1483

https://github.com/vertexproject/synapse/pull/2822
https://github.com/vertexproject/synapse/pull/2825
https://github.com/vertexproject/synapse/pull/2803
https://github.com/vertexproject/synapse/pull/2819
https://github.com/vertexproject/synapse/pull/2824
https://github.com/vertexproject/synapse/pull/2826
https://github.com/vertexproject/synapse/pull/2813
https://github.com/vertexproject/synapse/pull/2816
https://github.com/vertexproject/synapse/pull/2815
https://github.com/vertexproject/synapse/pull/2811
https://github.com/vertexproject/synapse/pull/2762
https://github.com/vertexproject/synapse/pull/2807
https://github.com/vertexproject/synapse/pull/2808
https://github.com/vertexproject/synapse/pull/2808
https://github.com/vertexproject/synapse/pull/2809
https://github.com/vertexproject/synapse/pull/2804

Synapse Documentation, Release 2.141.0

ps:vitals
Add a form to record statistics and demographic data about a person or contact.

ps:person
Add a vitals secondary property to record the most recent known vitals for the person.

ps:contact
Add a vitals secondary property to record the most recent known vitals for the contact.

risk:tool:taxonomy
Add a form to record an analyst defined taxonomy of different tools.

risk:tool:software
Add a form to record software tools used in threat activity.

risk:threat
Add reporter, reporter:name, org:loc, org:names, and goals secondary properties.

• Annotate the following light edges. (#2804)

uses
When used with risk:threat nodes, the edge indicates the target node is used by the source node.

17.43.2 Bugfixes

• Fix language used in the model.deprecated.check command. (#2806)

• Remove the -y switch in the count command. (#2806)

17.44 v2.104.0 - 2022-08-09

17.44.1 Automatic Migrations

• Migrate crypto:x509:cert:serial from str to hex type. Existing values which cannot be converted as integers or
hex values will be moved into nodedata under the key migration:0_2_10 as {'serial': value} (#2789)

• Migrate ps:contact:title to the ou:jobtitle type and create ou:jobtitle nodes. (#2789)

• Correct hugenum property index values for values with more than 28 digits of precision. (#2766)

• See Data Migration for more information about automatic migrations.

17.44.2 Features and Enhancements

• Updates to the crypto and ps models. (#2789)

crypto:x509:cert
The serial secondary property has been changed from a str to a hex type.

ps:contact
The type of the title secondary property has been changed from a str to an ou:jobtitle.

• Add $lib.hex.toint(), $lib.hex.fromint(), $lib.hex.trimext() and $lib.hex.signext() Storm
APIs for handling hex encoded integers. (#2789)

• Add set() and setdefault() APIs on the SynErr exception class. Improve support for unpickling SynErr
exceptions. (#2797)

1484 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2804
https://github.com/vertexproject/synapse/pull/2806
https://github.com/vertexproject/synapse/pull/2806
https://github.com/vertexproject/synapse/pull/2789
https://github.com/vertexproject/synapse/pull/2789
https://github.com/vertexproject/synapse/pull/2766
https://github.com/vertexproject/synapse/pull/2789
https://github.com/vertexproject/synapse/pull/2789
https://github.com/vertexproject/synapse/pull/2797

Synapse Documentation, Release 2.141.0

• Add logging configuration to methods which are called in spawned processes, and log exceptions occurring in
the processes before tearing them down. (#2795)

17.44.3 Bugfixes

• BadTypeValu errors raised when normalizing a tag timestamp now include the name of the tag being set. (#2797)

• Correct a CI issue that prevented the v2.103.0 Docker images from being published. (#2798)

17.44.4 Improved Documentation

• Update data model documentation. (#2796)

17.45 v2.103.0 - 2022-08-05

17.45.1 Features and Enhancements

• Updates to the it, ou, and risk models. (#2778)

it:prod:soft
Add a techniques secondary property to record techniques employed by the author of the software.

ou:campaign
Add a techniques secondary property to record techniques employed by the campaign.

ou:org
Add a techniques secondary property to record techniques employed by the org.

ou:technique
Add a form to record specific techniques used to achieve a goal.

ou:technique:taxonomy
Add a form to record an analyst defined taxonomy of different techniques.

risk:attack
Add a techniques secondary property to record techniques employed during the attack. Deprecate the
following secondary properties, in favor of using light edges.

– target

– target:host

– target:org

– target:person

– target:place

– used:email

– used:file

– used:host

– used:server

– used:software

– used:url

17.45. v2.103.0 - 2022-08-05 1485

https://github.com/vertexproject/synapse/pull/2795
https://github.com/vertexproject/synapse/pull/2797
https://github.com/vertexproject/synapse/pull/2798
https://github.com/vertexproject/synapse/pull/2796
https://github.com/vertexproject/synapse/pull/2778

Synapse Documentation, Release 2.141.0

– used:vuln

– via:email

– via:ipv4

– via:ipv6

– via:phone

risk:compromise
Add a techniques secondary property to record techniques employed during the compromise.

risk:threat
Add a form to record a threat cluster or subgraph of threat activity attributable to one group.

• Annotate the following light edges. (#2778)

targets
When used with ou:org, ou:campaign, risk:threat, or risk:attack nodes, the edge indicates the
target node was targeted by the source node.

uses
When used with an ou:campaign or risk:attack node, the edge indicates the target node is used by the
source node.

• Change the behavior of the Storm count command to consume nodes. If the previous behavior is desired, use
the --yield option when invoking the count command. (#2779)

• Add $lib.random.int() API to Storm for generating random integers. (#2783)

• Add a new tool, synapse.tools.livebackup for taking a live backup of a service. (#2788)

• The Storm $lib.jsonstor.cacheset() API now returns a dict containing the path and time. The $lib.
jsonstor.cacheget() API now has an argument to retrieve the entire set of enveloped data. (#2790)

• Add a HTTP 404 handler for the Axon v1/by/sha256/<sha256> endpoint which catches invalid <sha256>
values. (#2780)

• Add helper scripts for doing bulk Synapse Docker image builds and testing. (#2716)

• Add aha:\\ support to synapse.tools.csvtool. (#2791)

17.45.2 Bugfixes

• Ensure that errors that occur when backing up a service are logged prior to tearing down the subprocess perform-
ing the backup. (#2781)

• Add missing docstring for $lib.stix.import. (#2786)

• Allow setting tags on a Node from a Storm List object. (#2782)

1486 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2778
https://github.com/vertexproject/synapse/pull/2779
https://github.com/vertexproject/synapse/pull/2783
https://github.com/vertexproject/synapse/pull/2788
https://github.com/vertexproject/synapse/pull/2790
https://github.com/vertexproject/synapse/pull/2780
https://github.com/vertexproject/synapse/pull/2716
https://github.com/vertexproject/synapse/pull/2791
https://github.com/vertexproject/synapse/pull/2781
https://github.com/vertexproject/synapse/pull/2786
https://github.com/vertexproject/synapse/pull/2782

Synapse Documentation, Release 2.141.0

17.45.3 Improved Documentation

• Remove synapse-google-ct from the list of Rapid Power-Ups. (#2779)

• Add developer documentation for building Synapse Docker containers. (#2716)

• Fix spelling errors in model documentation. (#2782)

17.45.4 Deprecations

• The vertexproject/synapse:master-py37 and vertexproject/synapse:v2.x.x-py37 Docker con-
tainers are no longer being built. (#2716)

17.46 v2.102.0 - 2022-07-25

17.46.1 Features and Enhancements

• Updates to the crypto, geo, inet, mat, media, ou, pol, and proj models. (#2757) (#2771)

crypto:key
Add public:md5, public:sha1, and public:sha256 secondary properties to record those hashes for
the public key. Add private:md5, private:sha1, and private:sha256 secondary properties to record
those hashes for the public key.

geo:nloc
The geo:nloc form has been deprecated.

geo:telem
Add a new form to record a the location of a given node at a given time. This replaces the use of geo:nloc.

it:sec:c2:config
Add a proxies secondary property to record proxy URLS used to communicate to a C2 server. Add a
listens secondary property to record urls the software should bind. Add a dns:resolvers secondary
property to record DNS servers the software should use. Add a http:headers secondary property to
record HTTP headers the software should use.

it:exec:query
Add a new form to record an instance of a query executed on a host.

it:query
Add a new form to record query strings.

mat:type
Add a taxonomy type to record taxonomies of material specifications or items.

mat:item
Add a type secondary property to record the item type.

mat:spec
Add a type secondary property to record the item type.

media:news
Add a publisher secondary property to record the org that published the news. Add a publisher:name
secondary property to record the name of the org. Deprecate the org secondary property.

ou:campaign
Add a conflict secondary property to record the primary conflict associated the campaign.

17.46. v2.102.0 - 2022-07-25 1487

https://github.com/vertexproject/synapse/pull/2779
https://github.com/vertexproject/synapse/pull/2716
https://github.com/vertexproject/synapse/pull/2782
https://github.com/vertexproject/synapse/pull/2716
https://github.com/vertexproject/synapse/pull/2757
https://github.com/vertexproject/synapse/pull/2771

Synapse Documentation, Release 2.141.0

ou:conflict
Add a new form to record a conflict between two or more campaigns which have mutually exclusive goals.

ou:contribution
Add a new form to represent contributing material support to a campaign.

pol:election
Add a new form to record an election.

pol:race
Add a new form to record indivdual races in an election.

pol:office
Add a new form to record an appointed or elected office.

pol:term
Add a new form to record the term in office for an individual.

pol:candidate
Add a form to record a candidate for a given race.

pol:pollingplace
Add a form to record the polling locations for a given election.

proj:ticket
Add a ext:creator secondary form to record contact information from and external system.

• Annotate the following light edges. (#2757)

about
A light edge created by the Storm note.add command, which records the relationship between a
meta:note node and the target node.

includes
When used with a ou:contribution node, the edge indicates the target node was the contribution made.

has
When used with a meta:ruleset and meta:rule node, indicates the ruleset contains the rule.

matches
When used with a meta:rule node, the edge indicates the target node matches the rule.

refs
A light edge where the source node refers to the target node.

seenat
When used with a geo:telem target node, the edge indicates the source node was seen a given location.

uses
When used with a ou:org node, the edge indicates the target node is used by the organization.

• Commonly used light edges are now being annotated in the model, and are available through Cortex APIs which
expose the data model. (#2757)

• Make Storm command argument parsing errors into exceptions. Previously the argument parsing would cause the
Storm runtime to be torn down with print messages, which could be missed. This now means that automations
which have a invalid Storm command invocation will fail loudly. (#2769)

• Allow a Storm API caller to set the task identifier by setting the task value in the Storm opts dictionary. (#2768)
(#2774)

• Add support for registering and exporting custom STIX objects with the $lib.stix Storm APIS. (#2773)

• Add APIS and Storm APIs for enumerating mirrors that have been registered with AHA. (#2760)

1488 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2757
https://github.com/vertexproject/synapse/pull/2757
https://github.com/vertexproject/synapse/pull/2769
https://github.com/vertexproject/synapse/pull/2768
https://github.com/vertexproject/synapse/pull/2774
https://github.com/vertexproject/synapse/pull/2773
https://github.com/vertexproject/synapse/pull/2760

Synapse Documentation, Release 2.141.0

17.46.2 Bugfixes

• Ensure that auto-adds are created when merging part of a View when using the Storm merge --apply command.
(#2770)

• Add missing support for handling timezone offsets without colon separators when normalizing time values.
time values which contain timezone offsets and not enough data to resolve minute level resolution will now fail
to parse. (#2772)

• Fix an issue when normalizing inet:url values when the host value was the IPv4 address 0.0.0.0. (#2771)

• Fix an issue with the Storm cron.list command, where the command failed to run when a user had been
deleted. (#2776)

17.46.3 Improved Documentation

• Update the Storm user documentation to include the Embedded Property syntax, which is a shorthand (::) that
can be used to reference properties on adjacent nodes. (#2767)

• Update the Synapse Glossary. (#2767)

• Update Devops documentation to clarify the Aha URLs which end with``. . . `` are intentional. (#2775)

17.47 v2.101.1 - 2022-07-14

17.47.1 Bugfixes

• Fix an issue where the Storm scrape command could fail to run with inbound nodes. (#2761)

• Fix broken links in documentation. (#2763)

• Fix an issue with the Axon AxonHttpBySha256V1 API handler related to detecting Range support in the Axon.
(#2764)

17.48 v2.101.0 - 2022-07-12

17.48.1 Automatic Migrations

• Create nodes in the Cortex for the updated properties noted in the data model updates listed below.

• Axon indices are migrated to account for storing offset information to support the new offset and size API options.

• See Data Migration for more information about automatic migrations.

17.47. v2.101.1 - 2022-07-14 1489

https://github.com/vertexproject/synapse/pull/2770
https://github.com/vertexproject/synapse/pull/2772
https://github.com/vertexproject/synapse/pull/2771
https://github.com/vertexproject/synapse/pull/2776
https://github.com/vertexproject/synapse/pull/2767
https://github.com/vertexproject/synapse/pull/2767
https://github.com/vertexproject/synapse/pull/2775
https://github.com/vertexproject/synapse/pull/2761
https://github.com/vertexproject/synapse/pull/2763
https://github.com/vertexproject/synapse/pull/2764

Synapse Documentation, Release 2.141.0

17.48.2 Features and Enhancements

• Updates to the crypto, infotech, ps, and transport models. (#2720) (#2738) (#2739) (#2747)

crypto:smart:effect:minttoken
Add a new form to model smart contract effects which create non-fungible tokens.

crypto:smart:effect:burntoken`
Add a new form to model smart contract effects which destroy non-fungible tokens.

crypto:smart:effect:proxytoken
Add a new form that tracks grants for a non-owner address the ability to manipulate a specific non-fungible
token.

crypto:smart:effect:proxytokenall
Add a new form that tracks grants for a non-owner address the ability to manipulate all of the non-fungible
tokens.

crypto:smart:effect:proxytokens
Add a new form that tracks grants for a non-owner address to manipulate fungible tokens.

it:av:signame
Add a new form to track AV signature names. Migrate it:av:filehit:sig:name and it:av:sig:name
to use the new form.

it:exec:proc
Add a name secondary property to track the display name of a process. Add a path:base secondary
property to track the basename of the executable for the process.

ps:contact
Add an orgnames secondary property to track an array of orgnames associated with a contact.

transport:sea:vessel
Add make and model secondary properties to track information about the vessel.

• Add a new Storm command, movenodes, that can be used to move a node entirely from one layer to another.
(#2714)

• Add a new Storm library, $lib.gen, to assist with creating nodes based on secondary property based deconflic-
tion. (#2754)

• Add a sorted() method to the stat:tally object, to simplify handling of tallied data. (#2748)

• Add a new Storm function, $lib.mime.html.totext(), to extract inner tag text from HTML strings. (#2744)

• Add Storm functions $lib.crypto.hashes.md5(), $lib.crypto.hashes.sha1(), $lib.crypto.
hashes.sha256() and $lib.crypto.hashes.sha512() to allow hashing bytes directly in Storm. (#2743)

• Add an Axon.csvrows() API for streaming CSV rows from an Axon, and a corresponding $lib.axon.
csvrows() Storm API. (#2719)

• Expand Synapse requirements to include updated versions of the pycryptome, pygments, and scalecodec
modules. (#2752)

• Add range support to Axon.get() to read bytes from a given offset and size. The /api/v1/axon/files/by/
sha256/<SHA-256> HTTP API has been updated to support a Range header that accepts a bytes value to read
a subset of bytes that way as well. (#2731) (#2755) (#2758)

1490 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2720
https://github.com/vertexproject/synapse/pull/2738
https://github.com/vertexproject/synapse/pull/2739
https://github.com/vertexproject/synapse/pull/2747
https://github.com/vertexproject/synapse/pull/2714
https://github.com/vertexproject/synapse/pull/2754
https://github.com/vertexproject/synapse/pull/2748
https://github.com/vertexproject/synapse/pull/2744
https://github.com/vertexproject/synapse/pull/2743
https://github.com/vertexproject/synapse/pull/2719
https://github.com/vertexproject/synapse/pull/2752
https://github.com/vertexproject/synapse/pull/2731
https://github.com/vertexproject/synapse/pull/2755
https://github.com/vertexproject/synapse/pull/2758

Synapse Documentation, Release 2.141.0

17.48.3 Bugfixes

• Fix $lib.time.parse() when %z is used in the format specifier. (#2749)

• Non-string form-data fields are now serialized as JSON when using the Axon.postfiles() API. (#2751)
(#2759)

• Fix a byte-alignment issue in the Axon.readlines() API. (#2719)

17.49 v2.100.0 - 2022-06-30

17.49.1 Features and Enhancements

• Support parsing CVSS version 3.1 prefix values. (#2732)

17.49.2 Bugfixes

• Normalize tag value lists in snap.addTag() to properly handle JSON inputs from HTTP APIs. (#2734)

• Fix an issue that allowed multiple concurrent streaming backups to occur. (#2725)

17.49.3 Improved Documentation

• Add an entry to the devops task documentation for trimming Nexus logs. (#2730)

• Update the list of available Rapid Power-Ups. (#2735)

17.50 v2.99.0 - 2022-06-23

17.50.1 Features and Enhancements

• Add an extensible STIX 2.1 import library, $lib.stix.import. The function $lib.stix.import.ingest()
can be used to STIX bundles into a Cortex via Storm. (#2727)

• Add a Storm uptime command to display the uptime of a Cortex or a Storm Service configured on the Cortex.
(#2728)

• Add --view and --optsfile arguments to synapse.tools.csvtool. (#2726)

17.50.2 Bugfixes

• Fix an issue getting the maximum available memory for a host running with Linux cgroupsv2 apis. (#2728)

17.49. v2.100.0 - 2022-06-30 1491

https://github.com/vertexproject/synapse/pull/2749
https://github.com/vertexproject/synapse/pull/2751
https://github.com/vertexproject/synapse/pull/2759
https://github.com/vertexproject/synapse/pull/2719
https://github.com/vertexproject/synapse/pull/2732
https://github.com/vertexproject/synapse/pull/2734
https://github.com/vertexproject/synapse/pull/2725
https://github.com/vertexproject/synapse/pull/2730
https://github.com/vertexproject/synapse/pull/2735
https://github.com/vertexproject/synapse/pull/2727
https://github.com/vertexproject/synapse/pull/2728
https://github.com/vertexproject/synapse/pull/2726
https://github.com/vertexproject/synapse/pull/2728

Synapse Documentation, Release 2.141.0

17.51 v2.98.0 - 2022-06-17

17.51.1 Features and Enhancements

• Updates to the econ model. (#2717)

econ:acct:balance
Add total:received and total:sent properties to record total currency sent and received by the ac-
count.

• Add additional debug logging for Aha provisioning. (#2722)

• Adjust whitespace requirements on Storm grammar related to tags. (#2721)

• Always run the function provided to the Storm divert command per node. (#2718)

17.51.2 Bugfixes

• Fix an issue that prevented function arguments named func in Storm function calls. (#2715)

• Ensure that active coroutines have been cancelled when changing a Cell from active to passive status; before
starting any passive coroutines. (#2713)

• Fix an issue where Nexus._tellAhaReady was registering with the Aha service when the Cell did not have a
proper Aha service name set. (#2723)

17.52 v2.97.0 - 2022-06-06

17.52.1 Features and Enhancements

• Add an /api/v1/aha/provision/service HTTP API to the Aha service. This can be used to generate
aha:provision URLs. (#2707)

• Add proxy options to $lib.inet.http Storm APIs, to allow an admin user to specify an alternative (or to
disable) proxy setting. (#2706)

• Add a --tag and --prop option to the Storm diff command. Update the Storm merge command examples to
show more real-world use cases. (#2710)

• Add the ability to set the layers in a non-forked view with the $view.set(layers, $iden) API on the Storm
view object. (#2711)

• Improve Storm parser logic for handling list and expression syntax. (#2698) (#2708)

17.52.2 Bugfixes

• Improve error handling of double quoted strings in Storm when null characters are present in the raw query string.
This situation now raises a BadSyntax error instead of an opaque Python ValueError. (#2709)

• Fix unquoted JSON keys which were incorrectly allowed in Storm JSON style expression syntax. (#2698)

• When merging layer data, add missing permission checks for light edge and node data changes. (#2671)

1492 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2717
https://github.com/vertexproject/synapse/pull/2722
https://github.com/vertexproject/synapse/pull/2721
https://github.com/vertexproject/synapse/pull/2718
https://github.com/vertexproject/synapse/pull/2715
https://github.com/vertexproject/synapse/pull/2713
https://github.com/vertexproject/synapse/pull/2723
https://github.com/vertexproject/synapse/pull/2707
https://github.com/vertexproject/synapse/pull/2706
https://github.com/vertexproject/synapse/pull/2710
https://github.com/vertexproject/synapse/pull/2711
https://github.com/vertexproject/synapse/pull/2698
https://github.com/vertexproject/synapse/pull/2708
https://github.com/vertexproject/synapse/pull/2709
https://github.com/vertexproject/synapse/pull/2698
https://github.com/vertexproject/synapse/pull/2671

Synapse Documentation, Release 2.141.0

17.53 v2.96.0 - 2022-05-31

17.53.1 Features and Enhancements

• Updates to the transport model. (#2697)

velocity
Add a new base type to record velocities in millimeters/second.

transport:direction
Add a new type to indicate a direction of movement with respect to true North.

transport:air:telem
Add :course and :heading properties to record the direction of travel. Add :speed, :airspeed and
:verticalspeed properties to record the speed of travel.

transport:sea:telem
Add :course and :heading properties to record the direction of travel. Add a :speed property to record
the speed of travel. Add :destination, :destination:name and :destination:eta to record infor-
mation about the destination.

• Restore the precedence of environment variables over cell.yaml options during Cell startup. API driven over-
rides are now stored in the cell.mods.yaml file. (#2699)

• Add --dmon-port and --https-port options to the synapse.tools.aha.provision.service tool in or-
der to specify fixed listening ports during provisioning. (#2703)

• Add the ability of synapse.tools.moduser to set user passwords. (#2695)

• Restore the call to the recover() method on the Nexus during Cell startup. (#2701)

• Add mesg arguments to NoSuchLayer exceptions. (#2696)

• Make the LMDB slab startup more resilient to a corrupted cell.opts.yaml file. (#2694)

17.53.2 Bugfixes

• Fix missing variable checks in Storm. (#2702)

17.53.3 Improved Documentation

• Add a warning to the deployment guide about using Docker on Mac OS. (#2700)

17.54 v2.95.1 - 2022-05-24

17.54.1 Bugfixes

• Fix a regression in the Telepath aha:// update from v2.95.0. (#2693)

17.53. v2.96.0 - 2022-05-31 1493

https://github.com/vertexproject/synapse/pull/2697
https://github.com/vertexproject/synapse/pull/2699
https://github.com/vertexproject/synapse/pull/2703
https://github.com/vertexproject/synapse/pull/2695
https://github.com/vertexproject/synapse/pull/2701
https://github.com/vertexproject/synapse/pull/2696
https://github.com/vertexproject/synapse/pull/2694
https://github.com/vertexproject/synapse/pull/2702
https://github.com/vertexproject/synapse/pull/2700
https://github.com/vertexproject/synapse/pull/2693

Synapse Documentation, Release 2.141.0

17.55 v2.95.0 - 2022-05-24

17.55.1 Features and Enhancements

• Add a search mode to Storm. The search mode utilizes the Storm search interface to lift nodes. The lookup
mode no longer uses the search interface. (#2689)

• Add a ?mirror=true flag to aha:// Telepath URLs which will cause the Aha service lookups to prefer using
a mirror of the service rather than the leader. (#2681)

• Add $lib.inet.http.urlencode() and $lib.inet.http.urldecode() Storm APIs for handling URL
encoding. (#2688)

• Add type validation for all Cell configuration options throughout the lifetime of the Cell and all operations which
modify its configuration values. This prevents invalid values from being persisted on disk. (#2687) (#2691)

17.55.2 Bugfixes

• Fix an issue where the = sign in the Storm grammar was assigned an anonymous terminal name by the grammar
parser. This caused an issue with interpreting various syntax errors. (#2690)

17.56 v2.94.0 - 2022-05-18

17.56.1 Automatic Migrations

• Re-normalize the migrated properties noted in the data model updates listed below. See Data Migration for more
information about automatic migrations.

17.56.2 Features and Enhancements

• Updates to the crypto, infotech, org, and person models. (#2620) (#2684)

crypto:algorithm
Add a form to represent a named cryptography algorithm.

crypto:key
Add a form to represent a cryptographic key and algorithm.

crypto:smart:effect:transfertoken
Add a form to represent the effect of transferring ownership of a non-fungible token.

crypto:smart:effect:transfertokens
Add a form to represent the effect of transferring multiple fungible tokens.

crypto:smart:effect:edittokensupply
Add a form to represent the increase or decrease in the supply of fungible tokens.

it:prod:softname
Add a form to represent a software name.

it:host
Add a :os:name secondary property.

it:mitre:attack:software
Migrate the :name and :names properties to it:prod:softname type.

1494 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2689
https://github.com/vertexproject/synapse/pull/2681
https://github.com/vertexproject/synapse/pull/2688
https://github.com/vertexproject/synapse/pull/2687
https://github.com/vertexproject/synapse/pull/2691
https://github.com/vertexproject/synapse/pull/2690
https://github.com/vertexproject/synapse/pull/2620
https://github.com/vertexproject/synapse/pull/2684

Synapse Documentation, Release 2.141.0

it:prod:soft
Migrate the :name and :names properties to it:prod:softname type.

it:prod:softver
Deprecate the :software:name property. Migrate the :name and :names properties to
it:prod:softname type.

it:app:yara:rule
Add a :family property to represent the software family the rule is designed to detect.

it:sec:c2:config
Add a form to represent C2 configuration data.

ou:campaign
Add a :org:name property to represent the name of the organization responsible the campaign. Add a
:org:fqdn property to represent the fqdn of the organization responsible the campaign. Add a :team
property to represent the team responsible for the campaign.

ou:team
Add a form to represent a team within an organization.

ou:industry
Migrate the :name property to ou:industryname type. Add a :names property for alternative names.

ou:industryname
Add a form to represent the name of an industry.

ou:position
Add a :team property to represent the team associated with a given position.

ps:contact
Add a :crypto:address property to represent the crypto currency address associated with the contact.

• Add $lib.copy() to Storm. This allows making copies of objects which are compatible with being serialized
with msgpack. (#2678)

• Remove print events from the Storm limit command. (#2674)

17.56.3 Bugfixes

• Fix an issue where client certificates presented in Telepath ssl connections could fallback to resolving users by
a prefix. This was not intended to be allowed when client certificates are used with Telepath. (#2675)

• Fix an issue where node:del triggers could fail to fire when adding nodeedits directly to a view or snap. (#2654)

• Fix header escaping when generating autodoc content for Synapse Cells. (#2677)

• Assorted unit tests fixes to make tests more stable. (#2680)

• Fix an issue with Storm function argument parsing. (#2685)

17.56. v2.94.0 - 2022-05-18 1495

https://github.com/vertexproject/synapse/pull/2678
https://github.com/vertexproject/synapse/pull/2674
https://github.com/vertexproject/synapse/pull/2675
https://github.com/vertexproject/synapse/pull/2654
https://github.com/vertexproject/synapse/pull/2677
https://github.com/vertexproject/synapse/pull/2680
https://github.com/vertexproject/synapse/pull/2685

Synapse Documentation, Release 2.141.0

17.56.4 Improved Documentation

• Add an introduction to Storm libraries and types. (#2670) (#2683)

• Fix small typos and corrections in the devops documentation. (#2673)

17.57 v2.93.0 - 2022-05-04

17.57.1 Features and Enhancements

• Updates to the inet and infotech models. (#2666)

:sandbox:file
Add a sandbox:file property to record an initial sample from a sandbox environment to the following
forms:

it:exec:proc it:exec:thread it:exec:loadlib it:exec:mmap it:exec:mutex
it:exec:pipe it:exec:url it:exec:bind it:exec:file:add it:exec:file:del
it:exec:file:read it:exec:file:write it:exec:reg:del it:exec:reg:get
it:exec:reg:set

it:host:activity
Update the interface to add a sandbox:file property to record an initial sample from a sandbox environ-
ment.

• Changed primary Storm parser to a LALR compatible syntax to gain 80x speed up in parsing Storm queries
(#2649)

• Added service provisioning API to AHA service and associated tool synapse.tools.aha.provision.
service and documentation to make it easy to bootstrap Synapse services using service discovery and SSL
client-side certificates to identify service accounts. (#2641)

• Added user provisioning API to AHA service and associated tools synapse.tools.aha.provision.user
and synapse.tools.aha.enroll to make it easy to bootstrap new users with SSL client-side certificates and
AHA service discovery configuration. (#2641)

• Added automatic mirror initialization logic to Synapse services to enable new mirrors to be initilized dynamically
via AHA provisioning rather than from a pre-existing backup. (#2641)

• Added handoff() API to Synapse services to allow mirrors to be gracefully promoted to leader. (#2641)

• Added synapse.tools.promote to allow easy promotion of mirror to leader using the new handoff() API.
(#2641)

• Added aha:provision configuration to Synapse services to allow them to automatically provision and self-
configure using AHA. (#2641)

• Adjusted Synapse service configuration preference to allow runtime settings to be stored in cell.yaml. (#2641)

• Added optional certhash parameter to telepath ssl:// URLs to allow cert-pinning behavior and automatic
trust of provisioning URLs. (#2641)

• Added synapse.tools.moduser and synapse.tools.modrole commands to modernize and ease user/role
management from within Synapse service docker containers. (#2641)

• Add $lib.jsonstor.cacheget() and lib.jsonstor.cacheset() functions in Storm to easily implement
data caching in the JSONStor. (#2662)

• Add a params option to $lib.inet.http.connect() to pass parameters when creating Websocket connec-
tions in Storm. (#2664)

1496 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2670
https://github.com/vertexproject/synapse/pull/2683
https://github.com/vertexproject/synapse/pull/2673
https://github.com/vertexproject/synapse/pull/2666
https://github.com/vertexproject/synapse/pull/2649
https://github.com/vertexproject/synapse/pull/2641
https://github.com/vertexproject/synapse/pull/2641
https://github.com/vertexproject/synapse/pull/2641
https://github.com/vertexproject/synapse/pull/2641
https://github.com/vertexproject/synapse/pull/2641
https://github.com/vertexproject/synapse/pull/2641
https://github.com/vertexproject/synapse/pull/2641
https://github.com/vertexproject/synapse/pull/2641
https://github.com/vertexproject/synapse/pull/2641
https://github.com/vertexproject/synapse/pull/2662
https://github.com/vertexproject/synapse/pull/2664

Synapse Documentation, Release 2.141.0

17.57.2 Bugfixes

• Added getCellRunId() API to Synapse services to allow them to detect incorrect mirror configurations where
they refer to themselves. (#2641)

• Ensure that CLI history files can be read and written upon starting interactive CLI tools. (#2660)

• Assorted unit tests fixes to make tests more stable. (#2656) (#2665)

• Fix several uses of Python features which are formally deprecated and may be removed in future Python versions.
(#2668)

17.57.3 Improved Documentation

• Added new Deployment Guide with step-by-step production ready deployment instructions (#2641)

• Refactored Devops Guide to give task-oriented instructions on performing common devops tasks. (#2641)

• Added new minimal Admin Guide as a place for documenting Cortex admin tasks. (#2641)

• Updated Getting Started to direct users to synapse-quickstart instructions. (#2641)

• Added easycert tool documentation. (#2641)

• Removed cmdr tool documentation to emphasize newer tools such as storm. (#2641)

• Update the list of available Advanced and Rapid Power-Ups. (#2667)

17.58 v2.92.0 - 2022-04-28

17.58.1 Features and Enhancements

• Update the allowed versions of the pyopenssl and pytz libraries. (#2657) (#2658)

17.58.2 Bugfixes

• When setting ival properties, they are now properly merged with existing values. This only affected multi-layer
views. (#2655)

17.59 v2.91.1 - 2022-04-24

17.59.1 Bugfixes

• Fix a parsing regression in inet:url nodes related to unencoded “@” symbols in URLs. (#2653)

17.58. v2.92.0 - 2022-04-28 1497

https://github.com/vertexproject/synapse/pull/2641
https://github.com/vertexproject/synapse/pull/2660
https://github.com/vertexproject/synapse/pull/2656
https://github.com/vertexproject/synapse/pull/2665
https://github.com/vertexproject/synapse/pull/2668
https://github.com/vertexproject/synapse/pull/2641
https://github.com/vertexproject/synapse/pull/2641
https://github.com/vertexproject/synapse/pull/2641
https://github.com/vertexproject/synapse/pull/2641
https://github.com/vertexproject/synapse/pull/2641
https://github.com/vertexproject/synapse/pull/2641
https://github.com/vertexproject/synapse/pull/2667
https://github.com/vertexproject/synapse/pull/2657
https://github.com/vertexproject/synapse/pull/2658
https://github.com/vertexproject/synapse/pull/2655
https://github.com/vertexproject/synapse/pull/2653

Synapse Documentation, Release 2.141.0

17.60 v2.91.0 - 2022-04-21

17.60.1 Features and Enhancements

• Updates to the inet and infotech models. (#2634) (#2644) (#2652)

inet:url
The inet:url type now recognizes various file:/// values from RFC 8089.

it:sec:cve
The it:sec:cve type now replaces various Unicode dashes with hyphen characters when norming. This
allows a wider range of inputs to be accepted for the type. Scrape related APIs have also been updated to
match on this wider range of inputs.

• The Cell now uses ./backup as a default path for storing backups in, if the backup:dir path is not set. (#2648)

• Add POSIX advisory locking around the Cell cell.guid file, to prevent multiple processes from attempting to
start a Cell from the same directory. (#2642)

• Change the default SLAB_COMMIT_WARN time from 5 seconds to 1 second, in order to quickly identify slow
storage performance. (#2630)

• Change the Cell iterBackupArchive and iterNewBackupArchive routines to always log exceptions they
encounter, and report the final log message at the appropriate log level for success and failure. (#2629)

• When normalizing the str types, when onespace is specified, we skip the strip behavior since it is redundant.
(#2635)

• Log exceptions raised by Cell creation in initFromArgv. Catch lmdb.LockError when opening a LMDB
database and re-raise an exception with a clear error message. (#2638)

• Update schema validation for Storm packages to ensure that cmd arguments do not have excess fields in them.
(#2650)

17.60.2 Bugfixes

• Adjust comma requirements for the JSON style list and dictionary expressions in Storm. (#2636)

• Add Storm query logging in a code execution path where it was missing. (#2647)

• Tuplify the output of synapse.tools.genpkg.loadPkgProto to ensure that Python list constructs [...] do
not make it into Power-Up documentation. (#2646)

• Fix an issue with heavy Stormtypes objects where caching was preventing some objects from behaving in a
dynamic fashion as they were intended to. (#2640)

• In norming int values, when something is outside of the minimum or maximum size of the type, we now include
the string representation of the valu instead of the raw value. (#2643)

• Raise a NotReady exception when a client attempts to resolve an aha:// URL and there have not been any aha
servers registered. (#2645)

1498 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2634
https://github.com/vertexproject/synapse/pull/2644
https://github.com/vertexproject/synapse/pull/2652
https://github.com/vertexproject/synapse/pull/2648
https://github.com/vertexproject/synapse/pull/2642
https://github.com/vertexproject/synapse/pull/2630
https://github.com/vertexproject/synapse/pull/2629
https://github.com/vertexproject/synapse/pull/2635
https://github.com/vertexproject/synapse/pull/2638
https://github.com/vertexproject/synapse/pull/2650
https://github.com/vertexproject/synapse/pull/2636
https://github.com/vertexproject/synapse/pull/2647
https://github.com/vertexproject/synapse/pull/2646
https://github.com/vertexproject/synapse/pull/2640
https://github.com/vertexproject/synapse/pull/2643
https://github.com/vertexproject/synapse/pull/2645

Synapse Documentation, Release 2.141.0

17.60.3 Improved Documentation

• Update Storm command reference to add additional commands. (#2633)

• Expand Stormtypes API documentation. (#2637) (#2639)

17.61 v2.90.0 - 2022-04-04

17.61.1 Features and Enhancements

• Updates to the meta and infotech models. (#2624)

meta:rule
Add a new form for generic rules, which should be linked to the nodes they match with a matches light
edge.

meta:ruleset
Add :author, :created, and :updated secondary properties.

it:app:yara:rule
Add :created and :updated secondary properties.

• Add a new Docker image vertexproject/synapse-jsonstor. (#2627)

• Allow passing a version requirement string to $lib.import(). (#2626)

17.61.2 Bugfixes

• Fix an issue where using a regex lift on an array property could incorrectly yield the same node multiple times.
(#2625)

17.61.3 Improved Documentation

• Update documentation regarding mirroring to be clearer about whether a given cell supports it. (#2619)

17.62 v2.89.0 - 2022-03-31

17.62.1 Features and Enhancements

• Update the meta model. (#2621)

meta:ruleset
Add a new form to denote the collection of a set of nodes representing rules, which should be linked together
with a has light edge.

• Add additional filter options for the Storm merge command. (#2615)

• Update the BadSyntaxError exception thrown when parsing Storm queries to additionally include line and
column when available. Fix an issue where a ! character being present in the exception text could truncate the
output. (#2618)

17.61. v2.90.0 - 2022-04-04 1499

https://github.com/vertexproject/synapse/pull/2633
https://github.com/vertexproject/synapse/pull/2637
https://github.com/vertexproject/synapse/pull/2639
https://github.com/vertexproject/synapse/pull/2624
https://github.com/vertexproject/synapse/pull/2627
https://github.com/vertexproject/synapse/pull/2626
https://github.com/vertexproject/synapse/pull/2625
https://github.com/vertexproject/synapse/pull/2619
https://github.com/vertexproject/synapse/pull/2621
https://github.com/vertexproject/synapse/pull/2615
https://github.com/vertexproject/synapse/pull/2618

Synapse Documentation, Release 2.141.0

17.63 v2.88.0 - 2022-03-23

17.63.1 Automatic Migrations

• Re-normalize the geo:place:name, crypto:currency:block:hash, and
crypto:currency:transaction:hash values to account for their modeling changes. Migrate
crypto:currency:transaction:input and crypto:currency:transaction:output values to the
secondary properties on the respective crypto:payment:input and crypto:payment:output nodes to
account for the modeling changes. Make geo:name nodes for geo:place:name secondary properties to
account for the modeling changes. See Data Migration for more information about automatic migrations.

17.63.2 Features and Enhancements

• Several updates for the crypto, geospace, inet, and meta models. (#2594) (#2608) (#2611) (#2616)

crypto:payment:input
Add a secondary property :transaction to denote the transaction for the payment.

crypto:payment:output
Add a secondary property :transaction to denote the transaction for the payment.

crypto:currency:block
Change the type of the :hash property from a 0x prefixed str to a hex type.

crypto:currency:transaction
Change the type of the :hash property from a 0x prefixed str to a hex type. Deprecate the :inputs and
:outputs secondary properties.

geo:place
Change the type of the :name secondary property to geo:name.

inet:web:channel
Add a new form to denote a channel within a web service or instance.

inet:web:instance
Add a new form to track an instance of a web service, such as a channel based messaging platform.

inet:web:mesg
Add :channel, :place, and :place:name secondary properties.

inet:web:post
Add :channel and :place:name secondary properties.

meta:event
Add a new form to denote an analytically relevant event in a curated timeline.

meta:event:taxonomy
Add a new form to represent a taxonomy of meta:event:type values.

meta:timeline
Add a new form to denote a curated timeline of analytically relevant events.

meta:timeline:taxonomy
Add a new form to represent a taxonomy of meta:timeline:type values.

• Add support for $lib.len() to count the length of emitter or generator functions. (#2603)

• Add support for scrape APIs to handle text that has been defanged with \\. characters. (#2605)

• Add a nomerge option to View objects that can be set to prevent merging a long lived fork. (#2614)

1500 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2594
https://github.com/vertexproject/synapse/pull/2608
https://github.com/vertexproject/synapse/pull/2611
https://github.com/vertexproject/synapse/pull/2616
https://github.com/vertexproject/synapse/pull/2603
https://github.com/vertexproject/synapse/pull/2605
https://github.com/vertexproject/synapse/pull/2614

Synapse Documentation, Release 2.141.0

• Add liftByProp() and liftByTag() methods to the Stormtypes layer objects. These allow lifting of nodes
based on data stored in a specific layer. (#2613)

• Expand Synapse requirements to include updated versions of the pygments library. (#2602)

17.63.3 Improved Documentation

• Fix the example regular expressions used in the $lib.scrape.genMatches() Storm library API examples.
(#2606)

17.64 v2.87.0 - 2022-03-18

17.64.1 Features and Enhancements

• Several updates for the inet and meta models. (#2589) (#2592)

inet:ssl:jarmhash
Add a form to record JARM hashes.

inet:ssl:jarmsample
Add a form to record JARM hashes being present on a server.

meta:note
Add a form for recording free text notes.

• Update the Synapse docker containers to be built from a Ubuntu based image, instead of a Debian based image.
(#2596)

• Add a Storm note.add command that creates a meta:note node to record freeform text, and links that node to
the input nodes using a about light edge. (#2592)

• Support non-writeable or non-existing directories within Synapse certdir directories. (#2590)

• Add an optional tick argument to the synapse.lib.lmdbslab.Hist.add() function. This is exposed inter-
nally for Axon implementations to use. (#2593)

• Expand Synapse requirements to include updated versions of the pycryptome, pygments, scalecodec and
xxhash modules. (#2598)

17.64.2 Bugfixes

• Fix an issue where the StormDmon stop/start status was not properly being updated in the runtime object, despite
being properly updated in the Hive. (#2598)

• Calls to addUnivProp() APIs when the universal property name already exists now raise a DupPropName
exception. (#2601)

17.64. v2.87.0 - 2022-03-18 1501

https://github.com/vertexproject/synapse/pull/2613
https://github.com/vertexproject/synapse/pull/2602
https://github.com/vertexproject/synapse/pull/2606
https://github.com/vertexproject/synapse/pull/2589
https://github.com/vertexproject/synapse/pull/2592
https://github.com/vertexproject/synapse/pull/2596
https://github.com/vertexproject/synapse/pull/2592
https://github.com/vertexproject/synapse/pull/2590
https://github.com/vertexproject/synapse/pull/2593
https://github.com/vertexproject/synapse/pull/2598
https://github.com/vertexproject/synapse/pull/2598
https://github.com/vertexproject/synapse/pull/2601

Synapse Documentation, Release 2.141.0

17.65 v2.86.0 - 2022-03-09

17.65.1 Automatic Migrations

• Migrate secondary properties in Cortex nodes which use hugenum type to account for updated ranges. See Data
Migration for more information about automatic migrations.

17.65.2 Features and Enhancements

• Extend the number of decimal places the hugenum type can store to 24 places, with a new maximum value of
730750818665451459101842. (#2584) (#2586)

• Update fastjsonschema to version 2.15.3. (#2581)

17.65.3 Bugfixes

• Add missing read-only flags to secondary properties of Comp type forms which were computed from the primary
property of the node. This includes the following: (#2587)

– crypto:currency:address:coin

– crypto:currency:address:iden

– crypto:currency:block:coin

– crypto:currency:block:offset

– crypto:currency:client:coinaddr

– crypto:currency:client:inetaddr

– crypto:currency:smart:token:contract

– crypto:currency:smart:token:tokenid

– crypto:x509:revoked:crl

– crypto:x509:revoked:cert

– crypto:x509:signedfile:cert

– crypto:x509:signedfile:file

– econ:acquired:item

– econ:acquired:purchase

– inet:dns:query:client

– inet:dns:query:name

– inet:dns:query:type

– inet:whois:contact:type

– inet:wifi:ap:bssid

– inet:wifi:ap:ssid

– mat:itemimage:file

– mat:itemimage:item

1502 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2584
https://github.com/vertexproject/synapse/pull/2586
https://github.com/vertexproject/synapse/pull/2581
https://github.com/vertexproject/synapse/pull/2587

Synapse Documentation, Release 2.141.0

– mat:specimage:file

– mat:specimage:spec

– ou:id:number:type

– ou:id:number:value

– ou:hasgoal:goal

– ou:hasgoal:org

– tel:mob:cell:carrier

– tel:mob:cell:carrier:mcc

– tel:mob:cell:carrier:mnc

– tel:mob:cell:cid

– tel:mob:cell:lac

• Fix an issue where Layers configured with writeback mirrors did not properly handle results which did not have
any changes. (#2583)

17.65.4 Improved Documentation

• Fix spelling issues in documentation and API docstrings. (#2582) (#2585)

17.66 v2.85.1 - 2022-03-03

17.66.1 Bugfixes

• Fix a permission enforcement issue in autoadd mode that allowed users with view read permissions to add auto-
matically detected and validated nodes but make no further edits. (#2579)

• Log errors encountered in the Layer mirror loop which don’t have a local caller waiting on the change. (#2580)

17.67 v2.85.0 - 2022-03-03

17.67.1 Features and Enhancements

• Several updates for the crypto, geo, inet, it, ps and risk models. (#2570) (#2573) (#2574)

crypto:payment:input
Add a new form to record payments made into a transaction.

crypto:payment:output
Add a new form to record payments receieved from a transaction.

crypto:currency:transaction
Add inputs and outputs array secondary properties to record inputs and outputs for a given transaction.

geo:name
Add a new form representing an unstructured place name or address.

geo:place
Add a names secondary property which is an array of geo:name values.

17.66. v2.85.1 - 2022-03-03 1503

https://github.com/vertexproject/synapse/pull/2583
https://github.com/vertexproject/synapse/pull/2582
https://github.com/vertexproject/synapse/pull/2585
https://github.com/vertexproject/synapse/pull/2579
https://github.com/vertexproject/synapse/pull/2580
https://github.com/vertexproject/synapse/pull/2570
https://github.com/vertexproject/synapse/pull/2573
https://github.com/vertexproject/synapse/pull/2574

Synapse Documentation, Release 2.141.0

inet:flow
Add dst:txcount, src:txcount, tot:txcount and tot:txbytes secondary properties.

it:exec:proc
Add an account secondary property as a it:account type. Mark the user secondary property as depre-
cated.

ps:contact
Add birth:place, birth:place:loc, birth:place:name, death:place, death:place:loc and
death:place:name secondary properties.

risk:compromise
Add a theft:price secondary property to represent value of stolen assets.

• Embed Cron, StormDmon, and Trigger iden values and automation types into the Storm runtime when those
automations are run. This information is populated in a dictionary variable named $auto. (#2565)

• Add $lib.crypto.coin.ethereum.eip55() to convert an Ethereum address to a checksummed address.
(#2577)

• Add a default argument to the $lib.user.allowed() and allowed() method on user StormType. (#2570)

• Add a inaugural configuration key to the base Cell class. This can currently be used to bootstrap roles,
permissions, and users in a Cell upon the first time it is started. (#2570)

• De-duplicate nodes when running the Storm lookup mode to lift nodes. (#2567)

• Add a test helper that can be used to isolate the synapse.lib.certdir.certdir singleton behavior via context
manager. (#2564)

17.67.2 Bugfixes

• Calls to addFormProp() APIs when the property name already exists now raise a DupPropName exception.
(#2566)

• Do not allow Storm macro’s to be created that have names greater than 492 characters in length. (#2569)

• Fix a bug in the scrape logic for Ethereum where the regular expression matched on 0X prefixed strings but the
validation logic did not account for that uppercase character. (#2575)

17.67.3 Improved Documentation

• Add documentation for the $auto variable embedded into the Cron, StormDmon, and Trigger automations. Add
documentation for variables representing the form, node value, properties and tags which are responsible for
Triggers running. (#2565)

17.68 v2.84.0 - 2022-02-22

17.68.1 Features and Enhancements

• Add $lib.time.toUTC() to adjust a local epoch milliseconds time to UTC. (#2550)

• Add a optional timeout argument to $lib.service.wait(). The function now returns $lib.true if the
service is available, or $lib.false if the service does not become available during the timeout window. (#2561)

• Update the Layer.verify() routines to add verification of tagprop and array indexes in layers. These routines
are in a beta status and are subject to change. (#2560)

1504 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2565
https://github.com/vertexproject/synapse/pull/2577
https://github.com/vertexproject/synapse/pull/2570
https://github.com/vertexproject/synapse/pull/2570
https://github.com/vertexproject/synapse/pull/2567
https://github.com/vertexproject/synapse/pull/2564
https://github.com/vertexproject/synapse/pull/2566
https://github.com/vertexproject/synapse/pull/2569
https://github.com/vertexproject/synapse/pull/2575
https://github.com/vertexproject/synapse/pull/2565
https://github.com/vertexproject/synapse/pull/2550
https://github.com/vertexproject/synapse/pull/2561
https://github.com/vertexproject/synapse/pull/2560

Synapse Documentation, Release 2.141.0

• Update the Cortex’s connection to a remote Axon to use a Telepath Client. (#2559)

17.69 v2.83.0 - 2022-02-17

17.69.1 Features and Enhancements

• Add :ip:proto and :ip:tcp:flags properties to the inet:flow form. (#2554)

• Add $lib.log.debug(), $lib.log.info(), $lib.log.warning(), and $lib.log.error() Stormtypes
APIs. These allow a user to send log messages to the Cortex logging output directly.

• Update the synapse.tools.genpkg tool to support using files with the .storm extension. This is enabled by
adding the following option to a Storm package definition. (#2555)

genopts:
dotstorm: true

• Add form and prop values to BadTypeValu exceptions when raised during node edit generation. (#2552)

17.69.2 Bugfixes

• Correct a race condition in the CoreApi.syncLayersEvents and CoreApi.syncIndexEventsAPIs. (#2553)

17.69.3 Improved Documentation

• Remove outdated documentation related to making CoreModule classes. (#2556)

17.70 v2.82.1 - 2022-02-11

17.70.1 Bugfixes

• Re-order node edit validation to only check read-only status of properties if the value would change. (#2547)

• Raise the correct exception when parsing invalid time values, like 0000-00-00. (#2548)

• Disable node caching for StormDmon runtimes to avoid potential cache coherency issues. (#2549)

17.71 v2.82.0 - 2022-02-10

17.71.1 Features and Enhancements

• Add an addNode() API to the Stormtypes view object. This allows the programmatic creation of a node with
properties being set in a transactional fashion. (#2540)

• Add support to Storm for creating JSON style list and dictionary objects. (#2544)

• The AhaCell now bootstraps TLS CA certificates for the configured aha:network value, a host certificate for
the aha:name value, and a user certificate for the aha:admin value. (#2542)

• Add mesg arguments to all exceptions raised in synapse.lib.certdir. (#2546)

17.69. v2.83.0 - 2022-02-17 1505

https://github.com/vertexproject/synapse/pull/2559
https://github.com/vertexproject/synapse/pull/2554
https://github.com/vertexproject/synapse/pull/2555
https://github.com/vertexproject/synapse/pull/2552
https://github.com/vertexproject/synapse/pull/2553
https://github.com/vertexproject/synapse/pull/2556
https://github.com/vertexproject/synapse/pull/2547
https://github.com/vertexproject/synapse/pull/2548
https://github.com/vertexproject/synapse/pull/2549
https://github.com/vertexproject/synapse/pull/2540
https://github.com/vertexproject/synapse/pull/2544
https://github.com/vertexproject/synapse/pull/2542
https://github.com/vertexproject/synapse/pull/2546

Synapse Documentation, Release 2.141.0

17.71.2 Improved Documentation

• Fix some missing and incorrect docstrings for Stormtypes. (#2545)

17.71.3 Deprecations

• Telepath APIs and Storm commands related to splices have been marked as deprecated. (#2541)

17.72 v2.81.0 - 2022-01-31

17.72.1 Features and Enhancements

• The it:sec:cpe now recognizes CPE 2.2 strings during type normalization. CPE 2.2 strings will be upcast to
CPE 2.3 and the 2.2 string will be added to the :v2_2 secondary property of it:sec:cpe. The Storm hotfix
$lib.cell.hotFixesApply() can be used to populate the :v2_2 property on existing it:sec:cpe nodes
where it is not set. (#2537) (#2538) (#2539)

• Setting properties on nodes may now take a fast path if the normed property has no subs, no autoadds and is not
a locked property. (#2539)

17.72.2 Bugfixes

• Fix an issue with Ival norm() routines when norming a tuple or list of values. The max value returned previously
could have exceeded the value of the future marker ?, which would have been then caused an a BadTypeValu
exception during node edit construction. This is is now caught during the initial norm() call. (#2539)

17.73 v2.80.1 - 2022-01-26

17.73.1 Bugfixes

• The embedded JsonStor added to the Cortex in v2.80.0 needed to have a stable iden for the Cell and and auth
subsystem. This has been added. (#2536)

17.74 v2.80.0 - 2022-01-25

17.74.1 Features and Enhancements

• Add a triple quoted string ''' syntax to Storm for defining multiline strings. (#2530)

• Add a JSONStor to the Cortex, and expose that in Storm for storing user related content. (#2530) (#2513)

• Add durable user notifications to Storm that can be used to send and receive messages between users. (#2513)

• Add a leaf argument to $node.tags() that causes the function to only return the leaf tags. (#2535)

• Add an error message in the default help text in pure Storm commands when a user provides additional arguments
or switches, in addition to the --help switch. (#2533)

• Update synapse.tools.genpkg to automatically bundle Optic workflows from files on disk. (#2531)

1506 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2545
https://github.com/vertexproject/synapse/pull/2541
https://github.com/vertexproject/synapse/pull/2537
https://github.com/vertexproject/synapse/pull/2538
https://github.com/vertexproject/synapse/pull/2539
https://github.com/vertexproject/synapse/pull/2539
https://github.com/vertexproject/synapse/pull/2539
https://github.com/vertexproject/synapse/pull/2536
https://github.com/vertexproject/synapse/pull/2530
https://github.com/vertexproject/synapse/pull/2530
https://github.com/vertexproject/synapse/pull/2513
https://github.com/vertexproject/synapse/pull/2513
https://github.com/vertexproject/synapse/pull/2535
https://github.com/vertexproject/synapse/pull/2533
https://github.com/vertexproject/synapse/pull/2531

Synapse Documentation, Release 2.141.0

• Expand Synapse requirements to include updated versions of the packaging, pycryptome and scalecodec
modules. (#2534)

17.74.2 Bugfixes

• Add a missing tostr() call to the Storm background query argument. (#2532)

17.75 v2.79.0 - 2022-01-18

17.75.1 Features and Enhancements

• Add $lib.scrape.ndefs() and $lib.scrape.context() to scrape text. The ndefs() API yields a unique
set of node form and value pairs, while the context() API yields node form, value, and context information for
all matches in the text. (#2508)

• Add :name and :desc properties to the it:prod:softver form. (#2528)

• Update the Layer.verify() routines to reduce false errors related to array types. The method now takes a
dictionary of configuration options. These routines are in a beta status and are subject to change. (#2527)

• Allow setting a View’s parent if does not have an existing parent View and only has a single layer. (#2515)

• Add hxxp[:\\] and hxxps[:\\] to the list of known defanging strategies which are identified and replaced
during text scraping. (#2526)

• Expand Synapse requirements to include updated versions of the typing-extensions module. (#2525)

17.75.2 Bugfixes

• Storm module interfaces now populate modconf data when loaded. (#2508)

• Fix a missing keyword argument from the AxonApi.wput() method. (#2527)

17.75.3 Deprecations

• The $lib.scrape() function has been deprecated in favor the new $lib.scrape library functions. (#2508)

17.76 v2.78.0 - 2022-01-14

17.76.1 Automatic Migrations

• Migrate Cortex nodes which may have been skipped in an earlier migration due to missing tagprop indexes. See
Data Migration for more information about automatic migrations.

17.75. v2.79.0 - 2022-01-18 1507

https://github.com/vertexproject/synapse/pull/2534
https://github.com/vertexproject/synapse/pull/2532
https://github.com/vertexproject/synapse/pull/2508
https://github.com/vertexproject/synapse/pull/2528
https://github.com/vertexproject/synapse/pull/2527
https://github.com/vertexproject/synapse/pull/2515
https://github.com/vertexproject/synapse/pull/2526
https://github.com/vertexproject/synapse/pull/2525
https://github.com/vertexproject/synapse/pull/2508
https://github.com/vertexproject/synapse/pull/2527
https://github.com/vertexproject/synapse/pull/2508

Synapse Documentation, Release 2.141.0

17.76.2 Features and Enhancements

• Expand Synapse requirements to include updated versions of the base58, cbor2, lmdb, pycryptodome,
PyYAML, xxhash. (#2520)

17.76.3 Bugfixes

• Fix an issue with the Tagprop migration from v2.42.0 where a missing index could have resulted in Layer
storage nodes not being updated. (#2522) (#2523)

• Fix an issue with synapse.lib.platforms.linux.getTotalMemory() when using a process segregated
with the Linux cgroups2 API. (#2517)

17.76.4 Improved Documentation

• Add devops instructions related to automatic data migrations for Synapse components. (#2523)

• Update the model deprecation documentation for the it:host:model and it:host:make properties. (#2521)

17.77 v2.77.0 - 2022-01-07

17.77.1 Features and Enhancements

• Add Mach-O metadata support the file model. This includes the following new forms:
file:mime:macho:loadcmd, file:mime:macho:version, file:mime:macho:uuid,
file:mime:macho:segment, and file:mime:macho:section. (#2503)

• Add it:screenshot, it:prod:hardware, it:prod:component, it:prod:hardwaretype, and
risk:mitigation forms to the model. Add :hardware property to risk:hasvuln form. Add :hardware
property to it:host form. The :manu and :model secondary properties on it:host have been deprecated.
(#2514)

• The guid type now strips hyphen (-) characters when doing norm. This allows users to provide external UUID
/ GUID strings for use. (#2514)

• Add a Axon.postfiles() to allow POSTing files as multi-part form encoded files over HTTP. This is also ex-
posed through the fields argument on the Storm $lib.inet.http.post() and $lib.inet:http:request
APIs. (#2516)

• Add .yu ccTLD to the list of TLDs identified by the Synapse scrape functionality. (#2518)

• Add mesg arguments to all instances of NoSuchProp exceptions. (#2519)

17.78 v2.76.0 - 2022-01-04

17.78.1 Features and Enhancements

• Add emit and stop keywords to Storm. The emit keyword is used in functions to make them behave as gener-
ators, which can yield arbitrary values. The stop keyword can be used to prematurely end a function which is
emit’ing values. (#2475)

1508 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2520
https://github.com/vertexproject/synapse/pull/2522
https://github.com/vertexproject/synapse/pull/2523
https://github.com/vertexproject/synapse/pull/2517
https://github.com/vertexproject/synapse/pull/2523
https://github.com/vertexproject/synapse/pull/2521
https://github.com/vertexproject/synapse/pull/2503
https://github.com/vertexproject/synapse/pull/2514
https://github.com/vertexproject/synapse/pull/2514
https://github.com/vertexproject/synapse/pull/2516
https://github.com/vertexproject/synapse/pull/2518
https://github.com/vertexproject/synapse/pull/2519
https://github.com/vertexproject/synapse/pull/2475

Synapse Documentation, Release 2.141.0

• Add Storm Module Interfaces. This allows Storm Package authors to define common module interfaces, so
that multiple modules can implement the API convention to provide a consistent set of data across multiple
Storm modules. A search convention is added to the Cortex, which will be used in lookup mode when the
storm:interface:search configuration option is set. (#2475)

• Storm queries in lookup mode now fire look:miss events into the Storm message stream when the lookup
value contains a valid node value, but the node is not present in the current View. (#2475)

• Add a :host secondary property to risk:hasvuln form to record it:host instances which have a vulnerability.
(#2512)

• Add synapse.lib.scrape support for identifying it:sec:cve values. (#2509)

17.78.2 Bugfixes

• Fix an IndexError that can occur during Layer.verify() routines. These routines are in a beta status and
are subject to change. (#2507)

• Ensure that parameter and header arguments passed to Storm $lib.inet.http functions are cast into strings
values. (#2510)

17.79 v2.75.0 - 2021-12-16

This release contains an automatic data migration that may cause additional startup time on the first boot. This is done
to unique array properties which previously were not uniqued. Deployments with startup or liveliness probes should
have those disabled while this upgrade is performed to prevent accidental termination of the Cortex process. Please
ensure you have a tested backup available before applying this update.

17.79.1 Features and Enhancements

• Update the following array properties to be unique sets, and add a data model migration to update the data at
rest: (#2469)

– biz:rfp:requirements

– crypto:x509:cert:ext:sans

– crypto:x509:cert:ext:crls

– crypto:x509:cert:identities:fqdns

– crypto:x509:cert:identities:emails

– crypto:x509:cert:identities:ipv4s

– crypto:x509:cert:identities:ipv6s

– crypto:x509:cert:identities:urls

– crypto:x509:cert:crl:urls

– inet:whois:iprec:contacts

– inet:whois:iprec:links

– inet:whois:ipcontact:roles

– inet:whois:ipcontact:links

– inet:whois:ipcontact:contacts

17.79. v2.75.0 - 2021-12-16 1509

https://github.com/vertexproject/synapse/pull/2475
https://github.com/vertexproject/synapse/pull/2475
https://github.com/vertexproject/synapse/pull/2512
https://github.com/vertexproject/synapse/pull/2509
https://github.com/vertexproject/synapse/pull/2507
https://github.com/vertexproject/synapse/pull/2510
https://github.com/vertexproject/synapse/pull/2469

Synapse Documentation, Release 2.141.0

– it:account:groups

– it:group:groups

– it:reveng:function:impcalls

– it:reveng:filefunc:funccalls

– it:sec:cve:references

– risk:vuln:cwes

– tel:txtmesg:recipients

• Add Layer index verification routines, to compare the Layer indices against the stored data for Nodes. This is
exposed via the .verify() API on the Stormtypes layer object. These routines are in a beta status and are
subject to change. (#2488)

• The .json() API on inet:http:resp now raises a s_exc.BadJsonText exception, which can be caught
with the Storm try ... catch syntax. (#2500)

• Add $lib.inet.ipv6.expand() to expand an IPv6 address to its long form. (#2502)

• Add hasPathObj(), copyPathObj() and copyPathObjs() APIs to the JsonStor. (#2438)

• Allow setting a custom title when making documentation for Cell confdefswith the synapse.tools.autodoc
tool. (#2504)

• Update the minimum version of the aiohttp library to v3.8.1. (#2495)

17.79.2 Improved Documentation

• Add content previously hosted at commercial.docs.vertex.link to the mainline Synapse documentation.
This includes some devops information related to orchestration, information about Advanced and Rapid Power-
Ups, information about the Synapse User Interface, as well as some support information. (#2498) (#2499)
(#2501)

• Add Synapse-Malshare and Synapse-TeamCymru Rapid Power-Ups to the list of available Rapid Power-Ups.
(#2506)

• Document the jsonlines option for the api/v1/storm and api/v1/storm/nodes HTTP APIs. (#2505)

17.80 v2.74.0 - 2021-12-08

17.80.1 Features and Enhancements

• Add .onion and .bit to the TLD list used for scraping text. Update the TLD list from the latest IANA TLD
list. (#2483) (#2497)

• Add support for writeback mirroring of layers. (#2463) (#2489)

• Add $lib.scrape() Stormtypes API. This can be used to do programmatic scraping of text using the same
regular expressions used by the Storm scrape command and the synapse.lib.scrape APIs. (#2486)

• Add a jsonlines output mode to Cortex streaming HTTP endpoints. (#2493)

• Add a --raw argument to the Storm pkg.load command. This loads the raw JSON response as a Storm package.
(#2491)

• Add a blocked enum to the proj:ticket:status property to represent a blocked ticket. (#2490)

1510 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2488
https://github.com/vertexproject/synapse/pull/2500
https://github.com/vertexproject/synapse/pull/2502
https://github.com/vertexproject/synapse/pull/2438
https://github.com/vertexproject/synapse/pull/2504
https://github.com/vertexproject/synapse/pull/2495
https://github.com/vertexproject/synapse/pull/2498
https://github.com/vertexproject/synapse/pull/2499
https://github.com/vertexproject/synapse/pull/2501
https://github.com/vertexproject/synapse/pull/2506
https://github.com/vertexproject/synapse/pull/2505
https://github.com/vertexproject/synapse/pull/2483
https://github.com/vertexproject/synapse/pull/2497
https://github.com/vertexproject/synapse/pull/2463
https://github.com/vertexproject/synapse/pull/2489
https://github.com/vertexproject/synapse/pull/2486
https://github.com/vertexproject/synapse/pull/2493
https://github.com/vertexproject/synapse/pull/2491
https://github.com/vertexproject/synapse/pull/2490

Synapse Documentation, Release 2.141.0

17.80.2 Bugfixes

• Fix a behavior with $path losing variables in pure Storm command execution. (#2492)

17.80.3 Improved Documentation

• Update the description of the Storm scrape command. (#2494)

17.81 v2.73.0 - 2021-12-02

17.81.1 Features and Enhancements

• Add a Storm runas command. This allows admin users to execute Storm commands as other users. (#2473)

• Add a Storm intersect command. This command produces the intersection of nodes emitted by running a
Storm query over all inbound nodes to the intersect command. (#2480)

• Add wait and timeout parameters to the Axon.hashes() and $lib.axon.list() APIs. (#2481)

• Add a readonly flag to synapse.tools.genpkg.loadPkgProto() and synapse.tools.genpkg.
tryLoadPkgProto() APIs. If set to True this will open files in read only mode. (#2485)

• Allow Storm Prim objects to be capable of directly yielding nodes when used in yield statements. (#2479)

• Update the StormDmon subsystem to add debug log information about state changes, as well as additional data
for structured logging output. (#2455)

17.81.2 Bugfixes

• Catch a fatal application error that can occur in the Cortex if the forked process pool becomes unusable. Pre-
viously this would cause the Cortex to appear unresponsive for executing Storm queries; now this causes the
Cortex to shut down gracefully. (#2472)

• Fix a Storm path variable scoping issue where variables were improperly scoped when nodes were passed into
pure Storm commands. (#2459)

17.82 v2.72.0 - 2021-11-23

17.82.1 Features and Enhancements

• Update the cron subsystem logs to include the cron name, as well as adding additional data for structured logging
output. (#2477)

• Add a sort_keys argument to the $lib.yaml.save() Stormtype API. (#2474)

17.81. v2.73.0 - 2021-12-02 1511

https://github.com/vertexproject/synapse/pull/2492
https://github.com/vertexproject/synapse/pull/2494
https://github.com/vertexproject/synapse/pull/2473
https://github.com/vertexproject/synapse/pull/2480
https://github.com/vertexproject/synapse/pull/2481
https://github.com/vertexproject/synapse/pull/2485
https://github.com/vertexproject/synapse/pull/2479
https://github.com/vertexproject/synapse/pull/2455
https://github.com/vertexproject/synapse/pull/2472
https://github.com/vertexproject/synapse/pull/2459
https://github.com/vertexproject/synapse/pull/2477
https://github.com/vertexproject/synapse/pull/2474

Synapse Documentation, Release 2.141.0

17.82.2 Bugfixes

• Update the asyncio-socks version to a version which has a pinned version range for the python-socks de-
pendency. (#2478)

17.83 v2.71.1 - 2021-11-22

17.83.1 Bugfixes

• Update the PyOpenSSL version to 21.0.0 and pin a range of modern versions of the cryptography which have
stronger API compatibility. This resolves an API compatibility issue with the two libraries which affected SSL
certificate generation. (#2476)

17.84 v2.71.0 - 2021-11-19

17.84.1 Features and Enhancements

• Add support for asynchronous triggers. This mode of trigger operation queues up the trigger event in the View
for eventual processing. (#2464)

• Update the crypto model to add a crypto:smart:token form to represent a token managed by a smart contract.
(#2462)

• Add $lib.axon.readlines() and $lib.axon.jsonlines() to Stormtypes. (#2468)

• Add the Storm mode to the structured log output of a Cortex executing a Storm query. (#2466)

17.84.2 Bugfixes

• Fix an error when converting Lark exceptions to Synapse BadSyntaxError. (#2471)

17.84.3 Improved Documentation

• Revise the Synapse documentation layout. (#2460)

• Update type specific behavior documentation for time types, including the recently added wildcard time syntax.
(#2467)

• Sort the Storm Type documentation by name. (#2465)

• Add 404 handler pages to our documentation. (#2461) (#2470)

1512 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2478
https://github.com/vertexproject/synapse/pull/2476
https://github.com/vertexproject/synapse/pull/2464
https://github.com/vertexproject/synapse/pull/2462
https://github.com/vertexproject/synapse/pull/2468
https://github.com/vertexproject/synapse/pull/2466
https://github.com/vertexproject/synapse/pull/2471
https://github.com/vertexproject/synapse/pull/2460
https://github.com/vertexproject/synapse/pull/2467
https://github.com/vertexproject/synapse/pull/2465
https://github.com/vertexproject/synapse/pull/2461
https://github.com/vertexproject/synapse/pull/2470

Synapse Documentation, Release 2.141.0

17.84.4 Deprecations

• Remove $path.trace() objects. (#2445)

17.85 v2.70.1 - 2021-11-08

17.85.1 Bugfixes

• Fix an issue where $path.meta data was not being properly serialized when heavy Stormtype objects were set
on the $path.meta dictionary. (#2456)

• Fix an issue with Stormtypes Str.encode() and Bytes.decode() methods when handling potentially mal-
formed Unicode string data. (#2457)

17.85.2 Improved Documentation

• Update the Storm Control Flow documentation with additional examples. (#2443)

17.86 v2.70.0 - 2021-11-03

17.86.1 Features and Enhancements

• Add :dst:handshake and src:handshake properties to inet:flow to record text representations of the hand-
shake strings of a given connection. (#2451)

• Add a proj:attachment form to the project model to represent attachments to a given proj:ticket.
(#2451)

• Add a implicit wildcard behavior to the time type when lifting or filtering nodes. Dates ending in a * are
converted into ranges covering all possible times in them. For example, .created=202101* would lift all
nodes created on the first month of 2021. (#2446)

• Add the following $lib.time functions to chop information from a time value. (#2446)

– $lib.time.year()

– $lib.time.month()

– $lib.time.day()

– $lib.time.hour()

– $lib.time.minute()

– $lib.time.second()

– $lib.time.dayofweek()

– $lib.time.dayofmonth()

– $lib.time.monthofyear()

• Add List.extend(), List.slice(), Str.find(), and Str.size() functions to Stormtypes. (#2450)
(#2451)

• Add $lib.json.schema() and a json:schema object to Stormtypes. These can be used to validate arbitrary
data JSON structures in Storm using JSON Schema. (#2448)

17.85. v2.70.1 - 2021-11-08 1513

https://github.com/vertexproject/synapse/pull/2445
https://github.com/vertexproject/synapse/pull/2456
https://github.com/vertexproject/synapse/pull/2457
https://github.com/vertexproject/synapse/pull/2443
https://github.com/vertexproject/synapse/pull/2451
https://github.com/vertexproject/synapse/pull/2451
https://github.com/vertexproject/synapse/pull/2446
https://github.com/vertexproject/synapse/pull/2446
https://github.com/vertexproject/synapse/pull/2450
https://github.com/vertexproject/synapse/pull/2451
https://github.com/vertexproject/synapse/pull/2448

Synapse Documentation, Release 2.141.0

• Update syntax checking rules and address deprecation warnings for strings in the Synapse codebase. (#2426)

17.87 v2.69.0 - 2021-11-02

17.87.1 Features and Enhancements

• Add support for building Optic Workflows for Storm Packages in the synapse.tools.genpkg tool. (#2444)

• The synapse.tools.storm CLI tool now prints out node properties in precedence order. (#2449)

• Update the global Stormtypes registry to better track types when they are added or removed. (#2447)

17.88 v2.68.0 - 2021-10-29

17.88.1 Features and Enhancements

• Add crypto:currency:transaction, crypto:currency:block, crypto:smart:contract and
econ:acct:balanc forms. (#2423)

• Add $lib.hex.decode() and $lib.hex.encode() Stormtypes functions to encode and decode hexidecimal
data as bytes. Add slice() and unpack() methods to the Storm Bytes object. (#2441)

• Add $lib.yaml and $lib.xml Stormtypes libraries for interacting with YAML and XML text, respectively.
(#2434)

• Add a Storm version command to show the user the current version of Synapse the Cortex is using. (#2440)

17.88.2 Bugfixes

• Fix overzealous if statement caching in Storm. (#2442)

17.89 v2.67.0 - 2021-10-27

17.89.1 Features and Enhancements

• Add $node.addEdge() and $node.delEdge() APIs in Storm to allow for programatically setting edges. Add
a reverse argument to $node.edges() that allows traversing edges in reverse. (#2351)

17.89.2 Bugfixes

• Fix a pair of regressions related to unicode/IDNA support for scraping and normalizing FQDNs. (#2436)

1514 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2426
https://github.com/vertexproject/synapse/pull/2444
https://github.com/vertexproject/synapse/pull/2449
https://github.com/vertexproject/synapse/pull/2447
https://github.com/vertexproject/synapse/pull/2423
https://github.com/vertexproject/synapse/pull/2441
https://github.com/vertexproject/synapse/pull/2434
https://github.com/vertexproject/synapse/pull/2440
https://github.com/vertexproject/synapse/pull/2442
https://github.com/vertexproject/synapse/pull/2351
https://github.com/vertexproject/synapse/pull/2436

Synapse Documentation, Release 2.141.0

17.89.3 Improved Documentation

• Add documentation for the Cortex api/v1/storm/call HTTP API endpoint. (#2435)

17.90 v2.66.0 - 2021-10-26

17.90.1 Features and Enhancements

• Improve unicode/IDNA support for scraping and normalizing FQDNs. (#2408)

• Add $lib.inet.http.ouath to support OAuth based workflows in Storm, starting with OAuth v1.0 support.
(#2413)

• Replace pysha3 requirement with pycryptodome. (#2422)

• Add a tls:ca:dir configuration option to the Cortex and Axon. This can be used to provide a directory of CA
certificate files which are used in Storm HTTP API and Axon wget/wput APIs. (#2429)

17.90.2 Bugfixes

• Catch and raise bad ctors given in RStorm storm-cortex directives. (#2424)

• Fix an issue with the cron.at command not properly capturing the current view when making the Cron job.
(#2425)

• Disallow the creation of extended properties, universal properties, and tag properties which are not valid prop-
erties in the Storm grammar. (#2428)

• Fix an issue with $lib.guid() missing a toprim() call on its input. (#2421)

17.90.3 Improved Documentation

• Update our Cell devops documentation to note how to replace the TLS keypair used by the built in webserver
with third party certificates. (#2432)

17.91 v2.65.0 - 2021-10-16

17.91.1 Features and Enhancements

• Add support for interacting with IMAP email servers though Storm, using the $lib.inet.imap.connect()
function. This returns a object that can be used to delete, read, and search emails in a given IMAP mailbox.
(#2399)

• Add a new Storm command, once. This command can be used to ‘gate’ a node in a Storm pipeline such that the
node only passes through the command exactly one time for a given named ‘gate’. The gate information is stored
in nodedata, so it is inspectable and subject to all other features that apply to nodedata. (#2404)

• Add a :released property to it:prod:softver to record when a software version was released. (#2419)

• Add a tryLoadPkgProto convenience function to the synapse.tools.genpkg for Storm service package
generation with inline documentation. (#2414)

17.90. v2.66.0 - 2021-10-26 1515

https://github.com/vertexproject/synapse/pull/2435
https://github.com/vertexproject/synapse/pull/2408
https://github.com/vertexproject/synapse/pull/2413
https://github.com/vertexproject/synapse/pull/2422
https://github.com/vertexproject/synapse/pull/2429
https://github.com/vertexproject/synapse/pull/2424
https://github.com/vertexproject/synapse/pull/2425
https://github.com/vertexproject/synapse/pull/2428
https://github.com/vertexproject/synapse/pull/2421
https://github.com/vertexproject/synapse/pull/2432
https://github.com/vertexproject/synapse/pull/2399
https://github.com/vertexproject/synapse/pull/2404
https://github.com/vertexproject/synapse/pull/2419
https://github.com/vertexproject/synapse/pull/2414

Synapse Documentation, Release 2.141.0

17.91.2 Bugfixes

• Add asyncio.sleep(0) calls in the movetag implementation to address some possible hot-loops. (#2411)

• Clarify and sanitize URLS in a Aha related log message i synapse.telepath. (#2415)

17.91.3 Improved Documentation

• Update our fork definition documentation. (#2409)

• Add documentation for using client-side TLS certificates in Telepath. (#2412)

• Update the Storm CLI tool documentation. (#2406)

• The Storm types and Storm library documentation now automatically links from return values to return types.
(#2410)

17.92 v2.64.1 - 2021-10-08

17.92.1 Bugfixes

• Add a retry loop in the base Cell class when attempting to register with an Aha server. (#2405)

• Change the behavior of synapse.common.yamlload() to not create files when the expected file is not present
on disk, and open existing files in read-only mode. (#2396)

17.93 v2.64.0 - 2021-10-06

17.93.1 Features and Enhancements

• Add support for scraping the following cryptocurrency addresses to the synapse.lib.scrape APIs and Storm
scrape command. (#2387) (#2401)

– Bitcoin

– Bitcoin Cash

– Ethereum

– Ripple

– Cardano

– Polkadot

The internal cache of regular expressions in the synapse.lib.scrape library is also now a private member;
API users should use the synapse.lib.scrape.scrape() function moving forward.

• Add :names property to the it:mitre:attack:software form. (#2397)

• Add a :desc property to the inet:whois:iprec form. (#2392)

• Added several new Rstorm directives. (#2359) (#2400)

– storm-cli - Runs a Storm query with the Storm CLI tool

– storm-fail - Toggles whether or not the following Storm command should fail or not.

1516 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2411
https://github.com/vertexproject/synapse/pull/2415
https://github.com/vertexproject/synapse/pull/2409
https://github.com/vertexproject/synapse/pull/2412
https://github.com/vertexproject/synapse/pull/2406
https://github.com/vertexproject/synapse/pull/2410
https://github.com/vertexproject/synapse/pull/2405
https://github.com/vertexproject/synapse/pull/2396
https://github.com/vertexproject/synapse/pull/2387
https://github.com/vertexproject/synapse/pull/2401
https://github.com/vertexproject/synapse/pull/2397
https://github.com/vertexproject/synapse/pull/2392
https://github.com/vertexproject/synapse/pull/2359
https://github.com/vertexproject/synapse/pull/2400

Synapse Documentation, Release 2.141.0

– storm-multiline - Allows embedding a multiline Storm query as a JSON encoded string for future
execution.

– storm-vcr-callback - Allows specifying a custom callback which a VCR object is sent too.

17.93.2 Bugfixes

• Fix a missing toprim() call when loading a Storm package directly with Storm. (#2359)

• Fix a caching issue where tagprops were not always being populated in a Node tagprop dictionary. (#2396)

• Add a mesg argument to a few NoSuchVar and BadTypeValu exceptions. (#2403)

17.93.3 Improved Documentation

• Storm reference docs have been converted from Jupyter notebook format to Synapse .rstorm format, and now
display examples using the Storm CLI tool, instead of the Cmdr CLI tool. (#2359)

17.94 v2.63.0 - 2021-09-29

17.94.1 Features and Enhancements

• Add a risk:attacktype taxonomy to the risk model. Add :desc and :type properties to the risk:attack
form. (#2386)

• Add :path property to the it:prod:softfile form. (#2388)

17.94.2 Bugfixes

• Fix the repr for the``auth:user`` Stormtype when printing a user object in Storm. (#2383)

17.95 v2.62.1 - 2021-09-22

17.95.1 Bugfixes

• Fix an issue in the Nexus log V1 to V2 migration code which resulted in LMDB file copies being made instead
of having directories renamed. This can result in a sparse file copy of the Nexus log, resulting in a condition
where the volume containing the Cell directory may run out of space. (#2374)

17.94. v2.63.0 - 2021-09-29 1517

https://github.com/vertexproject/synapse/pull/2359
https://github.com/vertexproject/synapse/pull/2396
https://github.com/vertexproject/synapse/pull/2403
https://github.com/vertexproject/synapse/pull/2359
https://github.com/vertexproject/synapse/pull/2386
https://github.com/vertexproject/synapse/pull/2388
https://github.com/vertexproject/synapse/pull/2383
https://github.com/vertexproject/synapse/pull/2374

Synapse Documentation, Release 2.141.0

17.96 v2.62.0 - 2021-09-21

17.96.1 Features and Enhancements

• Add APIs to support trimming, rotating and culling Nexus logs from Cells with Nexus logging enabled. These
operations are distributed to downstream consumers, of the Nexus log (e.g. mirrors). For the Cortex, this can
be invoked in Storm with the $lib.cell.trimNexsLog() Stormtypes API. The Cortex devops documentation
contains more information about Nexus log rotation. (#2339) (#2371)

• Add .size() API to the Stormtypes storm:query object. This will run the query and return the number of
nodes it would have yielded. (#2363)

17.96.2 Improved Documentation

• Document the tag glob meanings on the Stormtypes $node.tags() API. (#2368)

17.97 v2.61.0 - 2021-09-17

17.97.1 Features and Enhancements

• Add a !export command to the Storm CLI to save query results to a .nodes file. (#2356)

• Add $lib.cell.hotFixesCheck() and $lib.cell.hotFixesApply() Stormtypes functions. These can be
used to apply optional hotfixes to a Cortex on demand by an admin. (#2348)

• Add $lib.infosec.cvss.calculateFromProps() to allow calculating a CVSS score from a dictionary of
CVSS properties. (#2353)

• Add $node.data.has() API to Stormtypes to allow easy checking if a node has nodedata for a given name.
(#2350)

17.97.2 Bugfixes

• Fix for large return values with synapse.lib.coro.spawn(). (#2355)

• Fix synapse.lib.scrape.scrape() capturing various common characters used to enclose URLs. (#2352)

• Ensure that generators being yielded from are always being closed. (#2358)

• Fix docstring for str.upper() in Stormtypes. (#2354)

17.97.3 Improved Documentation

• Add link to the Power-Ups blog post from the Cortex dev-ops documentation. (#2357)

1518 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2339
https://github.com/vertexproject/synapse/pull/2371
https://github.com/vertexproject/synapse/pull/2363
https://github.com/vertexproject/synapse/pull/2368
https://github.com/vertexproject/synapse/pull/2356
https://github.com/vertexproject/synapse/pull/2348
https://github.com/vertexproject/synapse/pull/2353
https://github.com/vertexproject/synapse/pull/2350
https://github.com/vertexproject/synapse/pull/2355
https://github.com/vertexproject/synapse/pull/2352
https://github.com/vertexproject/synapse/pull/2358
https://github.com/vertexproject/synapse/pull/2354
https://github.com/vertexproject/synapse/pull/2357

Synapse Documentation, Release 2.141.0

17.98 v2.60.0 - 2021-09-07

17.98.1 Features and Enhancements

• Add new risk:compromise and risk:compromisetype forms. Add attacker, compromise, and target
secondary properties to the risk:attack form. (#2348)

17.98.2 Bugfixes

• Add a missing wait() call when calling the CoreApi.getAxonUpload() and CoreApi.getAxonBytes()
Telepath APIs. (#2349)

17.98.3 Deprecations

• Deprecate the actor:org, actor:person, target:org and target:person properties on risk:attack in
favor of new attacker and target secondary properties. Deprecate the type property on ou:campaign in
favor of the camptype property. (#2348)

17.99 v2.59.0 - 2021-09-02

17.99.1 Features and Enhancements

• Add a new Storm command, pkg.docs, to enumerate any documentation that has been bundled with a Storm
package. (#2341)

• Add support for manipulating 'proj:comment nodes via Stormtypes. (#2345)

• Add Axon.wput() and $lib.axon.wput() to allow POSTing a file from an Axon to a given URL. (#2347)

• Add $lib.export.toaxon() to allow exporting a .nodes file directly to an Axon based on a given storm
query and opts. (#2347)

• The synapse.tools.feed tool now accepts a --view argument to feed data to a specific View. (#2342)

• The synapse.tools.feed tool now treats .nodes files as msgpack files for feeding data to a Cortex. (#2343)

• When the Storm help command has an argument without any matching commands, it now prints a helpful
message. (#2338)

17.99.2 Bugfixes

• Fix a caching issue between $lib.lift.byNodeData() and altering the existing node data on a given node.
(#2344)

• Fix an issue with backups were known lmdbslabs could be omitted from being treated as lmdb databases, resulting
in inefficient file copies being made. (#2346)

17.98. v2.60.0 - 2021-09-07 1519

https://github.com/vertexproject/synapse/pull/2348
https://github.com/vertexproject/synapse/pull/2349
https://github.com/vertexproject/synapse/pull/2348
https://github.com/vertexproject/synapse/pull/2341
https://github.com/vertexproject/synapse/pull/2345
https://github.com/vertexproject/synapse/pull/2347
https://github.com/vertexproject/synapse/pull/2347
https://github.com/vertexproject/synapse/pull/2342
https://github.com/vertexproject/synapse/pull/2343
https://github.com/vertexproject/synapse/pull/2338
https://github.com/vertexproject/synapse/pull/2344
https://github.com/vertexproject/synapse/pull/2346

Synapse Documentation, Release 2.141.0

17.100 v2.58.0 - 2021-08-26

17.100.1 Features and Enhancements

• Add !pushfile, !pullfile, and !runfile commands to the synapse.tools.storm tool. (#2334)

• Add multiname SNI support to ssl:// listening configurations for the Daemon. (#2336)

• Add a new Cortex HTTP API Endpoint, /api/v1/feed. This can be used to add nodes to the Cortex in bulk.
(#2337)

• Refactor the syn.nodes feed API implementation to smooth out the ingest rate. (#2337)

• Sort the Storm Package commands in documentation created by synpse.tools.autodoc alphabetically.
(#2335)

17.100.2 Deprecations

• Deprecate the syn.splices and syn.nodedata feed API formats. (#2337)

17.101 v2.57.0 - 2021-08-24

17.101.1 Features and Enhancements

• Add a basic synapse.tools.storm CLI tool. This can be used to connect to a Cortex via Telepath and directly
execute Storm commands. (#2332)

• Add an inet:http:session form to track the concept of a prolonged session a user may have with a webserver
across multiple HTTP requests. Add an :success` property to the ``ou:campaign form to track if a
campaign was sucessful or not. Add an :goal property to the risk:attack form to track the specific goal of
the attack. Add an :desc property to the proj:project form to capture a description of the project. (#2333)

17.101.2 Bugfixes

• Fix an issue with synapse.lib.rstorm where multiline node properties could produce RST which did not
render properly. (#2331)

17.101.3 Improved Documentation

• Clean up the documentation for the Storm wget command. (#2325)

1520 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2334
https://github.com/vertexproject/synapse/pull/2336
https://github.com/vertexproject/synapse/pull/2337
https://github.com/vertexproject/synapse/pull/2337
https://github.com/vertexproject/synapse/pull/2335
https://github.com/vertexproject/synapse/pull/2337
https://github.com/vertexproject/synapse/pull/2332
https://github.com/vertexproject/synapse/pull/2333
https://github.com/vertexproject/synapse/pull/2331
https://github.com/vertexproject/synapse/pull/2325

Synapse Documentation, Release 2.141.0

17.102 v2.56.0 - 2021-08-19

17.102.1 Features and Enhancements

• Refactor some internal Axon APIs for downstream use. (#2330)

17.102.2 Bugfixes

• Resolve an ambiguity in the Storm grammar with yield statement and dollar expressions inside filter expression.
There is a slight backwards incompatibility with this change, as dollar expressions insider of filter expressions
now require a $ prepended where before it was optional. (#2322)

17.103 v2.55.0 - 2021-08-18

17.103.1 Features and Enhancements

• Add $node.props.set() Stormtypes API to allow programmatically setting node properties. (#2324)

• Deny non-runtsafe invocations of the following Storm commands: (#2326)

– graph

– iden

– movetag

– parallel

– tee

– tree

• Add a Axon.hashset()API to get the md5, sha1, sha256 and sha512 hashes of file in the Axon. This is exposed
in Stormtypes via the $lib.bytes.hashset() API. (#2327)

• Add the synapse.servers.stemcell server and a new Docker image, vertexproject/
synaspe-stemcell. The Stemcell server is similar to the synapse.servers.cell server, except it
resolves the Cell ctor from the cell:ctor key from the cell.yaml file, or from the SYN_STEM_CELL_CTOR
environment variable. (#2328)

17.104 v2.54.0 - 2021-08-05

17.104.1 Features and Enhancements

• Add storm-envvar directive to RST preprocessor to include environment variables in storm-pre directive
execution context. (#2321)

• Add new diff storm command to allow users to easily lift the set of nodes with changes in the top layer of a
forked view. Also adds the --no-tags option to the merge command to allow users to omit tag:add node edits
and newly constructed syn:tag nodes when merging selected nodes. (#2320)

• Adds the following properties to the data model: (#2319)

– biz:deal:buyer:org

17.102. v2.56.0 - 2021-08-19 1521

https://github.com/vertexproject/synapse/pull/2330
https://github.com/vertexproject/synapse/pull/2322
https://github.com/vertexproject/synapse/pull/2324
https://github.com/vertexproject/synapse/pull/2326
https://github.com/vertexproject/synapse/pull/2327
https://github.com/vertexproject/synapse/pull/2328
https://github.com/vertexproject/synapse/pull/2321
https://github.com/vertexproject/synapse/pull/2320
https://github.com/vertexproject/synapse/pull/2319

Synapse Documentation, Release 2.141.0

– biz:deal:buyer:orgname

– biz:deal:buyer:orgfqdn

– biz:deal:seller:org

– biz:deal:seller:orgname

– biz:deal:seller:orgfqdn

– biz:prod:madeby:org

– biz:prod:madeby:orgname

– biz:prod:madeby:orgfqdn

– ou:opening:posted

– ou:opening:removed

– ou:org:vitals

• Updates storm-mock-http to support multiple HTTP requests/responses in RST preprocessor. (#2317)

17.105 v2.53.0 - 2021-08-05

This release contains an automatic data migration that may cause additional startup time on the first boot. This is done
to unique array properties which previously were not uniqued. Deployments with startup or liveliness probes should
have those disabled while this upgrade is performed to prevent accidental termination of the Cortex process. Please
ensure you have a tested backup available before applying this update.

17.105.1 Features and Enhancements

• Add an embeds option to Storm to allow extracting additional data when performing queries. (#2314)

• Enforce node data permissions at the Layer boundary. Remove the node.data.get and node.data.list
permissions. (#2311)

• Add auth.self.set.email, auth.self.set.name, auth.self.set.passwd permissions on users when
changing those values. These permissions default to being allowed, allowing a rule to be created that can deny
users from changing these values. (#2311)

• Add $lib.inet.smtp to allow sending email messages from Storm. (#2315)

• Warn if a LMDB commit operation takes too long. (#2316)

• Add new data types, taxon and taxonomy, to describe hierarchical taxonomies. (#2312)

• Add a new Business Development model. This allows tracking items related to contract, sales, and pur-
chasing lifecycles. This adds the following new forms to the data model: biz:dealtype, biz:prodtype,
biz:dealstatus, biz:rfp, biz:deal, biz:bundle, biz:product, and biz:stake. The Org model is also
updated to add new forms for supporting parts of the business lifecycle, adding ou:jobtype, ou:jobtitle,
ou:employment, ou:opening, ou:vitals, ou:camptype, and ou:orgtype, ou:conttype forms. The Per-
son model got a new form, ps:workhist. (#2312)

• Add a :deleted property to inet:web:post. (#2312)

• Update the following array properties to be unique sets, and add a data model migration to update the data at
rest: (#2312)

– edu:course:prereqs

1522 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2317
https://github.com/vertexproject/synapse/pull/2314
https://github.com/vertexproject/synapse/pull/2311
https://github.com/vertexproject/synapse/pull/2311
https://github.com/vertexproject/synapse/pull/2315
https://github.com/vertexproject/synapse/pull/2316
https://github.com/vertexproject/synapse/pull/2312
https://github.com/vertexproject/synapse/pull/2312
https://github.com/vertexproject/synapse/pull/2312
https://github.com/vertexproject/synapse/pull/2312

Synapse Documentation, Release 2.141.0

– edu:class:assistants

– ou:org:subs

– ou:org:names

– ou:org:dns:mx

– ou:org:locations

– ou:org:industries

– ou:industry:sic

– ou:industry:subs

– ou:industry:isic

– ou:industry:naics

– ou:preso:sponsors

– ou:preso:presenters

– ou:conference:sponsors

– ou:conference:event:sponsors

– ou:conference:attendee:roles

– ou:conference:event:attendee:roles

– ou:contract:types

– ou:contract:parties

– ou:contract:requirements

– ou:position:reports

– ps:person:names

– ps:person:nicks

– ps:persona:names

– ps:persona:nicks

– ps:education:classes

– ps:contactlist:contacts

17.105.2 Bugfixes

• Prevent renaming the all role. (#2313)

17.105. v2.53.0 - 2021-08-05 1523

https://github.com/vertexproject/synapse/pull/2313

Synapse Documentation, Release 2.141.0

17.105.3 Improved Documentation

• Add documentation about Linux kernel parameteres which can be tuned to affect Cortex performance. (#2316)

17.106 v2.52.1 - 2021-07-30

17.106.1 Bugfixes

• Fix a display regression when enumerating Cron jobs with the Storm cron.list command. (#2309)

17.107 v2.52.0 - 2021-07-29

17.107.1 Features and Enhancements

• Add a new specification for defining input forms that a pure Storm command knows how to natively handle.
(#2301)

• Add Lib.reverse() and Lib.sort() methods to Stormtypes API. (#2306)

• Add View.parent property in Stormtypes API. (#2306)

• Support Telepath Share objects in Storm. (#2293)

• Allow users to specify a view to run a cron job against, move a cron job to a new view, and update permission
check for adding/moving cron jobs to views. (#2292)

• Add CPE and software name infomation to the inet:flow form. Add it:av:prochit, it:exec:thread,
it:exec:loadlib, it:exec:mmap, it:app:yara:procmatch forms to the infotech model. Add :names
arrays to it:prod:soft and it:prod:softver forms to assist in entity resolution of software. Add a
risk:alert form to the risk model to allow for capturing arbitrary alerts. (#2304)

• Allow Storm packages to specify other packages they require and possible conflicts would prevent them from
being installed in a Cortex. (#2307)

17.107.2 Bugfixes

• Specify the View when lifting syn:trigger runt nodes. (#2300)

• Update the scrape URL regular expression to ignore trailing periods and commas. (#2302)

• Fix a bug in Path scope for nodes yielding by pure Storm commands. (#2305)

17.108 v2.51.0 - 2021-07-26

17.108.1 Features and Enhancements

• Add a --size option to the Storm divert command to limit the number of times the generator is iterated.
(#2297)

• Add a perms key to the pure Storm command definition. This allows for adding intuitive permission boundaries
for pure Storm commands which are checked prior to command execution. (#2297)

1524 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2316
https://github.com/vertexproject/synapse/pull/2309
https://github.com/vertexproject/synapse/pull/2301
https://github.com/vertexproject/synapse/pull/2306
https://github.com/vertexproject/synapse/pull/2306
https://github.com/vertexproject/synapse/pull/2293
https://github.com/vertexproject/synapse/pull/2292
https://github.com/vertexproject/synapse/pull/2304
https://github.com/vertexproject/synapse/pull/2307
https://github.com/vertexproject/synapse/pull/2300
https://github.com/vertexproject/synapse/pull/2302
https://github.com/vertexproject/synapse/pull/2305
https://github.com/vertexproject/synapse/pull/2297
https://github.com/vertexproject/synapse/pull/2297

Synapse Documentation, Release 2.141.0

• Allow full properties with comparators when specifying the destination or source when walking light edges.
(#2298)

17.108.2 Bugfixes

• Fix an issue with LMDB slabs not being backed up if their directories did not end in .lmdb. (#2296)

17.109 v2.50.0 - 2021-07-22

17.109.1 Features and Enhancements

• Add .cacheget() and cacheset() APIs to the Storm node:data object for easy caching of structured data
on nodes based on time. (#2290)

• Make the Stormtypes unique properly with a Set type. This does disallow the use of mutable types such as
dictionaries inside of a Set. (#2225)

• Skip executing non-runtsafe commands when there are no inbound nodes. (#2291)

• Add asroot:perms key to Storm Package modules. This allows package authors to easily declare permissions
their packages. Add Storm commands auth.user.add, auth.role.add, auth.user.addrule, auth.role.
addrule, and pkg.perms.list to help with some of the permission management. (#2294)

17.110 v2.49.0 - 2021-07-19

17.110.1 Features and Enhancements

• Add a iden parameter when creating Cron jobs to allow the creation of jobs with stable identifiers. (#2264)

• Add $lib.cell Stormtypes library to allow for introspection of the Cortex from Storm for Admin users. (#2285)

• Change the Telepath Client connection loop error logging to log at the Error level instead of the Info level.
(#2283)

• Make the tag part normalization more resilient to data containing non-word characters. (#2289)

• Add $lib.tags.prefix() Stormtypes to assist with normalizing a list of tags with a common prefix. (#2289)

• Do not allow the Storm divert command to work with non-generator functions. (#2282)

17.110.2 Bugfixes

• Fix an issue with Storm command execution with non-runtsafe options. (#2284)

• Log when the process pool fails to initialize. This may occur in certain where CPython multiprocessing primitives
are not completely supported. (#2288)

• In the Telepath Client, fix a race condition which could have raised an AttributeError in Aha resolutions. (#2286)

• Prevent the reuse of a Telepath Client object when it has been fini’d. (#2286)

• Fix a race condition in the Aha server when handling distributed changes which could have left the service in a
desynchronized state. (#2287)

17.109. v2.50.0 - 2021-07-22 1525

https://github.com/vertexproject/synapse/pull/2298
https://github.com/vertexproject/synapse/pull/2296
https://github.com/vertexproject/synapse/pull/2290
https://github.com/vertexproject/synapse/pull/2225
https://github.com/vertexproject/synapse/pull/2291
https://github.com/vertexproject/synapse/pull/2294
https://github.com/vertexproject/synapse/pull/2264
https://github.com/vertexproject/synapse/pull/2285
https://github.com/vertexproject/synapse/pull/2283
https://github.com/vertexproject/synapse/pull/2289
https://github.com/vertexproject/synapse/pull/2289
https://github.com/vertexproject/synapse/pull/2282
https://github.com/vertexproject/synapse/pull/2284
https://github.com/vertexproject/synapse/pull/2288
https://github.com/vertexproject/synapse/pull/2286
https://github.com/vertexproject/synapse/pull/2286
https://github.com/vertexproject/synapse/pull/2287

Synapse Documentation, Release 2.141.0

17.110.3 Improved Documentation

• Update the documentation for the synapse.tools.feed tool. (#2279)

17.111 v2.48.0 - 2021-07-13

17.111.1 Features and Enhancements

• Add a Storm divert command to ease the implementation of --yield constructs in Storm commands. This
optionally yields nodes from a generator, or yields inbound nodes, while still ensuring the generator is conusmed.
(#2277)

• Add Storm runtime debug tracking. This is a boolean flag that can be set or unset via $lib.debug. It can be used
by Storm packages to determine if they should take extra actions, such as additional print statements, without
needing to track additional function arguments in their implementations. (#2278)

17.111.2 Bugfixes

• Fix an ambiguity in the Storm grammar. (#2280)

• Fix an issue where form autoadds could fail to be created in specific cases of the model. (#2273)

17.112 v2.47.0 - 2021-07-07

17.112.1 Features and Enhancements

• Add $lib.regex.replace() Stormtypes API to perform regex based replacement of string parts. (#2274)

• Add universal properties to the dictionary returned by Cortex.getModelDict() as a univs key. (#2276)

• Add additional asyncio.sleep(0) statements to Layer._storNodeEdits to improve Cortex responsiveness
when storing large numbers of edits at once. (#2275)

17.113 v2.46.0 - 2021-07-02

17.113.1 Features and Enhancements

• Update the Cortex storm:log:level configuration value to accept string values such as DEBUG, INFO, etc. The
default log level for Storm query logs is now INFO level. (#2262)

• Add $lib.regex.findall() Stormtypes API to find all matching parts of a regular expression in a given
string. (#2265)

• Add $lib.inet.http.head() Stormtypes API to perform easy HEAD requests, and allow_redirects ar-
guments to existing lib.inet.http APIs to allow controlling the redirect behavior. (#2268)

• Add $lib.storm.eval() API to evaluate Storm values from strings. (#2269)

• Add getSystemInfo() and getBackupInfo()APIS to the Cell for getting useful system information. (#2267)

• Allow lists in rstorm bodies. (#2261)

1526 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2279
https://github.com/vertexproject/synapse/pull/2277
https://github.com/vertexproject/synapse/pull/2278
https://github.com/vertexproject/synapse/pull/2280
https://github.com/vertexproject/synapse/pull/2273
https://github.com/vertexproject/synapse/pull/2274
https://github.com/vertexproject/synapse/pull/2276
https://github.com/vertexproject/synapse/pull/2275
https://github.com/vertexproject/synapse/pull/2262
https://github.com/vertexproject/synapse/pull/2265
https://github.com/vertexproject/synapse/pull/2268
https://github.com/vertexproject/synapse/pull/2269
https://github.com/vertexproject/synapse/pull/2267
https://github.com/vertexproject/synapse/pull/2261

Synapse Documentation, Release 2.141.0

• Add a :desc secondary property to the proj:sprint form. (#2261)

• Call _normStormPkg in all loadStormPkg paths, move validation to post normalization and remove mutation in
validator (#2260)

• Add SYN_SLAB_COMMIT_PERIOD environment variable to control the Synapse slab commit period. Add
layer:lmdb:max_replay_log Cortex option to control the slab replay log size. (#2266)

• Update Ahacell log messages. (#2270)

17.113.2 Bugfixes

• Fix an issue where the Trigger.pack() method failed when the user that created the trigger had been deleted.
(#2263)

17.113.3 Improved Documentation

• Update the Cortex devops documentation for the Cortex to document the Storm query logging. Update the Cell
devops documentation to explain the Cell logging and how to enable structured (JSON) logging output. (#2262)

• Update Stormtypes API documentation for bool, proj:epic, proj:epics, proj:ticket, proj:tickets,
proj:sprint, proj:sprints, proj:project, stix:bundle types. (#2261)

17.114 v2.45.0 - 2021-06-25

17.114.1 Features and Enhancements

• Add a application level process pool the base Cell implemenation. Move the processing of Storm query text into
the process pool. (#2250) (#2259)

• Minimize the re-validation of Storm code on Cortex boot. (#2257)

• Add the ou:preso form to record conferences and presentations. Add a status secondary property to the
it:mitre:attack:technique form to track if techniques are current, deprecated or withdrawn. (#2254)

17.114.2 Bugfixes

• Remove incorrect use of cmdopts in Storm command definitions unit tests. (#2258

17.115 v2.44.0 - 2021-06-23

This release contains an automatic data migration that may cause additional startup time on the first boot. This only
applies to a Cortex that is using user defined tag properties or using ps:person:name properties. Deployments with
startup or liveliness probes should have those disabled while this upgrade is performed to prevent accidental termination
of the Cortex process. Please ensure you have a tested backup available before applying this update.

17.114. v2.45.0 - 2021-06-25 1527

https://github.com/vertexproject/synapse/pull/2261
https://github.com/vertexproject/synapse/pull/2260
https://github.com/vertexproject/synapse/pull/2266
https://github.com/vertexproject/synapse/pull/2270
https://github.com/vertexproject/synapse/pull/2263
https://github.com/vertexproject/synapse/pull/2262
https://github.com/vertexproject/synapse/pull/2261
https://github.com/vertexproject/synapse/pull/2250
https://github.com/vertexproject/synapse/pull/2259
https://github.com/vertexproject/synapse/pull/2257
https://github.com/vertexproject/synapse/pull/2254
https://github.com/vertexproject/synapse/pull/2258

Synapse Documentation, Release 2.141.0

17.115.1 Features and Enhancements

• Add a .move() method on Stormtypes trigger objects to allow moving a Trigger from one View to another
View. (#2252)

• When the Aha service marks a service as down, log why that service is being marked as such. (#2255)

• Add :budget:price property to the ou:contract form. Add :settled property to the econ:purchase
form. (#2253

17.115.2 Bugfixes

• Make the array property ps:person:names a unique array property. (#2253

• Add missing tagprop key migration for the bybuidv3 index. (#2256)

17.116 v2.43.0 - 2021-06-21

17.116.1 Features and Enhancements

• Add a .type string to the Stormtypes auth:gate object to allow a user to identify the type of auth gate it is.
(#2238)

• Add $lib.user.iden reference to the Stormtype $lib.user to get the iden of the current user executing Storm
code. (#2236)

• Add a --no-build option to synapse.tools.genpkg to allow pushing an a complete Storm Package file.
(#2231) (#2232) (#2233)

• The Storm movetag command now checks for cycles when setting the syn:tag:isnow property. (#2229)

• Deprecate the ou:org:has form, in favor of using light edges for storing those relationships. (#2234)

• Add a description property to the ou:industry form. (#2239)

• Add a --name parameter to the Storm trigger.add command to name triggers upon creation. (#2237)

• Add regx to the BadTypeValu exception of the str type when a regular expression fails to match. (#2240)

• Consolidate Storm parsers to a single Parser object to improve startup time. (#2247)

• Improve error logging in the Cortex callStorm() and storm() APIs. (#2243)

• Add from:contract, to:contract, and memo properties to the econ:acct:payment form. (#2248)

• Improve the Cell backup streaming APIs link cleanup. (#2249)

17.116.2 Bugfixes

• Fix issue with grabbing the incorrect Telepath link when performing a Cell backup. (#2246)

• Fix missing toprim calls in $lib.inet.http.connect(). (#2235)

• Fix missing Storm command form hint schema from the Storm Package schema. (#2242)

1528 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2252
https://github.com/vertexproject/synapse/pull/2255
https://github.com/vertexproject/synapse/pull/2253
https://github.com/vertexproject/synapse/pull/2253
https://github.com/vertexproject/synapse/pull/2256
https://github.com/vertexproject/synapse/pull/2238
https://github.com/vertexproject/synapse/pull/2236
https://github.com/vertexproject/synapse/pull/2231
https://github.com/vertexproject/synapse/pull/2232
https://github.com/vertexproject/synapse/pull/2233
https://github.com/vertexproject/synapse/pull/2229
https://github.com/vertexproject/synapse/pull/2234
https://github.com/vertexproject/synapse/pull/2239
https://github.com/vertexproject/synapse/pull/2237
https://github.com/vertexproject/synapse/pull/2240
https://github.com/vertexproject/synapse/pull/2247
https://github.com/vertexproject/synapse/pull/2243
https://github.com/vertexproject/synapse/pull/2248
https://github.com/vertexproject/synapse/pull/2249
https://github.com/vertexproject/synapse/pull/2246
https://github.com/vertexproject/synapse/pull/2235
https://github.com/vertexproject/synapse/pull/2242

Synapse Documentation, Release 2.141.0

17.116.3 Improved Documentation

• Add documentation for deprecated model forms and properties, along with modeling alternatives. (#2234)

• Update documentation for the Storm help command to add examples of command substring matching. (#2241)

17.117 v2.42.2 - 2021-06-11

17.117.1 Bugfixes

• Protect against a few possible RuntimeErrors due to dictionary sizes changing during iteration. (#2227)

• Fix StormType Lib lookups with imported modules which were raising a TypeError instead of a NoSuchName
error. (#2228)

• Drop old Storm Packages if they are present when re-adding them. This fixes an issue with runtime updates
leaving old commands in the Cortex. (#2230)

17.118 v2.42.1 - 2021-06-09

17.118.1 Features and Enhancements

• Add a --no-docs option to the synapse.tools.genpkg tool. When used, this not embed inline documentation
into the generated Storm packages. (#2226)

17.119 v2.42.0 - 2021-06-03

17.119.1 Features and Enhancements

• Add a --headers and --parameters arguments to the Storm wget command. The default headers now in-
cludes a browser like UA string. (#2208)

• Add the ability to modify the name of a role via Storm. (#2222)

17.119.2 Bugfixes

• Fix an issue in the JsonStor cell where there were missing fini calls. (#2223)

• Add a missing timeout to an getAhaSvc() call. (#2224)

• Change how tagprops are serialized to avoid a issue with sending packed nodes over HTTP APIs. This changes
the packed node structure of tagprops from a dictionary keyed with (tagname, propertyname) to a dictionary
keyed off of the tagname, which now points to a dictionary containing the propertyname which represents the
value of the tagprop. (#2221 <https://github.com/vertexproject/synapse/pull/2221>`_)

17.117. v2.42.2 - 2021-06-11 1529

https://github.com/vertexproject/synapse/pull/2234
https://github.com/vertexproject/synapse/pull/2241
https://github.com/vertexproject/synapse/pull/2227
https://github.com/vertexproject/synapse/pull/2228
https://github.com/vertexproject/synapse/pull/2230
https://github.com/vertexproject/synapse/pull/2226
https://github.com/vertexproject/synapse/pull/2208
https://github.com/vertexproject/synapse/pull/2222
https://github.com/vertexproject/synapse/pull/2223
https://github.com/vertexproject/synapse/pull/2224
https://github.com/vertexproject/synapse/pull/2221

Synapse Documentation, Release 2.141.0

17.120 v2.41.1 - 2021-05-27

17.120.1 Bugfixes

• Add PR #2117 to bugfix list in CHANGLOG.rst for v2.41.0 :D

17.121 v2.41.0 - 2021-05-27

17.121.1 Features and Enhancements

• Add an it:cmd form and update the it:exec:proc:cmd property to use it. This release includes an automatic
data migration on startup to update the it:exec:proc:cmd on any existing it:exec:proc nodes. (#2219)

17.121.2 Bugfixes

• Fix an issue where passing a Base object to a sub-runtime in Storm did not correctly increase the reference count.
(#2216)

• Fix an issue where the tee command could potentially run the specified queries twice. (#2218)

• Fix for rstorm using mock when the HTTP body is bytes. (#2217)

17.122 v2.40.0 - 2021-05-26

17.122.1 Features and Enhancements

• Add a --parallel switch to the tee Storm command. This allows for all of the Storm queries provided to the
tee command to execute in parallel, potentially producing a mixed output stream of nodes. (#2209)

• Convert the Storm Runtime object in a Base object, allowing for reference counted Storm variables which are
made from Base objects and are properly torn down. (#2203)

• Add $lib.inet.http.connect() method which creates a Websocket object inside of Storm, allowing a user
to send and receive messages over a websocket. (#2203)

• Support pivot join operations on tags. (#2213)

• Add stormrepr() implementation for synapse.lib.stormtypes.Lib, which allows for $lib.print() to
display useful strings for Storm Libraries and imported modules. (#2212)

• Add a storm API top updated a user name. (#2214)

1530 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2219
https://github.com/vertexproject/synapse/pull/2216
https://github.com/vertexproject/synapse/pull/2218
https://github.com/vertexproject/synapse/pull/2217
https://github.com/vertexproject/synapse/pull/2209
https://github.com/vertexproject/synapse/pull/2203
https://github.com/vertexproject/synapse/pull/2203
https://github.com/vertexproject/synapse/pull/2213
https://github.com/vertexproject/synapse/pull/2212
https://github.com/vertexproject/synapse/pull/2214

Synapse Documentation, Release 2.141.0

17.122.2 Bugfixes

• Fix the logger name for synapse.lib.aha. (#2210)

• Log ImportError exceptions in synapse.lib.dyndeps.getDynMod. This allows easier debugging when
using the synapse.servers.cell server when running custom Cell implementations. (#2211)

• Fix an issue where a Storm command which failed to set command arguments successfully would not teardown
the Storm runtime. (#2212)

17.123 v2.39.1 - 2021-05-21

17.123.1 Bugfixes

• Fix an issue with referencing the Telepath user session object prior to a valid user being set. (#2207)

17.124 v2.39.0 - 2021-05-20

17.124.1 Features and Enhancements

• Add more useful output to Storm when printing heavy objects with $lib.print(). (#2185)

• Check rule edits for roles against provided authgates in Storm. (#2199)

• Add Str.rsplit() and maxsplit arguments to split()/rsplit() APIs in Storm. (#2200)

• Add default argument values to the output of Storm command help output. (#2198)

• Add a syn:tag:part Type and allow the syn:tag type to normalize a list of tag parts to create a tag string.
This is intended to be used with the $lib.cast() function in Storm. (#2192)

• Add debug logging to the Axon for reading, writing, or deleting of blobs. (#2202)

• Add a timeout argument to the $lib.inet.http functions. The functions will all now always return a
inet:http:resp object; if the .code is -1, an unrecoverable exception occurred while making the request.
(#2205)

• Add support for embedding a logo and documentation into a Storm Package. (#2204)

17.124.2 Bugfixes

• Fix export filters to correctly filter tagprops. (#2196)

• Fix an issue with Hotcount which prevented it from storing negative values. (#2197)

• Fix an issue where hideconf configuration values were being included in autodoc output. (#2199)

17.123. v2.39.1 - 2021-05-21 1531

https://github.com/vertexproject/synapse/pull/2210
https://github.com/vertexproject/synapse/pull/2211
https://github.com/vertexproject/synapse/pull/2212
https://github.com/vertexproject/synapse/pull/2207
https://github.com/vertexproject/synapse/pull/2185
https://github.com/vertexproject/synapse/pull/2199
https://github.com/vertexproject/synapse/pull/2200
https://github.com/vertexproject/synapse/pull/2198
https://github.com/vertexproject/synapse/pull/2192
https://github.com/vertexproject/synapse/pull/2202
https://github.com/vertexproject/synapse/pull/2205
https://github.com/vertexproject/synapse/pull/2204
https://github.com/vertexproject/synapse/pull/2196
https://github.com/vertexproject/synapse/pull/2197
https://github.com/vertexproject/synapse/pull/2199

Synapse Documentation, Release 2.141.0

17.125 v2.38.0 - 2021-05-14

17.125.1 Features and Enhancements

• Remove trigger inheritance from Views. Views will now only execute triggers which are created inside of them.
(#2189)

• Remove read-only property flags from secondary properties on file:bytes nodes. (#2191)

• Add a simple it:log:event form to capture log events. (#2195)

• Add structured logging as an option for Synapse Cells. When enabled, this produces logs as JSONL sent to
stderr. This can be set via the SYN_LOG_STRUCT environment variable, or adding the --structured-logging
command line switch. (#2179)

• Add a nodes.import command to import a .nodes file from a URL. (#2186)

• Allow the desc key to View and Layer objects in Storm. This can be used to set descriptions for these objects.
(#2190)

• Use the gateiden in Storm auth when modifying rules; allowing users to share Views and Layers with other users.
(#2194)

17.125.2 Bugfixes

• Fix an issue with Storm Dmon deletion not behaving properly in mirror configurations. (#2188)

• Explicitly close generators in Telepath where an exception has caused the generator to exit early. (#2183)

• Fix an issue where a trigger owner not having access to a view would cause the Storm pipeline to stop. (#2189)

17.126 v2.37.0 - 2021-05-12

17.126.1 Features and Enhancements

• Add a file:mime:image interface to the Synapse model for recording MIME specific metadata from image
files. (#2187)

• Add file:mime:jpg, file:mime:tiff, file:mime:gif and file:mime:png specific forms for recording
metadata of those file types. (#2187)

• Add $lib.pkg.has() Stormtype API to check for for the existence of a given Storm package by name. (#2182)

• All None / $lib.null as input to setting a user password. This clears the password and prevents a user from
being able to login. (#2181)

• Grab any Layer push/pull offset values when calling Layer.pack(). (#2184)

• Move the retrieval of https:headers from HTTP API handlers into a function so that downstream implementers
can redirect where the extra values are retrieved from. (#2187)

1532 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2189
https://github.com/vertexproject/synapse/pull/2191
https://github.com/vertexproject/synapse/pull/2195
https://github.com/vertexproject/synapse/pull/2179
https://github.com/vertexproject/synapse/pull/2186
https://github.com/vertexproject/synapse/pull/2190
https://github.com/vertexproject/synapse/pull/2194
https://github.com/vertexproject/synapse/pull/2188
https://github.com/vertexproject/synapse/pull/2183
https://github.com/vertexproject/synapse/pull/2189
https://github.com/vertexproject/synapse/pull/2187
https://github.com/vertexproject/synapse/pull/2187
https://github.com/vertexproject/synapse/pull/2182
https://github.com/vertexproject/synapse/pull/2181
https://github.com/vertexproject/synapse/pull/2184
https://github.com/vertexproject/synapse/pull/2187

Synapse Documentation, Release 2.141.0

17.126.2 Bugfixes

• Fix an issue which allowed for deleted Storm Packages to be retrieved from memory. (#2182)

17.127 v2.36.0 - 2021-05-06

17.127.1 Features and Enhancements

• Add risk:vuln support to the default Stix 2.1 export, and capture vulnerability information used by threat actors
and in campaigns. Add the ability to validate Stix 2.1 bundles to ensure that they are Stix 2.1 CS02 compliant.
Add the ability to lift Synapse nodes based on bundles which were previously exported from Synapse. The lift
feature only works with bundles created with Synapse v2.36.0 or greater. (#2174)

• Add a Str.upper() function for uppercasing strings in Storm. (#2174)

• Automatically bump a user’s StormDmon’s when they are locked or unlocked. (#2177)

• Add Storm Package support to synapse.tools.autodocs and update the rstorm implementation to capture
additional directives. (#2172)

• Tighten lark-parser version requirements. (#2175)

17.127.2 Bugfixes

• Fix reported layer size to represent actual disk usage. (#2173)

17.128 v2.35.0 - 2021-04-27

17.128.1 Features and Enhancements

• Add :issuer:cert and :selfsigned properties to the crypto:x509:cert form to enable modeling X509
certificate chains. (#2163)

• Add a https:headers configuration option to the Cell to allow setting arbitrary HTTP headers for the Cell
HTTP API server. (#2164)

• Update the Cell HTTP API server to have a minimum TLS version of v1.2. Add a default /robots.txt route.
Add X-XSS=Protection and X-Content-Type-Options headers to the default HTTP API responses. (#2164)

• Update the minimum version of LMDB to 1.2.1. (#2169)

17.128.2 Bugfixes

• Improve the error message for Storm syntax error handling. (#2162)

• Update the layer byarray index migration to account for arrays of inet:fqdn values. (#2165) (#2166)

• Update the vertexproject/synapse-aha, vertexproject/synapse-axon, vertexproject/
synapse-cortex, and vertexproject/synapse-cryotank Docker images to use tini as a default
entrypoint. This fixes an issue where signals were not properly being propagated to the Cells. (#2168)

• Fix an issue with enfanged indicators which were not properly being lifted by Storm when operating in lookup
mode. (#2170)

17.127. v2.36.0 - 2021-05-06 1533

https://github.com/vertexproject/synapse/pull/2182
https://github.com/vertexproject/synapse/pull/2174
https://github.com/vertexproject/synapse/pull/2174
https://github.com/vertexproject/synapse/pull/2177
https://github.com/vertexproject/synapse/pull/2172
https://github.com/vertexproject/synapse/pull/2175
https://github.com/vertexproject/synapse/pull/2173
https://github.com/vertexproject/synapse/pull/2163
https://github.com/vertexproject/synapse/pull/2164
https://github.com/vertexproject/synapse/pull/2164
https://github.com/vertexproject/synapse/pull/2169
https://github.com/vertexproject/synapse/pull/2162
https://github.com/vertexproject/synapse/pull/2165
https://github.com/vertexproject/synapse/pull/2166
https://github.com/vertexproject/synapse/pull/2168
https://github.com/vertexproject/synapse/pull/2170

Synapse Documentation, Release 2.141.0

17.129 v2.34.0 - 2021-04-20

17.129.1 Features and Enhancements

• Storm function definitions now allow keyword arguments which may have default values. These must be read-
only values. (#2155) (#2157)

• Add a getCellInfo() API to the Cell and CellAPI classes. This returns metadata about the cell, its ver-
sion, and the currently installed Synapse version. Cell implementers who wish to expose Cell specific version
information must adhere to conventiosn documented in the API docstrings of the function. (#2151)

• Allow external Storm modules to be added in genpkg definitions. (#2159)

17.129.2 Bugfixes

• The $lib.layer.get() Stormtypes returned the top layer of the default view in the Cortex when called with
no arguments, instead of the top layer of the current view. This now returns the top layer of the current view.
(#2156)

• Avoid calling applyNodeEdit when editing a tag on a Node and there are no edits to make. (#2161)

17.129.3 Improved Documentation

• Fix typo in docstrings from $lib.model.tags Stormtypes. (#2160)

17.130 v2.33.1 - 2021-04-13

17.130.1 Bugfixes

• Fix a regression when expanding list objects in Storm. (#2154)

17.131 v2.33.0 - 2021-04-12

17.131.1 Features and Enhancements

• Add CWE and CVSS support to the risk:vuln form. (#2143)

• Add a new Stormtypes library, $lib.infosec.cvss, to assist with parsing CVSS data, computing scores, and
updating risk:vuln nodes. (#2143)

• Add ATT&CK, CWD, and CPE support to the IT model. (#2143)

• Add it:network, it:domain, it:account, it:group and it:login guid forms to model common IT con-
cepts. (#2096)

• Add a new model, project, to model projects, tickets, sprints and epics. The preliminary forms for this model
include proj:project, proj:sprint, proj:ticket, proj:comment, and projec:project. (#2096)

• Add a new Stormtypes library, $lib.project, to assist with using the project model. The API is provisional.
(#2096)

• Allow lifting guid types with the prefix (^=) operator. (#2096)

1534 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2155
https://github.com/vertexproject/synapse/pull/2157
https://github.com/vertexproject/synapse/pull/2151
https://github.com/vertexproject/synapse/pull/2159
https://github.com/vertexproject/synapse/pull/2156
https://github.com/vertexproject/synapse/pull/2161
https://github.com/vertexproject/synapse/pull/2160
https://github.com/vertexproject/synapse/pull/2154
https://github.com/vertexproject/synapse/pull/2143
https://github.com/vertexproject/synapse/pull/2143
https://github.com/vertexproject/synapse/pull/2143
https://github.com/vertexproject/synapse/pull/2096
https://github.com/vertexproject/synapse/pull/2096
https://github.com/vertexproject/synapse/pull/2096
https://github.com/vertexproject/synapse/pull/2096

Synapse Documentation, Release 2.141.0

• Add ou:contest:result:url to record where to find contest results. (#2144)

• Allow subquery as a value in additional places in Storm. This use must yield exactly one node. Secondary
property assignments to array types may yield multiple nodes. (#2137)

• Tighten up Storm iterator behavior on the backend. This should not have have user-facing changes in Storm
behavior. (#2148) (#2096)

• Update the Cell backup routine so that it blocks the ioloop less. (#2145)

• Expose the remote name and version of Storm Services in the service.list command. (#2149)

• Move test deprecated model elements into their own Coremodule. (#2150)

• Update lark dependency. (#2146)

17.131.2 Bugfixes

• Fix incorrect grammer in model.edge commands. (#2147)

• Reduce unit test memory usage. (#2152)

• Pin jupyter-client library. (#2153)

17.132 v2.32.1 - 2021-04-01

17.132.1 Features and Enhancements

• The Storm $lib.exit() function now takes message arguments similar to $lib.warn() and fires that message
into the run time as a warn prior to stopping the runtime. (#2138)

• Update pygments minimum version to v2.7.4. (#2139)

17.132.2 Bugfixes

• Do not allow light edge creation on runt nodes. (#2136)

• Fix backup test timeout issues. (#2141)

• Fix the synapse.lib.msgpack.en() function so that now raises the correct exceptions when operating in
fallback mode. (#2140)

• Fix the Snap.addNodes() API handling of deprecated model elements when doing bulk data ingest. (#2142)

17.133 v2.32.0 - 2021-03-30

17.133.1 Features and Enhancements

• Increase the verbosity of logging statements related to Cell backup operations. This allows for better visibility
into what is happening while a backup is occurring. (#2124)

• Add Telepath and Storm APIs for setting all the roles of a User at once. (#2127)

• Expose the Synapse package commit hash over Telepath and Stormtypes. (#2133)

17.132. v2.32.1 - 2021-04-01 1535

https://github.com/vertexproject/synapse/pull/2144
https://github.com/vertexproject/synapse/pull/2137
https://github.com/vertexproject/synapse/pull/2148
https://github.com/vertexproject/synapse/pull/2096
https://github.com/vertexproject/synapse/pull/2145
https://github.com/vertexproject/synapse/pull/2149
https://github.com/vertexproject/synapse/pull/2150
https://github.com/vertexproject/synapse/pull/2146
https://github.com/vertexproject/synapse/pull/2147
https://github.com/vertexproject/synapse/pull/2152
https://github.com/vertexproject/synapse/pull/2153
https://github.com/vertexproject/synapse/pull/2138
https://github.com/vertexproject/synapse/pull/2139
https://github.com/vertexproject/synapse/pull/2136
https://github.com/vertexproject/synapse/pull/2141
https://github.com/vertexproject/synapse/pull/2140
https://github.com/vertexproject/synapse/pull/2142
https://github.com/vertexproject/synapse/pull/2124
https://github.com/vertexproject/synapse/pull/2127
https://github.com/vertexproject/synapse/pull/2133

Synapse Documentation, Release 2.141.0

17.133.2 Bugfixes

• Increase the process spawn timeout for Cell backup operations. Prevent the Cell backup from grabbing lmdb
transactions for slabs in the cell local tmp directory. (#2124)

17.134 v2.31.1 - 2021-03-25

17.134.1 Bugfixes

• Fix a formatting issue preventing Python packages from being uploaded to PyPI. (#2131)

17.135 v2.31.0 - 2021-03-24

17.135.1 Features and Enhancements

• Add initial capability for exporting STIX 2.1 from the Cortex. (#2120)

• Refactor how lift APIs are implemented, moving them up to the Cortex itself. This results in multi-layer lifts
now yielding nodes in a sorted order. (#2093) (#2128)

• Add $lib.range() Storm function to generate ranges of integers. (#2122)

• Add an errok option to the $lib.time.parse() Storm function to allow the function to return $lib.null if
the time string fails to parse. (#2126)

• Don’t execute Cron jobs, Triggers, or StormDmons for locked users. (#2123) (#2129)

• The git commit hash is now embedded into the synapse.lib.version module when building PyPi packages
and Docker images. (#2119)

17.135.2 Improved Documentation

• Update Axon wget API documentation to note that we always store the body of the HTTP response, regardless
of status code. (#2125)

17.136 v2.30.0 - 2021-03-17

17.136.1 Features and Enhancements

• Add $lib.trycast() to allow for Storm control flow based on type normalization. (#2113)

1536 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2124
https://github.com/vertexproject/synapse/pull/2131
https://github.com/vertexproject/synapse/pull/2120
https://github.com/vertexproject/synapse/pull/2093
https://github.com/vertexproject/synapse/pull/2128
https://github.com/vertexproject/synapse/pull/2122
https://github.com/vertexproject/synapse/pull/2126
https://github.com/vertexproject/synapse/pull/2123
https://github.com/vertexproject/synapse/pull/2129
https://github.com/vertexproject/synapse/pull/2119
https://github.com/vertexproject/synapse/pull/2125
https://github.com/vertexproject/synapse/pull/2113

Synapse Documentation, Release 2.141.0

17.136.2 Bugfixes

• Resolve a bug related to pivoting to a secondary property that is an array value. (#2111)

• Fix an issue with Aha and persisting the online state of services upon startup. (#2103)

• Convert the type of inet:web:acct:singup:client:ipv6 from a inet:ipv4 to an inet:ipv6. (#2114)

• Fix an idempotency issue when deleting a custom form. (#2112)

17.136.3 Improved Documentation

• Update README.rst. (#2115) (#2117) (#2116)

17.137 v2.29.0 - 2021-03-11

This release includes a Cortex storage Layer bugfix. It does an automatic upgrade upon startup to identify and correct
invalid array index values. Depending on time needed to perform this automatic upgrade, the Cortex may appear
unresponsive. Deployments with startup or liveliness probes should have those disabled while this upgrade is performed
to prevent accidental termination of the Cortex process.

17.137.1 Features and Enhancements

• Add a reverse argument to $lib.sorted() to allow a Storm user to easily reverse an iterable item. (#2109)

• Update minimum required versions of Tornado and PyYAML. (#2108)

17.137.2 Bugfixes

• Fix an issue with Array property type deletion not properly deleting values in the byarray index. This requires
an automatic data migration done at Cortex startup to remove extra index values which may be present in the
index. (#2104) (#2106)

• Fix issues with using the Storm ?= operator with types which can generate multiple values from a given input
string when making nodes. (#2105) (#2107)

17.137.3 Improved Documentation

• Add Devops documentation explaining our Docker container offerings. (#2104) (#2110)

17.138 v2.28.1 - 2021-03-08

17.138.1 Bugfixes

• Fix $lib.model.prop() API when called with a universal property. It now returns $lib.null instead of
raising an exception. (#2100)

• Fix the streaming backup API when used with Telepath and SSL. (#2101)

17.137. v2.29.0 - 2021-03-11 1537

https://github.com/vertexproject/synapse/pull/2111
https://github.com/vertexproject/synapse/pull/2103
https://github.com/vertexproject/synapse/pull/2114
https://github.com/vertexproject/synapse/pull/2112
https://github.com/vertexproject/synapse/pull/2115
https://github.com/vertexproject/synapse/pull/2117
https://github.com/vertexproject/synapse/pull/2116
https://github.com/vertexproject/synapse/pull/2109
https://github.com/vertexproject/synapse/pull/2108
https://github.com/vertexproject/synapse/pull/2104
https://github.com/vertexproject/synapse/pull/2106
https://github.com/vertexproject/synapse/pull/2105
https://github.com/vertexproject/synapse/pull/2107
https://github.com/vertexproject/synapse/pull/2104
https://github.com/vertexproject/synapse/pull/2110
https://github.com/vertexproject/synapse/pull/2100
https://github.com/vertexproject/synapse/pull/2101

Synapse Documentation, Release 2.141.0

17.138.2 Improved Documentation

• Add API documentation for the Axon. (#2098)

• Update the Storm pivot reference documentation. (#2101)

17.139 v2.28.0 - 2021-02-26

17.139.1 Features and Enhancements

• Add String.reverse() Stormtypes API to reverse a string. (#2086)

• Add Cell APIs for streaming compressed backups. (#2084) (#2091)

• Refactor snap.addNodes() to reduce the transaction count. (#2087) (#2090)

• Add $lib.axon.list() Stormtypes API to list hashes in an Axon. (#2088)

• Add user permissions requirements for Aha CSR signing. (#2089)

• Add aha:svcinfo configuration option for the base Cell. (#2089)

• Add interfaces to the output of model.getModelDefs() and the getModelDict() APIs. (#2092)

• Update pylmdb to v1.1.1. (#2076)

17.139.2 Bugfixes

• Fix incorrect permissions check in the merge --diff Storm command. (#2085)

• Fix service teardown issue in Aha service on fini. (#2089)

• Fix possible synapse.tools.cmdr teardown issue when using Aha. (#2089)

• Cast synapse_minversion from Storm Packages into a tuple to avoid packages added with HTTP endpoints
from failing to validate. (#2095)

17.139.3 Improved Documentation

• Add documentation for the Aha discovery service. (#2089)

• Add documentation for assigning secondary properties via subquery syntax. (#2097)

17.140 v2.27.0 - 2021-02-16

17.140.1 Features and Enhancements

• Allow property assignment and array operations from subqueries. (#2072)

• Add APIs to the Axon to allow the deletion of blobs via Telepath and HTTP APIs. (#2080)

• Add a str.slice() stormtypes method to allow easy string slicing. (#2083)

• Modularize the Storm HTTP API handlers. (#2082)

1538 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2098
https://github.com/vertexproject/synapse/pull/2101
https://github.com/vertexproject/synapse/pull/2086
https://github.com/vertexproject/synapse/pull/2084
https://github.com/vertexproject/synapse/pull/2091
https://github.com/vertexproject/synapse/pull/2087
https://github.com/vertexproject/synapse/pull/2090
https://github.com/vertexproject/synapse/pull/2088
https://github.com/vertexproject/synapse/pull/2089
https://github.com/vertexproject/synapse/pull/2089
https://github.com/vertexproject/synapse/pull/2092
https://github.com/vertexproject/synapse/pull/2076
https://github.com/vertexproject/synapse/pull/2085
https://github.com/vertexproject/synapse/pull/2089
https://github.com/vertexproject/synapse/pull/2089
https://github.com/vertexproject/synapse/pull/2095
https://github.com/vertexproject/synapse/pull/2089
https://github.com/vertexproject/synapse/pull/2097
https://github.com/vertexproject/synapse/pull/2072
https://github.com/vertexproject/synapse/pull/2080
https://github.com/vertexproject/synapse/pull/2083
https://github.com/vertexproject/synapse/pull/2082

Synapse Documentation, Release 2.141.0

17.140.2 Bugfixes

• Fix Agenda events which were not being properly tracked via the Nexus. (#2078)

17.140.3 Improved Documentation

• Add documentation for the Cortex /api/v1/storm/exportHTTP endpoint. This also included documentation
for the scrub option in Storm. (#2079)

• Add a Code of Conduct for Synapse. (#2081)

17.141 v2.26.0 - 2021-02-05

17.141.1 Features and Enhancements

• Add Storm commands for easily adding, deleting, and listing layer push and pull configurations. (#2071)

17.141.2 Bugfixes

• Fix layer.getPropCount() API for universal properties. (#2073)

• Add a missing async yield in Snap.addNodes(). (#2074)

• Constrain lmdb version due to unexpected behavior in v1.1.0. (#2075)

17.141.3 Improved Documentation

• Update user docs for Storm flow control and data model references. (#2066)

17.142 v2.25.0 - 2021-02-01

17.142.1 Features and Enhancements

• Implement tag model based pruning behavior for controlling how individual tag trees are deleted from nodes.
(#2067)

• Add model interfaces for defining common sets of properties for forms, starting with some file mime metadata.
(#2040)

• Add file:mime:msdoc, file:mime:msxls, file:mime:msppt, and file:mime:rtf forms. (#2040)

• Tweak the ival normalizer to auto-expand intervals with a single element. (#2070)

• Removed the experimental spawn feature of the Storm runtime. (#2068)

17.141. v2.26.0 - 2021-02-05 1539

https://github.com/vertexproject/synapse/pull/2078
https://github.com/vertexproject/synapse/pull/2079
https://github.com/vertexproject/synapse/pull/2081
https://github.com/vertexproject/synapse/pull/2071
https://github.com/vertexproject/synapse/pull/2073
https://github.com/vertexproject/synapse/pull/2074
https://github.com/vertexproject/synapse/pull/2075
https://github.com/vertexproject/synapse/pull/2066
https://github.com/vertexproject/synapse/pull/2067
https://github.com/vertexproject/synapse/pull/2040
https://github.com/vertexproject/synapse/pull/2040
https://github.com/vertexproject/synapse/pull/2070
https://github.com/vertexproject/synapse/pull/2068

Synapse Documentation, Release 2.141.0

17.142.2 Bugfixes

• Add a missing async yield statement in View.getEdgeVerbs(). (#2069)

17.142.3 Improved Documentation

• Correct incorrect references to the synapse.tools.easycert documentation. (#2065)

17.143 v2.24.0 - 2021-01-29

17.143.1 Features and Enhancements

• Add support for storing model metadata for tags and support for enforcing tag trees using regular expressions.
(#2056)

• Add ou:contest:url secondary property. (#2059)

• Add synapse.lib.autodoc to collect some Storm documentation helpers into a single library. (#2034)

• Add tag.prune Storm command to remove parent tags when removing a leaf tag from a node. (#2062)

• Update the msgpack Python dependency to version v1.0.2. (#1735)

• Add logs to Cell backup routines. (#2060)

• Export the Layer iterrows APIs to the CoreApi. (#2061)

17.143.2 Bugfixes

• Do not connect to Aha servers when they are not needed. (#2058)

• Make the array property ou:org:industries a unique array property. (#2059)

• Add permission checks to the Storm movetag command. (#2063)

• Add permissions checks to the Storm edges.del command. (#2064)

17.143.3 Improved Documentation

• Add documentation for the synapse.tools.genpkg utility, for loading Storm packages into a Cortex. (#2057)

• Refactor the Stormtypes documentation generation to make it data driven. (#2034)

17.144 v2.23.0 - 2021-01-21

17.144.1 Features and Enhancements

• Add support for ndef based light edge definitions in the syn.nodes feed API. (#2051) (#2053)

• Add ISIC codes to the ou:industry form. (#2054) (#2055)

• Add secondary properties :loc, :latlong, and :place to the inet:web:action and inet:web:logon
forms. (#2052)

1540 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2069
https://github.com/vertexproject/synapse/pull/2065
https://github.com/vertexproject/synapse/pull/2056
https://github.com/vertexproject/synapse/pull/2059
https://github.com/vertexproject/synapse/pull/2034
https://github.com/vertexproject/synapse/pull/2062
https://github.com/vertexproject/synapse/pull/1735
https://github.com/vertexproject/synapse/pull/2060
https://github.com/vertexproject/synapse/pull/2061
https://github.com/vertexproject/synapse/pull/2058
https://github.com/vertexproject/synapse/pull/2059
https://github.com/vertexproject/synapse/pull/2063
https://github.com/vertexproject/synapse/pull/2064
https://github.com/vertexproject/synapse/pull/2057
https://github.com/vertexproject/synapse/pull/2034
https://github.com/vertexproject/synapse/pull/2051
https://github.com/vertexproject/synapse/pull/2053
https://github.com/vertexproject/synapse/pull/2054
https://github.com/vertexproject/synapse/pull/2055
https://github.com/vertexproject/synapse/pull/2052

Synapse Documentation, Release 2.141.0

• Add secondary property :enabled to the form it:app:yara:rule. (#2052)

• Deprecate the file:string and ou:member forms, in favor of using light edges for storing those relationships.
(#2052)

17.145 v2.22.0 - 2021-01-19

17.145.1 Features and Enhancements

• Allow expression statements to be used in Storm filters. (#2041)

• Add file:subfile:path secondary property to record the path a file was stored in a parent file. The corre-
sponding file:subfile:name property is marked as deprecated. (#2043)

• Make the Axon wget() timeout a configurable parameter. (#2047)

• Add a Cortex.exportStorm() on the Cortex which allows for exporting nodes from a Storm query which can
be directly ingested with the syn.nodes feed function. If the data is serialized using msgpack and stored in a
Axon, it can be added to a Cortex with the new Cortex.feedFromAxon() API. A new HTTP API, /api/v1/
storm/export, can be used to get a msgpacked file using this export interface. (#2045)

17.145.2 Bugfixes

• Fix issues in the Layer push and pull loop code. (#2044) (#2048)

• Add missing toprim() and tostr() calls for the Stormtypes Whois guid generation helpers. (#2046)

• Fix behavior in the Storm lookup mode which failed to lookup some expected results. (#2049)

• Fix $lib.pkg.get() return value when the package is not present. (#2050)

17.146 v2.21.1 - 2021-01-04

17.146.1 Bugfixes

• Fix a variable scoping issue causing a race condition. (#2042)

17.147 v2.21.0 - 2020-12-31

17.147.1 Features and Enhancements

• Add a Storm wget command which will download a file from a URL using the Cortex Axon and yield
inet:urlfile nodes. (#2035)

• Add a --diff option to the merge command to enumerate changes. (#2037)

• Allow StormLib Layer API to dynamically update a Layer’s logedits setting. (#2038)

• Add StormLib APIs for adding and deleting extended model properties, forms and tag properties. (#2039)

17.145. v2.22.0 - 2021-01-19 1541

https://github.com/vertexproject/synapse/pull/2052
https://github.com/vertexproject/synapse/pull/2052
https://github.com/vertexproject/synapse/pull/2041
https://github.com/vertexproject/synapse/pull/2043
https://github.com/vertexproject/synapse/pull/2047
https://github.com/vertexproject/synapse/pull/2045
https://github.com/vertexproject/synapse/pull/2044
https://github.com/vertexproject/synapse/pull/2048
https://github.com/vertexproject/synapse/pull/2046
https://github.com/vertexproject/synapse/pull/2049
https://github.com/vertexproject/synapse/pull/2050
https://github.com/vertexproject/synapse/pull/2042
https://github.com/vertexproject/synapse/pull/2035
https://github.com/vertexproject/synapse/pull/2037
https://github.com/vertexproject/synapse/pull/2038
https://github.com/vertexproject/synapse/pull/2039

Synapse Documentation, Release 2.141.0

17.147.2 Bugfixes

• Fix an issue with the JsonStor not created nested entries properly. (#2036)

17.148 v2.20.0 - 2020-12-29

17.148.1 Features and Enhancements

• Correct the StormType Queue.pop() API to properly pop and return only the item at the specified index or the
next entry in the Queue. This simplifies the intent behind the .pop() operation; and removes the cull and wait
parameters which were previously on the method. (#2032)

17.148.2 Bugfixes

• Use resp.iter_chunked in the Axon .wget() API to improve compatibility with some third party libraries.
(#2030)

• Require the use of a msgpack based deepcopy operation in handling storage nodes. (#2031)

• Fix for ambiguous whitespace in Storm command argument parsing. (#2033)

17.149 v2.19.0 - 2020-12-27

17.149.1 Features and Enhancements

• Add APIs to remove decommissioned services from AHA servers.

• Add (optional) explicit network parameters to AHA APIs. (#2029)

• Add cell.isCellActive() API to differentiate leaders/mirrors. (#2028)

• Add pop() method to Storm list objects. (#2027)

17.149.2 Bugfixes

• Fix bug in dry-run output of new merge command. (#2026)

17.150 v2.18.1 - 2020-12-24

17.150.1 Bugfixes

• Make syncIndexEvents testing more resiliant

• Make syncIndexEvents yield more often when filtering results (#2025)

• Update push/pull tests to use new waittask() API

• Raise clear errors in ambiguous use of node.tagglobs() API

• Update model docs and examples for geo:latitude and geo:longitude

1542 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2036
https://github.com/vertexproject/synapse/pull/2032
https://github.com/vertexproject/synapse/pull/2030
https://github.com/vertexproject/synapse/pull/2031
https://github.com/vertexproject/synapse/pull/2033
https://github.com/vertexproject/synapse/pull/2029
https://github.com/vertexproject/synapse/pull/2028
https://github.com/vertexproject/synapse/pull/2027
https://github.com/vertexproject/synapse/pull/2026
https://github.com/vertexproject/synapse/pull/2025

Synapse Documentation, Release 2.141.0

• Support deref form names in storm node add expressions (#2024)

• Update tests to normalize equality comparison values (#2023)

17.151 v2.18.0 - 2020-12-23

17.151.1 Features and Enhancements

• Added axon.size() API and storm plumbing (#2020)

17.151.2 Bugfixes

• Fix active coro issue uncovered with cluster testing (#2021)

17.152 v2.17.1 - 2020-12-22

17.152.1 Features and Enhancements

• Added (BETA) RST pre-processor to embed Storm output into RST docs. (#1988)

• Added a merge command to allow per-node Layer merge operations to be done. (#2009)

• Updated storm package format to include a semver version string. (#2016)

• Added telepath proxy getPipeline API to minimize round-trip delay. (#1615)

• Added Node properties iteration and setitem APIs to storm. (#2011)

17.152.2 Bugfixes

• Fixes for active coro API and internal layer API name fixes. (#2018)

• Allow :prop -+> * join syntax. (#2015)

• Make getFormCount() API return a primitive dictionary. (#2014)

• Make StormVarListError messages more user friendly. (#2013)

17.153 v2.17.0 - 2020-12-22

2.17.0 was not published due to CI issues.

17.151. v2.18.0 - 2020-12-23 1543

https://github.com/vertexproject/synapse/pull/2024
https://github.com/vertexproject/synapse/pull/2023
https://github.com/vertexproject/synapse/pull/2020
https://github.com/vertexproject/synapse/pull/2021
https://github.com/vertexproject/synapse/pull/1988
https://github.com/vertexproject/synapse/pull/2009
https://github.com/vertexproject/synapse/pull/2016
https://github.com/vertexproject/synapse/pull/1615
https://github.com/vertexproject/synapse/pull/2011
https://github.com/vertexproject/synapse/pull/2018
https://github.com/vertexproject/synapse/pull/2015
https://github.com/vertexproject/synapse/pull/2014
https://github.com/vertexproject/synapse/pull/2013

Synapse Documentation, Release 2.141.0

17.154 v2.16.1 - 2020-12-17

17.154.1 Features and Enhancements

• Allow the matchdef used in the Layer.syncIndexEvents() API to match on tagprop data. (#2010)

17.154.2 Bugfixes

• Properly detect and raise a client side exception in Telepath generators when the underlying Link has been closed.
(#2008)

• Refactor the Layer push/push test to not reach through the Layer API boundary. (#2012)

17.154.3 Improved Documentation

• Add documentation for Storm raw pivot syntax. (#2007)

• Add documentation for recently added Storm commands. (#2007)

• General cleanup and clarifications. (#2007)

17.155 v2.16.0 - 2020-12-15

17.155.1 Features and Enhancements

• Replaced the View sync APIs introduced in v2.14.0 with Layer specific sync APIs. (#2003)

• Add $lib.regex.matches() and $lib.regex.search() Stormtypes APIs for performing regular expression
operations against text in Storm. (#1999) (#2005)

• Add synapse.tools.genpkg for generating Storm packages and loading them into a Cortex. (#2004)

• Refactored the StormDmon implementation to use a single async task and allow the Dmons to be restarted via
$lib.dmon.bump(iden). This replaces the outer task / inner task paradigm that was previously present. Also
add the ability to persistently disable and enable a StomDmon. (#1998)

• Added aha:// support to the synapse.tools.pushfile and synapse.tools.pullfile tools. (#2006)

17.155.2 Bugfixes

• Properly handle whitespace in keyword arguments when calling functions in Storm. (#1997)

• Fix some garbage collection issues causing periodic pauses in a Cortex due to failing to close some generators
used in the Storm Command AST node. (#2001) (#2002)

• Fix scope based permission checks in Storm. (#2000)

1544 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/2010
https://github.com/vertexproject/synapse/pull/2008
https://github.com/vertexproject/synapse/pull/2012
https://github.com/vertexproject/synapse/pull/2007
https://github.com/vertexproject/synapse/pull/2007
https://github.com/vertexproject/synapse/pull/2007
https://github.com/vertexproject/synapse/pull/2003
https://github.com/vertexproject/synapse/pull/1999
https://github.com/vertexproject/synapse/pull/2005
https://github.com/vertexproject/synapse/pull/2004
https://github.com/vertexproject/synapse/pull/1998
https://github.com/vertexproject/synapse/pull/2006
https://github.com/vertexproject/synapse/pull/1997
https://github.com/vertexproject/synapse/pull/2001
https://github.com/vertexproject/synapse/pull/2002
https://github.com/vertexproject/synapse/pull/2000

Synapse Documentation, Release 2.141.0

17.156 v2.15.0 - 2020-12-11

17.156.1 Features and Enhancements

• Add two new Cortex APIs: syncIndexEvents and syncLayerEvents useful for external indexing. (#1948)
(#1996)

• LMDB Slab improvements: Allow dupfixed dbs, add firstkey method, inline _ispo2, add HotCount deletion.
(#1948)

• Add method to merge sort sorted async generators. (#1948)

17.156.2 Bugfixes

• Ensure parent FQDN exists even in out-of-order node edit playback. (#1995)

17.157 v2.14.2 - 2020-12-10

17.157.1 Bugfixes

• Fix an issue with the new layer push / pull code. (#1994)

• Fix an issue with the url sanitization function when the path contains an @ character. (#1993)

17.158 v2.14.1 - 2020-12-09

17.158.1 Features and Enhancements

• Add a /api/v1/active HTTP API to the Cell that can be used as an unauthenticated liveliness check. (#1987)

• Add $lib.pip.gen() Stormtypes API for ephemeral queues and bulk data access in Storm. (#1986)

• Add a $lib.model.tagprop() Stormtypes API for retrieving Tagprop definitions. (#1990)

• Add efficient View and Layer push/pull configurations. (#1991) (#1992)

• Add getAhaUrls() to the Aha service to prepare for additional service discovery. (#1989)

• Add a /api/v1/auth/onepass/issue HTTP API for an admin to mint a one-time password for a Cell user.
(#1982)

17.158.2 Bugfixes

• Make aha:// urls honor local paths. (#1985)

17.156. v2.15.0 - 2020-12-11 1545

https://github.com/vertexproject/synapse/pull/1948
https://github.com/vertexproject/synapse/pull/1996
https://github.com/vertexproject/synapse/pull/1948
https://github.com/vertexproject/synapse/pull/1948
https://github.com/vertexproject/synapse/pull/1995
https://github.com/vertexproject/synapse/pull/1994
https://github.com/vertexproject/synapse/pull/1993
https://github.com/vertexproject/synapse/pull/1987
https://github.com/vertexproject/synapse/pull/1986
https://github.com/vertexproject/synapse/pull/1990
https://github.com/vertexproject/synapse/pull/1991
https://github.com/vertexproject/synapse/pull/1992
https://github.com/vertexproject/synapse/pull/1989
https://github.com/vertexproject/synapse/pull/1982
https://github.com/vertexproject/synapse/pull/1985

Synapse Documentation, Release 2.141.0

17.159 v2.14.0 - 2020-12-09

2.14.0 was not published due to CI issues.

17.160 v2.13.0 - 2020-12-04

17.160.1 Features and Enhancements

• Add $lib.pkg.get() StormTypes function to get the Storm Package definition for a given package by name.
(#1983)

17.160.2 Bugfixes

• The user account provisioned by the aha:admin could be locked out. Now, upon startup, if they have been
locked out or had their admin status removed, they are unlocked and admin is reset. (#1984)

17.161 v2.12.3 - 2020-12-03

17.161.1 Bugfixes

• Prevent OverflowError exceptions which could have resulted from lift operations with integer storage types.
(#1980)

• Remove inet:ipv4 norm routine wrap-around behavior for integers which are outside the normal bounds of
IPv4 addresses. (#1979)

• Fix view.add and fork related permissions. (#1981)

• Read telepath.yaml when using the synapse.tools.cellauth tool. (#1981)

17.162 v2.12.2 - 2020-12-01

This release also includes the changes from v2.12.1, which was not released due to an issue with CI pipelines.

17.162.1 Bugfixes

• Add the missing API getPathObjs on the JsonStorCell. (#1976)

• Fix the HasRelPropCond AST node support for Storm pivprop operations. (#1972)

• Fix support for the aha:registry config parameter in a Cell to support an array of strings. (#1975)

• Split the Cortex.addForm() Nexus handler into two parts to allow for safe event replay. (#1978)

• Stop forking a large number of child layers in a View persistence test. (#1977)

1546 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/1983
https://github.com/vertexproject/synapse/pull/1984
https://github.com/vertexproject/synapse/pull/1980
https://github.com/vertexproject/synapse/pull/1979
https://github.com/vertexproject/synapse/pull/1981
https://github.com/vertexproject/synapse/pull/1981
https://github.com/vertexproject/synapse/pull/1976
https://github.com/vertexproject/synapse/pull/1972
https://github.com/vertexproject/synapse/pull/1975
https://github.com/vertexproject/synapse/pull/1978
https://github.com/vertexproject/synapse/pull/1977

Synapse Documentation, Release 2.141.0

17.163 v2.12.1 - 2020-12-01

17.163.1 Bugfixes

• Add the missing API getPathObjs on the JsonStorCell. (#1976)

• Fix the HasRelPropCond AST node support for Storm pivprop operations. (#1972)

• Fix support for the aha:registry config parameter in a Cell to support an array of strings. (#1975)

17.164 v2.12.0 - 2020-11-30

17.164.1 Features and Enhancements

• Add a onload paramter to the stormpkg definition. This represents a Storm query which is executed every time
the stormpkg is loaded in a Cortex. (#1971) (#1974)

• Add the ability, in Storm, to unset variables, remove items from dictionaries, and remove items from lists. This
is done via assigning $lib.undef to the value to be removed. (#1970)

• Add support for SOCKS proxy support for outgoing connections from an Axon and Cortex, using the
'http:proxy configuration option. This configuration value must be a valid string for the aiohttp_socks.
ProxyConnector.from_url() API. The SOCKS proxy is used by the Axon when downloading files; and by
the Cortex when making HTTP connections inside of Storm. (#1968)

• Add aha:admin to the Cell configuration to provide a common name that is used to create an admin user for
remote access to the Cell via the Aha service. (#1969)

• Add auth:ctor and auth:conf config to the Cell in order to allow hooking the construction of the HiveAuth
object. (#1969)

17.165 v2.11.0 - 2020-11-25

17.165.1 Features and Enhancements

• Optimize Storm lift and filter queries, so that more efficient lift operations may be performed in some cases.
(#1966)

• Add a Axon.wget() API to allow the Axon to retrieve files directly from a URL. (#1965)

• Add a JsonStor Cell, which allows for hierarchical storage and retrieval of JSON documents. (#1954)

• Add a Cortex HTTP API, /api/v1/storm/call. This behaves like the CoreApi.callStorm() API. (#1967)

• Add :client:host and :server:host secondary properties to the inet:http:request form. (#1955)

• Add :host and :acct secondary properties to the inet:search:query form. (#1955)

• Add a Telepath service discovery implementation, the Aha cell. The Aha APIs are currently provisional and
subject to change. (#1954)

17.163. v2.12.1 - 2020-12-01 1547

https://github.com/vertexproject/synapse/pull/1976
https://github.com/vertexproject/synapse/pull/1972
https://github.com/vertexproject/synapse/pull/1975
https://github.com/vertexproject/synapse/pull/1971
https://github.com/vertexproject/synapse/pull/1974
https://github.com/vertexproject/synapse/pull/1970
https://github.com/vertexproject/synapse/pull/1968
https://github.com/vertexproject/synapse/pull/1969
https://github.com/vertexproject/synapse/pull/1969
https://github.com/vertexproject/synapse/pull/1966
https://github.com/vertexproject/synapse/pull/1965
https://github.com/vertexproject/synapse/pull/1954
https://github.com/vertexproject/synapse/pull/1967
https://github.com/vertexproject/synapse/pull/1955
https://github.com/vertexproject/synapse/pull/1955
https://github.com/vertexproject/synapse/pull/1954

Synapse Documentation, Release 2.141.0

17.166 v2.10.2 - 2020-11-20

17.166.1 Features and Enhancements

• The Storm cron.at command now supports a --now flag to create a cron job which immediately executes.
(#1963)

17.166.2 Bugfixes

• Fix a cleanup race that caused occasional test_lmdbslab_base failures. (#1962)

• Fix an issue with EDIT_NODEDATA_SET nodeedits missing the oldv value. (#1961)

• Fix an issue where cron.cleanup could have prematurely deleted some cron jobs. (#1963)

17.167 v2.10.1 - 2020-11-17

17.167.1 Bugfixes

• Fix a CI issue which prevented the Python sdist package from being uploaded to PyPi. (#1960)

17.168 v2.10.0 - 2020-11-17

17.168.1 Announcements

The v2.10.0 Synapse release contains support for Python 3.8. Docker images are now built using a Python 3.8
image by default. There are also Python 3.7 images available as vertexproject/synapse:master-py37 and
vertexproject/synapse:v2.x.x-py37.

17.168.2 Features and Enhancements

• Python 3.8 release support for Docker and PyPi. (#1921) (#1956)

• Add support for adding extended forms to the Cortex. This allows users to define their own forms using the
existing types which are available in the Synapse data model. (#1944)

• The Storm and and or statements now short-circuit and will return when their logical condition is first met. This
means that subsequent clauses in those statements may not be executed. (#1952)

• Add a mechanism for Storm Services to specify commands which may require privilege elevation to execute. An
example of this may be to allow a command to create nodes; without managning individual permissions on what
nodes a user may normally be allowed to create. Services using this mechanism wiill use the storm.asroot.
cmd.<<cmd name>> hierarchy to grant this permission. (#1953) (#1958)

• Add $lib.json Stormtypes Library to convert between string data and primitives. (#1949)

• Add a parallel command to allow for executing a portion of a Storm query in parallel. Add a background
command to execute a Storm query as a detached task from the current query, capturing variables in the process.
(#1931) (#1957)

• Add a $lib.exit() function to StormTypes to allow for quickly exiting a Storm query. (#1931)

1548 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/1963
https://github.com/vertexproject/synapse/pull/1962
https://github.com/vertexproject/synapse/pull/1961
https://github.com/vertexproject/synapse/pull/1963
https://github.com/vertexproject/synapse/pull/1960
https://github.com/vertexproject/synapse/pull/1921
https://github.com/vertexproject/synapse/pull/1956
https://github.com/vertexproject/synapse/pull/1944
https://github.com/vertexproject/synapse/pull/1952
https://github.com/vertexproject/synapse/pull/1953
https://github.com/vertexproject/synapse/pull/1958
https://github.com/vertexproject/synapse/pull/1949
https://github.com/vertexproject/synapse/pull/1931
https://github.com/vertexproject/synapse/pull/1957
https://github.com/vertexproject/synapse/pull/1931

Synapse Documentation, Release 2.141.0

• Add $lib.bytes.upload() to Stormtypes for streaming bytes into the Axon that the Cortex is configured with.
(#1945)

• Add Storm commands to manage locking and unlocking deprecated model properties. (#1909)

• Add cron.cleanup command to make it easy to clean up completed cron jobs. (#1942)

• Add date of death properties and consistently named photo secondary properties. (#1929)

• Add model additions for representing education and awards. (#1930)

• Add additional account linkages to the inet model for users and groups. (#1946)

• Add inet:web:hashtag as its own form, and add :hashtags to inet:web:post. (#1946)

• Add lang:translation to capture language translations of texts in a more comprehensive way than older lang
model forms did. The lang:idiom and lang:trans forms have been marked as deprecated. (#1946)

• Update the ou model to add ou:attendee and ou:contest and ou:contest:result forms. Several sec-
ondary properties related to conference attendance have been marked deprecated. (#1946)

• The ps:persona and ps:persona:has forms have been marked as deprecated. (#1946)

• Add ps:contactlist to allow collecting multiple ps:contact nodes together. (#1935)

• Allow the Storm Service cmdargs to accept any valid model type in the type value. (#1923) (#1936)

• Add >, <, >= and <= comparators for inet:ipv4 type. (#1938)

• Add configuration options to the Axon to limit the amount of data which can be stored in it. Add a configuration
option the Cortex to limit the number of nodes which may be stored in a given Cortex. (#1950)

17.168.3 Bugfixes

• Fix a potential incorrect length for Spooled sets during fallback. (#1937)

• Fix an issue with the Telepath Client object caching their Method and GenrMethod attributes across re-
connections of the underlying Proxy objects. (#1939) (#1941)

• Fix a bug where a temporary spool slab cleanup failed to remove all files from the filesystem that were created
when the slab was made. (#1940)

• Move exceptions which do not subclass SynErr out of synapse/exc.py. (#1947) (#1951)

17.169 v2.9.2 - 2020-10-27

17.169.1 Bugfixes

• Fix an issue where a Cortex migrated from a 01x release could overwrite entries in a Layer’s historical nodeedit
log. (#1934)

• Fix an issue with the layer definition schema. (#1927)

17.169. v2.9.2 - 2020-10-27 1549

https://github.com/vertexproject/synapse/pull/1945
https://github.com/vertexproject/synapse/pull/1909
https://github.com/vertexproject/synapse/pull/1942
https://github.com/vertexproject/synapse/pull/1929
https://github.com/vertexproject/synapse/pull/1930
https://github.com/vertexproject/synapse/pull/1946
https://github.com/vertexproject/synapse/pull/1946
https://github.com/vertexproject/synapse/pull/1946
https://github.com/vertexproject/synapse/pull/1946
https://github.com/vertexproject/synapse/pull/1946
https://github.com/vertexproject/synapse/pull/1935
https://github.com/vertexproject/synapse/pull/1923
https://github.com/vertexproject/synapse/pull/1936
https://github.com/vertexproject/synapse/pull/1938
https://github.com/vertexproject/synapse/pull/1950
https://github.com/vertexproject/synapse/pull/1937
https://github.com/vertexproject/synapse/pull/1939
https://github.com/vertexproject/synapse/pull/1941
https://github.com/vertexproject/synapse/pull/1940
https://github.com/vertexproject/synapse/pull/1947
https://github.com/vertexproject/synapse/pull/1951
https://github.com/vertexproject/synapse/pull/1934
https://github.com/vertexproject/synapse/pull/1927

Synapse Documentation, Release 2.141.0

17.170 v2.9.1 - 2020-10-22

17.170.1 Features and Enhancements

• Reuse existing an existing DateTime object when making time strings. This gives a slight performance boost
for the synapse.lib.time.repr() function. (#1919)

• Remove deprecated use of loop arguments when calling asyncio primitives. (#1920)

• Allow Storm Services to define a minimum required Synapse version by the Cortex. If the Cortex is not running
the minimum version, the Cortex will not load (#1900)

• Only get the nxsindx in the Layer.storeNodeEdits() function if logging edits. (#1926)

• Include the Node iden value in the CantDelNode exception when attempting to delete a Node failes due to
existing references to the node. (#1926)

• Take advantage of the LMDB append operation when possible. (#1912)

17.170.2 Bugfixes

• Fix an issues in the Telepath Client where an exception thrown by a onlink function could cause additional
linkloop tasks to be spawned. (#1924)

17.171 v2.9.0 - 2020-10-19

17.171.1 Announcements

The v2.9.0 Synapse release contains an automatic Cortex Layer data migration. The updated layer storage format
reduces disk and memory requirements for a layer. It is recommended to test this process with a backup of a Cortex
before updating a production Cortex.

In order to maximize the space savings from the new layer storage format, after the Cortex has been migrated to v2.
9.0, one can take a cold backup of the Cortex and restore the Cortex from that backup. This compacts the LMDB
databases which back the Layers and reclaims disk space as a result. This is an optional step; as LMDB will eventually
re-use the existing space on disk.

If there are any questions about this, please reach out in the Synapse Slack channel so we can assist with any data
migration questions.

17.171.2 Features and Enhancements

• Optimize the layer storage format for memory size and performance. (#1877) (#1885) (#1899) (#1917)

• Initial support Python 3.8 compatibility for the core Synapse library. Additional 3.8 support (such as wheels and
Docker images) will be available in future releases. (#1907)

• Add a read only Storm option to the Storm runtime. This option prevents executing commands or Stormtypes
functions which may modify data in the Cortex. (#1869) (#1916)

• Allow the Telepath Dmon to disconnect clients using a ready status. (#1881)

• Ensure that there is only one online backup of a Cell occurring at a time. (#1883)

1550 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/1919
https://github.com/vertexproject/synapse/pull/1920
https://github.com/vertexproject/synapse/pull/1900
https://github.com/vertexproject/synapse/pull/1926
https://github.com/vertexproject/synapse/pull/1926
https://github.com/vertexproject/synapse/pull/1912
https://github.com/vertexproject/synapse/pull/1924
https://github.com/vertexproject/synapse/pull/1877
https://github.com/vertexproject/synapse/pull/1885
https://github.com/vertexproject/synapse/pull/1899
https://github.com/vertexproject/synapse/pull/1917
https://github.com/vertexproject/synapse/pull/1907
https://github.com/vertexproject/synapse/pull/1869
https://github.com/vertexproject/synapse/pull/1916
https://github.com/vertexproject/synapse/pull/1881
https://github.com/vertexproject/synapse/pull/1883

Synapse Documentation, Release 2.141.0

• Added .lower(), .strip(), .lstrip() and .rstrip() methods to the Stormtypes Str object. These behave
like the Python str methods. (#1886) (#1906)

• When scraping text, defanged indicators are now refanged by default. (#1888)

• Normalize read-only property declarations to use booleans in the data model. (#1887)

• Add lift.byverb command to allow lifting nodes using a light edge verb. (#1890)

• Add netblock and range lift helpers for inet:ipv6 type, similar to the helpers for inet:ipv4. (#1869)

• Add a edges.del command to bulk remove light weight edges from nodes. (#1893)

• The yield keyword in Storm now supports iterating over Stormtypes List and Set objects. (#1898)

• Add ou:contract, ou:industry and it:reveng:function:strings forms to the data model. (#1894)

• Add some display type-hinting to the data model for some string fields which may be multi-line fields. (#1892)

• Add getFormCounts() API to the Stormtypes View and Layer objects. (#1903)

• Allow Cortex layers to report their total size on disk. This is exposed in the Stormtypes Layer.pack() method
for a layer. (#1910)

• Expose the remote Storm Service name in the $lib.service.get() Stormtypes API. This allows getting a
service object without knowing the name of the service as it was locally added to a Cortex. Also add a $lib.
service.has() API which allows checking to see if a service is available on a Cortex. (#1908) (#1915)

• Add regular expression (~=) and prefix matching (^=) expression comparators that can be used with logical
expressions inside of Storm. (#1906)

• Promote CoreApi.addFeedData() calls to tracked tasks which can be viewed and terminated. (#1918)

17.171.3 Bugfixes

• Fixed a Storm bug where attempting to access an undeclared variable silently fails. This will now raise a
NoSuchVar exception. This is verified at runtime, not at syntax evaluation. (#1916)

• Ensure that Storm HTTP APIs tear down the runtime task if the remote disconnects before consuming all of the
messages. (#1889)

• Fix an issue where the model.edge.list command could block the ioloop for large Cortex. (#1890)

• Fix a regex based lifting bug. (#1899)

• Fix a few possibly greedy points in the AST code which could have resulted in greedy CPU use. (#1902)

• When pivoting across light edges, if the destination form was not a valid form, nothing happened. Now a Storm-
RuntimeError is raised if the destination form is not valid. (#1905)

• Fix an issue with spawn processes accessing lmdb databases after a slab resize event has occurred by the main
process. (#1914)

• Fix a slab teardown race seen in testing Python 3.8 on MacOS. (#1914)

17.171. v2.9.0 - 2020-10-19 1551

https://github.com/vertexproject/synapse/pull/1886
https://github.com/vertexproject/synapse/pull/1906
https://github.com/vertexproject/synapse/pull/1888
https://github.com/vertexproject/synapse/pull/1887
https://github.com/vertexproject/synapse/pull/1890
https://github.com/vertexproject/synapse/pull/1869
https://github.com/vertexproject/synapse/pull/1893
https://github.com/vertexproject/synapse/pull/1898
https://github.com/vertexproject/synapse/pull/1894
https://github.com/vertexproject/synapse/pull/1892
https://github.com/vertexproject/synapse/pull/1903
https://github.com/vertexproject/synapse/pull/1910
https://github.com/vertexproject/synapse/pull/1908
https://github.com/vertexproject/synapse/pull/1915
https://github.com/vertexproject/synapse/pull/1906
https://github.com/vertexproject/synapse/pull/1918
https://github.com/vertexproject/synapse/pull/1916
https://github.com/vertexproject/synapse/pull/1889
https://github.com/vertexproject/synapse/pull/1890
https://github.com/vertexproject/synapse/pull/1899
https://github.com/vertexproject/synapse/pull/1902
https://github.com/vertexproject/synapse/pull/1905
https://github.com/vertexproject/synapse/pull/1914
https://github.com/vertexproject/synapse/pull/1914

Synapse Documentation, Release 2.141.0

17.171.4 Deprecations

• The 0.1.x to 2.x.x Migration tool and associated Cortex sync service has been removed from Synapse in the
2.9.0 release.

17.171.5 Improved Documentation

• Clarify user documentation for pivot out and pivot in operations. (#1891)

• Add a deprecation policy for Synapse Data model elements. (#1895)

• Pretty print large data structures that may occur in the data model documentation. (#1897)

• Update Storm Lift documentation to add the ?= operator. (#1904)

17.172 v2.8.0 - 2020-09-22

17.172.1 Features and Enhancements

• Module updates to support generic organization identifiers, generic advertising identifiers, asnet6 and a few other
secondary property additions. (#1879)

• Update the Cell backup APIs to perform a consistent backup across all slabs for a Cell. (#1873)

• Add support for a environment variable, SYN_LOCKMEM_DISABLE which will disable any memory locking of
LMDB slabs. (#1882)

17.172.2 Deprecations

• The 0.1.x to 2.x.x Migration tool and and associated Cortex sync service will be removed from Synapse in
the 2.9.0 release. In order to move forward to 2.9.0, please make sure that any Cortexes which still need to be
migrated will first be migrated to 2.8.x prior to attempting to use 2.9.x.

17.172.3 Improved Documentation

• Add Synapse README content to the Pypi page. This was a community contribution from https://github.com/
wesinator. (#1872)

17.173 v2.7.3 - 2020-09-16

17.173.1 Deprecations

• The 0.1.x to 2.x.x Migration tool and and associated Cortex sync service will be removed from Synapse in
the 2.9.0 release. In order to move forward to 2.9.0, please make sure that any Cortexes which still need to be
migrated will first be migrated to 2.8.x prior to attempting to use 2.9.x. (#1880)

1552 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/1891
https://github.com/vertexproject/synapse/pull/1895
https://github.com/vertexproject/synapse/pull/1897
https://github.com/vertexproject/synapse/pull/1904
https://github.com/vertexproject/synapse/pull/1879
https://github.com/vertexproject/synapse/pull/1873
https://github.com/vertexproject/synapse/pull/1882
https://github.com/wesinator
https://github.com/wesinator
https://github.com/vertexproject/synapse/pull/1872
https://github.com/vertexproject/synapse/pull/1880

Synapse Documentation, Release 2.141.0

17.173.2 Bugfixes

• Remove duplicate words in a comment. This was a community contribution from enadjoe. (#1874)

• Fix a nested Nexus log event in Storm Service deletion. The del event causing Storm code execution could lead
to nested Nexus events, which is incongruent with how Nexus change handlers work. This now spins off the
Storm code in a free-running coroutine. This does change the service del semantics since any support Storm
packages a service had may be removed by the time the handler executes. (#1876)

• Fix an issue where the cull parameter was not being passed to the multiqueue properly when calling .gets()
on a Storm Types Queue object. (#1876)

• Pin the nbconvert package to a known working version, as v6.0.0 of that package broke the Synapse document
generation by changing how templates work. (#1876)

• Correct min and max integer examples in tagprop documentation and tests. (#1878)

17.174 v2.7.2 - 2020-09-04

17.174.1 Features and Enhancements

• Update tests for additional test code coverage. This was a community contribution from blackout. (#1867)

• Add implicit links to documentation generated for Storm services, to allow for direct linking inside of documen-
tation to specific Storm commands. (#1866)

• Add future support for deprecating model elements in the Synapse data model. This support will produce client
and server side warnings when deprecated model elements are used or loaded by custom model extensions or
CoreModules. (#1863)

17.174.2 Bugfixes

• Update FixedCache.put() to avoid a cache miss. This was a community contribution from blackout. (#1868)

• Fix the ioloop construction to be aware of SYN_GREEDY_CORO environment variable to put the ioloop into debug
mode and log long-running coroutines. (#1870)

• Fix how service permissions are checked in $lib.service.get() and $lib.service.wait() Storm library
calls. These APIs now first check service.get.<service iden> before checking service.get.<service
name> permissions. A successful service.get.<service name> check will result in a warning to the client
and the server. (#1871)

17.175 v2.7.1 - 2020-08-26

17.175.1 Features and Enhancements

• Refactor an Axon unit test to make it easier to test alternative Axon implementations. (#1862)

17.174. v2.7.2 - 2020-09-04 1553

https://github.com/vertexproject/synapse/pull/1874
https://github.com/vertexproject/synapse/pull/1876
https://github.com/vertexproject/synapse/pull/1876
https://github.com/vertexproject/synapse/pull/1876
https://github.com/vertexproject/synapse/pull/1878
https://github.com/vertexproject/synapse/pull/1867
https://github.com/vertexproject/synapse/pull/1866
https://github.com/vertexproject/synapse/pull/1863
https://github.com/vertexproject/synapse/pull/1868
https://github.com/vertexproject/synapse/pull/1870
https://github.com/vertexproject/synapse/pull/1871
https://github.com/vertexproject/synapse/pull/1862

Synapse Documentation, Release 2.141.0

17.175.2 Bugfixes

• Fix an issue in synapse.tools.cmdrwhere it did not ensure that the users Synapse directory was created before
trying to open files in the directory. (#1860) (#1861)

17.175.3 Improved Documentation

• Fix an incorrect statement in our documentation about the intrinsic Axon that a Cortex creates being remotely
accessible. (#1862)

17.176 v2.7.0 - 2020-08-21

17.176.1 Features and Enhancements

• Add Telepath and HTTP API support to set and remove global Storm variables. (#1846)

• Add Cell level APIs for performing the backup of a Cell. These APIs are exposed inside of a Cortex via a Storm
Library. (#1844)

• Add support for Cron name and doc fields to be editable. (#1848)

• Add support for Runtime-only (runt) nodes in the PivotOut operation (-> *). (#1851)

• Add :nicks and :names secondary properties to ps:person and ps:persona types. (#1852)

• Add a new ou:position form and a few associated secondary properties. (#1849)

• Add a step to the CI build process to smoke test the sdist and wheel packages before publishing them to PyPI.
(#1853)

• Add support for representing nodedata in the command hinting for Storm command implementations and expose
it on the syn:cmd runt nodes. (#1850)

• Add package level configuration data to Storm Packages in the modconf value of a package definition. This is
added to the runtime variables when a Storm package is imported, and includes the svciden for packages which
come from Storm Services. (#1855)

• Add support for passing HTTP params when using $lib.inet.http.* functions to make HTTP calls in Storm.
(#1856)

• Log Storm queries made via the callStorm() and count() APIs. (#1857)

17.176.2 Bugfixes

• Fix an issue were some Storm filter operations were not yielding CPU time appropriately. (#1845)

1554 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/issues/1860
https://github.com/vertexproject/synapse/pull/1861
https://github.com/vertexproject/synapse/pull/1862
https://github.com/vertexproject/synapse/pull/1846
https://github.com/vertexproject/synapse/pull/1844
https://github.com/vertexproject/synapse/pull/1848
https://github.com/vertexproject/synapse/pull/1851
https://github.com/vertexproject/synapse/pull/1852
https://github.com/vertexproject/synapse/pull/1849
https://github.com/vertexproject/synapse/pull/1853
https://github.com/vertexproject/synapse/pull/1850
https://github.com/vertexproject/synapse/pull/1855
https://github.com/vertexproject/synapse/pull/1856
https://github.com/vertexproject/synapse/pull/1857
https://github.com/vertexproject/synapse/pull/1845

Synapse Documentation, Release 2.141.0

17.176.3 Improved Documentation

• Remove a reference to deprecated eval() API from quickstart documentation. (#1858)

17.177 v2.6.0 - 2020-08-13

17.177.1 Features and Enhancements

• Support +hh:mm and +hh:mm timezone offset parsing when normalizing time values. (#1833)

• Enable making mirrors of Cortex mirrors work. (#1836)

• Remove read-only properties from inet:flow and inet:http:request forms. (#1840)

• Add support for setting nodedata and light edges in the syn.nodes ingest format. (#1839)

• Sync the LMDB Slab replay log if it gets too large instead of waiting for a force commit operation. (#1838)

• Make the Agenda unit tests an actual component test to reduce test complexity. (#1837)

• Support glob patterns when specifying files to upload to an Axon with synapse.tools.pushfile. (#1837)

• Use the node edit metadata to store and set the .created property on nodes, so that mirrors of Cortexes have
consistent .created timestamps. (#1765)

• Support parent runtime variables being accessed during the execution of a macro.exec command. (#1841)

• Setting tags from variable values in Storm now calls s_stormtypes.tostr() on the variable value. (#1843)

17.177.2 Bugfixes

• The Storm tree command now catches the Synapse RecursionLimitHit error and raises a
StormRuntimeError instead. The RecursionLimitHit being raised by that command was, in prac-
tice, confusing. (#1832)

• Resolve memory leak issues related to callStorm and Base object teardowns with exceptions. (#1842)

17.178 v2.5.1 - 2020-08-05

17.178.1 Features and Enhancements

• Add performance oriented counting APIs per layer, and expose them via Stormtypes. (#1813)

• Add the ability to clone a layer, primarily for benchmarking and testing purposes. (#1819)

• Update the benchmark script to run on remote Cortexes. (#1829)

17.177. v2.6.0 - 2020-08-13 1555

https://github.com/vertexproject/synapse/pull/1858
https://github.com/vertexproject/synapse/pull/1833
https://github.com/vertexproject/synapse/pull/1836
https://github.com/vertexproject/synapse/pull/1840
https://github.com/vertexproject/synapse/pull/1839
https://github.com/vertexproject/synapse/pull/1838
https://github.com/vertexproject/synapse/pull/1837
https://github.com/vertexproject/synapse/pull/1837
https://github.com/vertexproject/synapse/pull/1765
https://github.com/vertexproject/synapse/pull/1841
https://github.com/vertexproject/synapse/pull/1843
https://github.com/vertexproject/synapse/pull/1832
https://github.com/vertexproject/synapse/pull/1842
https://github.com/vertexproject/synapse/pull/1813
https://github.com/vertexproject/synapse/pull/1819
https://github.com/vertexproject/synapse/pull/1829

Synapse Documentation, Release 2.141.0

17.178.2 Bugfixes

• Sanitize passwords from Telepath URLs during specific cases where the URL may be logged. (#1830)

17.178.3 Improved Documentation

• Fix a few typos in docstrings. (#1831)

17.179 v2.5.0 - 2020-07-30

17.179.1 Features and Enhancements

• Refactor the Nexus to remove leadership awareness. (#1785)

• Add support for client-side certificates in Telepath for SSL connections. (#1785)

• Add multi-dir support for CertDir. (#1785)

• Add a --no-edges option to the Storm graph command. (#1805)

• Add :doc:url to the syn:tag form to allow recording a URL which may document a tag. (#1805)

• Add CoreApi.reqValidStorm() and a /api/v1/reqvalidstorm Cortex HTTP API endpoint to validate
that a given Storm query is valid Storm syntax. (#1806)

• Support Unicode white space in Storm. All Python s (Unicode white space + ASCII separators) is now treated
as white space in Storm. (#1812)

• Refactor how StormLib and StormPrim objects access their object locals, and add them to a global registry to
support runtime introspection of those classes. (#1804)

• Add smoke tests for the Docker containers built in CircleCI, as well as adding Docker healthchecks to the Cortex,
Axon and Cryotank images. (#1815)

• Initialize the names of the default view and layer in a fresh Cortex to default. (#1814)

• Add HTTP API endpoints for the Axon to upload, download and check for the existend of files. (#1817) (#1822)
(#1824) (#1825)

• Add a $lib.bytes.has() API to check if the Axon a Cortex is configured with knows about a given sha256
value. (#1822)

• Add initial model for prices, currences, securities and exchanges. (#1820)

• Add a :author field to the it:app:yara:rule form. (#1821)

• Add an experimental option to set the NexusLog as a map_async slab. (#1826)

• Add an initial transportation model. (#1816)

• Add the ability to dereference an item, from a list of items, in Storm via index. (#1827)

• Add a generic $lib.inet.http.request() Stormlib function make HTTP requests with arbitrary verbs.
(#1828)

1556 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/1830
https://github.com/vertexproject/synapse/pull/1831
https://github.com/vertexproject/synapse/pull/1785
https://github.com/vertexproject/synapse/pull/1785
https://github.com/vertexproject/synapse/pull/1785
https://github.com/vertexproject/synapse/pull/1805
https://github.com/vertexproject/synapse/pull/1805
https://github.com/vertexproject/synapse/pull/1806
https://github.com/vertexproject/synapse/pull/1812
https://github.com/vertexproject/synapse/pull/1804
https://github.com/vertexproject/synapse/pull/1815
https://github.com/vertexproject/synapse/pull/1814
https://github.com/vertexproject/synapse/pull/1817
https://github.com/vertexproject/synapse/pull/1822
https://github.com/vertexproject/synapse/pull/1824
https://github.com/vertexproject/synapse/pull/1825
https://github.com/vertexproject/synapse/pull/1822
https://github.com/vertexproject/synapse/pull/1820
https://github.com/vertexproject/synapse/pull/1821
https://github.com/vertexproject/synapse/pull/1826
https://github.com/vertexproject/synapse/pull/1816
https://github.com/vertexproject/synapse/pull/1827
https://github.com/vertexproject/synapse/pull/1828

Synapse Documentation, Release 2.141.0

17.179.2 Bugfixes

• Fix an issue with the Docker builds for Synapse where the package was not being installed properly. (#1815)

17.179.3 Improved Documentation

• Update documentation for deploying Cortex mirrors. (#1811)

• Add automatically generated documentation for all the Storm $lib... functions and Storm Primitive types.
(#1804)

• Add examples of creating a given Form to the automatically generated documentation for the automatically
generated datamodel documentation. (#1818)

• Add additional documentation for Cortex automation. (#1797)

• Add Devops documentation for the list of user permissions relevant to a Cell, Cortex and Axon. (#1823)

17.180 v2.4.0 - 2020-07-15

17.180.1 Features and Enhancements

• Update the Storm scrape command to make refs light edges, instead of edge:refs nodes. (#1801) (#1803)

• Add :headers and :response:headers secondary properties to the inet:http:request form as Array
types, so that requests can be directly linked to headers. (#1800)

• Add :headers secondary property to the inet:email:messaage form as Array types, so that messages can
be directly linked to headers. (#1800)

• Add additional model elements to support recording additional data for binary reverse engineering. (#1802)

17.181 v2.3.1 - 2020-07-13

17.181.1 Bugfixes

• Prohibit invalid rules from being set on a User or Role object. (#1798)

17.182 v2.3.0 - 2020-07-09

17.182.1 Features and Enhancements

• Add ps.list and ps.kill commands to Storm, to allow introspecting the runtime tasks during (#1782)

• Add an autoadd mode to Storm, which will extract basic indicators and make nodes from them when executed.
This is a superset of the behavior in the lookup mode. (#1795)

• Support skipping directories in the synapse.tools.backup tool. (#1792)

• Add prefix based lifting to the Hex type. (#1796)

17.180. v2.4.0 - 2020-07-15 1557

https://github.com/vertexproject/synapse/pull/1815
https://github.com/vertexproject/synapse/pull/1811
https://github.com/vertexproject/synapse/pull/1804
https://github.com/vertexproject/synapse/pull/1818
https://github.com/vertexproject/synapse/pull/1797
https://github.com/vertexproject/synapse/pull/1823
https://github.com/vertexproject/synapse/pull/1801
https://github.com/vertexproject/synapse/pull/1803
https://github.com/vertexproject/synapse/pull/1800
https://github.com/vertexproject/synapse/pull/1800
https://github.com/vertexproject/synapse/pull/1802
https://github.com/vertexproject/synapse/pull/1798
https://github.com/vertexproject/synapse/pull/1782
https://github.com/vertexproject/synapse/pull/1795
https://github.com/vertexproject/synapse/pull/1792
https://github.com/vertexproject/synapse/pull/1796

Synapse Documentation, Release 2.141.0

17.182.2 Bugfixes

• Fix an issue for prop pivot out syntax where the source data is an array type. (#1794)

17.182.3 Improved Documentation

• Add Synapse data model background on light edges and update the Storm data modification and pivot references
for light edges. (#1784)

• Add additional terms to the Synapse glossary. (#1784)

• Add documentation for additional Storm commands. (#1784)

• Update documentation for Array types. (#1791)

17.183 v2.2.2 - 2020-07-03

17.183.1 Features and Enhancements

• Add some small enhancements to the Cortex benchmarking script. (#1790)

17.183.2 Bugfixes

• Fix an error in the help for the macro.del command. (#1786)

• Fix rule indexing for the synapse.tools.cellauth tool to correctly print the rule offsets. (#1787)

• Remove extraneous output from the Storm Parser output. (#1789)

• Rewrite the language (and private APIs) for the Storm model.edge related commands to remove references to
extended properties. That was confusing language which was unclear for users. (#1789)

• During 2.0.0 migrations, ensure that Cortex and Layer idens are unique; and make minimum 0.1.6 version re-
quirement for migration. (#1788)

17.184 v2.2.1 - 2020-06-30

17.184.1 Bugfixes

• The Axon test suite was missing a test for calling Axon.get() on a file it did not have. This is now included in
the test suite. (#1783)

1558 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/1794
https://github.com/vertexproject/synapse/pull/1784
https://github.com/vertexproject/synapse/pull/1784
https://github.com/vertexproject/synapse/pull/1784
https://github.com/vertexproject/synapse/pull/1791
https://github.com/vertexproject/synapse/pull/1790
https://github.com/vertexproject/synapse/pull/1786
https://github.com/vertexproject/synapse/pull/1787
https://github.com/vertexproject/synapse/pull/1789
https://github.com/vertexproject/synapse/pull/1789
https://github.com/vertexproject/synapse/pull/1788
https://github.com/vertexproject/synapse/pull/1783

Synapse Documentation, Release 2.141.0

17.184.2 Improved Documentation

• Improve Synapse devops documentation hierarchy. Add note about Cell directories being persistent. (#1781)

17.185 v2.2.0 - 2020-06-26

17.185.1 Features and Enhancements

• Add a postAnit() callback to the synapse.lib.base.Base() object which is called after the __anit__()
call chain is completed, but before Base.anit() returns the object instance to the caller. This is used by the
Cell to defer certain Nexus actions until the Cell has completed initializing all of its instance attributes. (#1768)

• Make synapse.lib.msgpack.en() raise a SynErr.NotMsgpackSafe exception instead of passing through
the exception raised by msgpack. (#1768)

17.185.2 Bugfixes

• Add a missing toprim() call in $lib.globals.set(). (#1778)

• Fix an issue in the quickstart documentation related to permissions. Thank you enadjoe for your contribution.
(#1779)

• Fix an Cell/Cortex startup issue which caused errors when starting up a Cortex when the last Nexus event was re-
played. This has a secondary effect that Cell implementers cannot be making Nexus changes during the __anit__
methods. (#1768)

17.185.3 Improved Documentation

• Add a minimal Storm Service example to the developer documentation. (#1776)

• Reorganize the Synapse User Guide into a more hierarchical format. (#1777)

• Fill out additional glossary items. (#1780)

17.186 v2.1.2 - 2020-06-18

17.186.1 Bugfixes

• Disallow command and bare string contensts from starting with // and /* in Storm syntax. (#1769)

17.187 v2.1.1 - 2020-06-16

17.187.1 Bugfixes

• Fix an issue in the autodoc tool which failed to account for Storm Service commands without cmdargs. (#1775)

17.185. v2.2.0 - 2020-06-26 1559

https://github.com/vertexproject/synapse/pull/1781
https://github.com/vertexproject/synapse/pull/1768
https://github.com/vertexproject/synapse/pull/1768
https://github.com/vertexproject/synapse/pull/1778
https://github.com/vertexproject/synapse/pull/1779
https://github.com/vertexproject/synapse/pull/1768
https://github.com/vertexproject/synapse/pull/1776
https://github.com/vertexproject/synapse/pull/1777
https://github.com/vertexproject/synapse/pull/1780
https://github.com/vertexproject/synapse/pull/1769
https://github.com/vertexproject/synapse/pull/1775

Synapse Documentation, Release 2.141.0

17.188 v2.1.0 - 2020-06-16

17.188.1 Features and Enhancements

• Add information about light edges to graph carving output. (#1762)

• Add a geo:json type and geo:place:geojson property to the model. (#1759)

• Add the ability to record documentation for light edges. (#1760)

• Add the ability to delete and set items inside of a MultiQueue. (#1766)

17.188.2 Improved Documentation

• Refactor v2.0.0 changelog documentation. (#1763)

• Add Vertex branding to the Synapse documentation. (#1767)

• Update Backups documentation in the Devops guide. (#1764)

• Update the autodoc tool to generate documentation for Cell confdefs and StormService information. (#1772)

• Update to separate the devops guides into distinct sections. (#1772)

• Add documentation for how to do boot-time configuration for a Synapse Cell. (#1772)

• Remove duplicate information about backups. (#1774)

17.189 v2.0.0 - 2020-06-08

Initial 2.0.0 release.

1560 Chapter 17. Synapse Changelog

https://github.com/vertexproject/synapse/pull/1762
https://github.com/vertexproject/synapse/pull/1759
https://github.com/vertexproject/synapse/pull/1760
https://github.com/vertexproject/synapse/pull/1766
https://github.com/vertexproject/synapse/pull/1763
https://github.com/vertexproject/synapse/pull/1767
https://github.com/vertexproject/synapse/pull/1764
https://github.com/vertexproject/synapse/pull/1772
https://github.com/vertexproject/synapse/pull/1772
https://github.com/vertexproject/synapse/pull/1772
https://github.com/vertexproject/synapse/pull/1774

CHAPTER

EIGHTEEN

INDICES AND TABLES

• genindex

• modindex

• search

1561

Synapse Documentation, Release 2.141.0

1562 Chapter 18. Indices and tables

PYTHON MODULE INDEX

s
synapse, 493
synapse.axon, 776
synapse.cells, 791
synapse.cmds, 493
synapse.cmds.boss, 493
synapse.cmds.cortex, 494
synapse.cmds.cron, 495
synapse.cmds.hive, 496
synapse.cmds.trigger, 497
synapse.common, 791
synapse.cortex, 800
synapse.cryotank, 826
synapse.daemon, 829
synapse.data, 497
synapse.datamodel, 830
synapse.exc, 833
synapse.glob, 842
synapse.lib, 497
synapse.lib.agenda, 525
synapse.lib.aha, 527
synapse.lib.ast, 531
synapse.lib.autodoc, 547
synapse.lib.base, 548
synapse.lib.boss, 554
synapse.lib.cache, 554
synapse.lib.cell, 555
synapse.lib.certdir, 571
synapse.lib.chop, 587
synapse.lib.cli, 589
synapse.lib.cmd, 591
synapse.lib.cmdr, 592
synapse.lib.config, 593
synapse.lib.const, 596
synapse.lib.coro, 596
synapse.lib.crypto, 497
synapse.lib.crypto.coin, 497
synapse.lib.crypto.ecc, 498
synapse.lib.crypto.passwd, 501
synapse.lib.crypto.rsa, 501
synapse.lib.crypto.tinfoil, 503
synapse.lib.datfile, 598

synapse.lib.dyndeps, 599
synapse.lib.encoding, 599
synapse.lib.gis, 600
synapse.lib.grammar, 601
synapse.lib.hashitem, 602
synapse.lib.hashset, 602
synapse.lib.health, 603
synapse.lib.hive, 603
synapse.lib.hiveauth, 607
synapse.lib.httpapi, 611
synapse.lib.ingest, 619
synapse.lib.interval, 619
synapse.lib.jsonstor, 619
synapse.lib.jupyter, 622
synapse.lib.layer, 627
synapse.lib.link, 637
synapse.lib.lmdbslab, 638
synapse.lib.modelrev, 645
synapse.lib.module, 646
synapse.lib.modules, 648
synapse.lib.msgpack, 648
synapse.lib.multislabseqn, 651
synapse.lib.nexus, 652
synapse.lib.node, 654
synapse.lib.oauth, 661
synapse.lib.output, 661
synapse.lib.parser, 662
synapse.lib.platforms, 505
synapse.lib.platforms.common, 505
synapse.lib.platforms.darwin, 505
synapse.lib.platforms.freebsd, 505
synapse.lib.platforms.linux, 505
synapse.lib.platforms.windows, 506
synapse.lib.provenance, 664
synapse.lib.queue, 664
synapse.lib.ratelimit, 665
synapse.lib.reflect, 665
synapse.lib.rstorm, 666
synapse.lib.scope, 667
synapse.lib.scrape, 669
synapse.lib.share, 672
synapse.lib.slaboffs, 672

1563

Synapse Documentation, Release 2.141.0

synapse.lib.slabseqn, 672
synapse.lib.snap, 674
synapse.lib.spooled, 678
synapse.lib.storm, 678
synapse.lib.storm_format, 696
synapse.lib.stormctrl, 697
synapse.lib.stormhttp, 697
synapse.lib.stormlib, 507
synapse.lib.stormlib.auth, 507
synapse.lib.stormlib.backup, 507
synapse.lib.stormlib.basex, 507
synapse.lib.stormlib.cell, 507
synapse.lib.stormlib.compression, 508
synapse.lib.stormlib.easyperm, 509
synapse.lib.stormlib.ethereum, 509
synapse.lib.stormlib.gen, 509
synapse.lib.stormlib.graph, 509
synapse.lib.stormlib.hashes, 510
synapse.lib.stormlib.hex, 510
synapse.lib.stormlib.imap, 511
synapse.lib.stormlib.infosec, 511
synapse.lib.stormlib.ipv6, 512
synapse.lib.stormlib.iters, 513
synapse.lib.stormlib.json, 513
synapse.lib.stormlib.log, 514
synapse.lib.stormlib.macro, 514
synapse.lib.stormlib.math, 515
synapse.lib.stormlib.mime, 515
synapse.lib.stormlib.model, 515
synapse.lib.stormlib.modelext, 517
synapse.lib.stormlib.notifications, 517
synapse.lib.stormlib.oauth, 518
synapse.lib.stormlib.project, 519
synapse.lib.stormlib.random, 521
synapse.lib.stormlib.scrape, 521
synapse.lib.stormlib.smtp, 522
synapse.lib.stormlib.stix, 522
synapse.lib.stormlib.storm, 524
synapse.lib.stormlib.version, 524
synapse.lib.stormlib.xml, 524
synapse.lib.stormlib.yaml, 525
synapse.lib.stormsvc, 698
synapse.lib.stormtypes, 698
synapse.lib.stormwhois, 719
synapse.lib.structlog, 719
synapse.lib.task, 719
synapse.lib.thishost, 720
synapse.lib.thisplat, 721
synapse.lib.threads, 721
synapse.lib.time, 721
synapse.lib.trigger, 722
synapse.lib.types, 723
synapse.lib.urlhelp, 730
synapse.lib.version, 731

synapse.lib.view, 733
synapse.lookup, 735
synapse.lookup.cvss, 735
synapse.lookup.iana, 735
synapse.lookup.iso3166, 736
synapse.lookup.macho, 736
synapse.lookup.pe, 736
synapse.lookup.phonenum, 736
synapse.mindmeld, 842
synapse.models, 736
synapse.models.auth, 737
synapse.models.base, 737
synapse.models.belief, 737
synapse.models.biz, 737
synapse.models.crypto, 738
synapse.models.dns, 738
synapse.models.economic, 738
synapse.models.files, 738
synapse.models.geopol, 739
synapse.models.geospace, 739
synapse.models.gov, 736
synapse.models.gov.cn, 736
synapse.models.gov.intl, 737
synapse.models.gov.us, 737
synapse.models.inet, 740
synapse.models.infotech, 742
synapse.models.language, 743
synapse.models.material, 743
synapse.models.media, 744
synapse.models.orgs, 744
synapse.models.person, 744
synapse.models.proj, 744
synapse.models.risk, 745
synapse.models.syn, 745
synapse.models.telco, 745
synapse.models.transport, 746
synapse.servers, 746
synapse.servers.aha, 746
synapse.servers.axon, 746
synapse.servers.cell, 746
synapse.servers.cortex, 746
synapse.servers.cryotank, 746
synapse.servers.jsonstor, 746
synapse.servers.stemcell, 746
synapse.telepath, 842
synapse.tests, 747
synapse.tests.nopmod, 747
synapse.tests.utils, 747
synapse.tools, 764
synapse.tools.aha, 764
synapse.tools.aha.easycert, 764
synapse.tools.aha.enroll, 764
synapse.tools.aha.list, 765
synapse.tools.aha.provision, 764

1564 Python Module Index

Synapse Documentation, Release 2.141.0

synapse.tools.aha.provision.service, 764
synapse.tools.aha.provision.user, 764
synapse.tools.autodoc, 765
synapse.tools.axon2axon, 766
synapse.tools.backup, 766
synapse.tools.cellauth, 767
synapse.tools.cmdr, 768
synapse.tools.cryo, 765
synapse.tools.cryo.cat, 765
synapse.tools.cryo.list, 765
synapse.tools.csvtool, 768
synapse.tools.easycert, 768
synapse.tools.feed, 768
synapse.tools.genpkg, 768
synapse.tools.guid, 769
synapse.tools.healthcheck, 769
synapse.tools.hive, 765
synapse.tools.hive.load, 765
synapse.tools.hive.save, 765
synapse.tools.json2mpk, 769
synapse.tools.livebackup, 770
synapse.tools.modrole, 770
synapse.tools.moduser, 770
synapse.tools.promote, 770
synapse.tools.pullfile, 770
synapse.tools.pushfile, 770
synapse.tools.rstorm, 770
synapse.tools.storm, 770
synapse.utils, 773
synapse.utils.stormcov, 773
synapse.utils.stormcov.plugin, 773

Python Module Index 1565

Synapse Documentation, Release 2.141.0

1566 Python Module Index

INDEX

A
abrvToByts() (synapse.lib.lmdbslab.SlabAbrv method),

644
abrvToName() (synapse.lib.lmdbslab.SlabAbrv method),

644
AbsProp (class in synapse.lib.ast), 531
AbsPropCond (class in synapse.lib.ast), 531
aclosing (class in synapse.common), 791
ActiveV1 (class in synapse.lib.httpapi), 611
add() (synapse.lib.agenda.Agenda method), 525
add() (synapse.lib.cache.TagGlobs method), 555
add() (synapse.lib.hive.Hive method), 603
add() (synapse.lib.hive.Node method), 605
add() (synapse.lib.hive.TeleHive method), 606
add() (synapse.lib.lmdbslab.Hist method), 638
add() (synapse.lib.lmdbslab.MultiQueue method), 639
add() (synapse.lib.multislabseqn.MultiSlabSeqn

method), 651
add() (synapse.lib.scope.Scope method), 667
add() (synapse.lib.slabseqn.SlabSeqn method), 672
add() (synapse.lib.spooled.Set method), 678
add() (synapse.lib.stormlib.stix.StixBundle method), 523
add() (synapse.tests.utils.TstEnv method), 763
add_argument() (synapse.lib.storm.Parser method),

689
addActiveCoro() (synapse.lib.cell.Cell method), 556
addAhaSvc() (synapse.lib.aha.AhaApi method), 527
addAhaSvc() (synapse.lib.aha.AhaCell method), 528
addAhaSvcProv() (synapse.lib.aha.AhaApi method),

527
addAhaSvcProv() (synapse.lib.aha.AhaCell method),

528
addAhaUrl() (in module synapse.telepath), 845
addAhaUserEnroll() (synapse.lib.aha.AhaApi

method), 527
addAhaUserEnroll() (synapse.lib.aha.AhaCell

method), 528
addAndSync() (synapse.lib.hive.HiveApi method), 605
addAuthGate() (synapse.lib.hiveauth.Auth method),

607
addAuthRole() (synapse.lib.cell.CellApi method), 565
addAuthRule() (synapse.lib.cell.CellApi method), 565

addBaseType() (synapse.datamodel.Model method),
831

addCertPath() (in module synapse.lib.certdir), 586
addCertPath() (synapse.lib.certdir.CertDir method),

572
addCmd() (synapse.tests.utils.CmdGenerator method),

747
addCmdClass() (synapse.lib.cli.Cli method), 589
addCoreQueue() (synapse.cortex.Cortex method), 808
addCreatorDeleterRoles()

(synapse.tests.utils.SynTest method), 749
addCronJob() (synapse.cortex.CoreApi method), 800
addCronJob() (synapse.cortex.Cortex method), 808
addDataModels() (synapse.datamodel.Model method),

831
addDmon() (synapse.lib.storm.DmonManager method),

682
addEdge() (synapse.datamodel.Model method), 831
addEdge() (synapse.lib.node.Node method), 654
addEdge() (synapse.lib.snap.ProtoNode method), 674
addExcInfo() (synapse.lib.ast.AstNode method), 532
addFeedData() (in module synapse.tools.feed), 768
addFeedData() (synapse.cortex.CoreApi method), 801
addFeedData() (synapse.cortex.Cortex method), 809
addFeedData() (synapse.lib.jupyter.CmdrCore

method), 622
addFeedData() (synapse.lib.snap.Snap method), 675
addFeedNodes() (synapse.lib.snap.Snap method), 675
addForm() (synapse.cortex.CoreApi method), 801
addForm() (synapse.cortex.Cortex method), 809
addForm() (synapse.datamodel.Model method), 831
addForm() (synapse.lib.stormlib.modelext.LibModelExt

method), 517
addFormat() (in module synapse.lib.encoding), 599
addFormProp() (synapse.cortex.CoreApi method), 801
addFormProp() (synapse.cortex.Cortex method), 809
addFormProp() (synapse.datamodel.Model method),

832
addFormProp() (synapse.lib.stormlib.modelext.LibModelExt

method), 517
addFromPath() (synapse.lib.ast.EditNodeAdd method),

534

1567

Synapse Documentation, Release 2.141.0

addHead() (synapse.lib.autodoc.RstHelp method), 547
addHealthFunc() (synapse.lib.cell.Cell method), 556
addHttpApi() (synapse.lib.cell.Cell method), 556
addHttpSess() (synapse.lib.cell.Cell method), 556
addHttpsPort() (synapse.lib.cell.Cell method), 556
addIface() (synapse.datamodel.Model method), 832
addInput() (synapse.lib.storm.Runtime method), 690
addKid() (synapse.lib.ast.AstNode method), 532
addLayer() (synapse.cortex.Cortex method), 809
addLayer() (synapse.lib.view.View method), 733
addLayrPull() (synapse.cortex.Cortex method), 809
addLayrPush() (synapse.cortex.Cortex method), 809
addLibFuncs() (synapse.lib.stormtypes.Lib method),

700
addLibFuncs() (synapse.lib.stormtypes.LibJsonStor

method), 704
addLibFuncs() (synapse.lib.stormtypes.LibUser

method), 708
addLibFuncs() (synapse.tests.utils.LibTst method), 748
addLines() (synapse.lib.autodoc.RstHelp method), 547
addNode() (synapse.cortex.CoreApi method), 801
addNode() (synapse.cortex.Cortex method), 809
addNode() (synapse.lib.snap.Snap method), 675
addNode() (synapse.lib.snap.SnapEditor method), 678
addNode() (synapse.lib.stormtypes.View method), 717
addNode() (synapse.lib.view.View method), 733
addNodeEdits() (synapse.lib.view.View method), 733
addNodes() (synapse.cortex.CoreApi method), 801
addNodes() (synapse.cortex.Cortex method), 809
addNodes() (synapse.lib.snap.Snap method), 675
addNodeTag() (synapse.cortex.CoreApi method), 801
addNodeTag() (synapse.cortex.Cortex method), 809
addOAuthProvider() (synapse.lib.oauth.OAuthMixin

method), 661
addQueue() (synapse.lib.jsonstor.JsonStorApi method),

620
addQueue() (synapse.lib.jsonstor.JsonStorCell method),

621
Addr (class in synapse.models.inet), 740
addResizeCallback() (synapse.lib.lmdbslab.Slab

method), 641
addRole() (synapse.lib.cell.Cell method), 556
addRole() (synapse.lib.cell.CellApi method), 565
addRole() (synapse.lib.hiveauth.Auth method), 608
addRoleRule() (synapse.lib.cell.Cell method), 556
addRoleRule() (synapse.lib.cell.CellApi method), 565
addRule() (synapse.lib.hiveauth.HiveRuler method),

609
addRuntLift() (synapse.cortex.Cortex method), 810
addRuntPropDel() (synapse.cortex.Cortex method),

810
addRuntPropSet() (synapse.cortex.Cortex method),

810

addSignalHandlers() (synapse.lib.base.Base method),
548

addSignalHandlers() (synapse.lib.cli.Cli method),
589

addStormCmd() (synapse.cortex.Cortex method), 810
addStormDmon() (synapse.cortex.CoreApi method), 802
addStormDmon() (synapse.cortex.Cortex method), 810
addStormGraph() (synapse.cortex.Cortex method), 810
addStormLib() (synapse.cortex.Cortex method), 810
addStormLib() (synapse.lib.stormtypes.StormTypesRegistry

method), 715
addStormMacro() (synapse.cortex.Cortex method), 810
addStormPkg() (synapse.cortex.CoreApi method), 802
addStormPkg() (synapse.cortex.Cortex method), 810
addStormRuntime() (synapse.lib.snap.Snap method),

676
addStormSvc() (synapse.cortex.Cortex method), 810
addStormType() (synapse.lib.stormtypes.StormTypesRegistry

method), 715
addSvcToAha() (synapse.tests.utils.SynTest method),

749
addSvcToCore() (synapse.tests.utils.SynTest method),

749
addTag() (synapse.lib.node.Node method), 654
addTag() (synapse.lib.snap.ProtoNode method), 674
addTagProp() (synapse.cortex.CoreApi method), 802
addTagProp() (synapse.cortex.Cortex method), 810
addTagProp() (synapse.datamodel.Model method), 832
addTagProp() (synapse.lib.stormlib.modelext.LibModelExt

method), 517
addTestRecords() (synapse.tests.utils.TestModule

method), 761
addTrigger() (synapse.lib.view.View method), 733
addTrigQueue() (synapse.lib.view.View method), 733
addType() (synapse.datamodel.Model method), 832
addUnivProp() (synapse.cortex.CoreApi method), 802
addUnivProp() (synapse.cortex.Cortex method), 810
addUnivProp() (synapse.datamodel.Model method),

832
addUnivProp() (synapse.lib.stormlib.modelext.LibModelExt

method), 517
addUser() (synapse.lib.cell.Cell method), 556
addUser() (synapse.lib.cell.CellApi method), 565
addUser() (synapse.lib.hiveauth.Auth method), 608
addUserNotif() (synapse.cortex.CoreApi method), 802
addUserNotif() (synapse.cortex.Cortex method), 810
addUserNotif() (synapse.lib.jsonstor.JsonStorApi

method), 620
addUserNotif() (synapse.lib.jsonstor.JsonStorCell

method), 621
addUserRole() (synapse.lib.cell.Cell method), 556
addUserRole() (synapse.lib.cell.CellApi method), 565
addUserRule() (synapse.lib.cell.Cell method), 556
addUserRule() (synapse.lib.cell.CellApi method), 565

1568 Index

Synapse Documentation, Release 2.141.0

addView() (synapse.cortex.Cortex method), 810
addWebSock() (synapse.lib.httpapi.Sess method), 617
adminapi() (in module synapse.lib.cell), 571
agen() (in module synapse.common), 792
agen() (in module synapse.lib.coro), 596
Agenda (class in synapse.lib.agenda), 525
agenlen() (synapse.tests.utils.SynTest method), 749
agenraises() (synapse.tests.utils.SynTest method), 749
aget() (synapse.lib.cache.FixedCache method), 554
AhaApi (class in synapse.lib.aha), 527
AhaCell (class in synapse.lib.aha), 528
AhaProvisionServiceV1 (class in synapse.lib.aha),

530
aiter() (synapse.lib.slabseqn.SlabSeqn method), 672
alias() (in module synapse.telepath), 845
alist() (in module synapse.tests.utils), 763
alist() (synapse.lib.parser.CmdStringer method), 663
allow() (synapse.lib.hiveauth.HiveUser method), 610
allowed() (in module synapse.lib.stormtypes), 718
allowed() (synapse.lib.cell.CellApi method), 565
allowed() (synapse.lib.hiveauth.HiveRole method), 609
allowed() (synapse.lib.hiveauth.HiveUser method), 610
allowed() (synapse.lib.httpapi.HandlerBase method),

613
allowed() (synapse.lib.storm.Runtime method), 690
allows() (synapse.lib.ratelimit.RateLimit method), 665
allslabs (synapse.lib.lmdbslab.Slab attribute), 641
AndCond (class in synapse.lib.ast), 531
anit() (synapse.lib.base.Base class method), 548
applyNodeEdit() (synapse.lib.snap.Snap method), 676
applyNodeEdits() (synapse.lib.snap.Snap method),

676
ApptRec (class in synapse.lib.agenda), 526
AQueue (class in synapse.lib.queue), 664
Area (class in synapse.models.geospace), 739
ArgvQuery (class in synapse.lib.ast), 531
Array (class in synapse.lib.types), 723
ArrayCond (class in synapse.lib.ast), 531
asDict() (synapse.lib.config.Config method), 593
aspin() (in module synapse.common), 792
asroot (synapse.lib.storm.Cmd attribute), 680
assetdir (synapse.tests.utils.StormPkgTest attribute),

748
AstConverter (class in synapse.lib.parser), 662
AstInfo (class in synapse.lib.parser), 662
AstNode (class in synapse.lib.ast), 531
AsyncGenr (class in synapse.daemon), 829
asyncraises() (synapse.tests.utils.SynTest method),

749
AsyncStreamEvent (class in synapse.tests.utils), 747
At (class in synapse.cmds.cron), 495
Auth (class in synapse.lib.hiveauth), 607
AuthAddRoleV1 (class in synapse.lib.httpapi), 611
AuthAddUserV1 (class in synapse.lib.httpapi), 611

AuthDelRoleV1 (class in synapse.lib.httpapi), 611
AuthDeny, 833
authenticated() (synapse.lib.httpapi.HandlerBase

method), 614
AuthGate (class in synapse.lib.hiveauth), 609
AuthGrantV1 (class in synapse.lib.httpapi), 611
AuthModule (class in synapse.models.auth), 737
AuthRevokeV1 (class in synapse.lib.httpapi), 611
AuthRolesV1 (class in synapse.lib.httpapi), 612
AuthRoleV1 (class in synapse.lib.httpapi), 612
AuthUserPasswdV1 (class in synapse.lib.httpapi), 612
AuthUsersV1 (class in synapse.lib.httpapi), 612
AuthUserV1 (class in synapse.lib.httpapi), 612
Aware (class in synapse.telepath), 842
Axon (class in synapse.axon), 776
AxonApi (class in synapse.axon), 783
AxonFileHandler (class in synapse.axon), 789
AxonHandlerMixin (class in synapse.axon), 789
AxonHttpBySha256InvalidV1 (class in synapse.axon),

789
AxonHttpBySha256V1 (class in synapse.axon), 789
AxonHttpDelV1 (class in synapse.axon), 789
AxonHttpHasV1 (class in synapse.axon), 790
AxonHttpUploadV1 (class in synapse.axon), 790

B
BackgroundCmd (class in synapse.lib.storm), 678
backup() (in module synapse.tools.backup), 766
backup_lmdb() (in module synapse.tools.backup), 767
BACKUP_SPAWN_TIMEOUT (synapse.lib.cell.Cell at-

tribute), 555
BackupAlreadyRunning, 833
BackupLib (class in synapse.lib.stormlib.backup), 507
BadArg, 833
BadCast, 834
BadCertBytes, 834
BadCertHost, 834
BadCertVerify, 834
BadCmdName, 834
BadCmprType, 834
BadCmprValu, 834
BadConfValu, 834
BadCoreStore, 834
BadCtorType, 834
BadDataValu, 834
BadEccExchange, 834
BadFileExt, 834
BadFormDef, 834
BadHivePath, 834
BadIndxValu, 835
BadJsonText, 835
BadLiftValu, 835
BadMesgFormat, 835
BadMesgVers, 835

Index 1569

Synapse Documentation, Release 2.141.0

BadOperArg, 835
BadOptValu, 835
BadPkgDef, 835
BadPropDef, 835
BadStorageVersion, 835
BadSyntax, 835
BadTag, 835
BadTime, 835
BadTypeDef, 835
BadTypeValu, 835
BadUrl, 835
BadVersion, 835
Base (class in synapse.lib.base), 548
base_undefined_types

(synapse.lib.stormtypes.StormTypesRegistry
attribute), 715

BaseModule (class in synapse.models.base), 737
BaseRef (class in synapse.lib.base), 552
BaseXLib (class in synapse.lib.stormlib.basex), 507
BatchCmd (class in synapse.lib.storm), 679
bbox() (in module synapse.lib.gis), 600
bch_check() (in module synapse.lib.crypto.coin), 497
beep() (synapse.tests.utils.LibTst method), 748
behold() (synapse.lib.cell.Cell method), 556
behold() (synapse.lib.cell.CellApi method), 566
beholder() (synapse.lib.cell.Cell method), 556
BeholdSockV1 (class in synapse.lib.httpapi), 612
BeliefModule (class in synapse.models.belief), 737
BizModule (class in synapse.models.biz), 737
Bool (class in synapse.lib.ast), 532
Bool (class in synapse.lib.stormtypes), 698
Bool (class in synapse.lib.types), 723
bool() (synapse.lib.stormtypes.Prim method), 711
Boss (class in synapse.lib.boss), 554
BreakOper (class in synapse.lib.ast), 532
bruteVersionStr() (synapse.models.infotech.ItModule

method), 742
btc_base58_check() (in module

synapse.lib.crypto.coin), 497
btc_bech32_check() (in module

synapse.lib.crypto.coin), 497
buid() (in module synapse.common), 792
buidcachesize (synapse.lib.snap.Snap attribute), 676
buidsByDups() (synapse.lib.layer.IndxBy method), 628
buidsByPref() (synapse.lib.layer.IndxBy method), 628
buidsByRange() (synapse.lib.layer.IndxBy method),

628
buidsByRangeBack() (synapse.lib.layer.IndxBy

method), 628
bump() (synapse.lib.lmdbslab.Scan method), 640
bump() (synapse.lib.storm.StormDmon method), 694
bumpStormDmon() (synapse.cortex.CoreApi method),

802
bumpStormDmon() (synapse.cortex.Cortex method), 810

bundle() (synapse.lib.stormlib.stix.LibStixExport
method), 522

byterange (synapse.axon.Axon attribute), 776
Bytes (class in synapse.lib.stormtypes), 698
bytsToAbrv() (synapse.lib.lmdbslab.SlabAbrv method),

644
Bzip2Lib (class in synapse.lib.stormlib.compression),

508

C
cacheget() (synapse.lib.stormtypes.LibJsonStor

method), 704
cacheget() (synapse.lib.stormtypes.NodeData method),

709
cacheset() (synapse.lib.stormtypes.LibJsonStor

method), 704
cacheset() (synapse.lib.stormtypes.NodeData method),

710
calculate() (synapse.lib.stormlib.infosec.CvssLib

method), 512
calculateFromProps()

(synapse.lib.stormlib.infosec.CvssLib method),
512

call() (synapse.telepath.Proxy method), 844
CallArgs (class in synapse.lib.ast), 532
callfunc() (synapse.lib.ast.Function method), 537
CallKwarg (class in synapse.lib.ast), 532
CallKwargs (class in synapse.lib.ast), 532
callStorm() (synapse.cortex.CoreApi method), 802
callStorm() (synapse.cortex.Cortex method), 810
callStorm() (synapse.lib.view.View method), 733
callStormIface() (synapse.lib.view.View method),

733
cancel() (synapse.lib.storm.Runtime method), 690
CantDelCmd, 835
CantDelForm, 836
CantDelNode, 836
CantDelProp, 836
CantDelType, 836
CantDelUniv, 836
CantMergeView, 836
CantRevLayer, 836
capturelmdbs() (in module synapse.tools.backup), 767
cardano_byron_check() (in module

synapse.lib.crypto.coin), 497
cardano_shelly_check() (in module

synapse.lib.crypto.coin), 497
carve() (synapse.lib.lmdbslab.Hist method), 638
CaseEntry (class in synapse.lib.ast), 533
CatchBlock (class in synapse.lib.ast), 533
catches() (synapse.lib.ast.CatchBlock method), 533
Cell (class in synapse.lib.cell), 555
CellApi (class in synapse.lib.cell), 565
cellapi (synapse.axon.Axon attribute), 776

1570 Index

Synapse Documentation, Release 2.141.0

cellapi (synapse.cortex.Cortex attribute), 810
cellapi (synapse.cryotank.CryoCell attribute), 826
cellapi (synapse.lib.aha.AhaCell attribute), 528
cellapi (synapse.lib.cell.Cell attribute), 556
cellapi (synapse.lib.jsonstor.JsonStorCell attribute),

621
CellLib (class in synapse.lib.stormlib.cell), 507
CertDir (class in synapse.lib.certdir), 572
ChangeDist (class in synapse.lib.nexus), 652
check_origin() (synapse.lib.httpapi.HandlerBase

method), 614
checkFreeSpace() (synapse.lib.cell.Cell method), 556
checkNode() (synapse.tests.utils.SynTest method), 750
checkNodes() (synapse.tests.utils.SynTest method), 750
checkShadowV2() (in module

synapse.lib.crypto.passwd), 501
chop_float() (in module synapse.lib.grammar), 601
chop_imei() (in module synapse.models.telco), 746
chopCpe22() (in module synapse.models.infotech), 743
chopurl() (in module synapse.lib.urlhelp), 730
chopurl() (in module synapse.telepath), 845
chunks() (in module synapse.common), 792
Cidr4 (class in synapse.models.inet), 740
Cidr6 (class in synapse.models.inet), 740
claim() (in module synapse.lib.provenance), 664
clear() (synapse.lib.cache.FixedCache method), 554
clear() (synapse.tests.utils.TstOutPut method), 763
clearAuthCache() (synapse.lib.hiveauth.HiveRole

method), 609
clearAuthCache() (synapse.lib.hiveauth.HiveUser

method), 610
clearCache() (synapse.lib.snap.Snap method), 676
clearCachedNode() (synapse.lib.snap.Snap method),

676
clearOAuthAccessToken()

(synapse.lib.oauth.OAuthMixin method),
661

Cli (class in synapse.lib.cli), 589
Client (class in synapse.telepath), 843
CliFini, 836
clone() (in module synapse.lib.scope), 668
clone() (synapse.lib.layer.Layer method), 629
clone() (synapse.lib.node.Path method), 657
clone() (synapse.lib.types.Type method), 728
cloneLayer() (synapse.cortex.CoreApi method), 802
cloneLayer() (synapse.cortex.Cortex method), 810
close() (synapse.lib.queue.Queue method), 664
close() (synapse.lib.stormtypes.Pipe method), 711
closeLogFd() (synapse.cmds.cortex.Log method), 494
Cmd (class in synapse.lib.cli), 590
Cmd (class in synapse.lib.storm), 679
CmdGenerator (class in synapse.tests.utils), 747
CmdHelp (class in synapse.lib.cli), 590
CmdLocals (class in synapse.lib.cli), 591

CmdOper (class in synapse.lib.ast), 533
CmdOpts (class in synapse.lib.stormtypes), 699
CmdQuit (class in synapse.lib.cli), 591
cmdrargs() (synapse.lib.parser.AstConverter method),

662
cmdrargs() (synapse.lib.parser.Parser method), 663
CmdrCore (class in synapse.lib.jupyter), 622
cmdstring() (synapse.lib.parser.CmdStringer method),

663
CmdStringer (class in synapse.lib.parser), 663
cmpDelPathObjProp() (synapse.lib.jsonstor.JsonStor

method), 619
cmpDelPathObjProp()

(synapse.lib.jsonstor.JsonStorApi method),
620

cmpDelPathObjProp()
(synapse.lib.jsonstor.JsonStorCell method),
621

Cmpr (class in synapse.lib.ast), 533
cmpr() (synapse.lib.types.Type method), 728
cmprkey_buid() (in module synapse.cortex), 825
cmprkey_indx() (in module synapse.cortex), 825
codereason() (synapse.lib.stormhttp.LibHttp method),

697
COMMIT (synapse.lib.cell.Cell attribute), 555
COMMIT_PERIOD (synapse.lib.lmdbslab.Slab attribute),

641
Comp (class in synapse.lib.types), 723
compileJsSchema() (in module

synapse.lib.stormlib.json), 513
compute() (synapse.lib.ast.ArgvQuery method), 531
compute() (synapse.lib.ast.CallArgs method), 532
compute() (synapse.lib.ast.Const method), 533
compute() (synapse.lib.ast.DollarExpr method), 533
compute() (synapse.lib.ast.EmbedQuery method), 535
compute() (synapse.lib.ast.ExprAndNode method), 535
compute() (synapse.lib.ast.ExprDict method), 535
compute() (synapse.lib.ast.ExprList method), 535
compute() (synapse.lib.ast.ExprNode method), 535
compute() (synapse.lib.ast.ExprOrNode method), 535
compute() (synapse.lib.ast.FormatString method), 536
compute() (synapse.lib.ast.FormName method), 536
compute() (synapse.lib.ast.FormTagProp method), 536
compute() (synapse.lib.ast.FuncArgs method), 536
compute() (synapse.lib.ast.FuncCall method), 537
compute() (synapse.lib.ast.List method), 539
compute() (synapse.lib.ast.PropName method), 541
compute() (synapse.lib.ast.PropValue method), 541
compute() (synapse.lib.ast.SubQuery method), 543
compute() (synapse.lib.ast.TagMatch method), 544
compute() (synapse.lib.ast.TagName method), 544
compute() (synapse.lib.ast.TagProp method), 544
compute() (synapse.lib.ast.TagPropValue method), 544
compute() (synapse.lib.ast.TagValue method), 545

Index 1571

Synapse Documentation, Release 2.141.0

compute() (synapse.lib.ast.UnaryExprNode method),
545

compute() (synapse.lib.ast.UnivProp method), 545
compute() (synapse.lib.ast.Value method), 545
compute() (synapse.lib.ast.VarDeref method), 545
compute() (synapse.lib.ast.VarValue method), 546
compute_array() (synapse.lib.ast.SubQuery method),

543
computeTagArray() (synapse.lib.ast.TagName

method), 544
concat() (synapse.lib.stormtypes.LibStr method), 706
Cond (class in synapse.lib.ast), 533
confbase (synapse.cortex.Cortex attribute), 811
confbase (synapse.lib.aha.AhaCell attribute), 528
confbase (synapse.lib.cell.Cell attribute), 556
confdefs (synapse.axon.Axon attribute), 776
confdefs (synapse.cortex.Cortex attribute), 813
confdefs (synapse.lib.aha.AhaCell attribute), 530
confdefs (synapse.lib.cell.Cell attribute), 558
confdefs (synapse.lib.module.CoreModule attribute),

646
Config (class in synapse.lib.config), 593
config() (in module synapse.common), 792
config() (synapse.lib.stormlib.stix.LibStixExport

method), 522
config() (synapse.lib.stormlib.stix.LibStixImport

method), 523
confirm() (in module synapse.lib.stormtypes), 718
confirm() (synapse.lib.hiveauth.HiveUser method), 610
confirm() (synapse.lib.storm.Runtime method), 690
confirm() (synapse.lib.stormlib.project.Project

method), 519
connect() (in module synapse.lib.link), 637
connect() (synapse.lib.stormlib.imap.ImapLib method),

511
Const (class in synapse.lib.ast), 533
contextScrape() (in module synapse.lib.scrape), 669
ContinueOper (class in synapse.lib.ast), 533
copy() (synapse.lib.scope.Scope method), 667
copydb() (synapse.lib.lmdbslab.Slab method), 641
copyPathObj() (synapse.lib.jsonstor.JsonStor method),

619
copyPathObj() (synapse.lib.jsonstor.JsonStorApi

method), 620
copyPathObj() (synapse.lib.jsonstor.JsonStorCell

method), 621
copyPathObjs() (synapse.lib.jsonstor.JsonStor

method), 619
copyPathObjs() (synapse.lib.jsonstor.JsonStorApi

method), 620
copyPathObjs() (synapse.lib.jsonstor.JsonStorCell

method), 621
copyslab() (synapse.lib.lmdbslab.Slab method), 642
CopyToCmd (class in synapse.lib.storm), 680

CoreApi (class in synapse.cortex), 800
coreDynCall() (synapse.lib.storm.Runtime method),

690
CoreInfoV1 (class in synapse.lib.httpapi), 612
CoreModule (class in synapse.lib.module), 646
coreQueueCull() (synapse.cortex.Cortex method), 813
coreQueueGet() (synapse.cortex.Cortex method), 813
coreQueueGets() (synapse.cortex.Cortex method), 813
coreQueuePop() (synapse.cortex.Cortex method), 813
coreQueuePuts() (synapse.cortex.Cortex method), 813
coreQueueSize() (synapse.cortex.Cortex method), 813
Cortex (class in synapse.cortex), 808
count() (synapse.cortex.CoreApi method), 802
count() (synapse.cortex.Cortex method), 813
countByPref() (synapse.lib.lmdbslab.Slab method),

642
CountCmd (class in synapse.lib.storm), 680
coverage_init() (in module synapse.utils.stormcov),

773
Cpe22Str (class in synapse.models.infotech), 742
Cpe23Str (class in synapse.models.infotech), 742
cpesplit() (in module synapse.models.infotech), 743
CRL (class in synapse.lib.certdir), 571
Cron (class in synapse.cmds.cron), 496
CronJob (class in synapse.lib.stormtypes), 699
CryoApi (class in synapse.cryotank), 826
CryoCell (class in synapse.cryotank), 826
CryoTank (class in synapse.cryotank), 827
CryptoErr, 836
CryptoModule (class in synapse.models.crypto), 738
CryptSeq (class in synapse.lib.crypto.tinfoil), 503
csvrows() (synapse.axon.Axon method), 777
csvrows() (synapse.axon.AxonApi method), 783
csvrows() (synapse.lib.stormtypes.LibAxon method),

701
ctor() (in module synapse.lib.scope), 668
cull() (synapse.lib.lmdbslab.MultiQueue method), 640
cull() (synapse.lib.multislabseqn.MultiSlabSeqn

method), 651
cull() (synapse.lib.nexus.NexsRoot method), 652
cull() (synapse.lib.slabseqn.SlabSeqn method), 672
cullNexsLog() (synapse.lib.cell.Cell method), 558
cullNexsLog() (synapse.lib.cell.CellApi method), 566
cullQueue() (synapse.lib.jsonstor.JsonStorApi method),

620
cullQueue() (synapse.lib.jsonstor.JsonStorCell

method), 621
current() (in module synapse.lib.task), 719
current() (in module synapse.lib.threads), 721
cve_check() (in module synapse.lib.scrape), 669
CVSS2_calc() (in module synapse.lib.stormlib.infosec),

511
cvss2_normalize() (in module synapse.lib.chop), 587

1572 Index

Synapse Documentation, Release 2.141.0

CVSS2_round() (in module
synapse.lib.stormlib.infosec), 511

CVSS3_0_calc() (in module
synapse.lib.stormlib.infosec), 511

CVSS3_0_round() (in module
synapse.lib.stormlib.infosec), 511

CVSS3_1_calc() (in module
synapse.lib.stormlib.infosec), 512

CVSS3_1_round() (in module
synapse.lib.stormlib.infosec), 512

cvss3x_normalize() (in module synapse.lib.chop), 587
CVSS_get_coefficients() (in module

synapse.lib.stormlib.infosec), 512
cvss_normalize() (in module synapse.lib.chop), 587
cvss_validate() (in module synapse.lib.chop), 587
CvssLib (class in synapse.lib.stormlib.infosec), 512
CvssV2 (class in synapse.models.risk), 745
CvssV3 (class in synapse.models.risk), 745

D
Daemon (class in synapse.daemon), 829
daemonize() (in module

synapse.lib.platforms.common), 505
daemonize() (in module

synapse.lib.platforms.windows), 506
Data (class in synapse.lib.types), 723
data_received() (synapse.axon.AxonHttpUploadV1

method), 790
data_received() (synapse.lib.httpapi.StreamHandler

method), 618
DataAlreadyExists, 836
DAY (synapse.lib.agenda.TimeUnit attribute), 526
day() (in module synapse.lib.time), 721
day() (synapse.lib.stormtypes.LibTime method), 707
DAYOFMONTH (synapse.lib.agenda.TimeUnit attribute),

527
dayofmonth() (in module synapse.lib.time), 721
dayofmonth() (synapse.lib.stormtypes.LibTime

method), 707
DAYOFWEEK (synapse.lib.agenda.TimeUnit attribute), 527
dayofweek() (in module synapse.lib.time), 721
dayofweek() (synapse.lib.stormtypes.LibTime method),

707
dayofyear() (in module synapse.lib.time), 721
dayofyear() (synapse.lib.stormtypes.LibTime method),

707
dbexists() (synapse.lib.lmdbslab.Slab method), 642
DbOutOfSpace, 836
debase64() (in module synapse.common), 792
dec() (synapse.lib.crypto.tinfoil.TinFoilHat method),

504
DecFunc() (synapse.lib.lmdbslab.HotCount static

method), 638

DecFunc() (synapse.lib.lmdbslab.HotKeyVal static
method), 639

decode() (in module synapse.lib.encoding), 599
decode() (synapse.lib.stormlib.basex.BaseXLib

method), 507
decode() (synapse.lib.stormlib.hex.HexLib method),

510
decodeIndx() (synapse.lib.layer.StorType method), 635
decodeIndx() (synapse.lib.layer.StorTypeFloat

method), 635
decodeIndx() (synapse.lib.layer.StorTypeFqdn

method), 635
decodeIndx() (synapse.lib.layer.StorTypeGuid method),

635
decodeIndx() (synapse.lib.layer.StorTypeHier method),

635
decodeIndx() (synapse.lib.layer.StorTypeHugeNum

method), 636
decodeIndx() (synapse.lib.layer.StorTypeInt method),

636
decodeIndx() (synapse.lib.layer.StorTypeIpv6 method),

636
decodeIndx() (synapse.lib.layer.StorTypeIval method),

636
decodeIndx() (synapse.lib.layer.StorTypeLatLon

method), 636
decodeIndx() (synapse.lib.layer.StorTypeUtf8 method),

637
decrypt() (synapse.lib.crypto.tinfoil.CryptSeq method),

503
deepcopy() (in module synapse.lib.msgpack), 649
DEFAULT_GROWSIZE (synapse.lib.lmdbslab.Slab at-

tribute), 641
DEFAULT_MAPSIZE (synapse.lib.lmdbslab.Slab attribute),

641
deguidify() (in module synapse.tests.utils), 764
del_() (synapse.axon.Axon method), 777
del_() (synapse.axon.AxonApi method), 784
del_() (synapse.lib.lmdbslab.GuidStor method), 638
del_() (synapse.lib.stormtypes.LibAxon method), 701
delActiveCoro() (synapse.lib.cell.Cell method), 558
delAhaSvc() (synapse.lib.aha.AhaApi method), 527
delAhaSvc() (synapse.lib.aha.AhaCell method), 530
delAhaSvcProv() (synapse.lib.aha.AhaApi method),

527
delAhaSvcProv() (synapse.lib.aha.AhaCell method),

530
delAhaUrl() (in module synapse.telepath), 845
delAhaUserEnroll() (synapse.lib.aha.AhaApi

method), 527
delAhaUserEnroll() (synapse.lib.aha.AhaCell

method), 530
delAuthGate() (synapse.lib.hiveauth.Auth method),

608

Index 1573

Synapse Documentation, Release 2.141.0

delAuthRole() (synapse.lib.cell.CellApi method), 566
delAuthRule() (synapse.lib.cell.CellApi method), 566
delAuthUser() (synapse.lib.cell.CellApi method), 566
delBackup() (synapse.lib.cell.Cell method), 558
delBackup() (synapse.lib.cell.CellApi method), 566
delCertPath() (in module synapse.lib.certdir), 586
delCertPath() (synapse.lib.certdir.CertDir method),

572
delCoreQueue() (synapse.cortex.Cortex method), 813
delCronJob() (synapse.cortex.CoreApi method), 802
delCronJob() (synapse.cortex.Cortex method), 813
dele() (synapse.lib.lmdbslab.MultiQueue method), 640
delEdge() (synapse.lib.node.Node method), 654
delEdge() (synapse.lib.snap.ProtoNode method), 674
delEdges() (synapse.lib.storm.EdgesDelCmd method),

683
delete() (synapse.axon.AxonHttpBySha256InvalidV1

method), 789
delete() (synapse.axon.AxonHttpBySha256V1

method), 789
delete() (synapse.cryotank.CryoApi method), 826
delete() (synapse.cryotank.CryoCell method), 826
delete() (synapse.lib.agenda.Agenda method), 526
delete() (synapse.lib.hiveauth.AuthGate method), 609
delete() (synapse.lib.layer.Layer method), 629
delete() (synapse.lib.lmdbslab.HotKeyVal method),

639
delete() (synapse.lib.lmdbslab.Slab method), 642
delete() (synapse.lib.node.Node method), 654
delete() (synapse.lib.slaboffs.SlabOffs method), 672
delete() (synapse.lib.stormlib.imap.ImapServer

method), 511
delete() (synapse.lib.view.View method), 733
delForm() (synapse.cortex.CoreApi method), 802
delForm() (synapse.cortex.Cortex method), 813
delForm() (synapse.datamodel.Model method), 832
delForm() (synapse.lib.stormlib.modelext.LibModelExt

method), 517
delFormProp() (synapse.cortex.CoreApi method), 802
delFormProp() (synapse.cortex.Cortex method), 813
delFormProp() (synapse.datamodel.Model method),

832
delFormProp() (synapse.lib.stormlib.modelext.LibModelExt

method), 517
delHttpSess() (synapse.lib.cell.Cell method), 558
delJsonObj() (synapse.cortex.Cortex method), 813
delJsonObjProp() (synapse.cortex.Cortex method),

813
delLayer() (synapse.cortex.Cortex method), 814
delLayrPull() (synapse.cortex.Cortex method), 814
delLayrPush() (synapse.cortex.Cortex method), 814
DelNodeCmd (class in synapse.lib.storm), 681
delNodeProp() (synapse.cortex.CoreApi method), 802
delNodeTag() (synapse.cortex.CoreApi method), 803

delNodeTag() (synapse.cortex.Cortex method), 814
delOAuthProvider() (synapse.lib.oauth.OAuthMixin

method), 661
delPathObj() (synapse.lib.jsonstor.JsonStor method),

620
delPathObj() (synapse.lib.jsonstor.JsonStorApi

method), 620
delPathObj() (synapse.lib.jsonstor.JsonStorCell

method), 621
delPathObjProp() (synapse.lib.jsonstor.JsonStor

method), 620
delPathObjProp() (synapse.lib.jsonstor.JsonStorApi

method), 620
delPathObjProp() (synapse.lib.jsonstor.JsonStorCell

method), 621
delProp() (synapse.datamodel.Form method), 830
delQueue() (synapse.lib.jsonstor.JsonStorApi method),

620
delQueue() (synapse.lib.jsonstor.JsonStorCell method),

621
delRole() (synapse.lib.cell.Cell method), 558
delRole() (synapse.lib.cell.CellApi method), 566
delRole() (synapse.lib.hiveauth.Auth method), 608
delRoleRule() (synapse.lib.cell.Cell method), 558
delRoleRule() (synapse.lib.cell.CellApi method), 566
delRule() (synapse.lib.hiveauth.HiveRuler method),

609
dels() (synapse.axon.Axon method), 777
dels() (synapse.axon.AxonApi method), 784
dels() (synapse.lib.stormtypes.LibAxon method), 701
delStormCmd() (synapse.cortex.CoreApi method), 803
delStormCmd() (synapse.cortex.Cortex method), 814
delStormDmon() (synapse.cortex.CoreApi method), 803
delStormDmon() (synapse.cortex.Cortex method), 814
delStormGraph() (synapse.cortex.Cortex method), 814
delStormLib() (synapse.lib.stormtypes.StormTypesRegistry

method), 715
delStormMacro() (synapse.cortex.Cortex method), 814
delStormPkg() (synapse.cortex.CoreApi method), 803
delStormPkg() (synapse.cortex.Cortex method), 814
delStormSvc() (synapse.cortex.Cortex method), 814
delStormType() (synapse.lib.stormtypes.StormTypesRegistry

method), 715
delta() (in module synapse.lib.time), 721
delTag() (synapse.lib.node.Node method), 654
delTagModel() (synapse.cortex.Cortex method), 814
delTagProp() (synapse.cortex.CoreApi method), 803
delTagProp() (synapse.cortex.Cortex method), 814
delTagProp() (synapse.datamodel.Model method), 832
delTagProp() (synapse.lib.node.Node method), 654
delTagProp() (synapse.lib.stormlib.modelext.LibModelExt

method), 517
delTrigger() (synapse.lib.view.View method), 733
delTrigQueue() (synapse.lib.view.View method), 733

1574 Index

Synapse Documentation, Release 2.141.0

delType() (synapse.datamodel.Model method), 832
delUnivProp() (synapse.cortex.CoreApi method), 803
delUnivProp() (synapse.cortex.Cortex method), 814
delUnivProp() (synapse.datamodel.Model method),

832
delUnivProp() (synapse.lib.stormlib.modelext.LibModelExt

method), 517
delUser() (synapse.lib.cell.Cell method), 558
delUser() (synapse.lib.cell.CellApi method), 566
delUser() (synapse.lib.hiveauth.Auth method), 608
delUserNotif() (synapse.cortex.CoreApi method), 803
delUserNotif() (synapse.cortex.Cortex method), 814
delUserNotif() (synapse.lib.jsonstor.JsonStorApi

method), 620
delUserNotif() (synapse.lib.jsonstor.JsonStorCell

method), 621
delUserRole() (synapse.lib.cell.Cell method), 558
delUserRole() (synapse.lib.cell.CellApi method), 566
delUserRule() (synapse.lib.cell.Cell method), 558
delUserRule() (synapse.lib.cell.CellApi method), 566
delView() (synapse.cortex.Cortex method), 814
delWebSock() (synapse.lib.httpapi.Sess method), 617
deprecated() (in module synapse.common), 792
DeprModule (class in synapse.tests.utils), 747
deref() (synapse.lib.stormtypes.CmdOpts method), 699
deref() (synapse.lib.stormtypes.Dict method), 699
deref() (synapse.lib.stormtypes.Lib method), 700
deref() (synapse.lib.stormtypes.PathMeta method), 711
deref() (synapse.lib.stormtypes.PathVars method), 711
deref() (synapse.lib.stormtypes.Proxy method), 712
deref() (synapse.lib.stormtypes.Service method), 713
deref() (synapse.lib.stormtypes.StormType method),

714
deref() (synapse.lib.stormtypes.Trigger method), 716
deref() (synapse.lib.stormtypes.UserProfile method),

717
deref() (synapse.lib.stormtypes.UserVars method), 717
Dict (class in synapse.lib.spooled), 678
Dict (class in synapse.lib.stormtypes), 699
dict() (synapse.lib.hive.Hive method), 603
dict() (synapse.lib.hive.Node method), 605
dict() (synapse.lib.lmdbslab.GuidStor method), 638
DiffCmd (class in synapse.lib.storm), 681
digests() (synapse.lib.hashset.HashSet method), 602
digits() (in module synapse.lib.chop), 587
digits() (in module synapse.models.telco), 746
dir() (synapse.lib.hive.Hive method), 603
dir() (synapse.lib.hive.Node method), 605
disable() (synapse.lib.agenda.Agenda method), 526
disableCronJob() (synapse.cortex.CoreApi method),

803
disableCronJob() (synapse.cortex.Cortex method),

814

disableMigrationMode() (synapse.cortex.CoreApi
method), 803

disableStormDmon() (synapse.cortex.CoreApi
method), 803

disableStormDmon() (synapse.cortex.Cortex method),
814

disableTriggers() (synapse.lib.snap.Snap method),
676

discard() (synapse.lib.spooled.Set method), 678
Dist (class in synapse.models.geospace), 739
dist() (synapse.lib.base.Base method), 548
DivertCmd (class in synapse.lib.storm), 682
dmonloop() (synapse.lib.storm.StormDmon method),

694
DmonManager (class in synapse.lib.storm), 682
DmonSpawn, 836
dms2dec() (in module synapse.lib.gis), 600
DnsModule (class in synapse.models.dns), 738
DnsName (class in synapse.models.dns), 738
do_handshake() (synapse.telepath.TeleSSLObject

method), 845
docConfdefs() (in module synapse.tools.autodoc), 765
DocHelp (class in synapse.tools.autodoc), 765
docModel() (in module synapse.tools.autodoc), 765
docStormpkg() (in module synapse.tools.autodoc), 765
docStormsvc() (in module synapse.tools.autodoc), 765
docStormTypes() (in module synapse.lib.autodoc), 547
docStormTypes() (in module synapse.tools.autodoc),

765
doECDHE() (in module synapse.lib.crypto.ecc), 500
DollarExpr (class in synapse.lib.ast), 533
dropdb() (synapse.lib.lmdbslab.Slab method), 642
dump() (synapse.lib.crypto.ecc.PriKey method), 498
dump() (synapse.lib.crypto.ecc.PubKey method), 499
dump() (synapse.lib.crypto.rsa.PubKey method), 502
dumpfile() (in module synapse.lib.msgpack), 649
DupFileName, 836
DupFormName, 836
DupIden, 836
DupIndx, 836
DupName, 836
DupPropName, 837
DupRoleName, 837
dupstack() (in module synapse.lib.provenance), 664
DupStormSvc, 837
DupTagPropName, 837
DupUserName, 837
Duration (class in synapse.lib.types), 724
dynamic_source_filename()

(synapse.utils.stormcov.plugin.PivotTracer
method), 773

dynamic_source_filename()
(synapse.utils.stormcov.plugin.StormCtrlTracer
method), 774

Index 1575

Synapse Documentation, Release 2.141.0

dynamic_source_filename()
(synapse.utils.stormcov.plugin.StormPlugin
method), 774

dyncall() (synapse.lib.cell.Cell method), 558
dyncall() (synapse.lib.cell.CellApi method), 567
dyncall() (synapse.lib.storm.Runtime method), 690
dyncall() (synapse.lib.stormtypes.Lib method), 700
dyniter() (synapse.lib.cell.Cell method), 558
dyniter() (synapse.lib.cell.CellApi method), 567
dyniter() (synapse.lib.storm.Runtime method), 690
dyniter() (synapse.lib.stormtypes.Lib method), 700

E
eat() (synapse.lib.nexus.NexsRoot method), 652
eatfd() (synapse.lib.hashset.HashSet method), 602
ecol (synapse.lib.parser.AstInfo attribute), 662
EconModule (class in synapse.models.economic), 738
Edge (class in synapse.datamodel), 830
Edge (class in synapse.lib.types), 724
EdgesDelCmd (class in synapse.lib.storm), 682
Edit (class in synapse.lib.ast), 533
editCronJob() (synapse.cortex.CoreApi method), 803
editCronJob() (synapse.cortex.Cortex method), 814
EditEdgeAdd (class in synapse.lib.ast), 533
EditEdgeDel (class in synapse.lib.ast), 533
editformat_enums (synapse.cmds.cortex.StormCmd at-

tribute), 495
EditNodeAdd (class in synapse.lib.ast), 534
EditParens (class in synapse.lib.ast), 534
EditPropDel (class in synapse.lib.ast), 534
EditPropSet (class in synapse.lib.ast), 534
edits() (synapse.lib.hive.HiveApi method), 605
EditTagAdd (class in synapse.lib.ast), 534
EditTagDel (class in synapse.lib.ast), 534
EditTagPropDel (class in synapse.lib.ast), 534
EditTagPropSet (class in synapse.lib.ast), 534
EditUnivDel (class in synapse.lib.ast), 534
ehex() (in module synapse.common), 792
eip55() (synapse.lib.stormlib.ethereum.EthereumLib

method), 509
eline (synapse.lib.parser.AstInfo attribute), 662
Email (class in synapse.models.inet), 740
EmbedQuery (class in synapse.lib.ast), 534
embedquery() (synapse.lib.parser.AstConverter

method), 662
Emit (class in synapse.lib.ast), 535
emit() (synapse.lib.storm.Runtime method), 690
emitter() (synapse.lib.storm.Runtime method), 690
en() (in module synapse.lib.msgpack), 649
en() (synapse.lib.stormlib.compression.Bzip2Lib

method), 508
en() (synapse.lib.stormlib.compression.GzipLib

method), 508

en() (synapse.lib.stormlib.compression.ZlibLib method),
508

enable() (synapse.lib.agenda.Agenda method), 526
enableCronJob() (synapse.cortex.CoreApi method),

803
enableCronJob() (synapse.cortex.Cortex method), 814
enableMigrationMode() (synapse.cortex.CoreApi

method), 803
enableStormDmon() (synapse.cortex.CoreApi method),

803
enableStormDmon() (synapse.cortex.Cortex method),

814
enbase64() (in module synapse.common), 793
enc() (synapse.lib.crypto.tinfoil.TinFoilHat method),

504
EncFunc() (synapse.lib.lmdbslab.HotCount static

method), 638
EncFunc() (synapse.lib.lmdbslab.HotKeyVal static

method), 639
encode() (in module synapse.lib.encoding), 600
encode() (synapse.lib.stormlib.basex.BaseXLib

method), 507
encode() (synapse.lib.stormlib.hex.HexLib method),

510
encodeMsg() (synapse.cmds.cortex.Log method), 494
encrypt() (synapse.lib.crypto.tinfoil.CryptSeq method),

503
enNexsLog() (synapse.lib.nexus.NexsRoot method), 652
EnrollApi (class in synapse.lib.aha), 530
enter() (in module synapse.lib.scope), 668
enter() (synapse.lib.scope.Scope method), 667
enter_context() (synapse.lib.base.Base method), 549
enum() (synapse.lib.stormlib.iters.LibIters method), 513
envbool() (in module synapse.common), 793
eoff (synapse.lib.parser.AstInfo attribute), 662
eq() (synapse.tests.utils.SynTest method), 750
eqish() (synapse.tests.utils.SynTest method), 750
eqOrNan() (synapse.tests.utils.SynTest method), 750
err() (in module synapse.common), 793
errinfo() (in module synapse.common), 793
errvar() (synapse.lib.ast.CatchBlock method), 533
eth_check() (in module synapse.lib.crypto.coin), 497
ether_eip55() (in module synapse.lib.crypto.coin), 497
EthereumLib (class in synapse.lib.stormlib.ethereum),

509
eval() (synapse.cortex.CoreApi method), 803
eval() (synapse.cortex.Cortex method), 815
eval() (synapse.lib.jupyter.CmdrCore method), 622
eval() (synapse.lib.parser.Parser method), 663
eval() (synapse.lib.snap.Snap method), 676
eval() (synapse.lib.view.View method), 733
evalvalu() (synapse.lib.parser.AstConverter method),

662
Event (class in synapse.lib.coro), 596

1576 Index

Synapse Documentation, Release 2.141.0

event_wait() (in module synapse.lib.coro), 597
exchange() (synapse.lib.crypto.ecc.PriKey method),

498
excinfo() (in module synapse.common), 793
execmain() (synapse.lib.cell.Cell class method), 558
execStormCmd() (synapse.lib.storm.BackgroundCmd

method), 678
execStormCmd() (synapse.lib.storm.BatchCmd

method), 679
execStormCmd() (synapse.lib.storm.Cmd method), 680
execStormCmd() (synapse.lib.storm.CopyToCmd

method), 680
execStormCmd() (synapse.lib.storm.CountCmd

method), 681
execStormCmd() (synapse.lib.storm.DelNodeCmd

method), 681
execStormCmd() (synapse.lib.storm.DiffCmd method),

681
execStormCmd() (synapse.lib.storm.DivertCmd

method), 682
execStormCmd() (synapse.lib.storm.EdgesDelCmd

method), 683
execStormCmd() (synapse.lib.storm.GraphCmd

method), 683
execStormCmd() (synapse.lib.storm.HelpCmd method),

684
execStormCmd() (synapse.lib.storm.IdenCmd method),

684
execStormCmd() (synapse.lib.storm.IntersectCmd

method), 684
execStormCmd() (synapse.lib.storm.LiftByVerb

method), 685
execStormCmd() (synapse.lib.storm.LimitCmd method),

685
execStormCmd() (synapse.lib.storm.MaxCmd method),

686
execStormCmd() (synapse.lib.storm.MergeCmd

method), 686
execStormCmd() (synapse.lib.storm.MinCmd method),

687
execStormCmd() (synapse.lib.storm.MoveNodesCmd

method), 687
execStormCmd() (synapse.lib.storm.MoveTagCmd

method), 688
execStormCmd() (synapse.lib.storm.OnceCmd method),

689
execStormCmd() (synapse.lib.storm.ParallelCmd

method), 689
execStormCmd() (synapse.lib.storm.PureCmd method),

689
execStormCmd() (synapse.lib.storm.ReIndexCmd

method), 690
execStormCmd() (synapse.lib.storm.RunAsCmd

method), 690

execStormCmd() (synapse.lib.storm.ScrapeCmd
method), 692

execStormCmd() (synapse.lib.storm.SleepCmd method),
692

execStormCmd() (synapse.lib.storm.SpinCmd method),
693

execStormCmd() (synapse.lib.storm.SpliceListCmd
method), 693

execStormCmd() (synapse.lib.storm.SpliceUndoCmd
method), 693

execStormCmd() (synapse.lib.storm.SudoCmd method),
694

execStormCmd() (synapse.lib.storm.TagPruneCmd
method), 695

execStormCmd() (synapse.lib.storm.TeeCmd method),
695

execStormCmd() (synapse.lib.storm.TreeCmd method),
695

execStormCmd() (synapse.lib.storm.UniqCmd method),
696

execStormCmd() (synapse.lib.storm.ViewExecCmd
method), 696

execStormCmd() (synapse.lib.stormlib.macro.MacroExecCmd
method), 514

execStormCmd() (synapse.tests.utils.TestCmd method),
761

execStormTask() (synapse.lib.storm.BackgroundCmd
method), 678

execToolMain() (synapse.tests.utils.SynTest method),
750

execute() (synapse.lib.boss.Boss method), 554
execute() (synapse.lib.storm.Runtime method), 690
execute() (synapse.lib.trigger.Trigger method), 722
executor() (in module synapse.lib.coro), 597
executor() (in module synapse.lib.task), 719
exists() (synapse.lib.hive.Hive method), 604
exists() (synapse.lib.lmdbslab.MultiQueue method),

640
exit() (synapse.lib.cmd.Parser method), 591
expect() (synapse.tests.utils.TstOutPut method), 763
ExportCmd (class in synapse.tools.storm), 770
exportStorm() (synapse.cortex.CoreApi method), 803
exportStorm() (synapse.cortex.Cortex method), 815
exportStormToAxon() (synapse.cortex.Cortex

method), 815
expr_add() (in module synapse.lib.ast), 546
expr_div() (in module synapse.lib.ast), 546
expr_eq() (in module synapse.lib.ast), 546
expr_ge() (in module synapse.lib.ast), 546
expr_gt() (in module synapse.lib.ast), 546
expr_le() (in module synapse.lib.ast), 546
expr_lt() (in module synapse.lib.ast), 546
expr_mod() (in module synapse.lib.ast), 546
expr_mul() (in module synapse.lib.ast), 546

Index 1577

Synapse Documentation, Release 2.141.0

expr_ne() (in module synapse.lib.ast), 547
expr_neg() (in module synapse.lib.ast), 547
expr_not() (in module synapse.lib.ast), 547
expr_pow() (in module synapse.lib.ast), 547
expr_prefix() (in module synapse.lib.ast), 547
expr_re() (in module synapse.lib.ast), 547
expr_sub() (in module synapse.lib.ast), 547
ExprAndNode (class in synapse.lib.ast), 535
ExprDict (class in synapse.lib.ast), 535
exprdict() (synapse.lib.parser.AstConverter method),

662
ExprList (class in synapse.lib.ast), 535
exprlist() (synapse.lib.parser.AstConverter method),

662
ExprNode (class in synapse.lib.ast), 535
ExprOrNode (class in synapse.lib.ast), 535
extend() (synapse.lib.stormtypes.List method), 709
extend() (synapse.lib.types.Type method), 728
extendOutpFromPatch() (synapse.tests.utils.SynTest

method), 750

F
false() (synapse.tests.utils.SynTest method), 750
FatalErr, 837
FeatureNotSupported, 837
feed() (synapse.lib.link.Link method), 637
feed() (synapse.lib.msgpack.Unpk method), 649
feedBeholder() (synapse.lib.cell.Cell method), 558
feedBeholder() (synapse.lib.hiveauth.Auth method),

608
feedFromAxon() (synapse.cortex.CoreApi method), 804
feedFromAxon() (synapse.cortex.Cortex method), 815
FeedV1 (class in synapse.lib.httpapi), 612
fetch() (synapse.lib.stormlib.imap.ImapServer

method), 511
FieldHelper (class in synapse.lib.types), 724
file_reporter() (synapse.utils.stormcov.plugin.StormPlugin

method), 775
file_tracer() (synapse.utils.stormcov.plugin.StormPlugin

method), 775
FileBase (class in synapse.models.files), 738
FileBytes (class in synapse.models.files), 738
FileExists, 837
FileModule (class in synapse.models.files), 738
FilePath (class in synapse.models.files), 739
FiltByArray (class in synapse.lib.ast), 535
filter() (synapse.lib.node.Node method), 655
FiltOper (class in synapse.lib.ast), 535
find() (synapse.lib.stormlib.xml.XmlElement method),

524
find_executable_files()

(synapse.utils.stormcov.plugin.StormPlugin
method), 775

find_storm_files() (synapse.utils.stormcov.plugin.StormPlugin
method), 775

find_subqueries() (synapse.utils.stormcov.plugin.StormPlugin
method), 775

findall() (synapse.lib.stormtypes.LibRegx method),
705

fini() (synapse.lib.base.Base method), 549
fini() (synapse.lib.base.Waiter method), 553
fini() (synapse.lib.cell.Cell method), 558
fini() (synapse.lib.lmdbslab.Slab method), 642
fini() (synapse.tests.utils.TstEnv method), 763
FiniBlock (class in synapse.lib.ast), 536
finiframe() (synapse.lib.node.Path method), 657
finiTrigTask() (synapse.lib.view.View method), 733
fire() (synapse.lib.base.Base method), 549
firethread() (in module synapse.common), 793
first() (synapse.lib.lmdbslab.Scan method), 640
first() (synapse.lib.lmdbslab.ScanBack method), 641
first() (synapse.lib.slabseqn.SlabSeqn method), 672
firstkey() (synapse.lib.lmdbslab.Slab method), 642
FixedCache (class in synapse.lib.cache), 554
flatten() (in module synapse.common), 793
Float (class in synapse.lib.types), 724
FloatPacker (synapse.lib.layer.StorTypeFloat at-

tribute), 635
FloatPackNegMax (synapse.lib.layer.StorTypeFloat at-

tribute), 635
FloatPackNegMin (synapse.lib.layer.StorTypeFloat at-

tribute), 635
FloatPackPosMax (synapse.lib.layer.StorTypeFloat at-

tribute), 635
FloatPackPosMin (synapse.lib.layer.StorTypeFloat at-

tribute), 635
fmtVersion() (in module synapse.lib.version), 731
fold() (in module synapse.lib.interval), 619
forcecommit() (synapse.lib.lmdbslab.Slab method),

642
fork() (synapse.lib.node.Path method), 657
fork() (synapse.lib.view.View method), 733
forked() (in module synapse.lib.coro), 597
ForLoop (class in synapse.lib.ast), 536
Form (class in synapse.datamodel), 830
form() (synapse.datamodel.Model method), 832
format() (synapse.lib.ast.AstNode method), 532
format() (synapse.lib.stormtypes.LibStr method), 706
format() (synapse.lib.structlog.JsonFormatter method),

719
format_component() (in module

synapse.tools.healthcheck), 769
format_unescape() (in module synapse.lib.parser),

663
FormatString (class in synapse.lib.ast), 536
FormName (class in synapse.lib.ast), 536

1578 Index

Synapse Documentation, Release 2.141.0

formPhoneNode() (in module
synapse.lookup.phonenum), 736

FormPivot (class in synapse.lib.ast), 536
forms (synapse.lib.storm.Cmd attribute), 680
forms (synapse.tests.utils.TestCmd attribute), 761
FormTagProp (class in synapse.lib.ast), 536
fpack() (synapse.lib.layer.StorTypeFloat method), 635
Fqdn (class in synapse.models.inet), 740
fqdn_check() (in module synapse.lib.scrape), 669
fqdn_prefix_check() (in module synapse.lib.scrape),

669
FREE_SPACE_CHECK_FREQ (synapse.lib.cell.Cell at-

tribute), 555
fromint() (synapse.lib.stormlib.hex.HexLib method),

510
fromprim() (in module synapse.lib.stormtypes), 718
fromspawn() (in module synapse.lib.link), 637
fromString() (synapse.lib.agenda.TimeUnit class

method), 527
FuncArgs (class in synapse.lib.ast), 536
funcargs() (synapse.lib.parser.AstConverter method),

662
FuncCall (class in synapse.lib.ast), 537
funccall() (synapse.lib.parser.AstConverter method),

662
Function (class in synapse.lib.ast), 537

G
Gate (class in synapse.lib.stormtypes), 699
gates() (synapse.lib.stormtypes.Role method), 713
gates() (synapse.lib.stormtypes.User method), 716
ge() (synapse.tests.utils.SynTest method), 750
gen() (synapse.lib.base.BaseRef method), 552
gen() (synapse.lib.lmdbslab.GuidStor method), 638
genCaCert() (synapse.lib.aha.AhaApi method), 527
genCaCert() (synapse.lib.aha.AhaCell method), 530
genCaCert() (synapse.lib.certdir.CertDir method), 572
genCaCrl() (synapse.lib.certdir.CertDir method), 573
genCallsig() (in module synapse.lib.autodoc), 547
genClientCert() (synapse.lib.certdir.CertDir method),

573
genCodeCert() (synapse.lib.certdir.CertDir method),

573
genCrlPath() (synapse.lib.certdir.CertDir method),

573
gendir() (in module synapse.common), 793
generate() (synapse.lib.crypto.ecc.PriKey static

method), 498
genFangRegex() (in module synapse.lib.scrape), 669
genfile() (in module synapse.common), 794
genGateInfo() (synapse.lib.hiveauth.HiveRole

method), 609
genGateInfo() (synapse.lib.hiveauth.HiveUser

method), 610

genHostCert() (synapse.lib.certdir.CertDir method),
573

genHostCsr() (synapse.lib.certdir.CertDir method),
574

genHttpSess() (synapse.lib.cell.Cell method), 559
genMatches() (in module synapse.lib.scrape), 669
genpath() (in module synapse.common), 794
Genr (class in synapse.daemon), 829
Genr (class in synapse.telepath), 843
genraises() (synapse.tests.utils.SynTest method), 750
GenrHelp (class in synapse.lib.coro), 596
genrhelp() (in module synapse.lib.coro), 597
GenrIter (class in synapse.telepath), 843
GenrMethod (class in synapse.telepath), 843
genRoleInfo() (synapse.lib.hiveauth.AuthGate

method), 609
genTempCoreProxy() (in module synapse.lib.jupyter),

623
genTempStormsvcProxy() (in module

synapse.lib.jupyter), 624
genUserCert() (synapse.lib.certdir.CertDir method),

574
genUserCsr() (synapse.lib.certdir.CertDir method),

575
genUserInfo() (synapse.lib.hiveauth.AuthGate

method), 609
genUserOnepass() (synapse.lib.cell.Cell method), 559
genUserOnepass() (synapse.lib.cell.CellApi method),

567
GeoModule (class in synapse.models.geospace), 739
get() (in module synapse.data), 497
get() (in module synapse.lib.provenance), 664
get() (in module synapse.lib.scope), 668
get() (in module synapse.lib.thishost), 720
get() (synapse.axon.Axon method), 777
get() (synapse.axon.AxonApi method), 784
get() (synapse.axon.AxonHttpBySha256InvalidV1

method), 789
get() (synapse.axon.AxonHttpBySha256V1 method),

789
get() (synapse.axon.AxonHttpHasV1 method), 790
get() (synapse.exc.SynErr method), 841
get() (synapse.lib.agenda.Agenda method), 526
get() (synapse.lib.base.BaseRef method), 552
get() (synapse.lib.boss.Boss method), 554
get() (synapse.lib.cache.FixedCache method), 554
get() (synapse.lib.cache.LruDict method), 554
get() (synapse.lib.cache.TagGlobs method), 555
get() (synapse.lib.cli.Cli method), 589
get() (synapse.lib.hive.Hive method), 604
get() (synapse.lib.hive.HiveApi method), 605
get() (synapse.lib.hive.HiveDict method), 605
get() (synapse.lib.hive.Node method), 605
get() (synapse.lib.hive.TeleHive method), 606

Index 1579

Synapse Documentation, Release 2.141.0

get() (synapse.lib.httpapi.ActiveV1 method), 611
get() (synapse.lib.httpapi.AuthGrantV1 method), 611
get() (synapse.lib.httpapi.AuthRevokeV1 method), 611
get() (synapse.lib.httpapi.AuthRolesV1 method), 612
get() (synapse.lib.httpapi.AuthRoleV1 method), 612
get() (synapse.lib.httpapi.AuthUsersV1 method), 612
get() (synapse.lib.httpapi.AuthUserV1 method), 612
get() (synapse.lib.httpapi.CoreInfoV1 method), 612
get() (synapse.lib.httpapi.HealthCheckV1 method), 616
get() (synapse.lib.httpapi.ModelNormV1 method), 616
get() (synapse.lib.httpapi.ModelV1 method), 616
get() (synapse.lib.httpapi.ReqValidStormV1 method),

616
get() (synapse.lib.httpapi.RobotHandler method), 616
get() (synapse.lib.httpapi.StormCallV1 method), 617
get() (synapse.lib.httpapi.StormExportV1 method), 617
get() (synapse.lib.httpapi.StormNodesV1 method), 617
get() (synapse.lib.httpapi.StormV1 method), 617
get() (synapse.lib.httpapi.StormVarsGetV1 method),

617
get() (synapse.lib.link.Link method), 637
get() (synapse.lib.lmdbslab.HotCount method), 638
get() (synapse.lib.lmdbslab.HotKeyVal method), 639
get() (synapse.lib.lmdbslab.MultiQueue method), 640
get() (synapse.lib.lmdbslab.Slab method), 642
get() (synapse.lib.lmdbslab.SlabDict method), 644
get() (synapse.lib.multislabseqn.MultiSlabSeqn

method), 651
get() (synapse.lib.node.Node method), 655
get() (synapse.lib.scope.Scope method), 667
get() (synapse.lib.slaboffs.SlabOffs method), 672
get() (synapse.lib.slabseqn.SlabSeqn method), 672
get() (synapse.lib.snap.ProtoNode method), 674
get() (synapse.lib.spooled.Dict method), 678
get() (synapse.lib.stormlib.notifications.NotifyLib

method), 517
get() (synapse.lib.stormlib.xml.XmlElement method),

525
get() (synapse.lib.stormtypes.LibJsonStor method), 704
get() (synapse.lib.stormtypes.NodeProps method), 710
get() (synapse.lib.stormtypes.StatTally method), 714
get() (synapse.lib.stormtypes.UserJson method), 717
get() (synapse.lib.trigger.Trigger method), 722
get() (synapse.lib.trigger.Triggers method), 722
get() (synapse.tests.utils.HttpReflector method), 748
get_tokens_unprocessed()

(synapse.lib.storm_format.StormLexer
method), 696

getAbrvProp() (synapse.lib.layer.Layer method), 629
getAddrInfo() (synapse.lib.link.Link method), 637
getAddrType() (in module synapse.models.inet), 742
getAhaInfo() (synapse.lib.cell.Cell method), 559
getAhaProxy() (in module synapse.telepath), 845
getAhaSvc() (synapse.lib.aha.AhaApi method), 527

getAhaSvc() (synapse.lib.aha.AhaCell method), 530
getAhaSvcMirrors() (synapse.lib.aha.AhaApi

method), 527
getAhaSvcMirrors() (synapse.lib.aha.AhaCell

method), 530
getAhaSvcProv() (synapse.lib.aha.AhaCell method),

530
getAhaSvcs() (synapse.lib.aha.AhaApi method), 527
getAhaSvcs() (synapse.lib.aha.AhaCell method), 530
getAhaUrls() (synapse.lib.aha.AhaApi method), 527
getAhaUserEnroll() (synapse.lib.aha.AhaCell

method), 530
getAllowedReason() (synapse.lib.hiveauth.HiveUser

method), 610
getAllowedReason() (synapse.lib.stormtypes.User

method), 716
getArgLines() (in module synapse.lib.autodoc), 547
getArgParseArgs() (synapse.lib.config.Config

method), 593
getArgParser() (in module

synapse.tools.aha.easycert), 764
getArgParser() (in module synapse.tools.json2mpk),

769
getArgParser() (in module synapse.tools.storm), 773
getArgParser() (synapse.lib.cell.Cell class method),

559
getArgParser() (synapse.lib.storm.BackgroundCmd

method), 678
getArgParser() (synapse.lib.storm.BatchCmd

method), 679
getArgParser() (synapse.lib.storm.Cmd method), 680
getArgParser() (synapse.lib.storm.CopyToCmd

method), 680
getArgParser() (synapse.lib.storm.CountCmd

method), 681
getArgParser() (synapse.lib.storm.DelNodeCmd

method), 681
getArgParser() (synapse.lib.storm.DiffCmd method),

682
getArgParser() (synapse.lib.storm.DivertCmd

method), 682
getArgParser() (synapse.lib.storm.EdgesDelCmd

method), 683
getArgParser() (synapse.lib.storm.GraphCmd

method), 683
getArgParser() (synapse.lib.storm.HelpCmd method),

684
getArgParser() (synapse.lib.storm.IdenCmd method),

684
getArgParser() (synapse.lib.storm.IntersectCmd

method), 684
getArgParser() (synapse.lib.storm.LiftByVerb

method), 685
getArgParser() (synapse.lib.storm.LimitCmd method),

1580 Index

Synapse Documentation, Release 2.141.0

685
getArgParser() (synapse.lib.storm.MaxCmd method),

686
getArgParser() (synapse.lib.storm.MergeCmd

method), 686
getArgParser() (synapse.lib.storm.MinCmd method),

687
getArgParser() (synapse.lib.storm.MoveNodesCmd

method), 687
getArgParser() (synapse.lib.storm.MoveTagCmd

method), 688
getArgParser() (synapse.lib.storm.OnceCmd method),

689
getArgParser() (synapse.lib.storm.ParallelCmd

method), 689
getArgParser() (synapse.lib.storm.PureCmd method),

689
getArgParser() (synapse.lib.storm.ReIndexCmd

method), 690
getArgParser() (synapse.lib.storm.RunAsCmd

method), 690
getArgParser() (synapse.lib.storm.ScrapeCmd

method), 692
getArgParser() (synapse.lib.storm.SleepCmd method),

692
getArgParser() (synapse.lib.storm.SpliceListCmd

method), 693
getArgParser() (synapse.lib.storm.SpliceUndoCmd

method), 693
getArgParser() (synapse.lib.storm.TagPruneCmd

method), 695
getArgParser() (synapse.lib.storm.TeeCmd method),

695
getArgParser() (synapse.lib.storm.TreeCmd method),

695
getArgParser() (synapse.lib.storm.UniqCmd method),

696
getArgParser() (synapse.lib.storm.ViewExecCmd

method), 696
getArgParser() (synapse.lib.stormlib.macro.MacroExecCmd

method), 514
getArgParser() (synapse.tests.utils.TestCmd method),

761
getArgParser() (synapse.tools.storm.ExportCmd

method), 771
getArgParser() (synapse.tools.storm.PullFileCmd

method), 771
getArgParser() (synapse.tools.storm.PushFileCmd

method), 771
getArgParser() (synapse.tools.storm.RunFileCmd

method), 772
getArgParser() (synapse.tools.storm.StormCliCmd

method), 773
getArrayPropsByType() (synapse.datamodel.Model

method), 832
getAstText() (synapse.lib.ast.AstNode method), 532
getAsyncLoggerStream() (synapse.tests.utils.SynTest

method), 750
getAuthCell() (synapse.lib.httpapi.HandlerBase

method), 614
getAuthGate() (synapse.lib.cell.Cell method), 559
getAuthGate() (synapse.lib.cell.CellApi method), 567
getAuthGate() (synapse.lib.hiveauth.Auth method),

608
getAuthGates() (synapse.lib.cell.Cell method), 559
getAuthGates() (synapse.lib.cell.CellApi method), 567
getAuthGates() (synapse.lib.hiveauth.Auth method),

608
getAuthInfo() (synapse.lib.cell.CellApi method), 567
getAuthRoles() (synapse.lib.cell.Cell method), 559
getAuthRoles() (synapse.lib.cell.CellApi method), 567
getAuthUsers() (synapse.lib.cell.Cell method), 559
getAuthUsers() (synapse.lib.cell.CellApi method), 567
getAvailableMemory() (in module

synapse.lib.platforms.linux), 505
getAxon() (synapse.axon.AxonHandlerMixin method),

789
getAxon() (synapse.cortex.Cortex method), 815
getAxonBytes() (synapse.cortex.CoreApi method), 804
getAxonInfo() (synapse.axon.AxonFileHandler

method), 789
getAxonUpload() (synapse.cortex.CoreApi method),

804
getBackupInfo() (synapse.lib.cell.Cell method), 559
getBackupInfo() (synapse.lib.cell.CellApi method),

567
getBackups() (synapse.lib.cell.Cell method), 559
getBackups() (synapse.lib.cell.CellApi method), 567
getByIndxByts() (synapse.lib.slabseqn.SlabSeqn

method), 672
getByLayer() (synapse.lib.node.Node method), 655
getByLayer() (synapse.lib.stormtypes.Node method),

709
getbytes() (in module synapse.common), 795
getCaCert() (synapse.lib.aha.AhaApi method), 528
getCaCert() (synapse.lib.aha.AhaCell method), 530
getCaCert() (synapse.lib.aha.EnrollApi method), 530
getCaCert() (synapse.lib.aha.ProvApi method), 531
getCaCert() (synapse.lib.certdir.CertDir method), 575
getCaCertBytes() (synapse.lib.certdir.CertDir

method), 575
getCaCertPath() (synapse.lib.certdir.CertDir method),

575
getCaCerts() (synapse.lib.certdir.CertDir method),

576
getCaKey() (synapse.lib.certdir.CertDir method), 576
getCaKeyPath() (synapse.lib.certdir.CertDir method),

576

Index 1581

Synapse Documentation, Release 2.141.0

getCallSig() (in module synapse.lib.stormtypes), 718
getCatchBlock() (synapse.lib.ast.TryCatch method),

545
getCell() (in module synapse.lib.rstorm), 667
getCellApi() (synapse.cortex.Cortex method), 815
getCellApi() (synapse.cryotank.CryoCell method),

826
getCellApi() (synapse.lib.cell.Cell method), 559
getCellIden() (synapse.lib.cell.Cell method), 560
getCellIden() (synapse.lib.cell.CellApi method), 567
getCellIden() (synapse.lib.view.ViewApi method), 735
getCellInfo() (synapse.axon.Axon method), 777
getCellInfo() (synapse.lib.cell.Cell method), 560
getCellInfo() (synapse.lib.cell.CellApi method), 567
getCellNexsRoot() (synapse.lib.cell.Cell method), 560
getCellRunId() (synapse.lib.cell.Cell method), 560
getCellRunId() (synapse.lib.cell.CellApi method), 567
getCellType() (synapse.lib.cell.Cell class method), 560
getCellType() (synapse.lib.cell.CellApi method), 567
getCellUser() (synapse.lib.cell.CellApi method), 567
getCertDir() (in module synapse.lib.certdir), 586
getCertDirn() (in module synapse.lib.certdir), 586
getChangeDist() (synapse.lib.nexus.NexsRoot

method), 652
getCidrRange() (synapse.models.inet.IPv4 method),

740
getCidrRange() (synapse.models.inet.IPv6 method),

741
getClientCert() (synapse.lib.certdir.CertDir method),

577
getClientCertPath() (synapse.lib.certdir.CertDir

method), 577
getClientSSLContext() (synapse.lib.certdir.CertDir

method), 577
getClsNames() (in module synapse.lib.reflect), 665
getCmdBrief() (synapse.lib.cli.Cmd method), 590
getCmdBrief() (synapse.lib.storm.Cmd class method),

680
getCmdByName() (synapse.lib.cli.Cli method), 589
getCmdDoc() (synapse.lib.cli.Cmd method), 590
getCmdItem() (synapse.lib.cli.Cmd method), 590
getCmdlineMapping() (synapse.lib.config.Config

method), 593
getCmdName() (synapse.lib.cli.Cmd method), 590
getCmdNames() (synapse.lib.cli.Cli method), 589
getCmdOpts() (synapse.lib.cli.Cmd method), 590
getCmdOpts() (synapse.tools.storm.StormCliCmd

method), 773
getCmdPrompt() (synapse.lib.cli.Cli method), 589
getCmdRuntime() (synapse.lib.storm.Runtime method),

691
getCmprCtor() (synapse.lib.types.Type method), 729
getCodeCert() (synapse.lib.certdir.CertDir method),

578

getCodeCertPath() (synapse.lib.certdir.CertDir
method), 578

getCodeKey() (synapse.lib.certdir.CertDir method),
578

getCodeKeyPath() (synapse.lib.certdir.CertDir
method), 578

getCompOffs() (synapse.datamodel.Prop method), 832
getCompOffs() (synapse.lib.types.Comp method), 723
getCompOffs() (synapse.lib.types.Edge method), 724
getCompOffs() (synapse.lib.types.TimeEdge method),

728
getCompOffs() (synapse.lib.types.Type method), 729
getCondEval() (synapse.lib.ast.AbsPropCond method),

531
getCondEval() (synapse.lib.ast.AndCond method), 531
getCondEval() (synapse.lib.ast.ArrayCond method),

531
getCondEval() (synapse.lib.ast.HasAbsPropCond

method), 537
getCondEval() (synapse.lib.ast.HasRelPropCond

method), 537
getCondEval() (synapse.lib.ast.HasTagPropCond

method), 537
getCondEval() (synapse.lib.ast.NotCond method), 540
getCondEval() (synapse.lib.ast.OrCond method), 540
getCondEval() (synapse.lib.ast.RelPropCond method),

542
getCondEval() (synapse.lib.ast.SubqCond method),

543
getCondEval() (synapse.lib.ast.TagCond method), 544
getCondEval() (synapse.lib.ast.TagPropCond method),

544
getCondEval() (synapse.lib.ast.TagValuCond method),

544
getCondEval() (synapse.lib.ast.Value method), 545
getConfFromCell() (synapse.lib.config.Config class

method), 593
getConfOpt() (synapse.lib.cell.Cell method), 560
getConfPath() (synapse.lib.module.CoreModule

method), 646
getCore() (synapse.lib.httpapi.StormHandler method),

617
getCoreInfo() (synapse.cortex.CoreApi method), 804
getCoreInfo() (synapse.cortex.Cortex method), 815
getCoreInfoV2() (synapse.cortex.CoreApi method),

804
getCoreInfoV2() (synapse.cortex.Cortex method), 815
getCoreMod() (synapse.cortex.Cortex method), 815
getCoreMods() (synapse.cortex.CoreApi method), 804
getCoreMods() (synapse.cortex.Cortex method), 815
getCoreQueue() (synapse.cortex.Cortex method), 815
getCrlPath() (synapse.lib.certdir.CertDir method),

578
getCurrentLockedMemory() (in module

1582 Index

Synapse Documentation, Release 2.141.0

synapse.lib.platforms.linux), 505
getCustomHeaders() (synapse.lib.httpapi.HandlerBase

method), 614
getData() (synapse.lib.node.Node method), 655
getData() (synapse.lib.snap.ProtoNode method), 674
getDataModel() (synapse.cortex.Cortex method), 815
getDeprLocks() (synapse.cortex.Cortex method), 815
getDescr() (synapse.lib.storm.Cmd method), 680
getDescr() (synapse.lib.storm.PureCmd method), 689
getDiagInfo() (synapse.lib.cell.CellApi method), 568
getDirSize() (in module synapse.common), 794
getDmon() (synapse.lib.storm.DmonManager method),

682
getDmonDef() (synapse.lib.storm.DmonManager

method), 682
getDmonDefs() (synapse.lib.storm.DmonManager

method), 682
getDmonRunlog() (synapse.lib.storm.DmonManager

method), 682
getDmonSessions() (synapse.lib.cell.Cell method), 560
getDmonSessions() (synapse.lib.cell.CellApi method),

568
getDoc() (in module synapse.lib.stormtypes), 718
getDocData() (in module synapse.lib.jupyter), 624
getDocPath() (in module synapse.lib.jupyter), 624
getDynLocal() (in module synapse.lib.dyndeps), 599
getDynMeth() (in module synapse.lib.dyndeps), 599
getDynMod() (in module synapse.lib.dyndeps), 599
getEdges() (synapse.lib.layer.Layer method), 629
getEdges() (synapse.lib.stormtypes.Layer method), 699
getEdges() (synapse.lib.view.View method), 734
getEdgesByN1() (synapse.lib.stormtypes.Layer

method), 700
getEdgesByN2() (synapse.lib.stormtypes.Layer

method), 700
getEdgeVerbs() (synapse.lib.layer.Layer method), 629
getEdgeVerbs() (synapse.lib.view.View method), 734
getEditIndx() (synapse.lib.layer.Layer method), 629
getEditIndx() (synapse.lib.layer.LayerApi method),

634
getEditOffs() (synapse.lib.layer.Layer method), 629
getEditor() (synapse.lib.snap.Snap method), 676
getEditSize() (synapse.lib.layer.Layer method), 629
getEditSize() (synapse.lib.layer.LayerApi method),

634
getEditSize() (synapse.lib.view.ViewApi method), 735
getEmbeds() (synapse.lib.node.Node method), 655
getEnvarMapping() (synapse.lib.config.Config

method), 593
getEnvPrefix() (synapse.cryotank.CryoCell class

method), 827
getEnvPrefix() (synapse.lib.aha.AhaCell class

method), 530

getEnvPrefix() (synapse.lib.cell.Cell class method),
560

getEnvPrefix() (synapse.lib.jsonstor.JsonStorCell
class method), 621

getErrValu() (synapse.lib.ast.TryCatch method), 545
getFeedFunc() (synapse.cortex.Cortex method), 815
getFeedFuncs() (synapse.cortex.CoreApi method), 804
getFeedFuncs() (synapse.cortex.Cortex method), 815
getfile() (in module synapse.common), 795
getFileMappedRegion() (in module

synapse.lib.platforms.linux), 505
getFlatEdits() (in module synapse.lib.layer), 637
getFormCounts() (synapse.cortex.Cortex method), 815
getFormCounts() (synapse.lib.layer.Layer method),

629
getFormCounts() (synapse.lib.view.View method), 734
getFormDef() (synapse.datamodel.Form method), 830
getFormProps() (synapse.lib.layer.Layer method), 629
getForms() (in module synapse.lib.scrape), 670
getGcInfo() (synapse.lib.cell.CellApi method), 568
getGraph() (synapse.lib.storm.Runtime method), 691
getHealthCheck() (synapse.lib.cell.Cell method), 560
getHealthCheck() (synapse.lib.cell.CellApi method),

568
getHierIndx() (synapse.lib.layer.StorTypeHier

method), 636
getHiveAuth() (synapse.lib.hive.Hive method), 604
getHiveKey() (synapse.lib.cell.Cell method), 560
getHiveKey() (synapse.lib.cell.CellApi method), 568
getHiveKeys() (synapse.lib.cell.Cell method), 560
getHiveKeys() (synapse.lib.cell.CellApi method), 568
getHostCaPath() (synapse.lib.certdir.CertDir method),

578
getHostCert() (synapse.lib.certdir.CertDir method),

578
getHostCertHash() (synapse.lib.certdir.CertDir

method), 578
getHostCertPath() (synapse.lib.certdir.CertDir

method), 578
getHostKey() (synapse.lib.certdir.CertDir method),

579
getHostKeyPath() (synapse.lib.certdir.CertDir

method), 579
getHotCount() (synapse.lib.lmdbslab.Slab method),

642
getHttpSess() (synapse.tests.utils.SynTest method),

751
getHttpSessDict() (synapse.lib.cell.Cell method), 560
getHugeIndx() (synapse.lib.layer.StorTypeHugeNum

method), 636
getIden() (synapse.lib.layer.LayerApi method), 634
getIdenFutu() (synapse.lib.layer.Layer method), 629
getInput() (synapse.lib.storm.Runtime method), 691
getIntIndx() (synapse.lib.layer.StorTypeInt method),

Index 1583

Synapse Documentation, Release 2.141.0

636
getIPv6Indx() (synapse.lib.layer.StorTypeIpv6

method), 636
getItemCmdr() (in module synapse.lib.cmdr), 592
getItemCmdr() (in module synapse.lib.jupyter), 624
getItemLocals() (in module synapse.lib.reflect), 665
getItems() (in module synapse.tools.feed), 768
getItemStorm() (in module synapse.lib.jupyter), 624
getJsonBody() (synapse.lib.httpapi.HandlerBase

method), 614
getJsonObj() (synapse.cortex.Cortex method), 815
getJsonObjProp() (synapse.cortex.Cortex method),

816
getJsonObjs() (synapse.cortex.Cortex method), 816
getJsSchema() (in module synapse.lib.config), 595
getJsValidator() (in module synapse.lib.config), 595
getLangCodes() (in module synapse.lookup.pe), 736
getLayer() (synapse.cortex.Cortex method), 816
getLayerDef() (synapse.cortex.Cortex method), 816
getLayerDefs() (synapse.cortex.Cortex method), 816
getLayerSize() (synapse.lib.layer.Layer method), 629
getLibC() (in module synapse.lib.platforms.common),

505
getLibC() (in module synapse.lib.platforms.windows),

506
getLibDocs() (synapse.lib.stormtypes.StormTypesRegistry

method), 715
getLiftHintCmpr() (synapse.lib.types.Type method),

729
getLiftHintCmprCtor() (synapse.lib.types.Type

method), 729
getLiftHints() (synapse.lib.ast.AndCond method),

531
getLiftHints() (synapse.lib.ast.FiltOper method), 535
getLiftHints() (synapse.lib.ast.HasRelPropCond

method), 537
getLiftHints() (synapse.lib.ast.RelPropCond

method), 542
getLiftHints() (synapse.lib.ast.TagCond method),

544
getLiftHints() (synapse.lib.ast.Value method), 545
getLink() (in module synapse.lib.autodoc), 547
getLoadCmdTypes() (in module

synapse.lookup.macho), 736
getLocalProxy() (synapse.lib.cell.Cell method), 560
getLocalUrl() (synapse.lib.cell.Cell method), 560
getLogExtra() (synapse.lib.cell.Cell method), 560
getLoggerStream() (synapse.tests.utils.SynTest

method), 751
getMagicPromptColors() (synapse.tests.utils.SynTest

method), 752
getMagicPromptLines() (synapse.tests.utils.SynTest

method), 753
getMaxHotFixes() (in module

synapse.lib.stormlib.cell), 508
getMaxLockedMemory() (in module

synapse.lib.platforms.linux), 505
getMethName() (in module synapse.lib.reflect), 666
getMirrorStatus() (synapse.lib.layer.Layer method),

629
getMirrorStatus() (synapse.lib.stormtypes.Layer

method), 700
getMirrorUrls() (synapse.lib.cell.Cell method), 561
getMirrorUrls() (synapse.lib.cell.CellApi method),

568
getModDir() (synapse.lib.module.CoreModule method),

646
getModelDefs() (synapse.cortex.CoreApi method), 804
getModelDefs() (synapse.cortex.Cortex method), 816
getModelDefs() (synapse.datamodel.Model method),

832
getModelDefs() (synapse.lib.module.CoreModule

method), 647
getModelDefs() (synapse.models.auth.AuthModule

method), 737
getModelDefs() (synapse.models.base.BaseModule

method), 737
getModelDefs() (synapse.models.belief.BeliefModule

method), 737
getModelDefs() (synapse.models.biz.BizModule

method), 737
getModelDefs() (synapse.models.crypto.CryptoModule

method), 738
getModelDefs() (synapse.models.dns.DnsModule

method), 738
getModelDefs() (synapse.models.economic.EconModule

method), 738
getModelDefs() (synapse.models.files.FileModule

method), 738
getModelDefs() (synapse.models.geopol.PolModule

method), 739
getModelDefs() (synapse.models.geospace.GeoModule

method), 739
getModelDefs() (synapse.models.gov.cn.GovCnModule

method), 736
getModelDefs() (synapse.models.gov.intl.GovIntlModule

method), 737
getModelDefs() (synapse.models.gov.us.GovUsModule

method), 737
getModelDefs() (synapse.models.inet.InetModule

method), 741
getModelDefs() (synapse.models.infotech.ItModule

method), 742
getModelDefs() (synapse.models.language.LangModule

method), 743
getModelDefs() (synapse.models.material.MatModule

method), 743
getModelDefs() (synapse.models.media.MediaModule

1584 Index

Synapse Documentation, Release 2.141.0

method), 744
getModelDefs() (synapse.models.orgs.OuModule

method), 744
getModelDefs() (synapse.models.person.PsModule

method), 744
getModelDefs() (synapse.models.proj.ProjectModule

method), 744
getModelDefs() (synapse.models.risk.RiskModule

method), 745
getModelDefs() (synapse.models.syn.SynModule

method), 745
getModelDefs() (synapse.models.telco.TelcoModule

method), 746
getModelDefs() (synapse.models.transport.TransportModule

method), 746
getModelDefs() (synapse.tests.utils.DeprModule

method), 748
getModelDefs() (synapse.tests.utils.TestModule

method), 761
getModelDict() (synapse.cortex.CoreApi method), 804
getModelDict() (synapse.cortex.Cortex method), 816
getModelDict() (synapse.datamodel.Model method),

832
getModelVers() (synapse.lib.layer.Layer method), 629
getModName() (synapse.lib.module.CoreModule

method), 647
getModPath() (synapse.lib.module.CoreModule

method), 647
getModRuntime() (synapse.lib.storm.Runtime method),

691
getMultiQueue() (synapse.lib.lmdbslab.Slab method),

642
getName() (synapse.lib.storm.Cmd method), 680
getName() (synapse.lib.storm.PureCmd method), 689
getNameAbrv() (synapse.lib.lmdbslab.Slab method),

642
getNetRange() (synapse.models.inet.IPv4 method), 740
getNetRange() (synapse.models.inet.IPv6 method), 741
getNexsIndx() (synapse.lib.cell.Cell method), 561
getNexsIndx() (synapse.lib.cell.CellApi method), 568
getNexusChanges() (synapse.lib.cell.Cell method), 561
getNexusChanges() (synapse.lib.cell.CellApi method),

568
getNodeByBuid() (synapse.lib.snap.Snap method), 676
getNodeByBuid() (synapse.lib.snap.SnapEditor

method), 678
getNodeByNdef() (synapse.cortex.Cortex method), 816
getNodeByNdef() (synapse.lib.snap.Snap method), 676
getNodeData() (synapse.lib.layer.Layer method), 629
getNodeData() (synapse.lib.snap.Snap method), 676
getNodeEdit() (synapse.lib.snap.ProtoNode method),

674
getNodeEditor() (synapse.lib.snap.Snap method), 676
getNodeEditPerms() (in module synapse.lib.layer),

637
getNodeEdits() (synapse.lib.snap.SnapEditor method),

678
getNodeEditWindow() (synapse.lib.layer.Layer

method), 629
getNodeForm() (synapse.lib.layer.Layer method), 629
getNodeRefs() (synapse.lib.node.Node method), 655
getNodeTag() (synapse.lib.layer.Layer method), 629
getNodeValu() (synapse.lib.layer.IndxBy method), 628
getNodeValu() (synapse.lib.layer.IndxByForm method),

628
getNodeValu() (synapse.lib.layer.IndxByProp method),

628
getNodeValu() (synapse.lib.layer.IndxByPropArray

method), 628
getNodeValu() (synapse.lib.layer.IndxByTagProp

method), 628
getNodeValu() (synapse.lib.layer.Layer method), 629
getNodeValuForm() (synapse.lib.layer.IndxByTag

method), 628
getOAuthAccessToken()

(synapse.lib.oauth.OAuthMixin method),
661

getOAuthClient() (synapse.lib.oauth.OAuthMixin
method), 661

getOAuthProvider() (synapse.lib.oauth.OAuthMixin
method), 661

getObjLocals() (synapse.lib.stormhttp.HttpResp
method), 697

getObjLocals() (synapse.lib.stormhttp.LibHttp
method), 697

getObjLocals() (synapse.lib.stormhttp.WebSocket
method), 698

getObjLocals() (synapse.lib.stormlib.backup.BackupLib
method), 507

getObjLocals() (synapse.lib.stormlib.basex.BaseXLib
method), 507

getObjLocals() (synapse.lib.stormlib.cell.CellLib
method), 507

getObjLocals() (synapse.lib.stormlib.compression.Bzip2Lib
method), 508

getObjLocals() (synapse.lib.stormlib.compression.GzipLib
method), 508

getObjLocals() (synapse.lib.stormlib.compression.ZlibLib
method), 508

getObjLocals() (synapse.lib.stormlib.easyperm.LibEasyPerm
method), 509

getObjLocals() (synapse.lib.stormlib.ethereum.EthereumLib
method), 509

getObjLocals() (synapse.lib.stormlib.graph.GraphLib
method), 509

getObjLocals() (synapse.lib.stormlib.hashes.LibHashes
method), 510

getObjLocals() (synapse.lib.stormlib.hashes.LibHmac

Index 1585

Synapse Documentation, Release 2.141.0

method), 510
getObjLocals() (synapse.lib.stormlib.hex.HexLib

method), 510
getObjLocals() (synapse.lib.stormlib.imap.ImapLib

method), 511
getObjLocals() (synapse.lib.stormlib.imap.ImapServer

method), 511
getObjLocals() (synapse.lib.stormlib.infosec.CvssLib

method), 512
getObjLocals() (synapse.lib.stormlib.ipv6.LibIpv6

method), 512
getObjLocals() (synapse.lib.stormlib.iters.LibIters

method), 513
getObjLocals() (synapse.lib.stormlib.json.JsonLib

method), 513
getObjLocals() (synapse.lib.stormlib.json.JsonSchema

method), 513
getObjLocals() (synapse.lib.stormlib.log.LoggerLib

method), 514
getObjLocals() (synapse.lib.stormlib.macro.LibMacro

method), 514
getObjLocals() (synapse.lib.stormlib.math.MathLib

method), 515
getObjLocals() (synapse.lib.stormlib.mime.LibMimeHtml

method), 515
getObjLocals() (synapse.lib.stormlib.model.LibModel

method), 515
getObjLocals() (synapse.lib.stormlib.model.LibModelDeprecated

method), 515
getObjLocals() (synapse.lib.stormlib.model.LibModelEdge

method), 516
getObjLocals() (synapse.lib.stormlib.model.LibModelTags

method), 516
getObjLocals() (synapse.lib.stormlib.model.ModelForm

method), 516
getObjLocals() (synapse.lib.stormlib.modelext.LibModelExt

method), 517
getObjLocals() (synapse.lib.stormlib.notifications.NotifyLib

method), 517
getObjLocals() (synapse.lib.stormlib.oauth.OAuthV1Client

method), 518
getObjLocals() (synapse.lib.stormlib.oauth.OAuthV1Lib

method), 518
getObjLocals() (synapse.lib.stormlib.oauth.OAuthV2Lib

method), 518
getObjLocals() (synapse.lib.stormlib.project.LibProjects

method), 519
getObjLocals() (synapse.lib.stormlib.project.ProjectEpics

method), 519
getObjLocals() (synapse.lib.stormlib.project.ProjectSprints

method), 520
getObjLocals() (synapse.lib.stormlib.project.ProjectTicketComment

method), 520
getObjLocals() (synapse.lib.stormlib.project.ProjectTicketComments

method), 520
getObjLocals() (synapse.lib.stormlib.project.ProjectTickets

method), 521
getObjLocals() (synapse.lib.stormlib.random.LibRandom

method), 521
getObjLocals() (synapse.lib.stormlib.scrape.LibScrape

method), 521
getObjLocals() (synapse.lib.stormlib.smtp.SmtpLib

method), 522
getObjLocals() (synapse.lib.stormlib.stix.LibStix

method), 522
getObjLocals() (synapse.lib.stormlib.stix.LibStixExport

method), 522
getObjLocals() (synapse.lib.stormlib.stix.LibStixImport

method), 523
getObjLocals() (synapse.lib.stormlib.stix.StixBundle

method), 523
getObjLocals() (synapse.lib.stormlib.storm.LibStorm

method), 524
getObjLocals() (synapse.lib.stormlib.version.VersionLib

method), 524
getObjLocals() (synapse.lib.stormlib.xml.LibXml

method), 524
getObjLocals() (synapse.lib.stormlib.yaml.LibYaml

method), 525
getObjLocals() (synapse.lib.stormtypes.Bytes

method), 698
getObjLocals() (synapse.lib.stormtypes.CronJob

method), 699
getObjLocals() (synapse.lib.stormtypes.Layer

method), 700
getObjLocals() (synapse.lib.stormtypes.LibAuth

method), 700
getObjLocals() (synapse.lib.stormtypes.LibAxon

method), 701
getObjLocals() (synapse.lib.stormtypes.LibBase

method), 701
getObjLocals() (synapse.lib.stormtypes.LibBase64

method), 701
getObjLocals() (synapse.lib.stormtypes.LibBytes

method), 702
getObjLocals() (synapse.lib.stormtypes.LibCron

method), 702
getObjLocals() (synapse.lib.stormtypes.LibCsv

method), 702
getObjLocals() (synapse.lib.stormtypes.LibDmon

method), 702
getObjLocals() (synapse.lib.stormtypes.LibExport

method), 703
getObjLocals() (synapse.lib.stormtypes.LibFeed

method), 703
getObjLocals() (synapse.lib.stormtypes.LibGates

method), 703
getObjLocals() (synapse.lib.stormtypes.LibGlobals

1586 Index

Synapse Documentation, Release 2.141.0

method), 703
getObjLocals() (synapse.lib.stormtypes.LibLayer

method), 704
getObjLocals() (synapse.lib.stormtypes.LibLift

method), 704
getObjLocals() (synapse.lib.stormtypes.LibPipe

method), 704
getObjLocals() (synapse.lib.stormtypes.LibPkg

method), 705
getObjLocals() (synapse.lib.stormtypes.LibPs

method), 705
getObjLocals() (synapse.lib.stormtypes.LibQueue

method), 705
getObjLocals() (synapse.lib.stormtypes.LibRegx

method), 705
getObjLocals() (synapse.lib.stormtypes.LibRoles

method), 706
getObjLocals() (synapse.lib.stormtypes.LibService

method), 706
getObjLocals() (synapse.lib.stormtypes.LibStats

method), 706
getObjLocals() (synapse.lib.stormtypes.LibStr

method), 706
getObjLocals() (synapse.lib.stormtypes.LibTags

method), 707
getObjLocals() (synapse.lib.stormtypes.LibTelepath

method), 707
getObjLocals() (synapse.lib.stormtypes.LibTime

method), 707
getObjLocals() (synapse.lib.stormtypes.LibTrigger

method), 708
getObjLocals() (synapse.lib.stormtypes.LibUser

method), 708
getObjLocals() (synapse.lib.stormtypes.LibUsers

method), 708
getObjLocals() (synapse.lib.stormtypes.LibVars

method), 708
getObjLocals() (synapse.lib.stormtypes.LibView

method), 709
getObjLocals() (synapse.lib.stormtypes.List method),

709
getObjLocals() (synapse.lib.stormtypes.Node method),

709
getObjLocals() (synapse.lib.stormtypes.NodeData

method), 710
getObjLocals() (synapse.lib.stormtypes.NodeProps

method), 710
getObjLocals() (synapse.lib.stormtypes.Number

method), 710
getObjLocals() (synapse.lib.stormtypes.Path method),

711
getObjLocals() (synapse.lib.stormtypes.Pipe method),

711
getObjLocals() (synapse.lib.stormtypes.Query

method), 712
getObjLocals() (synapse.lib.stormtypes.Queue

method), 713
getObjLocals() (synapse.lib.stormtypes.Role method),

713
getObjLocals() (synapse.lib.stormtypes.Set method),

713
getObjLocals() (synapse.lib.stormtypes.StatTally

method), 714
getObjLocals() (synapse.lib.stormtypes.StormHiveDict

method), 714
getObjLocals() (synapse.lib.stormtypes.StormType

method), 715
getObjLocals() (synapse.lib.stormtypes.Str method),

716
getObjLocals() (synapse.lib.stormtypes.Text method),

716
getObjLocals() (synapse.lib.stormtypes.Trigger

method), 716
getObjLocals() (synapse.lib.stormtypes.User method),

716
getObjLocals() (synapse.lib.stormtypes.View method),

717
getObjLocals() (synapse.lib.stormwhois.LibWhois

method), 719
getOffset() (synapse.cryotank.CryoTank method), 827
getOffsetEvent() (synapse.lib.multislabseqn.MultiSlabSeqn

method), 651
getOffsetEvent() (synapse.lib.slabseqn.SlabSeqn

method), 673
getOneNode() (synapse.lib.storm.Runtime method), 691
getOpt() (synapse.lib.storm.Runtime method), 691
getPathList() (synapse.lib.jsonstor.JsonStor method),

620
getPathList() (synapse.lib.jsonstor.JsonStorApi

method), 620
getPathList() (synapse.lib.jsonstor.JsonStorCell

method), 621
getPathObj() (synapse.lib.jsonstor.JsonStor method),

620
getPathObj() (synapse.lib.jsonstor.JsonStorApi

method), 620
getPathObj() (synapse.lib.jsonstor.JsonStorCell

method), 621
getPathObjProp() (synapse.lib.jsonstor.JsonStor

method), 620
getPathObjProp() (synapse.lib.jsonstor.JsonStorApi

method), 620
getPathObjProp() (synapse.lib.jsonstor.JsonStorCell

method), 621
getPathObjs() (synapse.lib.jsonstor.JsonStor method),

620
getPathObjs() (synapse.lib.jsonstor.JsonStorApi

method), 620

Index 1587

Synapse Documentation, Release 2.141.0

getPathObjs() (synapse.lib.jsonstor.JsonStorCell
method), 621

getPbkdf2() (in module synapse.lib.crypto.passwd),
501

getPermDef() (synapse.lib.cell.Cell method), 561
getPermDef() (synapse.lib.cell.CellApi method), 568
getPermDef() (synapse.lib.stormtypes.LibAuth

method), 700
getPermDefs() (synapse.lib.cell.Cell method), 561
getPermDefs() (synapse.lib.cell.CellApi method), 568
getPermDefs() (synapse.lib.stormtypes.LibAuth

method), 700
getPhoneInfo() (in module

synapse.lookup.phonenum), 736
getPipeline() (synapse.telepath.Proxy method), 844
getPivsIn() (synapse.lib.ast.PivotIn method), 540
getPivsOut() (synapse.lib.ast.PivotOut method), 540
getPoolLink() (synapse.telepath.Proxy method), 844
getPosInfo() (synapse.lib.ast.AstNode method), 532
getPropAbrv() (synapse.lib.layer.Layer method), 629
getPropAndValu() (synapse.lib.ast.PropValue

method), 541
getPropCount() (synapse.lib.layer.Layer method), 629
getPropDef() (synapse.datamodel.Prop method), 832
getPropNorm() (synapse.cortex.CoreApi method), 804
getPropNorm() (synapse.cortex.Cortex method), 816
getProps() (synapse.datamodel.Model method), 832
getPropsByType() (synapse.datamodel.Model

method), 832
getProvInfo() (synapse.lib.aha.ProvApi method), 531
getraw() (synapse.lib.slabseqn.SlabSeqn method), 673
getRefsOut() (synapse.datamodel.Form method), 830
getRegrAxon() (synapse.tests.utils.SynTest method),

753
getRegrCore() (synapse.tests.utils.SynTest method),

753
getRegrDir() (synapse.tests.utils.SynTest method), 753
getReturnLines() (in module synapse.lib.autodoc),

548
getRightHints() (synapse.lib.ast.LiftProp method),

538
getRoleByName() (synapse.lib.hiveauth.Auth method),

608
getRoleDef() (synapse.lib.cell.Cell method), 561
getRoleDef() (synapse.lib.cell.CellApi method), 568
getRoleDefByName() (synapse.lib.cell.Cell method),

561
getRoleDefByName() (synapse.lib.cell.CellApi

method), 568
getRoleDefs() (synapse.lib.cell.Cell method), 561
getRoleDefs() (synapse.lib.cell.CellApi method), 568
getRoleInfo() (synapse.lib.cell.CellApi method), 568
getRoles() (synapse.lib.hiveauth.HiveUser method),

610

getRsrcTypes() (in module synapse.lookup.pe), 736
getRstText() (synapse.lib.autodoc.RstHelp method),

547
getRtypeStr() (in module synapse.lib.autodoc), 548
getRules() (synapse.lib.hiveauth.HiveRuler method),

609
getRules() (synapse.lib.stormtypes.Role method), 713
getRules() (synapse.lib.stormtypes.User method), 717
getRuntNodes() (synapse.lib.snap.Snap method), 676
getRuntVars() (synapse.lib.ast.AstNode method), 532
getRuntVars() (synapse.lib.ast.CatchBlock method),

533
getRuntVars() (synapse.lib.ast.EmbedQuery method),

535
getRuntVars() (synapse.lib.ast.ForLoop method), 536
getRuntVars() (synapse.lib.ast.Function method), 537
getRuntVars() (synapse.lib.ast.SetVarOper method),

542
getRuntVars() (synapse.lib.ast.VarListSetOper

method), 546
gets() (synapse.lib.lmdbslab.MultiQueue method), 640
gets() (synapse.lib.multislabseqn.MultiSlabSeqn

method), 651
gets() (synapse.lib.slabseqn.SlabSeqn method), 673
getScopeVars() (synapse.lib.storm.Runtime method),

691
getSectionTypes() (in module

synapse.lookup.macho), 736
getSeqn() (synapse.lib.lmdbslab.Slab method), 642
getServerSSLContext() (in module

synapse.lib.certdir), 586
getServerSSLContext() (synapse.lib.certdir.CertDir

method), 579
getSessInfo() (synapse.daemon.Daemon method), 829
getSessItem() (synapse.daemon.Sess method), 829
getShadow() (in module synapse.lib.hiveauth), 611
getShadowV2() (in module synapse.lib.crypto.passwd),

501
getShareInfo() (in module synapse.lib.reflect), 666
getSlabsInDir() (synapse.lib.lmdbslab.Slab class

method), 642
getSlabStats() (synapse.lib.lmdbslab.Slab class

method), 642
getSnapMeta() (synapse.lib.snap.Snap method), 676
getSpawnInfo() (synapse.lib.link.Link method), 637
getSpooledSet() (synapse.lib.cell.Cell method), 561
getsQueue() (synapse.lib.jsonstor.JsonStorApi method),

620
getsQueue() (synapse.lib.jsonstor.JsonStorCell

method), 621
getSslCtx() (in module synapse.common), 794
getStatus() (synapse.lib.health.HealthCheck method),

603
getStemCell() (in module synapse.servers.stemcell),

1588 Index

Synapse Documentation, Release 2.141.0

746
getStorCmprs() (synapse.lib.types.Type method), 729
getStorIndx() (synapse.lib.layer.Layer method), 629
getStormCmd() (synapse.cortex.Cortex method), 816
getStormCmds() (synapse.cortex.Cortex method), 816
getStormCmds() (synapse.lib.module.CoreModule

method), 647
getStormCmds() (synapse.tests.utils.TestModule

method), 761
getStormDmon() (synapse.cortex.CoreApi method), 805
getStormDmon() (synapse.cortex.Cortex method), 816
getStormDmonLog() (synapse.cortex.CoreApi method),

805
getStormDmonLog() (synapse.cortex.Cortex method),

816
getStormDmons() (synapse.cortex.CoreApi method),

805
getStormDmons() (synapse.cortex.Cortex method), 816
getStormDocs() (synapse.cortex.Cortex method), 816
getStormGraph() (synapse.cortex.Cortex method), 817
getStormGraphs() (synapse.cortex.Cortex method),

817
getStormIfaces() (synapse.cortex.Cortex method),

817
getStormLib() (synapse.cortex.Cortex method), 817
getStormMacro() (synapse.cortex.Cortex method), 817
getStormMacros() (synapse.cortex.Cortex method),

817
getStormMod() (synapse.cortex.Cortex method), 817
getStormMods() (synapse.cortex.Cortex method), 817
getStormPkg() (synapse.cortex.CoreApi method), 805
getStormPkg() (synapse.cortex.Cortex method), 817
getStormPkgs() (synapse.cortex.CoreApi method), 805
getStormPkgs() (synapse.cortex.Cortex method), 817
getStormQuery() (synapse.cortex.Cortex method), 817
getStormQuery() (synapse.lib.storm.Runtime method),

691
getStormRuntime() (synapse.cortex.Cortex method),

817
getStormRuntime() (synapse.lib.snap.Snap method),

677
getStormStr() (in module synapse.tools.genpkg), 768
getStormSvc() (synapse.cortex.Cortex method), 817
getStormSvcInfo() (synapse.lib.stormsvc.StormSvc

method), 698
getStormSvcPkgs() (synapse.lib.stormsvc.StormSvc

method), 698
getStormSvcs() (synapse.cortex.Cortex method), 817
getStormVar() (synapse.cortex.CoreApi method), 805
getStormVar() (synapse.cortex.Cortex method), 817
getStorNode() (synapse.datamodel.Form method), 830
getStorNode() (synapse.datamodel.Prop method), 832
getStorNode() (synapse.datamodel.TagProp method),

833

getStorNode() (synapse.lib.layer.Layer method), 629
getStorNode() (synapse.lib.storm.Cmd class method),

680
getStorNode() (synapse.lib.stormtypes.Layer method),

700
getStorNode() (synapse.lib.trigger.Trigger method),

722
getStorNode() (synapse.lib.types.Type method), 729
getStorNode() (synapse.tests.utils.TestRunt method),

762
getStorNodes() (synapse.lib.layer.Layer method), 629
getStorNodes() (synapse.lib.node.Node method), 655
getStorNodes() (synapse.lib.stormtypes.Layer

method), 700
getStorNodes() (synapse.lib.stormtypes.Node method),

709
getStorNodes() (synapse.lib.view.View method), 734
getStructuredAsyncLoggerStream()

(synapse.tests.utils.SynTest method), 753
getSubRuntime() (synapse.lib.storm.Runtime method),

691
getSynDir() (in module synapse.common), 795
getSynPath() (in module synapse.common), 795
getSystemInfo() (synapse.lib.cell.Cell method), 561
getSystemInfo() (synapse.lib.cell.CellApi method),

568
getTag() (synapse.lib.node.Node method), 655
getTag() (synapse.lib.snap.ProtoNode method), 674
getTagCount() (synapse.lib.layer.Layer method), 630
getTagFilt() (synapse.lib.layer.StorTypeTag static

method), 636
getTagGlobRegx() (in module synapse.lib.cache), 555
getTagModel() (synapse.cortex.Cortex method), 817
getTagNode() (synapse.lib.snap.Snap method), 677
getTagNorm() (synapse.lib.snap.Snap method), 677
getTagProp() (synapse.datamodel.Model method), 832
getTagProp() (synapse.lib.node.Node method), 655
getTagProp() (synapse.lib.snap.ProtoNode method),

674
getTagPropAbrv() (synapse.lib.layer.Layer method),

630
getTagPropDef() (synapse.datamodel.TagProp

method), 833
getTagProps() (synapse.lib.layer.Layer method), 630
getTagProps() (synapse.lib.node.Node method), 655
getTagPrune() (synapse.cortex.Cortex method), 817
getTags() (synapse.lib.node.Node method), 655
getTeleApi() (synapse.lib.cell.Cell method), 561
getTeleApi() (synapse.lib.hive.Hive method), 604
getTeleApi() (synapse.telepath.Aware method), 842
getTeleProxy() (synapse.lib.storm.Runtime method),

691
getTempCoreCmdr() (in module synapse.lib.jupyter),

625

Index 1589

Synapse Documentation, Release 2.141.0

getTempCoreCmdrStormsvc() (in module
synapse.lib.jupyter), 625

getTempCoreProx() (in module synapse.lib.jupyter),
625

getTempCoreStorm() (in module synapse.lib.jupyter),
626

getTempCoreStormStormsvc() (in module
synapse.lib.jupyter), 626

getTempCortex() (in module synapse.cortex), 825
getTempDir() (in module synapse.common), 795
getTempDir() (synapse.lib.cell.Cell method), 562
getTestAha() (synapse.tests.utils.SynTest method), 754
getTestAhaProv() (synapse.tests.utils.SynTest method),

754
getTestAxon() (synapse.tests.utils.SynTest method),

754
getTestCell() (synapse.tests.utils.SynTest method),

754
getTestCertDir() (synapse.tests.utils.SynTest method),

754
getTestConfDir() (synapse.tests.utils.SynTest method),

754
getTestCore() (synapse.tests.utils.StormPkgTest

method), 748
getTestCore() (synapse.tests.utils.SynTest method),

754
getTestCoreAndProxy() (synapse.tests.utils.SynTest

method), 754
getTestCoreProxSvc() (synapse.tests.utils.SynTest

method), 755
getTestCryo() (synapse.tests.utils.SynTest method),

755
getTestCryoAndProxy() (synapse.tests.utils.SynTest

method), 755
getTestDir() (synapse.tests.utils.SynTest method), 755
getTestDmon() (synapse.tests.utils.SynTest method),

756
getTestFilePath() (synapse.tests.utils.SynTest

method), 756
getTestHive() (synapse.tests.utils.SynTest method),

756
getTestHiveDmon() (synapse.tests.utils.SynTest

method), 756
getTestHiveFromDirn() (synapse.tests.utils.SynTest

method), 756
getTestJsonStor() (synapse.tests.utils.SynTest

method), 756
getTestOutp() (synapse.tests.utils.SynTest method),

756
getTestProxy() (synapse.tests.utils.SynTest method),

756
getTestReadWriteCores() (synapse.tests.utils.SynTest

method), 756
getTestSynDir() (synapse.tests.utils.SynTest method),

756
getTestTeleHive() (synapse.tests.utils.SynTest

method), 756
getTestUrl() (synapse.tests.utils.SynTest method), 756
getTickTock() (synapse.lib.types.Time method), 727
getTlsPeerCn() (synapse.lib.link.Link method), 637
getTotalMemory() (in module

synapse.lib.platforms.linux), 505
getTrigger() (synapse.lib.view.View method), 734
getTypeClone() (synapse.datamodel.Model method),

832
getTypeDef() (synapse.lib.types.Type method), 729
getTypeDocs() (synapse.lib.stormtypes.StormTypesRegistry

method), 715
getTypeNorm() (synapse.cortex.CoreApi method), 805
getTypeNorm() (synapse.cortex.Cortex method), 817
getTypeVals() (synapse.lib.types.Type method), 729
getTypeVals() (synapse.models.inet.HttpCookie

method), 740
getTypeVals() (synapse.models.inet.IPv4 method), 740
getTypeVals() (synapse.models.inet.IPv6 method), 741
getUnivPropCount() (synapse.lib.layer.Layer method),

630
getUserByName() (synapse.lib.hiveauth.Auth method),

608
getUserCaPath() (synapse.lib.certdir.CertDir method),

580
getUserCert() (synapse.lib.certdir.CertDir method),

580
getUserCertPath() (synapse.lib.certdir.CertDir

method), 580
getUserDef() (synapse.lib.cell.Cell method), 562
getUserDef() (synapse.lib.cell.CellApi method), 569
getUserDefByName() (synapse.lib.cell.Cell method),

562
getUserDefByName() (synapse.lib.cell.CellApi

method), 569
getUserDefs() (synapse.lib.cell.Cell method), 562
getUserDefs() (synapse.lib.cell.CellApi method), 569
getUserForHost() (synapse.lib.certdir.CertDir

method), 581
getUseridenBody() (synapse.lib.httpapi.HandlerBase

method), 614
getUserIdenByName() (synapse.lib.hiveauth.Auth

method), 608
getUserInfo() (synapse.lib.aha.EnrollApi method),

530
getUserInfo() (synapse.lib.cell.CellApi method), 569
getUserKey() (synapse.lib.certdir.CertDir method),

581
getUserKeyPath() (synapse.lib.certdir.CertDir

method), 581
getUserName() (synapse.lib.cell.Cell method), 562
getUserNotif() (synapse.cortex.CoreApi method), 805

1590 Index

Synapse Documentation, Release 2.141.0

getUserNotif() (synapse.cortex.Cortex method), 818
getUserNotif() (synapse.lib.jsonstor.JsonStorApi

method), 620
getUserNotif() (synapse.lib.jsonstor.JsonStorCell

method), 621
getUserProfile() (synapse.lib.cell.Cell method), 562
getUserProfile() (synapse.lib.cell.CellApi method),

569
getUserProfInfo() (synapse.lib.cell.Cell method), 562
getUserProfInfo() (synapse.lib.cell.CellApi method),

569
getUserVarValu() (synapse.lib.cell.Cell method), 562
getVar() (synapse.lib.node.Path method), 657
getVar() (synapse.lib.storm.Runtime method), 691
getvars() (in module synapse.lib.msgpack), 649
getView() (synapse.cortex.Cortex method), 818
getViewDef() (synapse.cortex.Cortex method), 818
getViewDefs() (synapse.cortex.Cortex method), 818
getVolInfo() (in module

synapse.lib.platforms.common), 505
GovCnModule (class in synapse.models.gov.cn), 736
GovIntlModule (class in synapse.models.gov.intl), 737
GovUsModule (class in synapse.models.gov.us), 737
grant() (synapse.lib.hiveauth.HiveUser method), 610
GraphCmd (class in synapse.lib.storm), 683
GraphLib (class in synapse.lib.stormlib.graph), 509
gt() (synapse.tests.utils.SynTest method), 756
Guid (class in synapse.lib.types), 724
guid() (in module synapse.common), 795
guid() (synapse.lib.hashset.HashSet method), 602
GuidStor (class in synapse.lib.lmdbslab), 638
GzipLib (class in synapse.lib.stormlib.compression), 508

H
handleBasicAuth() (synapse.lib.httpapi.HandlerBase

method), 614
handleErr() (synapse.lib.rstorm.StormCliOutput

method), 666
handleErr() (synapse.tools.storm.StormCli method),

772
handleList() (in module synapse.tools.cellauth), 767
handleModify() (in module synapse.tools.cellauth),

767
Handler (class in synapse.lib.httpapi), 613
HandlerBase (class in synapse.lib.httpapi), 613
handoff() (synapse.lib.cell.Cell method), 562
handoff() (synapse.lib.cell.CellApi method), 569
handshake() (synapse.telepath.Proxy method), 844
has() (synapse.axon.Axon method), 778
has() (synapse.axon.AxonApi method), 785
has() (synapse.lib.lmdbslab.Slab method), 642
has() (synapse.lib.node.Node method), 655
has() (synapse.lib.spooled.Dict method), 678
has() (synapse.lib.stormtypes.LibJsonStor method), 704

has() (synapse.lib.stormtypes.UserJson method), 717
has_dynamic_source_filename()

(synapse.utils.stormcov.plugin.PivotTracer
method), 773

has_dynamic_source_filename()
(synapse.utils.stormcov.plugin.StormCtrlTracer
method), 774

has_dynamic_source_filename()
(synapse.utils.stormcov.plugin.StormPlugin
method), 775

HasAbsPropCond (class in synapse.lib.ast), 537
hasAstClass() (synapse.lib.ast.AstNode method), 532
hasChildTags() (synapse.lib.storm.TagPruneCmd

method), 695
hasData() (synapse.lib.node.Node method), 655
hasdup() (synapse.lib.lmdbslab.Slab method), 642
hasglob() (synapse.lib.ast.TagMatch method), 544
hashes() (synapse.axon.Axon method), 778
hashes() (synapse.axon.AxonApi method), 785
hashitem() (in module synapse.lib.hashitem), 602
HashSet (class in synapse.lib.hashset), 602
hashset() (synapse.axon.Axon method), 778
hashset() (synapse.axon.AxonApi method), 785
hasIndxBuid() (synapse.lib.layer.IndxBy method), 628
hasJsonObj() (synapse.cortex.Cortex method), 818
hasNodeData() (synapse.lib.layer.Layer method), 630
hasNodeData() (synapse.lib.snap.Snap method), 677
hasNodeEdge() (synapse.lib.layer.Layer method), 630
hasNodeEdge() (synapse.lib.snap.Snap method), 677
hasPathObj() (synapse.lib.jsonstor.JsonStor method),

620
hasPathObj() (synapse.lib.jsonstor.JsonStorApi

method), 621
hasPathObj() (synapse.lib.jsonstor.JsonStorCell

method), 621
hasProp() (synapse.lib.ast.HasRelPropCond method),

537
HasRelPropCond (class in synapse.lib.ast), 537
hasRole() (synapse.lib.hiveauth.HiveUser method), 610
hasTag() (synapse.lib.node.Node method), 655
hasTagProp() (synapse.lib.layer.Layer method), 630
hasTagProp() (synapse.lib.node.Node method), 655
HasTagPropCond (class in synapse.lib.ast), 537
hasVarName() (synapse.lib.ast.AstNode method), 532
hasVarName() (synapse.lib.ast.EmbedQuery method),

535
hasVarName() (synapse.lib.ast.VarValue method), 546
haversine() (in module synapse.lib.gis), 601
head() (synapse.axon.AxonHttpBySha256InvalidV1

method), 789
head() (synapse.axon.AxonHttpBySha256V1 method),

789
head() (synapse.tests.utils.HttpReflector method), 748
HealthCheck (class in synapse.lib.health), 603

Index 1591

Synapse Documentation, Release 2.141.0

HealthCheckV1 (class in synapse.lib.httpapi), 616
help() (synapse.lib.storm.Parser method), 689
HelpCmd (class in synapse.lib.storm), 683
HelpCmd (class in synapse.tools.storm), 771
Hex (class in synapse.lib.types), 725
HexLib (class in synapse.lib.stormlib.hex), 510
hexstr() (in module synapse.lib.chop), 587
highlight_storm() (in module

synapse.lib.storm_format), 696
Hist (class in synapse.lib.lmdbslab), 638
histfile (synapse.lib.cli.Cli attribute), 589
histfile (synapse.tools.storm.StormCli attribute), 772
history() (synapse.axon.Axon method), 778
history() (synapse.axon.AxonApi method), 785
HitLimit, 837
Hive (class in synapse.lib.hive), 603
HiveApi (class in synapse.lib.hive), 605
hiveapi (synapse.cortex.Cortex attribute), 818
HiveCmd (class in synapse.cmds.hive), 496
HiveDict (class in synapse.lib.hive), 605
hivepath (synapse.lib.stormlib.model.LibModelEdge at-

tribute), 516
HiveRole (class in synapse.lib.hiveauth), 609
HiveRuler (class in synapse.lib.hiveauth), 609
HiveUser (class in synapse.lib.hiveauth), 610
holdHashLock() (synapse.axon.Axon method), 779
hostaddr() (in module synapse.lib.thishost), 720
HotCount (class in synapse.lib.lmdbslab), 638
HotKeyVal (class in synapse.lib.lmdbslab), 638
HOUR (synapse.lib.agenda.TimeUnit attribute), 527
hour() (in module synapse.lib.time), 721
hour() (synapse.lib.stormtypes.LibTime method), 707
htmlToText() (in module synapse.lib.stormlib.mime),

515
HttpCookie (class in synapse.models.inet), 740
HttpReflector (class in synapse.tests.utils), 748
HttpResp (class in synapse.lib.stormhttp), 697
hugeadd() (in module synapse.common), 795
hugediv() (in module synapse.common), 795
hugemod() (in module synapse.common), 795
hugemul() (in module synapse.common), 795
HugeNum (class in synapse.lib.types), 725
hugenum() (in module synapse.common), 795
hugepow() (in module synapse.common), 795
hugeround() (in module synapse.common), 795
hugescaleb() (in module synapse.common), 795
hugesub() (in module synapse.common), 796

I
iAmLoop() (in module synapse.glob), 842
iden() (in module synapse.lib.node), 657
iden() (in module synapse.lib.threads), 721
iden() (synapse.cryotank.CryoTank method), 827
iden() (synapse.cryotank.TankApi method), 828

iden() (synapse.lib.crypto.ecc.PriKey method), 498
iden() (synapse.lib.crypto.ecc.PubKey method), 499
iden() (synapse.lib.crypto.rsa.PriKey method), 501
iden() (synapse.lib.crypto.rsa.PubKey method), 502
iden() (synapse.lib.node.Node method), 655
iden() (synapse.lib.snap.ProtoNode method), 674
IdenCmd (class in synapse.lib.storm), 684
IfClause (class in synapse.lib.ast), 538
IfStmt (class in synapse.lib.ast), 538
ImapLib (class in synapse.lib.stormlib.imap), 511
ImapServer (class in synapse.lib.stormlib.imap), 511
Imei (class in synapse.models.telco), 745
imeicsum() (in module synapse.models.telco), 746
importFile() (synapse.lib.certdir.CertDir method),

582
Imsi (class in synapse.models.telco), 745
inc() (synapse.lib.lmdbslab.HotCount method), 638
inc() (synapse.lib.lmdbslab.SlabDict method), 644
inc() (synapse.lib.stormtypes.StatTally method), 714
InconsistentStorage, 837
incref() (synapse.lib.base.Base method), 549
index() (synapse.lib.multislabseqn.MultiSlabSeqn

method), 651
index() (synapse.lib.nexus.NexsRoot method), 652
index() (synapse.lib.slabseqn.SlabSeqn method), 673
indx() (synapse.lib.layer.StorType method), 635
indx() (synapse.lib.layer.StorTypeFloat method), 635
indx() (synapse.lib.layer.StorTypeFqdn method), 635
indx() (synapse.lib.layer.StorTypeGuid method), 635
indx() (synapse.lib.layer.StorTypeHier method), 636
indx() (synapse.lib.layer.StorTypeHugeNum method),

636
indx() (synapse.lib.layer.StorTypeInt method), 636
indx() (synapse.lib.layer.StorTypeIpv6 method), 636
indx() (synapse.lib.layer.StorTypeIval method), 636
indx() (synapse.lib.layer.StorTypeLatLon method), 636
indx() (synapse.lib.layer.StorTypeMsgp method), 636
indx() (synapse.lib.layer.StorTypeUtf8 method), 637
IndxBy (class in synapse.lib.layer), 627
indxBy() (synapse.lib.layer.StorType method), 635
IndxByForm (class in synapse.lib.layer), 628
indxByForm() (synapse.lib.layer.StorType method), 635
IndxByProp (class in synapse.lib.layer), 628
indxByProp() (synapse.lib.layer.StorType method), 635
IndxByPropArray (class in synapse.lib.layer), 628
indxByPropArray() (synapse.lib.layer.StorType

method), 635
IndxByTag (class in synapse.lib.layer), 628
IndxByTagProp (class in synapse.lib.layer), 628
indxByTagProp() (synapse.lib.layer.StorType method),

635
inet_ntop() (in module

synapse.lib.platforms.common), 505

1592 Index

Synapse Documentation, Release 2.141.0

inet_pton() (in module
synapse.lib.platforms.common), 505

inetHttpConnect() (synapse.lib.stormhttp.LibHttp
method), 697

InetModule (class in synapse.models.inet), 741
info() (synapse.cryotank.CryoTank method), 827
ingest() (synapse.lib.stormlib.stix.LibStixImport

method), 523
init() (synapse.cryotank.CryoApi method), 826
init() (synapse.cryotank.CryoCell method), 827
init() (synapse.exc.NoSuchForm class method), 839
init() (synapse.exc.NoSuchProp class method), 839
init() (synapse.lib.ast.AstNode method), 532
init2() (synapse.lib.view.View method), 734
InitBlock (class in synapse.lib.ast), 538
initCellApi() (synapse.lib.cell.CellApi method), 569
initCellConf() (synapse.lib.cell.Cell class method),

562
initCmdClasses() (synapse.lib.cli.Cli method), 589
initCmdClasses() (synapse.tools.storm.StormCli

method), 772
initCoreModule() (synapse.lib.module.CoreModule

method), 647
initCoreModule() (synapse.models.files.FileModule

method), 738
initCoreModule() (synapse.models.inet.InetModule

method), 741
initCoreModule() (synapse.models.infotech.ItModule

method), 742
initCoreModule() (synapse.models.proj.ProjectModule

method), 744
initCoreModule() (synapse.models.syn.SynModule

method), 745
initCoreModule() (synapse.tests.utils.TestModule

method), 762
initdb() (synapse.lib.lmdbslab.Slab method), 643
initframe() (synapse.lib.node.Path method), 657
initFromArgv() (synapse.lib.cell.Cell class method),

562
initHostInfo() (in module

synapse.lib.platforms.common), 505
initHostInfo() (in module

synapse.lib.platforms.darwin), 505
initHostInfo() (in module

synapse.lib.platforms.freebsd), 505
initHostInfo() (in module

synapse.lib.platforms.linux), 506
initHostInfo() (in module

synapse.lib.platforms.windows), 506
initialize() (synapse.lib.httpapi.HandlerBase

method), 614
initLayerActive() (synapse.lib.layer.Layer method),

630
initLayerPassive() (synapse.lib.layer.Layer method),

630
initLibAsync() (synapse.lib.stormtypes.Lib method),

700
initloop() (in module synapse.glob), 842
initNexusSubsystem() (synapse.lib.cell.Cell method),

563
initPath() (synapse.lib.storm.Runtime method), 691
initPhoneTree() (in module

synapse.lookup.phonenum), 736
initServiceActive() (synapse.cortex.Cortex

method), 818
initServiceActive() (synapse.lib.cell.Cell method),

563
initServiceNetwork() (synapse.lib.aha.AhaCell

method), 530
initServiceNetwork() (synapse.lib.cell.Cell method),

563
initServicePassive() (synapse.cortex.Cortex

method), 818
initServicePassive() (synapse.lib.cell.Cell method),

563
initServiceRuntime() (synapse.axon.Axon method),

779
initServiceRuntime() (synapse.cortex.Cortex

method), 818
initServiceRuntime() (synapse.lib.aha.AhaCell

method), 530
initServiceRuntime() (synapse.lib.cell.Cell method),

563
initServiceStorage() (synapse.axon.Axon method),

779
initServiceStorage() (synapse.cortex.Cortex

method), 818
initServiceStorage() (synapse.lib.aha.AhaCell

method), 530
initServiceStorage() (synapse.lib.cell.Cell method),

563
initServiceStorage()

(synapse.lib.jsonstor.JsonStorCell method),
621

initSslCtx() (synapse.lib.cell.Cell method), 563
initSubRuntime() (synapse.lib.storm.Runtime

method), 691
initSyncLoop() (synapse.lib.lmdbslab.Slab class

method), 642
initTestCore() (synapse.tests.utils.StormPkgTest

method), 748
initTrigTask() (synapse.lib.view.View method), 734
initUpstreamSync() (synapse.lib.layer.Layer method),

630
inline() (synapse.lib.ast.SubQuery method), 543
Int (class in synapse.lib.types), 725
int64en() (in module synapse.common), 796
int64un() (in module synapse.common), 796

Index 1593

Synapse Documentation, Release 2.141.0

IntBase (class in synapse.lib.types), 725
IntersectCmd (class in synapse.lib.storm), 684
intify() (in module synapse.common), 796
intify() (in module synapse.lib.stormtypes), 718
intstr() (in module synapse.lib.chop), 588
IPv4 (class in synapse.models.inet), 740
ipv4 (synapse.lib.platforms.windows.sockaddr attribute),

506
IPv4Range (class in synapse.models.inet), 741
IPv6 (class in synapse.models.inet), 741
ipv6 (synapse.lib.platforms.windows.sockaddr attribute),

506
IPv6Range (class in synapse.models.inet), 741
isAdmin() (synapse.lib.hiveauth.HiveUser method), 610
isAdmin() (synapse.lib.storm.Runtime method), 691
isafork() (synapse.lib.view.View method), 734
isarray (synapse.lib.types.Array attribute), 723
isarray (synapse.lib.types.Type attribute), 729
isatitem() (synapse.lib.lmdbslab.Scan method), 640
isatitem() (synapse.lib.lmdbslab.ScanKeys method),

641
isBasePropNoPivprop() (in module

synapse.lib.grammar), 601
isbuidhex() (in module synapse.common), 796
isCaCert() (synapse.lib.certdir.CertDir method), 582
isCellActive() (synapse.lib.cell.Cell method), 563
isCellActive() (synapse.lib.cell.CellApi method), 569
isClientCert() (synapse.lib.certdir.CertDir method),

583
isCmdName() (in module synapse.lib.grammar), 601
iscoro() (in module synapse.lib.coro), 597
IsDeprLocked, 837
IsFini, 837
isForkOf() (synapse.lib.view.View method), 734
isFormName() (in module synapse.lib.grammar), 601
isguid() (in module synapse.common), 796
isHostCert() (synapse.lib.certdir.CertDir method),

583
isin() (synapse.tests.utils.SynTest method), 756
isinstance() (synapse.tests.utils.SynTest method), 756
isLocked() (synapse.lib.hiveauth.HiveUser method),

610
ismutable() (in module synapse.lib.stormtypes), 718
ismutable() (synapse.lib.stormtypes.StormType

method), 715
isNexsReady() (synapse.lib.nexus.NexsRoot method),

652
isok() (in module synapse.lib.msgpack), 649
isOrigHost() (synapse.lib.httpapi.HandlerBase

method), 614
isPropName() (in module synapse.lib.grammar), 601
IsReadOnly, 837
isReadOnly() (synapse.lib.storm.Cmd method), 680
isRoleAllowed() (synapse.lib.cell.Cell method), 563

isRoleAllowed() (synapse.lib.cell.CellApi method),
569

IsRuntForm, 837
isRuntSafe() (synapse.lib.ast.ArgvQuery method), 531
isRuntSafe() (synapse.lib.ast.AstNode method), 532
isRuntSafe() (synapse.lib.ast.Const method), 533
isRuntSafe() (synapse.lib.ast.Function method), 537
isRuntSafe() (synapse.lib.ast.PropValue method), 541
isRuntSafe() (synapse.lib.ast.TagValue method), 545
isRuntSafe() (synapse.lib.ast.Value method), 545
isRuntSafe() (synapse.lib.ast.VarValue method), 546
isRuntSafeAtom() (synapse.lib.ast.AstNode method),

532
isRuntSafeAtom() (synapse.lib.ast.PropValue

method), 541
isRuntSafeAtom() (synapse.lib.ast.TagValue method),

545
isRuntSafeAtom() (synapse.lib.ast.VarValue method),

546
isRuntVar() (synapse.lib.storm.Runtime method), 691
issue() (synapse.lib.cell.CellApi method), 569
issue() (synapse.lib.nexus.NexsRoot method), 652
isTagValid() (synapse.cortex.Cortex method), 818
isterm (synapse.lib.parser.AstInfo attribute), 662
istufo() (synapse.tests.utils.SynTest method), 756
isUnivName() (in module synapse.lib.grammar), 602
isUserAdmin() (synapse.lib.httpapi.HandlerBase

method), 614
isUserAllowed() (synapse.lib.cell.Cell method), 563
isUserAllowed() (synapse.lib.cell.CellApi method),

569
isUserCert() (synapse.lib.certdir.CertDir method),

583
items() (synapse.exc.SynErr method), 841
items() (synapse.lib.base.BaseRef method), 552
items() (synapse.lib.cache.LruDict method), 554
items() (synapse.lib.hive.HiveDict method), 605
items() (synapse.lib.lmdbslab.SlabDict method), 644
items() (synapse.lib.spooled.Dict method), 678
itemsStormVar() (synapse.cortex.Cortex method), 818
iter() (synapse.lib.multislabseqn.MultiSlabSeqn

method), 651
iter() (synapse.lib.nexus.NexsRoot method), 652
iter() (synapse.lib.scope.Scope method), 668
iter() (synapse.lib.slabseqn.SlabSeqn method), 673
iter() (synapse.lib.stormlib.project.LibProjects

method), 519
iter() (synapse.lib.stormlib.project.ProjectEpics

method), 519
iter() (synapse.lib.stormlib.project.ProjectSprints

method), 520
iter() (synapse.lib.stormlib.project.ProjectTicketComments

method), 520

1594 Index

Synapse Documentation, Release 2.141.0

iter() (synapse.lib.stormlib.project.ProjectTickets
method), 521

iter() (synapse.lib.stormlib.xml.XmlElement method),
525

iter() (synapse.lib.stormtypes.CmdOpts method), 699
iter() (synapse.lib.stormtypes.Dict method), 699
iter() (synapse.lib.stormtypes.LibJsonStor method),

704
iter() (synapse.lib.stormtypes.List method), 709
iter() (synapse.lib.stormtypes.NodeProps method), 710
iter() (synapse.lib.stormtypes.PathMeta method), 711
iter() (synapse.lib.stormtypes.PathVars method), 711
iter() (synapse.lib.stormtypes.Prim method), 712
iter() (synapse.lib.stormtypes.Query method), 712
iter() (synapse.lib.stormtypes.Set method), 713
iter() (synapse.lib.stormtypes.StatTally method), 714
iter() (synapse.lib.stormtypes.StormHiveDict method),

714
iter() (synapse.lib.stormtypes.UserJson method), 717
iter() (synapse.lib.stormtypes.UserProfile method),

717
iter() (synapse.lib.stormtypes.UserVars method), 717
iterBack() (synapse.lib.slabseqn.SlabSeqn method),

673
iterBackupArchive() (synapse.lib.cell.Cell method),

563
iterBackupArchive() (synapse.lib.cell.CellApi

method), 569
iterdata() (in module synapse.lib.encoding), 600
iterData() (synapse.lib.node.Node method), 655
iterDataKeys() (synapse.lib.node.Node method), 655
iterEdgeNodes() (synapse.lib.storm.LiftByVerb

method), 685
iterEdgesN1() (synapse.lib.node.Node method), 655
iterEdgesN2() (synapse.lib.node.Node method), 655
iterfd() (in module synapse.common), 796
iterfd() (in module synapse.lib.msgpack), 649
iterfile() (in module synapse.lib.msgpack), 650
iterFormRows() (synapse.cortex.CoreApi method), 805
iterFormRows() (synapse.cortex.Cortex method), 818
iterFormRows() (synapse.lib.layer.Layer method), 630
iterFqdnUp() (in module synapse.lib.certdir), 587
iterfunc() (synapse.lib.lmdbslab.Scan method), 640
iterfunc() (synapse.lib.lmdbslab.ScanBack method),

641
iterfunc() (synapse.lib.lmdbslab.ScanKeys method),

641
iterLayerNodeEdits() (synapse.lib.layer.Layer

method), 630
iterLayerNodeEdits() (synapse.lib.layer.LayerApi

method), 634
iterLibs() (synapse.lib.stormtypes.StormTypesRegistry

method), 715
iterMpkFile() (synapse.axon.Axon method), 779

iterMpkFile() (synapse.axon.AxonApi method), 786
iterNewBackupArchive() (synapse.lib.cell.Cell

method), 563
iterNewBackupArchive() (synapse.lib.cell.CellApi

method), 569
iternext() (synapse.lib.lmdbslab.Scan method), 640
iternext() (synapse.lib.lmdbslab.ScanKeys method),

641
iterNodeData() (synapse.lib.layer.Layer method), 630
iterNodeData() (synapse.lib.snap.Snap method), 677
iterNodeDataKeys() (synapse.lib.layer.Layer method),

630
iterNodeDataKeys() (synapse.lib.snap.Snap method),

677
iterNodeEdgesN1() (synapse.lib.layer.Layer method),

630
iterNodeEdgesN1() (synapse.lib.snap.Snap method),

677
iterNodeEdgesN2() (synapse.lib.layer.Layer method),

630
iterNodeEdgesN2() (synapse.lib.snap.Snap method),

677
iterNodeEditLog() (synapse.lib.layer.Layer method),

630
iterNodeEditLogBack() (synapse.lib.layer.Layer

method), 630
iterNodePaths() (synapse.lib.ast.Query method), 541
iterpath() (in module synapse.lib.hive), 606
iterPropRows() (synapse.cortex.CoreApi method), 805
iterPropRows() (synapse.cortex.Cortex method), 819
iterPropRows() (synapse.lib.layer.Layer method), 630
iterright() (synapse.lib.ast.AstNode method), 532
iterStormPodes() (synapse.lib.snap.Snap method),

677
iterStormPodes() (synapse.lib.view.View method),

734
iterTagPropRows() (synapse.cortex.CoreApi method),

806
iterTagPropRows() (synapse.cortex.Cortex method),

819
iterTagPropRows() (synapse.lib.layer.Layer method),

631
iterTagRows() (synapse.cortex.CoreApi method), 806
iterTagRows() (synapse.cortex.Cortex method), 819
iterTagRows() (synapse.lib.layer.Layer method), 631
iterTypes() (synapse.lib.stormtypes.StormTypesRegistry

method), 715
iterUnivRows() (synapse.cortex.CoreApi method), 806
iterUnivRows() (synapse.cortex.Cortex method), 819
iterUnivRows() (synapse.lib.layer.Layer method), 631
iterUserNotifs() (synapse.cortex.CoreApi method),

807
iterUserNotifs() (synapse.cortex.Cortex method),

820

Index 1595

Synapse Documentation, Release 2.141.0

iterUserNotifs() (synapse.lib.jsonstor.JsonStorApi
method), 621

iterUserNotifs() (synapse.lib.jsonstor.JsonStorCell
method), 622

iterUserVars() (synapse.lib.cell.Cell method), 563
iterWipeNodeEdits() (synapse.lib.layer.Layer

method), 632
iterzip() (in module synapse.common), 796
ItModule (class in synapse.models.infotech), 742
Ival (class in synapse.lib.types), 725
ival() (in module synapse.lib.time), 721

J
join() (synapse.lib.stormtypes.LibStr method), 706
jslines() (in module synapse.common), 796
jsload() (in module synapse.common), 796
JsonFormatter (class in synapse.lib.structlog), 719
JsonLib (class in synapse.lib.stormlib.json), 513
jsonlines() (synapse.axon.Axon method), 779
jsonlines() (synapse.axon.AxonApi method), 786
jsonlines() (synapse.lib.stormtypes.LibAxon method),

701
jsonsafe_nodeedits() (in module synapse.common),

796
JsonSchema (class in synapse.lib.stormlib.json), 513
JsonStor (class in synapse.lib.jsonstor), 619
JsonStorApi (class in synapse.lib.jsonstor), 620
JsonStorCell (class in synapse.lib.jsonstor), 621
jssave() (in module synapse.common), 796

K
keyBuidsByDups() (synapse.lib.layer.IndxBy method),

628
keyBuidsByPref() (synapse.lib.layer.IndxBy method),

628
keyBuidsByRange() (synapse.lib.layer.IndxBy method),

628
keyBuidsByRangeBack() (synapse.lib.layer.IndxBy

method), 628
keys() (synapse.lib.lmdbslab.SlabAbrv method), 644
keys() (synapse.lib.lmdbslab.SlabDict method), 645
keys() (synapse.lib.spooled.Dict method), 678
kill() (synapse.lib.cell.Cell method), 563
kill() (synapse.lib.cell.CellApi method), 569
kill() (synapse.lib.task.Task method), 719
KillCmd (class in synapse.cmds.boss), 493
known_types (synapse.lib.stormtypes.StormTypesRegistry

attribute), 715
kwarg_format() (in module synapse.lib.stormtypes),

718

L
LangModule (class in synapse.models.language), 743
last() (synapse.cryotank.CryoApi method), 826

last() (synapse.cryotank.CryoTank method), 827
last() (synapse.lib.lmdbslab.Slab method), 643
last() (synapse.lib.multislabseqn.MultiSlabSeqn

method), 651
last() (synapse.lib.slabseqn.SlabSeqn method), 673
lastkey() (synapse.lib.lmdbslab.Slab method), 643
LatLong (class in synapse.models.geospace), 739
latlong() (in module synapse.lib.gis), 601
Layer (class in synapse.lib.layer), 628
Layer (class in synapse.lib.stormtypes), 699
LayerApi (class in synapse.lib.layer), 634
layerapi (synapse.cortex.Cortex attribute), 820
layerConfirm() (synapse.lib.storm.Runtime method),

691
LayerInUse, 837
layrctor() (synapse.cortex.Cortex class method), 820
le() (synapse.tests.utils.SynTest method), 757
leave() (synapse.lib.scope.Scope method), 668
len() (synapse.tests.utils.SynTest method), 757
Lib (class in synapse.lib.stormtypes), 700
LibAuth (class in synapse.lib.stormtypes), 700
LibAxon (class in synapse.lib.stormtypes), 701
LibBase (class in synapse.lib.stormtypes), 701
LibBase64 (class in synapse.lib.stormtypes), 701
LibBytes (class in synapse.lib.stormtypes), 702
LibCron (class in synapse.lib.stormtypes), 702
LibCsv (class in synapse.lib.stormtypes), 702
LibDmon (class in synapse.lib.stormtypes), 702
LibEasyPerm (class in synapse.lib.stormlib.easyperm),

509
LibExport (class in synapse.lib.stormtypes), 703
LibFeed (class in synapse.lib.stormtypes), 703
LibGates (class in synapse.lib.stormtypes), 703
LibGen (class in synapse.lib.stormlib.gen), 509
LibGlobals (class in synapse.lib.stormtypes), 703
LibHashes (class in synapse.lib.stormlib.hashes), 510
LibHmac (class in synapse.lib.stormlib.hashes), 510
LibHttp (class in synapse.lib.stormhttp), 697
LibIpv6 (class in synapse.lib.stormlib.ipv6), 512
LibIters (class in synapse.lib.stormlib.iters), 513
LibJsonStor (class in synapse.lib.stormtypes), 703
LibLayer (class in synapse.lib.stormtypes), 704
LibLift (class in synapse.lib.stormtypes), 704
LibMacro (class in synapse.lib.stormlib.macro), 514
LibMimeHtml (class in synapse.lib.stormlib.mime), 515
LibModel (class in synapse.lib.stormlib.model), 515
LibModelDeprecated (class in

synapse.lib.stormlib.model), 515
LibModelEdge (class in synapse.lib.stormlib.model), 516
LibModelExt (class in synapse.lib.stormlib.modelext),

517
LibModelTags (class in synapse.lib.stormlib.model), 516
LibPipe (class in synapse.lib.stormtypes), 704
LibPkg (class in synapse.lib.stormtypes), 704

1596 Index

Synapse Documentation, Release 2.141.0

LibProjects (class in synapse.lib.stormlib.project), 519
LibPs (class in synapse.lib.stormtypes), 705
LibQueue (class in synapse.lib.stormtypes), 705
LibRandom (class in synapse.lib.stormlib.random), 521
LibRegx (class in synapse.lib.stormtypes), 705
LibRoles (class in synapse.lib.stormtypes), 706
LibScrape (class in synapse.lib.stormlib.scrape), 521
LibService (class in synapse.lib.stormtypes), 706
LibStats (class in synapse.lib.stormtypes), 706
LibStix (class in synapse.lib.stormlib.stix), 522
LibStixExport (class in synapse.lib.stormlib.stix), 522
LibStixImport (class in synapse.lib.stormlib.stix), 523
LibStorm (class in synapse.lib.stormlib.storm), 524
LibStr (class in synapse.lib.stormtypes), 706
LibTags (class in synapse.lib.stormtypes), 707
LibTelepath (class in synapse.lib.stormtypes), 707
LibTime (class in synapse.lib.stormtypes), 707
LibTrigger (class in synapse.lib.stormtypes), 708
LibTst (class in synapse.tests.utils), 748
LibUser (class in synapse.lib.stormtypes), 708
LibUsers (class in synapse.lib.stormtypes), 708
LibVars (class in synapse.lib.stormtypes), 708
LibView (class in synapse.lib.stormtypes), 708
LibWhois (class in synapse.lib.stormwhois), 719
LibXml (class in synapse.lib.stormlib.xml), 524
LibYaml (class in synapse.lib.stormlib.yaml), 525
lift() (synapse.lib.ast.LiftByArray method), 538
lift() (synapse.lib.ast.LiftFormTag method), 538
lift() (synapse.lib.ast.LiftFormTagProp method), 538
lift() (synapse.lib.ast.LiftOper method), 538
lift() (synapse.lib.ast.LiftProp method), 539
lift() (synapse.lib.ast.LiftPropBy method), 539
lift() (synapse.lib.ast.LiftTag method), 539
lift() (synapse.lib.ast.LiftTagProp method), 539
lift() (synapse.lib.ast.LiftTagTag method), 539
liftBundle() (synapse.lib.stormlib.stix.LibStix

method), 522
LiftByArray (class in synapse.lib.ast), 538
liftByDataName() (synapse.lib.layer.Layer method),

632
liftByFormValu() (synapse.lib.layer.Layer method),

632
liftByProp() (synapse.lib.layer.Layer method), 632
liftByProp() (synapse.lib.stormtypes.Layer method),

700
liftByPropArray() (synapse.lib.layer.Layer method),

632
liftByPropValu() (synapse.lib.layer.Layer method),

632
liftByTag() (synapse.lib.layer.Layer method), 632
liftByTag() (synapse.lib.stormtypes.Layer method),

700
liftByTagProp() (synapse.lib.layer.Layer method),

632

liftByTagPropValu() (synapse.lib.layer.Layer
method), 632

liftByTagValu() (synapse.lib.layer.Layer method),
632

LiftByVerb (class in synapse.lib.storm), 684
LiftFormTag (class in synapse.lib.ast), 538
LiftFormTagProp (class in synapse.lib.ast), 538
LiftOper (class in synapse.lib.ast), 538
LiftProp (class in synapse.lib.ast), 538
LiftPropBy (class in synapse.lib.ast), 539
LiftTag (class in synapse.lib.ast), 539
LiftTagProp (class in synapse.lib.ast), 539
liftTagProp() (synapse.lib.layer.Layer method), 632
LiftTagTag (class in synapse.lib.ast), 539
LimitCmd (class in synapse.lib.storm), 685
line_number_range()

(synapse.utils.stormcov.plugin.PivotTracer
method), 774

line_number_range()
(synapse.utils.stormcov.plugin.StormCtrlTracer
method), 774

line_number_range()
(synapse.utils.stormcov.plugin.StormPlugin
method), 776

lines() (synapse.utils.stormcov.plugin.StormReporter
method), 776

Link (class in synapse.lib.link), 637
link() (synapse.lib.base.Base method), 549
LinkBadCert, 837
LinkErr, 837
linkfile() (in module synapse.lib.link), 637
LinkShutDown, 837
linksock() (in module synapse.lib.link), 637
List (class in synapse.lib.ast), 539
List (class in synapse.lib.stormtypes), 709
list() (synapse.cryotank.CryoApi method), 826
list() (synapse.cryotank.CryoCell method), 827
list() (synapse.lib.agenda.Agenda method), 526
list() (synapse.lib.coro.GenrHelp method), 596
list() (synapse.lib.lmdbslab.MultiQueue method), 640
list() (synapse.lib.stormlib.imap.ImapServer method),

511
list() (synapse.lib.stormlib.notifications.NotifyLib

method), 518
list() (synapse.lib.stormtypes.LibAxon method), 701
list() (synapse.lib.stormtypes.NodeProps method), 710
list() (synapse.lib.trigger.Triggers method), 722
list() (synapse.telepath.GenrIter method), 843
listCoreQueues() (synapse.cortex.Cortex method),

820
listCronJobs() (synapse.cortex.CoreApi method), 807
listCronJobs() (synapse.cortex.Cortex method), 820
listdir() (in module synapse.common), 796
listen() (in module synapse.lib.link), 638

Index 1597

Synapse Documentation, Release 2.141.0

listen() (synapse.daemon.Daemon method), 829
listHiveKey() (synapse.lib.cell.Cell method), 563
listHiveKey() (synapse.lib.cell.CellApi method), 569
listLayers() (synapse.cortex.Cortex method), 820
listOAuthClients() (synapse.lib.oauth.OAuthMixin

method), 661
listOAuthProviders()

(synapse.lib.oauth.OAuthMixin method),
661

listTagModel() (synapse.cortex.Cortex method), 820
listTriggers() (synapse.lib.view.View method), 734
listViews() (synapse.cortex.Cortex method), 820
ljuster() (in module synapse.lib.autodoc), 548
LmdbBackup (class in synapse.lib.lmdbslab), 639
LmdbLock, 838
load() (synapse.lib.crypto.ecc.PriKey static method),

498
load() (synapse.lib.crypto.ecc.PubKey static method),

499
load() (synapse.lib.crypto.rsa.PubKey static method),

502
load() (synapse.lib.stormlib.yaml.LibYaml method), 525
load() (synapse.lib.trigger.Triggers method), 722
loadCertByts() (synapse.lib.certdir.CertDir method),

584
loadCoreModule() (synapse.cortex.Cortex method),

820
loadfile() (in module synapse.lib.msgpack), 650
loadHiveTree() (synapse.lib.cell.Cell method), 563
loadHiveTree() (synapse.lib.hive.Hive method), 604
loadHiveTree() (synapse.lib.hive.HiveApi method),

605
loadJsonMesg() (synapse.lib.httpapi.HandlerBase

method), 615
loadNode() (synapse.lib.snap.SnapEditor method), 678
loadOpticFiles() (in module synapse.tools.genpkg),

768
loadOpticWorkflows() (in module

synapse.tools.genpkg), 768
loadPkgProto() (in module synapse.tools.genpkg), 768
loadStormPkg() (synapse.cortex.Cortex method), 820
loadTeleCell() (in module synapse.telepath), 845
loadTeleEnv() (in module synapse.telepath), 845
Loc (class in synapse.lib.types), 726
Log (class in synapse.cmds.cortex), 494
logger (in module synapse.lib.crypto.coin), 498
LoggerLib (class in synapse.lib.stormlib.log), 514
login() (synapse.lib.httpapi.Sess method), 617
login() (synapse.lib.stormlib.imap.ImapServer

method), 511
LoginV1 (class in synapse.lib.httpapi), 616
logout() (synapse.lib.httpapi.Sess method), 617
LookList (class in synapse.lib.ast), 539
Lookup (class in synapse.lib.ast), 539

lookup() (synapse.lib.parser.Parser method), 663
loop() (in module synapse.lib.task), 719
LowSpace, 838
LruDict (class in synapse.lib.cache), 554
lt() (synapse.tests.utils.SynTest method), 757

M
MacroExecCmd (class in synapse.lib.stormlib.macro),

514
main() (in module synapse.lib.base), 553
main() (in module synapse.servers.cell), 746
main() (in module synapse.servers.stemcell), 746
main() (in module synapse.tools.aha.easycert), 764
main() (in module synapse.tools.aha.enroll), 764
main() (in module synapse.tools.aha.list), 765
main() (in module synapse.tools.aha.provision.service),

764
main() (in module synapse.tools.aha.provision.user),

764
main() (in module synapse.tools.autodoc), 765
main() (in module synapse.tools.axon2axon), 766
main() (in module synapse.tools.backup), 767
main() (in module synapse.tools.cellauth), 767
main() (in module synapse.tools.cmdr), 768
main() (in module synapse.tools.cryo.cat), 765
main() (in module synapse.tools.cryo.list), 765
main() (in module synapse.tools.csvtool), 768
main() (in module synapse.tools.easycert), 768
main() (in module synapse.tools.feed), 768
main() (in module synapse.tools.genpkg), 769
main() (in module synapse.tools.guid), 769
main() (in module synapse.tools.healthcheck), 769
main() (in module synapse.tools.hive.load), 765
main() (in module synapse.tools.hive.save), 765
main() (in module synapse.tools.json2mpk), 769
main() (in module synapse.tools.livebackup), 770
main() (in module synapse.tools.modrole), 770
main() (in module synapse.tools.moduser), 770
main() (in module synapse.tools.promote), 770
main() (in module synapse.tools.pullfile), 770
main() (in module synapse.tools.pushfile), 770
main() (in module synapse.tools.rstorm), 770
main() (in module synapse.tools.storm), 773
main() (synapse.lib.base.Base method), 549
make_envar_name() (in module synapse.lib.config), 596
makeargparser() (in module synapse.tools.autodoc),

766
makeargparser() (in module synapse.tools.cellauth),

767
makeargparser() (in module synapse.tools.csvtool),

768
makeargparser() (in module synapse.tools.feed), 768
makeargparser() (in module

synapse.tools.healthcheck), 769

1598 Index

Synapse Documentation, Release 2.141.0

makeargparser() (in module synapse.tools.pushfile),
770

makeColLook() (in module synapse.lookup.iso3166),
736

makedirs() (in module synapse.common), 797
makeSplices() (synapse.lib.layer.Layer method), 632
markSeen() (synapse.lib.stormlib.imap.ImapServer

method), 511
massage_vartokn() (in module synapse.lib.parser),

663
matches() (in module synapse.lib.version), 731
matches() (synapse.lib.stormlib.version.VersionLib

method), 524
matches() (synapse.lib.stormtypes.LibRegx method),

705
MathLib (class in synapse.lib.stormlib.math), 515
MatModule (class in synapse.models.material), 743
MaxCmd (class in synapse.lib.storm), 685
maximizeMaxLockedMemory() (in module

synapse.lib.platforms.linux), 506
mayDelBuid() (synapse.lib.layer.Layer method), 632
MediaModule (class in synapse.models.media), 744
meh() (in module synapse.lib.grammar), 602
memoize() (in module synapse.lib.cache), 555
memoizemethod() (in module synapse.lib.cache), 555
merge() (synapse.lib.types.Int method), 725
merge() (synapse.lib.types.Ival method), 726
merge() (synapse.lib.types.Time method), 727
merge() (synapse.lib.types.Type method), 729
merge() (synapse.lib.view.View method), 734
mergeAhaInfo() (in module synapse.telepath), 845
mergeAllowed() (synapse.lib.view.View method), 734
MergeCmd (class in synapse.lib.storm), 686
mergeStormIface() (synapse.lib.view.View method),

734
merggenr() (in module synapse.common), 797
merggenr2() (in module synapse.common), 797
message() (synapse.lib.stormlib.smtp.SmtpLib method),

522
meta() (synapse.lib.node.Path method), 657
metaToAstInfo() (synapse.lib.parser.AstConverter

method), 662
Method (class in synapse.telepath), 843
metrics() (synapse.axon.Axon method), 779
metrics() (synapse.axon.AxonApi method), 786
metrics() (synapse.cryotank.CryoApi method), 826
metrics() (synapse.cryotank.CryoTank method), 827
metrics() (synapse.cryotank.TankApi method), 828
metrics() (synapse.lib.stormtypes.LibAxon method),

701
MinCmd (class in synapse.lib.storm), 687
MINUTE (synapse.lib.agenda.TimeUnit attribute), 527
minute() (in module synapse.lib.time), 721
minute() (synapse.lib.stormtypes.LibTime method), 707

mlock() (in module synapse.lib.platforms.linux), 506
mmap() (in module synapse.lib.platforms.linux), 506
mod() (synapse.lib.agenda.Agenda method), 526
mod_name (synapse.lib.module.CoreModule attribute),

648
modAhaSvcInfo() (synapse.lib.aha.AhaApi method),

528
modAhaSvcInfo() (synapse.lib.aha.AhaCell method),

530
ModAlreadyLoaded, 838
modCellConf() (synapse.lib.cell.Cell method), 563
Model (class in synapse.datamodel), 831
ModelForm (class in synapse.lib.stormlib.model), 516
ModelNormV1 (class in synapse.lib.httpapi), 616
ModelProp (class in synapse.lib.stormlib.model), 516
ModelRev (class in synapse.lib.modelrev), 645
ModelTagProp (class in synapse.lib.stormlib.model), 517
ModelType (class in synapse.lib.stormlib.model), 517
ModelV1 (class in synapse.lib.httpapi), 616
modStormGraph() (synapse.cortex.Cortex method), 820
modStormMacro() (synapse.cortex.Cortex method), 820
module

synapse, 493
synapse.axon, 776
synapse.cells, 791
synapse.cmds, 493
synapse.cmds.boss, 493
synapse.cmds.cortex, 494
synapse.cmds.cron, 495
synapse.cmds.hive, 496
synapse.cmds.trigger, 497
synapse.common, 791
synapse.cortex, 800
synapse.cryotank, 826
synapse.daemon, 829
synapse.data, 497
synapse.datamodel, 830
synapse.exc, 833
synapse.glob, 842
synapse.lib, 497
synapse.lib.agenda, 525
synapse.lib.aha, 527
synapse.lib.ast, 531
synapse.lib.autodoc, 547
synapse.lib.base, 548
synapse.lib.boss, 554
synapse.lib.cache, 554
synapse.lib.cell, 555
synapse.lib.certdir, 571
synapse.lib.chop, 587
synapse.lib.cli, 589
synapse.lib.cmd, 591
synapse.lib.cmdr, 592
synapse.lib.config, 593

Index 1599

Synapse Documentation, Release 2.141.0

synapse.lib.const, 596
synapse.lib.coro, 596
synapse.lib.crypto, 497
synapse.lib.crypto.coin, 497
synapse.lib.crypto.ecc, 498
synapse.lib.crypto.passwd, 501
synapse.lib.crypto.rsa, 501
synapse.lib.crypto.tinfoil, 503
synapse.lib.datfile, 598
synapse.lib.dyndeps, 599
synapse.lib.encoding, 599
synapse.lib.gis, 600
synapse.lib.grammar, 601
synapse.lib.hashitem, 602
synapse.lib.hashset, 602
synapse.lib.health, 603
synapse.lib.hive, 603
synapse.lib.hiveauth, 607
synapse.lib.httpapi, 611
synapse.lib.ingest, 619
synapse.lib.interval, 619
synapse.lib.jsonstor, 619
synapse.lib.jupyter, 622
synapse.lib.layer, 627
synapse.lib.link, 637
synapse.lib.lmdbslab, 638
synapse.lib.modelrev, 645
synapse.lib.module, 646
synapse.lib.modules, 648
synapse.lib.msgpack, 648
synapse.lib.multislabseqn, 651
synapse.lib.nexus, 652
synapse.lib.node, 654
synapse.lib.oauth, 661
synapse.lib.output, 661
synapse.lib.parser, 662
synapse.lib.platforms, 505
synapse.lib.platforms.common, 505
synapse.lib.platforms.darwin, 505
synapse.lib.platforms.freebsd, 505
synapse.lib.platforms.linux, 505
synapse.lib.platforms.windows, 506
synapse.lib.provenance, 664
synapse.lib.queue, 664
synapse.lib.ratelimit, 665
synapse.lib.reflect, 665
synapse.lib.rstorm, 666
synapse.lib.scope, 667
synapse.lib.scrape, 669
synapse.lib.share, 672
synapse.lib.slaboffs, 672
synapse.lib.slabseqn, 672
synapse.lib.snap, 674
synapse.lib.spooled, 678

synapse.lib.storm, 678
synapse.lib.storm_format, 696
synapse.lib.stormctrl, 697
synapse.lib.stormhttp, 697
synapse.lib.stormlib, 507
synapse.lib.stormlib.auth, 507
synapse.lib.stormlib.backup, 507
synapse.lib.stormlib.basex, 507
synapse.lib.stormlib.cell, 507
synapse.lib.stormlib.compression, 508
synapse.lib.stormlib.easyperm, 509
synapse.lib.stormlib.ethereum, 509
synapse.lib.stormlib.gen, 509
synapse.lib.stormlib.graph, 509
synapse.lib.stormlib.hashes, 510
synapse.lib.stormlib.hex, 510
synapse.lib.stormlib.imap, 511
synapse.lib.stormlib.infosec, 511
synapse.lib.stormlib.ipv6, 512
synapse.lib.stormlib.iters, 513
synapse.lib.stormlib.json, 513
synapse.lib.stormlib.log, 514
synapse.lib.stormlib.macro, 514
synapse.lib.stormlib.math, 515
synapse.lib.stormlib.mime, 515
synapse.lib.stormlib.model, 515
synapse.lib.stormlib.modelext, 517
synapse.lib.stormlib.notifications, 517
synapse.lib.stormlib.oauth, 518
synapse.lib.stormlib.project, 519
synapse.lib.stormlib.random, 521
synapse.lib.stormlib.scrape, 521
synapse.lib.stormlib.smtp, 522
synapse.lib.stormlib.stix, 522
synapse.lib.stormlib.storm, 524
synapse.lib.stormlib.version, 524
synapse.lib.stormlib.xml, 524
synapse.lib.stormlib.yaml, 525
synapse.lib.stormsvc, 698
synapse.lib.stormtypes, 698
synapse.lib.stormwhois, 719
synapse.lib.structlog, 719
synapse.lib.task, 719
synapse.lib.thishost, 720
synapse.lib.thisplat, 721
synapse.lib.threads, 721
synapse.lib.time, 721
synapse.lib.trigger, 722
synapse.lib.types, 723
synapse.lib.urlhelp, 730
synapse.lib.version, 731
synapse.lib.view, 733
synapse.lookup, 735
synapse.lookup.cvss, 735

1600 Index

Synapse Documentation, Release 2.141.0

synapse.lookup.iana, 735
synapse.lookup.iso3166, 736
synapse.lookup.macho, 736
synapse.lookup.pe, 736
synapse.lookup.phonenum, 736
synapse.mindmeld, 842
synapse.models, 736
synapse.models.auth, 737
synapse.models.base, 737
synapse.models.belief, 737
synapse.models.biz, 737
synapse.models.crypto, 738
synapse.models.dns, 738
synapse.models.economic, 738
synapse.models.files, 738
synapse.models.geopol, 739
synapse.models.geospace, 739
synapse.models.gov, 736
synapse.models.gov.cn, 736
synapse.models.gov.intl, 737
synapse.models.gov.us, 737
synapse.models.inet, 740
synapse.models.infotech, 742
synapse.models.language, 743
synapse.models.material, 743
synapse.models.media, 744
synapse.models.orgs, 744
synapse.models.person, 744
synapse.models.proj, 744
synapse.models.risk, 745
synapse.models.syn, 745
synapse.models.telco, 745
synapse.models.transport, 746
synapse.servers, 746
synapse.servers.aha, 746
synapse.servers.axon, 746
synapse.servers.cell, 746
synapse.servers.cortex, 746
synapse.servers.cryotank, 746
synapse.servers.jsonstor, 746
synapse.servers.stemcell, 746
synapse.telepath, 842
synapse.tests, 747
synapse.tests.nopmod, 747
synapse.tests.utils, 747
synapse.tools, 764
synapse.tools.aha, 764
synapse.tools.aha.easycert, 764
synapse.tools.aha.enroll, 764
synapse.tools.aha.list, 765
synapse.tools.aha.provision, 764
synapse.tools.aha.provision.service, 764
synapse.tools.aha.provision.user, 764
synapse.tools.autodoc, 765

synapse.tools.axon2axon, 766
synapse.tools.backup, 766
synapse.tools.cellauth, 767
synapse.tools.cmdr, 768
synapse.tools.cryo, 765
synapse.tools.cryo.cat, 765
synapse.tools.cryo.list, 765
synapse.tools.csvtool, 768
synapse.tools.easycert, 768
synapse.tools.feed, 768
synapse.tools.genpkg, 768
synapse.tools.guid, 769
synapse.tools.healthcheck, 769
synapse.tools.hive, 765
synapse.tools.hive.load, 765
synapse.tools.hive.save, 765
synapse.tools.json2mpk, 769
synapse.tools.livebackup, 770
synapse.tools.modrole, 770
synapse.tools.moduser, 770
synapse.tools.promote, 770
synapse.tools.pullfile, 770
synapse.tools.pushfile, 770
synapse.tools.rstorm, 770
synapse.tools.storm, 770
synapse.utils, 773
synapse.utils.stormcov, 773
synapse.utils.stormcov.plugin, 773

modurl() (in module synapse.telepath), 845
MONTH (synapse.lib.agenda.TimeUnit attribute), 527
month() (in module synapse.lib.time), 721
month() (synapse.lib.stormtypes.LibTime method), 707
monthofyear() (synapse.lib.stormtypes.LibTime

method), 707
move() (synapse.lib.agenda.Agenda method), 526
move() (synapse.lib.stormtypes.Trigger method), 716
moveCronJob() (synapse.cortex.Cortex method), 820
MoveNodesCmd (class in synapse.lib.storm), 687
MoveTagCmd (class in synapse.lib.storm), 688
MultiQueue (class in synapse.lib.lmdbslab), 639
MultiSlabSeqn (class in synapse.lib.multislabseqn), 651
munlock() (in module synapse.lib.platforms.linux), 506
MustBeJsonSafe, 838

N
N1Walk (class in synapse.lib.ast), 539
N1WalkNPivo (class in synapse.lib.ast), 539
N2Walk (class in synapse.lib.ast), 539
N2WalkNPivo (class in synapse.lib.ast), 540
name (synapse.lib.storm.BackgroundCmd attribute), 679
name (synapse.lib.storm.BatchCmd attribute), 679
name (synapse.lib.storm.Cmd attribute), 680
name (synapse.lib.storm.CopyToCmd attribute), 680
name (synapse.lib.storm.CountCmd attribute), 681

Index 1601

Synapse Documentation, Release 2.141.0

name (synapse.lib.storm.DelNodeCmd attribute), 681
name (synapse.lib.storm.DiffCmd attribute), 682
name (synapse.lib.storm.DivertCmd attribute), 682
name (synapse.lib.storm.EdgesDelCmd attribute), 683
name (synapse.lib.storm.GraphCmd attribute), 683
name (synapse.lib.storm.HelpCmd attribute), 684
name (synapse.lib.storm.IdenCmd attribute), 684
name (synapse.lib.storm.IntersectCmd attribute), 684
name (synapse.lib.storm.LiftByVerb attribute), 685
name (synapse.lib.storm.LimitCmd attribute), 685
name (synapse.lib.storm.MaxCmd attribute), 686
name (synapse.lib.storm.MergeCmd attribute), 686
name (synapse.lib.storm.MinCmd attribute), 687
name (synapse.lib.storm.MoveNodesCmd attribute), 687
name (synapse.lib.storm.MoveTagCmd attribute), 688
name (synapse.lib.storm.OnceCmd attribute), 689
name (synapse.lib.storm.ParallelCmd attribute), 689
name (synapse.lib.storm.ReIndexCmd attribute), 690
name (synapse.lib.storm.RunAsCmd attribute), 690
name (synapse.lib.storm.ScrapeCmd attribute), 692
name (synapse.lib.storm.SleepCmd attribute), 692
name (synapse.lib.storm.SpinCmd attribute), 693
name (synapse.lib.storm.SpliceListCmd attribute), 693
name (synapse.lib.storm.SpliceUndoCmd attribute), 693
name (synapse.lib.storm.SudoCmd attribute), 694
name (synapse.lib.storm.TagPruneCmd attribute), 695
name (synapse.lib.storm.TeeCmd attribute), 695
name (synapse.lib.storm.TreeCmd attribute), 695
name (synapse.lib.storm.UniqCmd attribute), 696
name (synapse.lib.storm.ViewExecCmd attribute), 696
name (synapse.lib.stormlib.macro.MacroExecCmd

attribute), 514
name (synapse.tests.utils.TestCmd attribute), 761
name() (synapse.lib.hive.Node method), 605
names() (synapse.lib.lmdbslab.SlabAbrv method), 644
nameToAbrv() (synapse.lib.lmdbslab.SlabAbrv method),

644
Ndef (class in synapse.lib.types), 726
ndef() (in module synapse.lib.node), 657
ne() (synapse.tests.utils.SynTest method), 757
near() (in module synapse.lib.gis), 601
NeedConfValu, 838
newkey() (in module synapse.lib.crypto.tinfoil), 504
NexsRoot (class in synapse.lib.nexus), 652
nextindx() (synapse.lib.slabseqn.SlabSeqn method),

673
nextitem() (synapse.lib.storm.ParallelCmd method),

689
nexttime() (synapse.lib.agenda.ApptRec method), 526
nn() (synapse.tests.utils.SynTest method), 757
NoCertKey, 838
Node (class in synapse.lib.hive), 605
Node (class in synapse.lib.node), 654
Node (class in synapse.lib.stormtypes), 709

NodeData (class in synapse.lib.stormtypes), 709
nodeeditctor (synapse.lib.layer.Layer attribute), 632
NodeProp (class in synapse.lib.types), 726
NodeProps (class in synapse.lib.stormtypes), 710
nodes() (synapse.cortex.Cortex method), 820
nodes() (synapse.lib.snap.Snap method), 677
nodes() (synapse.lib.stormlib.project.Project method),

519
nodes() (synapse.lib.stormlib.project.ProjectEpic

method), 519
nodes() (synapse.lib.stormlib.project.ProjectSprint

method), 519
nodes() (synapse.lib.stormlib.project.ProjectTicket

method), 520
nodes() (synapse.lib.stormlib.project.ProjectTicketComment

method), 520
nodes() (synapse.lib.stormtypes.Prim method), 712
nodes() (synapse.lib.stormtypes.Query method), 713
nodes() (synapse.lib.view.View method), 734
nodesByDataName() (synapse.lib.snap.Snap method),

677
nodesByProp() (synapse.lib.snap.Snap method), 677
nodesByPropArray() (synapse.lib.snap.Snap method),

677
nodesByPropTypeValu() (synapse.lib.snap.Snap

method), 677
nodesByPropValu() (synapse.lib.snap.Snap method),

677
nodesByTag() (synapse.lib.snap.Snap method), 677
nodesByTagProp() (synapse.lib.snap.Snap method),

677
nodesByTagPropValu() (synapse.lib.snap.Snap

method), 677
nodesByTagValu() (synapse.lib.snap.Snap method),

677
nom() (in module synapse.lib.grammar), 602
none() (synapse.tests.utils.SynTest method), 757
noprop() (synapse.tests.utils.SynTest method), 757
norm() (in module synapse.tests.utils), 764
norm() (synapse.lib.types.Data method), 723
norm() (synapse.lib.types.HugeNum method), 725
norm() (synapse.lib.types.Type method), 729
norm() (synapse.tests.utils.TestSubType method), 762
norm() (synapse.tests.utils.ThreeType method), 763
normdict() (in module synapse.lib.hashitem), 602
normitem() (in module synapse.lib.hashitem), 602
normiter() (in module synapse.lib.hashitem), 602
normLogLevel() (in module synapse.common), 797
normOAuthTokenData() (in module synapse.lib.oauth),

661
NoSuchAbrv, 838
NoSuchAct, 838
NoSuchAuthGate, 838
NoSuchCert, 838

1602 Index

Synapse Documentation, Release 2.141.0

NoSuchCmd, 838
NoSuchCmpr, 838
NoSuchCond, 838
NoSuchCtor, 838
NoSuchDecoder, 838
NoSuchDir, 838
NoSuchDyn, 838
NoSuchEncoder, 838
NoSuchFile, 838
NoSuchForm, 839
NoSuchFunc, 839
NoSuchIden, 839
NoSuchImpl, 839
NoSuchIndx, 839
NoSuchLayer, 839
NoSuchLift, 839
NoSuchMeth, 839
NoSuchName, 839
NoSuchObj, 839
NoSuchOpt, 839
NoSuchPath, 839
NoSuchPivot, 839
NoSuchPkg, 839
NoSuchProp, 839
NoSuchRole, 839
NoSuchStormSvc, 839
NoSuchTagProp, 839
NoSuchType, 840
NoSuchUniv, 840
NoSuchUser, 840
NoSuchVar, 840
NoSuchView, 840
NotANumberCompared, 840
NotCond (class in synapse.lib.ast), 540
NotifyLib (class in synapse.lib.stormlib.notifications),

517
notin() (synapse.tests.utils.SynTest method), 757
NotMsgpackSafe, 840
NotReady, 840
NoValu (class in synapse.common), 791
NOW (synapse.lib.agenda.TimeUnit attribute), 527
now() (in module synapse.common), 797
Number (class in synapse.lib.stormtypes), 710

O
OAuthMixin (class in synapse.lib.oauth), 661
OAuthV1Client (class in synapse.lib.stormlib.oauth),

518
OAuthV1Lib (class in synapse.lib.stormlib.oauth), 518
OAuthV2Lib (class in synapse.lib.stormlib.oauth), 518
off() (synapse.lib.base.Base method), 549
offAdd() (synapse.datamodel.Form method), 830
offlink() (synapse.telepath.Client method), 843
offset() (synapse.cryotank.CryoApi method), 826

offset() (synapse.cryotank.TankApi method), 828
offset() (synapse.lib.lmdbslab.MultiQueue method),

640
offTagAdd() (synapse.cortex.Cortex method), 821
offTagDel() (synapse.cortex.Cortex method), 821
oflight (synapse.lib.types.Velocity attribute), 730
omit() (synapse.lib.ast.SubGraph method), 543
on() (synapse.lib.base.Base method), 550
on_connection_close()

(synapse.axon.AxonHttpUploadV1 method),
790

on_connection_close() (synapse.lib.httpapi.Handler
method), 613

on_finish() (synapse.axon.AxonHttpUploadV1
method), 790

on_message() (synapse.lib.httpapi.BeholdSockV1
method), 612

on_message() (synapse.lib.httpapi.WatchSockV1
method), 618

onAdd() (synapse.datamodel.Form method), 830
OnceCmd (class in synapse.lib.storm), 688
onDel() (synapse.datamodel.Form method), 830
onDel() (synapse.datamodel.Prop method), 833
OnePassIssueV1 (class in synapse.lib.httpapi), 616
onespace() (in module synapse.lib.chop), 588
onfini() (synapse.lib.base.Base method), 550
onInitMessage() (synapse.lib.httpapi.BeholdSockV1

method), 612
onlink() (synapse.telepath.Client method), 843
onPush() (synapse.lib.nexus.Pusher class method), 653
onPushAuto() (synapse.lib.nexus.Pusher class method),

653
onSet() (synapse.datamodel.Prop method), 833
onStormMesg() (synapse.cmds.cortex.Log method), 494
onTagAdd() (synapse.cortex.Cortex method), 821
onTagDel() (synapse.cortex.Cortex method), 821
onTeleShare() (synapse.telepath.Aware method), 842
onWatchMesg() (synapse.lib.httpapi.WatchSockV1

method), 618
onWith() (synapse.lib.base.Base method), 550
open() (synapse.lib.hive.Hive method), 604
open() (synapse.lib.hive.Node method), 605
open() (synapse.lib.hive.TeleHive method), 606
openDatFile() (in module synapse.lib.datfile), 598
opendir() (in module synapse.lib.hive), 606
openinfo() (in module synapse.telepath), 845
openLogFd() (synapse.cmds.cortex.Log method), 494
openurl() (in module synapse.lib.hive), 607
Oper (class in synapse.lib.ast), 540
operrelprop_join() (synapse.lib.parser.AstConverter

method), 662
operrelprop_pivot()

(synapse.lib.parser.AstConverter method),
662

Index 1603

Synapse Documentation, Release 2.141.0

optimize() (synapse.lib.ast.AstNode method), 532
options() (synapse.lib.httpapi.HandlerBase method),

615
OrCond (class in synapse.lib.ast), 540
ornot() (in module synapse.lib.coro), 597
OuModule (class in synapse.models.orgs), 744
OutPut (class in synapse.lib.output), 661
OutPutBytes (class in synapse.lib.output), 661
OutPutFd (class in synapse.lib.output), 661
OutPutRst (class in synapse.lib.rstorm), 666
OutPutStr (class in synapse.lib.output), 661
overlap() (in module synapse.lib.interval), 619

P
pack() (synapse.daemon.Sess method), 829
pack() (synapse.datamodel.Edge method), 830
pack() (synapse.datamodel.Form method), 830
pack() (synapse.datamodel.Prop method), 833
pack() (synapse.datamodel.TagProp method), 833
pack() (synapse.lib.agenda.ApptRec method), 526
pack() (synapse.lib.health.HealthCheck method), 603
pack() (synapse.lib.hive.HiveDict method), 605
pack() (synapse.lib.hiveauth.AuthGate method), 609
pack() (synapse.lib.hiveauth.HiveRole method), 609
pack() (synapse.lib.hiveauth.HiveUser method), 610
pack() (synapse.lib.layer.Layer method), 632
pack() (synapse.lib.lmdbslab.HotKeyVal method), 639
pack() (synapse.lib.node.Node method), 655
pack() (synapse.lib.node.Path method), 657
pack() (synapse.lib.storm.StormDmon method), 694
pack() (synapse.lib.stormlib.stix.StixBundle method),

523
pack() (synapse.lib.stormtypes.Trigger method), 716
pack() (synapse.lib.task.Task method), 719
pack() (synapse.lib.trigger.Trigger method), 722
pack() (synapse.lib.types.Type method), 729
pack() (synapse.lib.view.View method), 734
packVersion() (in module synapse.lib.version), 731
ParallelCmd (class in synapse.lib.storm), 689
parent() (synapse.lib.hive.Node method), 606
parse() (in module synapse.lib.time), 721
parse() (synapse.lib.stormlib.xml.LibXml method), 524
parse_args() (in module synapse.tools.backup), 767
parse_args() (synapse.lib.storm.Parser method), 689
parse_cmd_string() (in module synapse.lib.parser),

663
parse_float() (in module synapse.lib.grammar), 602
PARSE_METHODS (synapse.utils.stormcov.plugin.PivotTracer

attribute), 773
PARSE_METHODS (synapse.utils.stormcov.plugin.StormPlugin

attribute), 774
parseEval() (in module synapse.lib.parser), 663
parseNumber() (in module synapse.lib.ast), 547

parsepath() (synapse.cmds.hive.HiveCmd static
method), 496

parseQuery() (in module synapse.lib.parser), 663
Parser (class in synapse.lib.cmd), 591
Parser (class in synapse.lib.parser), 663
Parser (class in synapse.lib.storm), 689
ParserExit, 840
parseSemver() (in module synapse.lib.version), 731
parsetime() (in module synapse.lib.interval), 619
parsetz() (in module synapse.lib.time), 721
parseVersionParts() (in module synapse.lib.version),

731
Path (class in synapse.lib.node), 656
Path (class in synapse.lib.stormtypes), 711
path() (in module synapse.data), 497
PathExists, 840
PathMeta (class in synapse.lib.stormtypes), 711
PathVars (class in synapse.lib.stormtypes), 711
phnode() (in module synapse.lookup.phonenum), 736
Phone (class in synapse.models.telco), 745
PickleableMagicMock (class in synapse.tests.utils),

748
Pipe (class in synapse.lib.stormtypes), 711
Pipeline (class in synapse.telepath), 843
pipeline() (synapse.lib.storm.ParallelCmd method),

689
pipeline() (synapse.lib.storm.TeeCmd method), 695
PivotIn (class in synapse.lib.ast), 540
PivotInFrom (class in synapse.lib.ast), 540
PivotOper (class in synapse.lib.ast), 540
PivotOut (class in synapse.lib.ast), 540
pivots() (synapse.lib.ast.SubGraph method), 543
PivotToTags (class in synapse.lib.ast), 540
PivotTracer (class in synapse.utils.stormcov.plugin),

773
pkgname (synapse.lib.storm.Cmd attribute), 680
pkgprotos (synapse.tests.utils.StormPkgTest attribute),

748
PolModule (class in synapse.models.geopol), 739
pop() (in module synapse.lib.scope), 668
pop() (synapse.lib.base.BaseRef method), 553
pop() (synapse.lib.cache.FixedCache method), 554
pop() (synapse.lib.hive.Hive method), 604
pop() (synapse.lib.hive.HiveDict method), 605
pop() (synapse.lib.hive.Node method), 606
pop() (synapse.lib.hive.TeleHive method), 606
pop() (synapse.lib.lmdbslab.MultiQueue method), 640
pop() (synapse.lib.lmdbslab.Slab method), 643
pop() (synapse.lib.lmdbslab.SlabDict method), 645
pop() (synapse.lib.node.Node method), 656
pop() (synapse.lib.scope.Scope method), 668
pop() (synapse.lib.slabseqn.SlabSeqn method), 673
pop() (synapse.lib.trigger.Triggers method), 722
popAndSync() (synapse.lib.hive.HiveApi method), 605

1604 Index

Synapse Documentation, Release 2.141.0

popCellConf() (synapse.lib.cell.Cell method), 564
popData() (synapse.lib.node.Node method), 656
popDmon() (synapse.lib.storm.DmonManager method),

682
popHiveKey() (synapse.lib.cell.Cell method), 564
popHiveKey() (synapse.lib.cell.CellApi method), 569
popPathObjProp() (synapse.lib.jsonstor.JsonStor

method), 620
popPathObjProp() (synapse.lib.jsonstor.JsonStorApi

method), 621
popPathObjProp() (synapse.lib.jsonstor.JsonStorCell

method), 622
popSessItem() (synapse.daemon.Sess method), 829
popStormVar() (synapse.cortex.CoreApi method), 807
popStormVar() (synapse.cortex.Cortex method), 821
popTagModel() (synapse.cortex.Cortex method), 821
popUserProfInfo() (synapse.lib.cell.Cell method), 564
popUserProfInfo() (synapse.lib.cell.CellApi method),

569
popUserVarValu() (synapse.lib.cell.Cell method), 564
popVar() (synapse.lib.node.Path method), 657
popVar() (synapse.lib.storm.Runtime method), 691
post() (synapse.axon.AxonHttpDelV1 method), 789
post() (synapse.axon.AxonHttpUploadV1 method), 790
post() (synapse.lib.aha.AhaProvisionServiceV1

method), 530
post() (synapse.lib.httpapi.AuthAddRoleV1 method),

611
post() (synapse.lib.httpapi.AuthAddUserV1 method),

611
post() (synapse.lib.httpapi.AuthDelRoleV1 method),

611
post() (synapse.lib.httpapi.AuthGrantV1 method), 611
post() (synapse.lib.httpapi.AuthRevokeV1 method), 612
post() (synapse.lib.httpapi.AuthRoleV1 method), 612
post() (synapse.lib.httpapi.AuthUserPasswdV1

method), 612
post() (synapse.lib.httpapi.AuthUserV1 method), 612
post() (synapse.lib.httpapi.FeedV1 method), 613
post() (synapse.lib.httpapi.LoginV1 method), 616
post() (synapse.lib.httpapi.ModelNormV1 method), 616
post() (synapse.lib.httpapi.OnePassIssueV1 method),

616
post() (synapse.lib.httpapi.ReqValidStormV1 method),

616
post() (synapse.lib.httpapi.StormCallV1 method), 617
post() (synapse.lib.httpapi.StormExportV1 method),

617
post() (synapse.lib.httpapi.StormNodesV1 method), 617
post() (synapse.lib.httpapi.StormV1 method), 617
post() (synapse.lib.httpapi.StormVarsPopV1 method),

618
post() (synapse.lib.httpapi.StormVarsSetV1 method),

618

post() (synapse.tests.utils.HttpReflector method), 748
postAnit() (synapse.lib.base.Base method), 550
postfiles() (synapse.axon.Axon method), 779
postfiles() (synapse.axon.AxonApi method), 786
postTypeInit() (synapse.lib.types.Array method), 723
postTypeInit() (synapse.lib.types.Bool method), 723
postTypeInit() (synapse.lib.types.Comp method), 723
postTypeInit() (synapse.lib.types.Data method), 724
postTypeInit() (synapse.lib.types.Duration method),

724
postTypeInit() (synapse.lib.types.Edge method), 724
postTypeInit() (synapse.lib.types.Float method), 724
postTypeInit() (synapse.lib.types.Guid method), 724
postTypeInit() (synapse.lib.types.Hex method), 725
postTypeInit() (synapse.lib.types.Int method), 725
postTypeInit() (synapse.lib.types.Ival method), 726
postTypeInit() (synapse.lib.types.Loc method), 726
postTypeInit() (synapse.lib.types.Ndef method), 726
postTypeInit() (synapse.lib.types.NodeProp method),

726
postTypeInit() (synapse.lib.types.Range method), 726
postTypeInit() (synapse.lib.types.Str method), 727
postTypeInit() (synapse.lib.types.Tag method), 727
postTypeInit() (synapse.lib.types.TagPart method),

727
postTypeInit() (synapse.lib.types.Taxon method), 727
postTypeInit() (synapse.lib.types.Taxonomy method),

727
postTypeInit() (synapse.lib.types.Time method), 728
postTypeInit() (synapse.lib.types.TimeEdge method),

728
postTypeInit() (synapse.lib.types.Type method), 729
postTypeInit() (synapse.lib.types.Velocity method),

730
postTypeInit() (synapse.models.dns.DnsName

method), 738
postTypeInit() (synapse.models.files.FileBase

method), 738
postTypeInit() (synapse.models.files.FileBytes

method), 738
postTypeInit() (synapse.models.files.FilePath

method), 739
postTypeInit() (synapse.models.geospace.Area

method), 739
postTypeInit() (synapse.models.geospace.Dist

method), 739
postTypeInit() (synapse.models.geospace.LatLong

method), 739
postTypeInit() (synapse.models.inet.Addr method),

740
postTypeInit() (synapse.models.inet.Cidr4 method),

740
postTypeInit() (synapse.models.inet.Cidr6 method),

740

Index 1605

Synapse Documentation, Release 2.141.0

postTypeInit() (synapse.models.inet.Email method),
740

postTypeInit() (synapse.models.inet.Fqdn method),
740

postTypeInit() (synapse.models.inet.IPv4 method),
740

postTypeInit() (synapse.models.inet.IPv4Range
method), 741

postTypeInit() (synapse.models.inet.IPv6 method),
741

postTypeInit() (synapse.models.inet.IPv6Range
method), 741

postTypeInit() (synapse.models.inet.Rfc2822Addr
method), 741

postTypeInit() (synapse.models.inet.Url method), 742
postTypeInit() (synapse.models.infotech.SemVer

method), 743
postTypeInit() (synapse.models.telco.Imei method),

745
postTypeInit() (synapse.models.telco.Imsi method),

745
postTypeInit() (synapse.models.telco.Phone method),

745
postTypeInit() (synapse.tests.utils.TestType method),

763
preCoreModule() (synapse.lib.module.CoreModule

method), 648
prefexists() (synapse.lib.lmdbslab.Slab method), 643
prefix (synapse.lib.rstorm.OutPutRst attribute), 666
prefix() (synapse.lib.stormtypes.LibTags method), 707
prepare() (synapse.axon.AxonHttpUploadV1 method),

790
prepare() (synapse.lib.ast.AstNode method), 532
prepare() (synapse.lib.ast.EditNodeAdd method), 534
prepare() (synapse.lib.ast.ExprDict method), 535
prepare() (synapse.lib.ast.ExprList method), 535
prepare() (synapse.lib.ast.ExprNode method), 535
prepare() (synapse.lib.ast.FormatString method), 536
prepare() (synapse.lib.ast.Function method), 537
prepare() (synapse.lib.ast.IfStmt method), 538
prepare() (synapse.lib.ast.PropName method), 541
prepare() (synapse.lib.ast.PropValue method), 541
prepare() (synapse.lib.ast.SwitchCase method), 544
prepare() (synapse.lib.ast.TagName method), 544
prepare() (synapse.lib.ast.UnaryExprNode method),

545
prepare() (synapse.lib.ast.VarValue method), 546
prepare() (synapse.lib.httpapi.Handler method), 613
prepareRstLines() (in module synapse.lib.autodoc),

548
PriKey (class in synapse.lib.crypto.ecc), 498
PriKey (class in synapse.lib.crypto.rsa), 501
Prim (class in synapse.lib.stormtypes), 711
printables() (in module synapse.lib.chop), 588

printed() (synapse.tests.utils.SynTest method), 757
printf() (synapse.cmds.cortex.StormCmd method), 495
printf() (synapse.lib.cli.Cli method), 589
printf() (synapse.lib.cli.Cmd method), 590
printf() (synapse.lib.output.OutPut method), 661
printf() (synapse.lib.rstorm.OutPutRst method), 666
printf() (synapse.lib.rstorm.StormCliOutput method),

666
printf() (synapse.lib.rstorm.StormOutput method), 666
printf() (synapse.lib.snap.Snap method), 677
printf() (synapse.lib.storm.Runtime method), 691
printf() (synapse.tools.storm.StormCli method), 772
printuser() (in module synapse.tools.cellauth), 767
processCtors() (in module synapse.tools.autodoc),

766
processFormsProps() (in module

synapse.tools.autodoc), 766
processStormCmds() (in module

synapse.tools.autodoc), 766
processTypes() (in module synapse.tools.autodoc),

766
processUnivs() (in module synapse.tools.autodoc),

766
Project (class in synapse.lib.stormlib.project), 519
ProjectEpic (class in synapse.lib.stormlib.project), 519
ProjectEpics (class in synapse.lib.stormlib.project),

519
ProjectModule (class in synapse.models.proj), 744
ProjectSprint (class in synapse.lib.stormlib.project),

519
ProjectSprints (class in synapse.lib.stormlib.project),

520
ProjectTicket (class in synapse.lib.stormlib.project),

520
ProjectTicketComment (class in

synapse.lib.stormlib.project), 520
ProjectTicketComments (class in

synapse.lib.stormlib.project), 520
ProjectTickets (class in synapse.lib.stormlib.project),

521
promote() (synapse.lib.boss.Boss method), 554
promote() (synapse.lib.cell.Cell method), 564
promote() (synapse.lib.cell.CellApi method), 569
promote() (synapse.lib.nexus.NexsRoot method), 652
prompt() (synapse.lib.cli.Cli method), 589
Prop (class in synapse.datamodel), 832
prop() (in module synapse.lib.node), 657
prop() (synapse.datamodel.Form method), 830
prop() (synapse.datamodel.Model method), 832
PropName (class in synapse.lib.ast), 541
PropPivot (class in synapse.lib.ast), 541
PropPivotOut (class in synapse.lib.ast), 541
props() (in module synapse.lib.node), 658
PropValue (class in synapse.lib.ast), 541

1606 Index

Synapse Documentation, Release 2.141.0

ProtoNode (class in synapse.lib.snap), 674
ProvApi (class in synapse.lib.aha), 531
ProvDmon (class in synapse.lib.aha), 531
Proxy (class in synapse.lib.stormtypes), 712
Proxy (class in synapse.telepath), 843
proxy() (synapse.telepath.Client method), 843
ProxyGenrMethod (class in synapse.lib.stormtypes), 712
ProxyMethod (class in synapse.lib.stormtypes), 712
ps() (synapse.lib.boss.Boss method), 554
ps() (synapse.lib.cell.Cell method), 564
ps() (synapse.lib.cell.CellApi method), 569
PsCmd (class in synapse.cmds.boss), 493
PsModule (class in synapse.models.person), 744
PubKey (class in synapse.lib.crypto.ecc), 499
PubKey (class in synapse.lib.crypto.rsa), 502
public() (synapse.lib.crypto.ecc.PriKey method), 499
public() (synapse.lib.crypto.rsa.PriKey method), 501
PullFileCmd (class in synapse.tools.storm), 771
pullone() (in module synapse.lib.ast), 547
PureCmd (class in synapse.lib.storm), 689
Pusher (class in synapse.lib.nexus), 653
PushFileCmd (class in synapse.tools.storm), 771
put() (synapse.axon.Axon method), 780
put() (synapse.axon.AxonApi method), 786
put() (synapse.axon.AxonHttpUploadV1 method), 790
put() (synapse.lib.base.BaseRef method), 553
put() (synapse.lib.cache.FixedCache method), 554
put() (synapse.lib.lmdbslab.MultiQueue method), 640
put() (synapse.lib.lmdbslab.Slab method), 643
put() (synapse.lib.queue.AQueue method), 664
put() (synapse.lib.queue.Queue method), 664
put() (synapse.lib.queue.Window method), 664
putmulti() (synapse.lib.lmdbslab.Slab method), 643
puts() (synapse.axon.Axon method), 780
puts() (synapse.axon.AxonApi method), 786
puts() (synapse.cryotank.CryoApi method), 826
puts() (synapse.cryotank.CryoTank method), 828
puts() (synapse.cryotank.TankApi method), 828
puts() (synapse.lib.lmdbslab.MultiQueue method), 640
puts() (synapse.lib.queue.Queue method), 664
puts() (synapse.lib.queue.Window method), 665
putsQueue() (synapse.lib.jsonstor.JsonStorApi method),

621
putsQueue() (synapse.lib.jsonstor.JsonStorCell

method), 622

Q
Query (class in synapse.lib.ast), 541
Query (class in synapse.lib.stormtypes), 712
query() (synapse.lib.parser.Parser method), 663
Queue (class in synapse.lib.queue), 664
Queue (class in synapse.lib.stormtypes), 713
queueLoop() (synapse.cmds.cortex.Log method), 494
QuitCmd (class in synapse.tools.storm), 771

R
raiseBadSyntax() (synapse.lib.parser.AstConverter

method), 662
raisePermDeny() (synapse.lib.hiveauth.HiveUser

method), 610
raises() (synapse.tests.utils.SynTest method), 757
Range (class in synapse.lib.types), 726
rangeexists() (synapse.lib.lmdbslab.Slab method),

643
RateLimit (class in synapse.lib.ratelimit), 665
RawPivot (class in synapse.lib.ast), 541
readlines() (synapse.axon.Axon method), 781
readlines() (synapse.axon.AxonApi method), 787
readlines() (synapse.lib.stormtypes.LibAxon method),

701
readonly (synapse.lib.storm.Cmd attribute), 680
readonly (synapse.lib.storm.CountCmd attribute), 681
readonly (synapse.lib.storm.DiffCmd attribute), 682
readonly (synapse.lib.storm.IdenCmd attribute), 684
readonly (synapse.lib.storm.LimitCmd attribute), 685
readonly (synapse.lib.storm.MaxCmd attribute), 686
readonly (synapse.lib.storm.MinCmd attribute), 687
readonly (synapse.lib.storm.ParallelCmd attribute), 689
readonly (synapse.lib.storm.PureCmd attribute), 689
readonly (synapse.lib.storm.SleepCmd attribute), 692
readonly (synapse.lib.storm.SpinCmd attribute), 693
readonly (synapse.lib.storm.SpliceListCmd attribute),

693
readonly (synapse.lib.storm.TeeCmd attribute), 695
readonly (synapse.lib.storm.TreeCmd attribute), 695
readonly (synapse.lib.storm.UniqCmd attribute), 696
readonly (synapse.lib.storm.ViewExecCmd attribute),

696
ReadOnlyLayer, 840
ReadOnlyProp, 840
readyToMirror() (synapse.lib.cell.Cell method), 564
readyToMirror() (synapse.lib.cell.CellApi method),

569
recover() (synapse.lib.nexus.NexsRoot method), 652
RecursionLimitHit, 840
recv() (synapse.lib.link.Link method), 637
recvsize() (synapse.lib.link.Link method), 637
redirectStdin() (synapse.tests.utils.SynTest method),

757
refang_text() (in module synapse.lib.scrape), 670
refang_text2() (in module synapse.lib.scrape), 670
regexizeTagGlob() (in module synapse.lib.cache), 555
registerLib() (synapse.lib.stormtypes.StormTypesRegistry

method), 715
registerType() (synapse.lib.stormtypes.StormTypesRegistry

method), 715
RegMethType (class in synapse.lib.nexus), 653
ReIndexCmd (class in synapse.lib.storm), 689
RelProp (class in synapse.lib.ast), 541

Index 1607

Synapse Documentation, Release 2.141.0

RelPropCond (class in synapse.lib.ast), 541
RelPropValue (class in synapse.lib.ast), 542
rem() (synapse.lib.cache.TagGlobs method), 555
rem() (synapse.lib.lmdbslab.MultiQueue method), 640
rename() (synapse.lib.hive.Hive method), 604
replace() (synapse.lib.lmdbslab.Slab method), 643
replace() (synapse.lib.stormtypes.LibRegx method),

705
replaceUnicodeDashes() (in module

synapse.lib.chop), 588
reply() (synapse.telepath.Task method), 845
repr() (in module synapse.lib.time), 721
repr() (synapse.lib.ast.AstNode method), 532
repr() (synapse.lib.ast.Const method), 533
repr() (synapse.lib.ast.List method), 539
repr() (synapse.lib.ast.PivotOper method), 540
repr() (synapse.lib.node.Node method), 656
repr() (synapse.lib.types.Array method), 723
repr() (synapse.lib.types.Bool method), 723
repr() (synapse.lib.types.Comp method), 723
repr() (synapse.lib.types.Duration method), 724
repr() (synapse.lib.types.Edge method), 724
repr() (synapse.lib.types.Float method), 724
repr() (synapse.lib.types.Int method), 725
repr() (synapse.lib.types.Ival method), 726
repr() (synapse.lib.types.Loc method), 726
repr() (synapse.lib.types.Ndef method), 726
repr() (synapse.lib.types.Range method), 727
repr() (synapse.lib.types.Str method), 727
repr() (synapse.lib.types.Taxonomy method), 727
repr() (synapse.lib.types.Time method), 728
repr() (synapse.lib.types.TimeEdge method), 728
repr() (synapse.lib.types.Type method), 729
repr() (synapse.models.geospace.Area method), 739
repr() (synapse.models.geospace.Dist method), 739
repr() (synapse.models.geospace.LatLong method), 739
repr() (synapse.models.inet.Fqdn method), 740
repr() (synapse.models.inet.IPv4 method), 740
repr() (synapse.models.infotech.SemVer method), 743
repr() (synapse.models.telco.Phone method), 746
repr() (synapse.tests.utils.TestSubType method), 762
repr() (synapse.tests.utils.ThreeType method), 763
reprNdef() (in module synapse.lib.node), 658
reprProp() (in module synapse.lib.node), 658
reprrule() (in module synapse.tools.cellauth), 767
reprs() (synapse.lib.node.Node method), 656
reprTag() (in module synapse.lib.node), 659
reprTagProps() (in module synapse.lib.node), 659
reqAuthAdmin() (synapse.lib.httpapi.HandlerBase

method), 615
reqAuthGate() (synapse.lib.hiveauth.Auth method),

608
reqAuthUser() (synapse.lib.httpapi.HandlerBase

method), 615

reqbytes() (in module synapse.common), 798
reqConfValid() (synapse.lib.config.Config method),

593
reqConfValu() (synapse.lib.config.Config method), 594
reqdir() (in module synapse.common), 798
reqfile() (in module synapse.common), 798
reqGateKeys() (synapse.lib.cell.Cell method), 564
reqGateKeys() (synapse.lib.storm.Runtime method),

691
reqjsonsafe() (in module synapse.common), 798
reqJsonSafeStrict() (in module synapse.common),

797
reqKeyValid() (synapse.lib.config.Config method), 594
reqpath() (in module synapse.common), 798
reqRole() (synapse.lib.hiveauth.Auth method), 608
reqRoleByName() (synapse.lib.hiveauth.Auth method),

608
reqRuntSafe() (synapse.lib.ast.AstNode method), 532
reqStormMacro() (synapse.cortex.Cortex method), 821
reqUser() (synapse.lib.hiveauth.Auth method), 608
reqUserByName() (synapse.lib.hiveauth.Auth method),

609
reqUserByNameOrIden() (synapse.lib.hiveauth.Auth

method), 609
reqUserCanReadLayer() (synapse.lib.storm.Runtime

method), 691
reqValidStorm() (synapse.cortex.CoreApi method),

807
reqValidStorm() (synapse.cortex.Cortex method), 821
reqValidStormGraph() (synapse.cortex.Cortex

method), 822
ReqValidStormV1 (class in synapse.lib.httpapi), 616
reqValidTdef() (in module synapse.lib.trigger), 723
reqVersion() (in module synapse.lib.version), 732
reset() (in module synapse.lib.provenance), 664
result() (in module synapse.common), 798
result() (synapse.telepath.Task method), 845
resume() (synapse.lib.lmdbslab.Scan method), 640
resume() (synapse.lib.lmdbslab.ScanBack method), 641
resume() (synapse.lib.lmdbslab.ScanKeys method), 641
retnexc() (in module synapse.common), 798
Retry, 840
Return (class in synapse.lib.ast), 542
revCoreLayers() (synapse.lib.modelrev.ModelRev

method), 645
revModel20210126() (synapse.lib.modelrev.ModelRev

method), 645
revModel20210312() (synapse.lib.modelrev.ModelRev

method), 645
revModel20210528() (synapse.lib.modelrev.ModelRev

method), 645
revModel20210801() (synapse.lib.modelrev.ModelRev

method), 645

1608 Index

Synapse Documentation, Release 2.141.0

revModel20211112() (synapse.lib.modelrev.ModelRev
method), 645

revModel20220307() (synapse.lib.modelrev.ModelRev
method), 645

revModel20220315() (synapse.lib.modelrev.ModelRev
method), 645

revModel20220509() (synapse.lib.modelrev.ModelRev
method), 645

revModel20220706() (synapse.lib.modelrev.ModelRev
method), 645

revModel20220803() (synapse.lib.modelrev.ModelRev
method), 646

revModel20220901() (synapse.lib.modelrev.ModelRev
method), 646

revModel20221025() (synapse.lib.modelrev.ModelRev
method), 646

revModel20221123() (synapse.lib.modelrev.ModelRev
method), 646

revModel20221212() (synapse.lib.modelrev.ModelRev
method), 646

revModel20221220() (synapse.lib.modelrev.ModelRev
method), 646

revModel20230209() (synapse.lib.modelrev.ModelRev
method), 646

revModel_0_2_18() (synapse.lib.modelrev.ModelRev
method), 646

revModel_0_2_19() (synapse.lib.modelrev.ModelRev
method), 646

revModel_0_2_20() (synapse.lib.modelrev.ModelRev
method), 646

revModel_0_2_21() (synapse.lib.modelrev.ModelRev
method), 646

revoke() (synapse.lib.certdir.CRL method), 571
revoke() (synapse.lib.hiveauth.HiveUser method), 610
Rfc2822Addr (class in synapse.models.inet), 741
RiskModule (class in synapse.models.risk), 745
RobotHandler (class in synapse.lib.httpapi), 616
Role (class in synapse.lib.stormtypes), 713
role() (synapse.lib.hiveauth.Auth method), 609
roles() (synapse.lib.hiveauth.Auth method), 609
rotate() (synapse.lib.multislabseqn.MultiSlabSeqn

method), 651
rotate() (synapse.lib.nexus.NexsRoot method), 653
rotateNexsLog() (synapse.lib.cell.Cell method), 564
rotateNexsLog() (synapse.lib.cell.CellApi method),

569
roundup() (in module synapse.lib.stormlib.infosec), 512
rows() (synapse.cryotank.CryoApi method), 826
rows() (synapse.cryotank.CryoTank method), 828
rows() (synapse.lib.slabseqn.SlabSeqn method), 673
RstHelp (class in synapse.lib.autodoc), 547
rtypes (synapse.lib.stormtypes.StormTypesRegistry at-

tribute), 715
ruleFromText() (in module synapse.lib.stormtypes),

718
ruleFromText() (synapse.lib.stormtypes.LibAuth static

method), 700
run() (synapse.lib.ast.BreakOper method), 532
run() (synapse.lib.ast.CatchBlock method), 533
run() (synapse.lib.ast.CmdOper method), 533
run() (synapse.lib.ast.ContinueOper method), 533
run() (synapse.lib.ast.EditEdgeAdd method), 533
run() (synapse.lib.ast.EditEdgeDel method), 534
run() (synapse.lib.ast.EditNodeAdd method), 534
run() (synapse.lib.ast.EditParens method), 534
run() (synapse.lib.ast.EditPropDel method), 534
run() (synapse.lib.ast.EditPropSet method), 534
run() (synapse.lib.ast.EditTagAdd method), 534
run() (synapse.lib.ast.EditTagDel method), 534
run() (synapse.lib.ast.EditTagPropDel method), 534
run() (synapse.lib.ast.EditTagPropSet method), 534
run() (synapse.lib.ast.EditUnivDel method), 534
run() (synapse.lib.ast.Emit method), 535
run() (synapse.lib.ast.FiltOper method), 535
run() (synapse.lib.ast.FiniBlock method), 536
run() (synapse.lib.ast.ForLoop method), 536
run() (synapse.lib.ast.FormPivot method), 536
run() (synapse.lib.ast.Function method), 537
run() (synapse.lib.ast.IfStmt method), 538
run() (synapse.lib.ast.InitBlock method), 538
run() (synapse.lib.ast.LiftOper method), 538
run() (synapse.lib.ast.Lookup method), 539
run() (synapse.lib.ast.N1Walk method), 539
run() (synapse.lib.ast.N1WalkNPivo method), 539
run() (synapse.lib.ast.N2WalkNPivo method), 540
run() (synapse.lib.ast.PivotIn method), 540
run() (synapse.lib.ast.PivotInFrom method), 540
run() (synapse.lib.ast.PivotOut method), 540
run() (synapse.lib.ast.PivotToTags method), 541
run() (synapse.lib.ast.PropPivot method), 541
run() (synapse.lib.ast.PropPivotOut method), 541
run() (synapse.lib.ast.Query method), 541
run() (synapse.lib.ast.RawPivot method), 541
run() (synapse.lib.ast.Return method), 542
run() (synapse.lib.ast.Search method), 542
run() (synapse.lib.ast.SetItemOper method), 542
run() (synapse.lib.ast.SetVarOper method), 542
run() (synapse.lib.ast.Stop method), 542
run() (synapse.lib.ast.SubGraph method), 543
run() (synapse.lib.ast.SubQuery method), 543
run() (synapse.lib.ast.SwitchCase method), 544
run() (synapse.lib.ast.TryCatch method), 545
run() (synapse.lib.ast.VarEvalOper method), 546
run() (synapse.lib.ast.VarListSetOper method), 546
run() (synapse.lib.ast.WhileLoop method), 546
run() (synapse.lib.ast.YieldValu method), 546
run() (synapse.lib.rstorm.StormRst method), 667
run() (synapse.lib.storm.StormDmon method), 694

Index 1609

Synapse Documentation, Release 2.141.0

run_imap_coro() (in module
synapse.lib.stormlib.imap), 511

RunAsCmd (class in synapse.lib.storm), 690
runBackup() (synapse.lib.cell.Cell method), 564
runBackup() (synapse.lib.cell.CellApi method), 570
runCmdLine() (synapse.lib.cli.Cli method), 589
runCmdLine() (synapse.lib.cli.Cmd method), 590
runCmdLine() (synapse.lib.jupyter.CmdrCore method),

622
runCmdLine() (synapse.lib.jupyter.StormCore method),

623
runCmdLine() (synapse.lib.rstorm.StormOutput

method), 666
runCmdLine() (synapse.tools.storm.StormCli method),

772
runCmdLoop() (synapse.lib.cli.Cli method), 589
runCmdOpts() (synapse.cmds.boss.KillCmd method),

493
runCmdOpts() (synapse.cmds.boss.PsCmd method), 493
runCmdOpts() (synapse.cmds.cortex.Log method), 494
runCmdOpts() (synapse.cmds.cortex.StormCmd

method), 495
runCmdOpts() (synapse.cmds.cron.At method), 496
runCmdOpts() (synapse.cmds.cron.Cron method), 496
runCmdOpts() (synapse.cmds.hive.HiveCmd method),

496
runCmdOpts() (synapse.cmds.trigger.Trigger method),

497
runCmdOpts() (synapse.lib.cli.Cmd method), 590
runCmdOpts() (synapse.lib.cli.CmdHelp method), 591
runCmdOpts() (synapse.lib.cli.CmdLocals method), 591
runCmdOpts() (synapse.lib.cli.CmdQuit method), 591
runCmdOpts() (synapse.lib.rstorm.StormOutput

method), 667
runCmdOpts() (synapse.tools.storm.ExportCmd

method), 771
runCmdOpts() (synapse.tools.storm.PullFileCmd

method), 771
runCmdOpts() (synapse.tools.storm.PushFileCmd

method), 771
runCmdOpts() (synapse.tools.storm.RunFileCmd

method), 772
runcmdr() (in module synapse.tools.cmdr), 768
runCoreNodes() (synapse.tests.utils.SynTest method),

758
runCsvExport() (in module synapse.tools.csvtool), 768
runCsvImport() (in module synapse.tools.csvtool), 768
runDynTask() (in module synapse.lib.dyndeps), 599
RunFileCmd (class in synapse.tools.storm), 772
runGcCollect() (synapse.lib.cell.CellApi method), 570
runItemCmdr() (in module synapse.lib.cmdr), 592
runJsSchema() (in module synapse.lib.stormlib.json),

513
runLayrPull() (synapse.cortex.Cortex method), 822

runLayrPush() (synapse.cortex.Cortex method), 822
runMirrorLoop() (synapse.lib.nexus.NexsRoot

method), 653
runNodeAdd() (synapse.lib.trigger.Triggers method),

722
runNodeAdd() (synapse.lib.view.View method), 734
runNodeDel() (synapse.lib.trigger.Triggers method),

722
runNodeDel() (synapse.lib.view.View method), 734
runPropSet() (synapse.lib.trigger.Triggers method),

723
runPropSet() (synapse.lib.view.View method), 734
runRstCmdLine() (synapse.lib.rstorm.StormCliOutput

method), 666
runRuntLift() (synapse.cortex.Cortex method), 822
runRuntPropDel() (synapse.cortex.Cortex method),

822
runRuntPropSet() (synapse.cortex.Cortex method),

822
runStorm() (synapse.lib.modelrev.ModelRev method),

646
runStormDmon() (synapse.cortex.Cortex method), 822
runStormSvcEvent() (synapse.cortex.Cortex method),

822
runTagAdd() (synapse.lib.trigger.Triggers method), 723
runTagAdd() (synapse.lib.view.View method), 735
runTagDel() (synapse.lib.trigger.Triggers method), 723
runTagDel() (synapse.lib.view.View method), 735
Runtime (class in synapse.lib.storm), 690
runtopaque (synapse.lib.ast.ArgvQuery attribute), 531
runtopaque (synapse.lib.ast.AstNode attribute), 532
runtopaque (synapse.lib.ast.EmbedQuery attribute),

535
runtopaque (synapse.lib.ast.Function attribute), 537
rx() (synapse.lib.link.Link method), 637
rx() (synapse.lib.stormhttp.WebSocket method), 698

S
sa_family (synapse.lib.platforms.windows.sockaddr at-

tribute), 506
sanitizeUrl() (in module synapse.lib.urlhelp), 730
save() (synapse.axon.Axon method), 781
save() (synapse.axon.UpLoad method), 790
save() (synapse.axon.UpLoadProxy method), 791
save() (synapse.cmds.cortex.Log method), 494
save() (synapse.lib.slabseqn.SlabSeqn method), 673
save() (synapse.lib.stormlib.yaml.LibYaml method), 525
saveCaCert() (synapse.lib.aha.AhaCell method), 530
saveCaCertByts() (synapse.lib.certdir.CertDir

method), 584
saveCertPem() (synapse.lib.certdir.CertDir method),

584
saveHiveTree() (synapse.lib.cell.Cell method), 564
saveHiveTree() (synapse.lib.cell.CellApi method), 570

1610 Index

Synapse Documentation, Release 2.141.0

saveHiveTree() (synapse.lib.hive.Hive method), 604
saveHiveTree() (synapse.lib.hive.HiveApi method),

605
saveHostCert() (synapse.lib.aha.AhaCell method),

530
saveHostCertByts() (synapse.lib.certdir.CertDir

method), 584
saveLayerNodeEdits() (synapse.cortex.CoreApi

method), 807
saveLayerNodeEdits() (synapse.cortex.Cortex

method), 822
saveNodeEdits() (synapse.lib.layer.Layer method),

632
saveNodeEdits() (synapse.lib.layer.LayerApi method),

634
saveNodeEdits() (synapse.lib.snap.Snap method), 677
saveNodeEdits() (synapse.lib.view.ViewApi method),

735
savePkeyPem() (synapse.lib.certdir.CertDir method),

584
saveto() (synapse.lib.lmdbslab.LmdbBackup method),

639
saveToNexs() (synapse.lib.nexus.Pusher method), 653
saveUserCert() (synapse.lib.aha.AhaCell method),

530
saveUserCertByts() (synapse.lib.certdir.CertDir

method), 584
saveVectToNode() (synapse.lib.stormlib.infosec.CvssLib

method), 512
Scan (class in synapse.lib.lmdbslab), 640
ScanBack (class in synapse.lib.lmdbslab), 641
scanByDups() (synapse.lib.layer.IndxBy method), 628
scanByDups() (synapse.lib.lmdbslab.Slab method), 643
scanByDupsBack() (synapse.lib.lmdbslab.Slab

method), 643
scanByFull() (synapse.lib.lmdbslab.Slab method), 643
scanByFullBack() (synapse.lib.lmdbslab.Slab

method), 643
scanByPref() (synapse.lib.layer.IndxBy method), 628
scanByPref() (synapse.lib.lmdbslab.Slab method), 643
scanByPrefBack() (synapse.lib.lmdbslab.Slab

method), 643
scanByRange() (synapse.lib.layer.IndxBy method), 628
scanByRange() (synapse.lib.lmdbslab.Slab method),

643
scanByRangeBack() (synapse.lib.lmdbslab.Slab

method), 643
ScanKeys (class in synapse.lib.lmdbslab), 641
scanKeys() (synapse.lib.lmdbslab.Slab method), 643
scanKeysByPref() (synapse.lib.lmdbslab.Slab

method), 643
schedCallSafe() (synapse.lib.base.Base method), 550
schedCoro() (synapse.lib.base.Base method), 551
schedCoroSafe() (synapse.lib.base.Base method), 551

schedCoroSafePend() (synapse.lib.base.Base method),
551

schedGenr() (in module synapse.lib.base), 553
SchemaViolation, 840
scol (synapse.lib.parser.AstInfo attribute), 662
Scope (class in synapse.lib.scope), 667
scrape() (in module synapse.lib.scrape), 671
ScrapeCmd (class in synapse.lib.storm), 692
scrapeIface() (synapse.lib.view.View method), 735
scrub() (synapse.lib.snap.Scrubber method), 674
Scrubber (class in synapse.lib.snap), 674
scrubLines() (in module synapse.lib.autodoc), 548
Search (class in synapse.lib.ast), 542
search() (synapse.lib.parser.Parser method), 663
search() (synapse.lib.stormlib.imap.ImapServer

method), 511
search() (synapse.lib.stormtypes.LibRegx method), 705
second() (in module synapse.lib.time), 722
second() (synapse.lib.stormtypes.LibTime method), 707
seen() (synapse.lib.node.Node method), 656
select() (synapse.lib.stormlib.imap.ImapServer

method), 511
selfSignCert() (synapse.lib.certdir.CertDir method),

584
SemVer (class in synapse.models.infotech), 743
send() (synapse.lib.link.Link method), 637
send() (synapse.lib.stormlib.smtp.SmtpMessage

method), 522
sendAuthRequired() (synapse.lib.httpapi.HandlerBase

method), 615
sendRestErr() (synapse.lib.httpapi.HandlerBase

method), 615
sendRestExc() (synapse.lib.httpapi.HandlerBase

method), 615
sendRestRetn() (synapse.lib.httpapi.HandlerBase

method), 615
serialize() (in module synapse.tools.healthcheck), 769
Service (class in synapse.lib.stormtypes), 713
Sess (class in synapse.daemon), 829
Sess (class in synapse.lib.httpapi), 617
sess() (synapse.lib.httpapi.HandlerBase method), 615
Set (class in synapse.lib.spooled), 678
Set (class in synapse.lib.stormtypes), 713
set() (in module synapse.lib.scope), 669
set() (synapse.exc.SynErr method), 841
set() (synapse.lib.cli.Cli method), 590
set() (synapse.lib.hive.Hive method), 604
set() (synapse.lib.hive.HiveDict method), 605
set() (synapse.lib.hive.Node method), 606
set() (synapse.lib.hive.TeleHive method), 606
set() (synapse.lib.httpapi.Sess method), 617
set() (synapse.lib.link.Link method), 637
set() (synapse.lib.lmdbslab.GuidStor method), 638
set() (synapse.lib.lmdbslab.HotCount method), 638

Index 1611

Synapse Documentation, Release 2.141.0

set() (synapse.lib.lmdbslab.HotKeyVal method), 639
set() (synapse.lib.lmdbslab.SlabDict method), 645
set() (synapse.lib.node.Node method), 656
set() (synapse.lib.scope.Scope method), 668
set() (synapse.lib.slaboffs.SlabOffs method), 672
set() (synapse.lib.snap.ProtoNode method), 674
set() (synapse.lib.spooled.Dict method), 678
set() (synapse.lib.stormtypes.LibJsonStor method), 704
set() (synapse.lib.stormtypes.NodeProps method), 710
set() (synapse.lib.stormtypes.Trigger method), 716
set() (synapse.lib.stormtypes.UserJson method), 717
set() (synapse.lib.trigger.Trigger method), 722
set_default_headers()

(synapse.lib.httpapi.HandlerBase method),
615

set_inputs() (synapse.lib.storm.Parser method), 689
set_key() (synapse.lib.lmdbslab.Scan method), 640
set_key() (synapse.lib.lmdbslab.ScanBack method),

641
set_pool_logging() (in module synapse.lib.coro), 598
set_range() (synapse.lib.lmdbslab.Scan method), 640
set_range() (synapse.lib.lmdbslab.ScanBack method),

641
setAdmin() (synapse.lib.hiveauth.HiveUser method),

610
setAhaSvcDown() (synapse.lib.aha.AhaCell method),

530
setAndSync() (synapse.lib.hive.HiveApi method), 605
setArchived() (synapse.lib.hiveauth.HiveUser

method), 610
setArgv() (synapse.lib.storm.Cmd method), 680
setAuthAdmin() (synapse.lib.cell.CellApi method), 570
setBytsToAbrv() (synapse.lib.lmdbslab.SlabAbrv

method), 644
setCellActive() (synapse.lib.cell.Cell method), 564
setCellUser() (synapse.lib.cell.CellApi method), 570
setCmprCtor() (synapse.lib.types.Type method), 730
setConfFromEnvs() (synapse.lib.config.Config

method), 594
setConfFromFile() (synapse.lib.config.Config

method), 595
setConfFromOpts() (synapse.lib.config.Config

method), 595
setData() (synapse.lib.node.Node method), 656
setData() (synapse.lib.snap.ProtoNode method), 674
setdefault() (synapse.exc.SynErr method), 841
setdefault() (synapse.lib.hive.HiveDict method), 605
setDeprLock() (synapse.cortex.Cortex method), 822
setFeedFunc() (synapse.cortex.Cortex method), 822
setGraph() (synapse.lib.storm.Runtime method), 691
setGreedCoro() (in module synapse.glob), 842
setHiveKey() (synapse.lib.cell.Cell method), 564
setHiveKey() (synapse.lib.cell.CellApi method), 570
setHttpSessInfo() (synapse.lib.cell.Cell method), 564

setiden() (in module synapse.lib.provenance), 664
setIndex() (synapse.lib.multislabseqn.MultiSlabSeqn

method), 652
setindex() (synapse.lib.nexus.NexsRoot method), 653
setitem() (synapse.lib.stormtypes.CmdOpts method),

699
setitem() (synapse.lib.stormtypes.Dict method), 699
setitem() (synapse.lib.stormtypes.List method), 709
setitem() (synapse.lib.stormtypes.NodeProps method),

710
setitem() (synapse.lib.stormtypes.PathMeta method),

711
setitem() (synapse.lib.stormtypes.PathVars method),

711
setitem() (synapse.lib.stormtypes.StormType method),

715
setitem() (synapse.lib.stormtypes.UserProfile method),

717
setitem() (synapse.lib.stormtypes.UserVars method),

717
SetItemOper (class in synapse.lib.ast), 542
setJsonObj() (synapse.cortex.Cortex method), 822
setJsonObjProp() (synapse.cortex.Cortex method),

822
setLayerInfo() (synapse.lib.layer.Layer method), 632
setLayers() (synapse.lib.view.View method), 735
setLiftHintCmprCtor() (synapse.lib.types.Type

method), 730
setLocked() (synapse.lib.hiveauth.HiveUser method),

610
setlogging() (in module synapse.common), 798
setMesg() (synapse.tests.utils.AsyncStreamEvent

method), 747
setMesg() (synapse.tests.utils.StreamEvent method),

748
setModelVers() (synapse.lib.layer.Layer method), 632
setName() (synapse.lib.hiveauth.HiveRole method), 609
setName() (synapse.lib.hiveauth.HiveUser method), 610
setNexsIndx() (synapse.lib.cell.Cell method), 564
setNexsReady() (synapse.lib.nexus.NexsRoot method),

653
setNexsRoot() (synapse.lib.nexus.Pusher method), 653
setNodeProp() (synapse.cortex.CoreApi method), 807
setNormFunc() (synapse.lib.types.Type method), 730
setOAuthAuthCode() (synapse.lib.oauth.OAuthMixin

method), 661
setOffset() (synapse.cryotank.CryoTank method), 828
setOpt() (synapse.lib.storm.Runtime method), 691
setPasswd() (synapse.lib.hiveauth.HiveUser method),

610
setPathLink() (synapse.lib.jsonstor.JsonStor method),

620
setPathLink() (synapse.lib.jsonstor.JsonStorApi

method), 621

1612 Index

Synapse Documentation, Release 2.141.0

setPathLink() (synapse.lib.jsonstor.JsonStorCell
method), 622

setPathObj() (synapse.lib.jsonstor.JsonStor method),
620

setPathObj() (synapse.lib.jsonstor.JsonStorApi
method), 621

setPathObj() (synapse.lib.jsonstor.JsonStorCell
method), 622

setPathObjProp() (synapse.lib.jsonstor.JsonStor
method), 620

setPathObjProp() (synapse.lib.jsonstor.JsonStorApi
method), 621

setPathObjProp() (synapse.lib.jsonstor.JsonStorCell
method), 622

setProcName() (in module
synapse.lib.platforms.common), 505

setProp() (synapse.datamodel.Form method), 830
setPropAbrv() (synapse.lib.layer.Layer method), 632
setReady() (synapse.daemon.Daemon method), 829
setRoleInfo() (synapse.lib.hiveauth.Auth method),

609
setRoleName() (synapse.lib.cell.Cell method), 564
setRoleName() (synapse.lib.hiveauth.Auth method),

609
setRoleRules() (synapse.lib.cell.Cell method), 564
setRoleRules() (synapse.lib.cell.CellApi method), 570
setRoles() (synapse.lib.hiveauth.HiveUser method),

610
setRules() (synapse.lib.hiveauth.HiveRuler method),

609
sets() (synapse.lib.lmdbslab.MultiQueue method), 640
setSessItem() (synapse.daemon.Sess method), 829
setSodeDirty() (synapse.lib.layer.Layer method), 632
setStatus() (synapse.lib.health.HealthCheck method),

603
setStormCmd() (synapse.cortex.CoreApi method), 807
setStormCmd() (synapse.cortex.Cortex method), 822
setStormGraphPerm() (synapse.cortex.Cortex

method), 822
setStormMacroPerm() (synapse.cortex.Cortex

method), 822
setStormSvcEvents() (synapse.cortex.Cortex

method), 822
setStormVar() (synapse.cortex.CoreApi method), 807
setStormVar() (synapse.cortex.Cortex method), 823
setSynDir() (synapse.tests.utils.SynTest method), 758
setTagModel() (synapse.cortex.Cortex method), 823
setTagProp() (synapse.lib.node.Node method), 656
setTagProp() (synapse.lib.snap.ProtoNode method),

674
setTagPropAbrv() (synapse.lib.layer.Layer method),

632
setTriggerInfo() (synapse.lib.view.View method),

735

setTstEnvars() (synapse.tests.utils.SynTest method),
758

setup() (in module synapse.tools.pullfile), 770
setUserAdmin() (synapse.lib.cell.Cell method), 564
setUserAdmin() (synapse.lib.cell.CellApi method), 570
setUserArchived() (synapse.lib.cell.Cell method), 564
setUserArchived() (synapse.lib.cell.CellApi method),

570
setUserEmail() (synapse.lib.cell.Cell method), 565
setUserEmail() (synapse.lib.cell.CellApi method), 570
setUserInfo() (synapse.lib.hiveauth.Auth method),

609
setUserLocked() (synapse.cortex.Cortex method), 824
setUserLocked() (synapse.lib.cell.Cell method), 565
setUserLocked() (synapse.lib.cell.CellApi method),

570
setUserName() (synapse.lib.cell.Cell method), 565
setUserName() (synapse.lib.hiveauth.Auth method),

609
setUserPasswd() (synapse.lib.cell.Cell method), 565
setUserPasswd() (synapse.lib.cell.CellApi method),

570
setUserProfInfo() (synapse.lib.cell.Cell method), 565
setUserProfInfo() (synapse.lib.cell.CellApi method),

570
setUserRoles() (synapse.lib.cell.Cell method), 565
setUserRoles() (synapse.lib.cell.CellApi method), 570
setUserRules() (synapse.lib.cell.Cell method), 565
setUserRules() (synapse.lib.cell.CellApi method), 570
setUserVarValu() (synapse.lib.cell.Cell method), 565
setVar() (synapse.lib.node.Path method), 657
setVar() (synapse.lib.storm.Runtime method), 691
SetVarOper (class in synapse.lib.ast), 542
setViewInfo() (synapse.lib.view.View method), 735
setViewLayers() (synapse.cortex.Cortex method), 824
Share (class in synapse.lib.share), 672
Share (class in synapse.telepath), 844
share() (synapse.daemon.Daemon method), 829
sibling() (synapse.lib.ast.AstNode method), 532
sign() (synapse.lib.crypto.ecc.PriKey method), 499
sign() (synapse.lib.crypto.rsa.PriKey method), 502
signCertAs() (synapse.lib.certdir.CertDir method),

584
signedint64en() (in module synapse.common), 799
signedint64un() (in module synapse.common), 799
signext() (synapse.lib.stormlib.hex.HexLib method),

510
signHostCsr() (synapse.lib.aha.AhaApi method), 528
signHostCsr() (synapse.lib.aha.AhaCell method), 530
signHostCsr() (synapse.lib.aha.ProvApi method), 531
signHostCsr() (synapse.lib.certdir.CertDir method),

585
signitem() (synapse.lib.crypto.rsa.PriKey method),

502

Index 1613

Synapse Documentation, Release 2.141.0

signUserCsr() (synapse.lib.aha.AhaApi method), 528
signUserCsr() (synapse.lib.aha.AhaCell method), 530
signUserCsr() (synapse.lib.aha.EnrollApi method),

531
signUserCsr() (synapse.lib.aha.ProvApi method), 531
signUserCsr() (synapse.lib.certdir.CertDir method),

585
size() (synapse.axon.Axon method), 781
size() (synapse.axon.AxonApi method), 787
size() (synapse.lib.lmdbslab.MultiQueue method), 640
size() (synapse.lib.queue.Queue method), 664
size() (synapse.lib.stormlib.stix.StixBundle method),

523
skip() (synapse.tests.utils.SynTest method), 758
skipIfNexusReplay() (synapse.tests.utils.SynTest

method), 758
skipIfNoInternet() (synapse.tests.utils.SynTest

method), 758
skipIfNoPath() (synapse.tests.utils.SynTest method),

758
skipLongTest() (synapse.tests.utils.SynTest method),

759
Slab (class in synapse.lib.lmdbslab), 641
SLAB_MAP_SIZE (in module synapse.lib.cell), 571
SlabAbrv (class in synapse.lib.lmdbslab), 644
SlabAlreadyOpen, 840
SlabDict (class in synapse.lib.lmdbslab), 644
slabFilename() (synapse.lib.multislabseqn.MultiSlabSeqn

static method), 652
SlabHive (class in synapse.lib.hive), 606
SlabInUse, 840
SlabOffs (class in synapse.lib.slaboffs), 672
SlabSeqn (class in synapse.lib.slabseqn), 672
SleepCmd (class in synapse.lib.storm), 692
slice() (synapse.cryotank.CryoApi method), 826
slice() (synapse.cryotank.CryoTank method), 828
slice() (synapse.cryotank.TankApi method), 828
slice() (synapse.lib.queue.AQueue method), 664
slice() (synapse.lib.queue.Queue method), 664
slice() (synapse.lib.slabseqn.SlabSeqn method), 674
slice() (synapse.lib.stormtypes.Bytes method), 699
slice() (synapse.lib.stormtypes.List method), 709
sliceBack() (synapse.lib.slabseqn.SlabSeqn method),

674
slices() (synapse.lib.queue.Queue method), 664
sline (synapse.lib.parser.AstInfo attribute), 663
SmtpLib (class in synapse.lib.stormlib.smtp), 522
SmtpMessage (class in synapse.lib.stormlib.smtp), 522
Snap (class in synapse.lib.snap), 675
snap() (synapse.cortex.Cortex method), 824
snap() (synapse.lib.view.View method), 735
snapctor() (synapse.lib.view.View class method), 735
SnapEditor (class in synapse.lib.snap), 677
sockaddr (class in synapse.lib.platforms.windows), 506

soff (synapse.lib.parser.AstInfo attribute), 663
sorted() (synapse.lib.stormtypes.StatTally method), 714
sorteq() (synapse.tests.utils.SynTest method), 759
source() (synapse.utils.stormcov.plugin.StormReporter

method), 776
spawn() (in module synapse.lib.coro), 598
SpawnExit, 840
spin() (in module synapse.common), 799
spin() (synapse.lib.coro.GenrHelp method), 596
SpinCmd (class in synapse.lib.storm), 692
spliceHistory() (synapse.cortex.CoreApi method),

807
spliceHistory() (synapse.cortex.Cortex method), 824
SpliceListCmd (class in synapse.lib.storm), 693
splices() (synapse.cortex.CoreApi method), 807
splices() (synapse.lib.layer.Layer method), 632
splices() (synapse.lib.layer.LayerApi method), 634
splicesBack() (synapse.cortex.CoreApi method), 807
splicesBack() (synapse.lib.layer.Layer method), 632
splicetypes (synapse.cmds.cortex.Log attribute), 494
SpliceUndoCmd (class in synapse.lib.storm), 693
Spooled (class in synapse.lib.spooled), 678
stablebuid() (synapse.tests.utils.SynTest method), 759
stableguid() (synapse.tests.utils.SynTest method), 759
start() (synapse.lib.agenda.Agenda method), 526
start() (synapse.lib.storm.DmonManager method), 682
startup() (synapse.lib.nexus.NexsRoot method), 653
stat() (synapse.cortex.CoreApi method), 807
stat() (synapse.cortex.Cortex method), 824
stat() (synapse.lib.layer.Layer method), 633
stat() (synapse.lib.lmdbslab.Slab method), 644
stat() (synapse.lib.slabseqn.SlabSeqn method), 674
statinfo() (synapse.lib.lmdbslab.Slab method), 644
StatTally (class in synapse.lib.stormtypes), 714
status() (synapse.lib.lmdbslab.MultiQueue method),

640
stems() (synapse.lib.types.Loc method), 726
StepTimeout, 840
StixBundle (class in synapse.lib.stormlib.stix), 523
Stop (class in synapse.lib.ast), 542
stop() (synapse.lib.agenda.Agenda method), 526
stop() (synapse.lib.storm.DmonManager method), 682
stop() (synapse.lib.storm.StormDmon method), 694
storm() (synapse.cortex.CoreApi method), 807
storm() (synapse.cortex.Cortex method), 824
storm() (synapse.lib.jupyter.CmdrCore method), 622
storm() (synapse.lib.jupyter.StormCore method), 623
storm() (synapse.lib.node.Node method), 656
storm() (synapse.lib.snap.Snap method), 677
storm() (synapse.lib.storm.Runtime method), 691
storm() (synapse.lib.view.View method), 735
storm() (synapse.tools.storm.StormCli method), 772
StormBreak, 697
StormCallV1 (class in synapse.lib.httpapi), 617

1614 Index

Synapse Documentation, Release 2.141.0

StormCli (class in synapse.tools.storm), 772
StormCliCmd (class in synapse.tools.storm), 772
StormCliOutput (class in synapse.lib.rstorm), 666
StormCmd (class in synapse.cmds.cortex), 494
stormcmdargs() (synapse.lib.parser.AstConverter

method), 662
StormContinue, 697
StormCore (class in synapse.lib.jupyter), 623
StormCtrlFlow, 697
StormCtrlTracer (class in

synapse.utils.stormcov.plugin), 774
StormDmon (class in synapse.lib.storm), 694
StormExit, 697
StormExportV1 (class in synapse.lib.httpapi), 617
stormfunc() (in module synapse.lib.stormtypes), 718
StormHandler (class in synapse.lib.httpapi), 617
stormHasNoErr() (synapse.tests.utils.SynTest method),

759
stormHasNoWarnErr() (synapse.tests.utils.SynTest

method), 759
StormHiveDict (class in synapse.lib.stormtypes), 714
stormIsInErr() (synapse.tests.utils.SynTest method),

759
stormIsInPrint() (synapse.tests.utils.SynTest method),

759
stormIsInWarn() (synapse.tests.utils.SynTest method),

759
StormLexer (class in synapse.lib.storm_format), 696
stormlist() (synapse.cortex.Cortex method), 824
stormlist() (synapse.lib.view.View method), 735
stormlogger (in module synapse.cortex), 826
StormNodesV1 (class in synapse.lib.httpapi), 617
stormNotInPrint() (synapse.tests.utils.SynTest

method), 760
StormOutput (class in synapse.lib.rstorm), 666
StormPkgConflicts, 841
StormPkgRequires, 841
StormPkgTest (class in synapse.tests.utils), 748
StormPlugin (class in synapse.utils.stormcov.plugin),

774
StormRaise, 841
StormReporter (class in synapse.utils.stormcov.plugin),

776
stormrepr() (synapse.lib.stormlib.json.JsonSchema

method), 513
stormrepr() (synapse.lib.stormtypes.CmdOpts

method), 699
stormrepr() (synapse.lib.stormtypes.Dict method), 699
stormrepr() (synapse.lib.stormtypes.Lib method), 700
stormrepr() (synapse.lib.stormtypes.List method), 709
stormrepr() (synapse.lib.stormtypes.Number method),

711
stormrepr() (synapse.lib.stormtypes.Prim method), 712

stormrepr() (synapse.lib.stormtypes.Proxy method),
712

stormrepr() (synapse.lib.stormtypes.ProxyGenrMethod
method), 712

stormrepr() (synapse.lib.stormtypes.ProxyMethod
method), 712

stormrepr() (synapse.lib.stormtypes.Query method),
713

stormrepr() (synapse.lib.stormtypes.Queue method),
713

stormrepr() (synapse.lib.stormtypes.Role method), 713
stormrepr() (synapse.lib.stormtypes.Set method), 714
stormrepr() (synapse.lib.stormtypes.User method), 717
StormReturn, 697
StormRst (class in synapse.lib.rstorm), 667
StormRuntimeError, 841
StormStop, 697
stormstring() (in module synapse.lib.chop), 588
StormSvc (class in synapse.lib.stormsvc), 698
StormSvcClient (class in synapse.lib.stormsvc), 698
StormType (class in synapse.lib.stormtypes), 714
StormTypesRegistry (class in synapse.lib.stormtypes),

715
StormV1 (class in synapse.lib.httpapi), 617
StormVarListError, 841
StormVarsGetV1 (class in synapse.lib.httpapi), 617
StormVarsPopV1 (class in synapse.lib.httpapi), 617
StormVarsSetV1 (class in synapse.lib.httpapi), 618
storNodeDele() (synapse.lib.hive.Hive method), 604
storNodeDele() (synapse.lib.hive.SlabHive method),

606
storNodeEdits() (synapse.lib.layer.Layer method),

633
storNodeEdits() (synapse.lib.layer.LayerApi method),

634
storNodeEdits() (synapse.lib.view.View method), 735
storNodeEdits() (synapse.lib.view.ViewApi method),

735
storNodeEditsNoLift() (synapse.lib.layer.Layer

method), 633
storNodeEditsNoLift() (synapse.lib.layer.LayerApi

method), 634
storNodeValu() (synapse.lib.hive.Hive method), 604
storNodeValu() (synapse.lib.hive.SlabHive method),

606
StorType (class in synapse.lib.layer), 635
stortype (synapse.lib.types.Bool attribute), 723
stortype (synapse.lib.types.Comp attribute), 723
stortype (synapse.lib.types.Data attribute), 724
stortype (synapse.lib.types.Duration attribute), 724
stortype (synapse.lib.types.Edge attribute), 724
stortype (synapse.lib.types.Float attribute), 724
stortype (synapse.lib.types.Guid attribute), 725
stortype (synapse.lib.types.Hex attribute), 725

Index 1615

Synapse Documentation, Release 2.141.0

stortype (synapse.lib.types.HugeNum attribute), 725
stortype (synapse.lib.types.Ival attribute), 726
stortype (synapse.lib.types.Loc attribute), 726
stortype (synapse.lib.types.Ndef attribute), 726
stortype (synapse.lib.types.NodeProp attribute), 726
stortype (synapse.lib.types.Range attribute), 727
stortype (synapse.lib.types.Str attribute), 727
stortype (synapse.lib.types.Time attribute), 728
stortype (synapse.lib.types.TimeEdge attribute), 728
stortype (synapse.lib.types.Type attribute), 730
stortype (synapse.lib.types.Velocity attribute), 730
stortype (synapse.models.geospace.LatLong attribute),

740
stortype (synapse.models.inet.Fqdn attribute), 740
stortype (synapse.models.inet.IPv4 attribute), 741
stortype (synapse.models.inet.IPv6 attribute), 741
stortype (synapse.tests.utils.TestSubType attribute), 762
stortype (synapse.tests.utils.TestType attribute), 763
stortype (synapse.tests.utils.ThreeType attribute), 763
StorTypeFloat (class in synapse.lib.layer), 635
StorTypeFqdn (class in synapse.lib.layer), 635
StorTypeGuid (class in synapse.lib.layer), 635
StorTypeHier (class in synapse.lib.layer), 635
StorTypeHugeNum (class in synapse.lib.layer), 636
StorTypeInt (class in synapse.lib.layer), 636
StorTypeIpv6 (class in synapse.lib.layer), 636
StorTypeIval (class in synapse.lib.layer), 636
StorTypeLatLon (class in synapse.lib.layer), 636
StorTypeLoc (class in synapse.lib.layer), 636
StorTypeMsgp (class in synapse.lib.layer), 636
StorTypeTag (class in synapse.lib.layer), 636
StorTypeTime (class in synapse.lib.layer), 636
StorTypeUtf8 (class in synapse.lib.layer), 637
Str (class in synapse.lib.stormtypes), 715
Str (class in synapse.lib.types), 727
StreamEvent (class in synapse.tests.utils), 748
StreamHandler (class in synapse.lib.httpapi), 618
strify() (synapse.lib.stormhttp.LibHttp method), 697
strify() (synapse.lib.stormtypes.LibAxon method), 701
SubGraph (class in synapse.lib.ast), 542
SubqCond (class in synapse.lib.ast), 543
SubQuery (class in synapse.lib.ast), 543
subquery() (synapse.lib.parser.AstConverter method),

662
substrate_check() (in module

synapse.lib.crypto.coin), 498
SudoCmd (class in synapse.lib.storm), 694
suppress_logging() (in module synapse.lib.jupyter),

626
suppress_logging() (synapse.lib.jupyter.CmdrCore

method), 623
suppress_logging() (synapse.lib.jupyter.StormCore

method), 623
svciden (synapse.lib.storm.Cmd attribute), 680

SwitchCase (class in synapse.lib.ast), 544
switchcase() (synapse.lib.parser.AstConverter

method), 662
switchext() (in module synapse.common), 799
synapse

module, 493
synapse.axon

module, 776
synapse.cells

module, 791
synapse.cmds

module, 493
synapse.cmds.boss

module, 493
synapse.cmds.cortex

module, 494
synapse.cmds.cron

module, 495
synapse.cmds.hive

module, 496
synapse.cmds.trigger

module, 497
synapse.common

module, 791
synapse.cortex

module, 800
synapse.cryotank

module, 826
synapse.daemon

module, 829
synapse.data

module, 497
synapse.datamodel

module, 830
synapse.exc

module, 833
synapse.glob

module, 842
synapse.lib

module, 497
synapse.lib.agenda

module, 525
synapse.lib.aha

module, 527
synapse.lib.ast

module, 531
synapse.lib.autodoc

module, 547
synapse.lib.base

module, 548
synapse.lib.boss

module, 554
synapse.lib.cache

module, 554

1616 Index

Synapse Documentation, Release 2.141.0

synapse.lib.cell
module, 555

synapse.lib.certdir
module, 571

synapse.lib.chop
module, 587

synapse.lib.cli
module, 589

synapse.lib.cmd
module, 591

synapse.lib.cmdr
module, 592

synapse.lib.config
module, 593

synapse.lib.const
module, 596

synapse.lib.coro
module, 596

synapse.lib.crypto
module, 497

synapse.lib.crypto.coin
module, 497

synapse.lib.crypto.ecc
module, 498

synapse.lib.crypto.passwd
module, 501

synapse.lib.crypto.rsa
module, 501

synapse.lib.crypto.tinfoil
module, 503

synapse.lib.datfile
module, 598

synapse.lib.dyndeps
module, 599

synapse.lib.encoding
module, 599

synapse.lib.gis
module, 600

synapse.lib.grammar
module, 601

synapse.lib.hashitem
module, 602

synapse.lib.hashset
module, 602

synapse.lib.health
module, 603

synapse.lib.hive
module, 603

synapse.lib.hiveauth
module, 607

synapse.lib.httpapi
module, 611

synapse.lib.ingest
module, 619

synapse.lib.interval
module, 619

synapse.lib.jsonstor
module, 619

synapse.lib.jupyter
module, 622

synapse.lib.layer
module, 627

synapse.lib.link
module, 637

synapse.lib.lmdbslab
module, 638

synapse.lib.modelrev
module, 645

synapse.lib.module
module, 646

synapse.lib.modules
module, 648

synapse.lib.msgpack
module, 648

synapse.lib.multislabseqn
module, 651

synapse.lib.nexus
module, 652

synapse.lib.node
module, 654

synapse.lib.oauth
module, 661

synapse.lib.output
module, 661

synapse.lib.parser
module, 662

synapse.lib.platforms
module, 505

synapse.lib.platforms.common
module, 505

synapse.lib.platforms.darwin
module, 505

synapse.lib.platforms.freebsd
module, 505

synapse.lib.platforms.linux
module, 505

synapse.lib.platforms.windows
module, 506

synapse.lib.provenance
module, 664

synapse.lib.queue
module, 664

synapse.lib.ratelimit
module, 665

synapse.lib.reflect
module, 665

synapse.lib.rstorm
module, 666

Index 1617

Synapse Documentation, Release 2.141.0

synapse.lib.scope
module, 667

synapse.lib.scrape
module, 669

synapse.lib.share
module, 672

synapse.lib.slaboffs
module, 672

synapse.lib.slabseqn
module, 672

synapse.lib.snap
module, 674

synapse.lib.spooled
module, 678

synapse.lib.storm
module, 678

synapse.lib.storm_format
module, 696

synapse.lib.stormctrl
module, 697

synapse.lib.stormhttp
module, 697

synapse.lib.stormlib
module, 507

synapse.lib.stormlib.auth
module, 507

synapse.lib.stormlib.backup
module, 507

synapse.lib.stormlib.basex
module, 507

synapse.lib.stormlib.cell
module, 507

synapse.lib.stormlib.compression
module, 508

synapse.lib.stormlib.easyperm
module, 509

synapse.lib.stormlib.ethereum
module, 509

synapse.lib.stormlib.gen
module, 509

synapse.lib.stormlib.graph
module, 509

synapse.lib.stormlib.hashes
module, 510

synapse.lib.stormlib.hex
module, 510

synapse.lib.stormlib.imap
module, 511

synapse.lib.stormlib.infosec
module, 511

synapse.lib.stormlib.ipv6
module, 512

synapse.lib.stormlib.iters
module, 513

synapse.lib.stormlib.json
module, 513

synapse.lib.stormlib.log
module, 514

synapse.lib.stormlib.macro
module, 514

synapse.lib.stormlib.math
module, 515

synapse.lib.stormlib.mime
module, 515

synapse.lib.stormlib.model
module, 515

synapse.lib.stormlib.modelext
module, 517

synapse.lib.stormlib.notifications
module, 517

synapse.lib.stormlib.oauth
module, 518

synapse.lib.stormlib.project
module, 519

synapse.lib.stormlib.random
module, 521

synapse.lib.stormlib.scrape
module, 521

synapse.lib.stormlib.smtp
module, 522

synapse.lib.stormlib.stix
module, 522

synapse.lib.stormlib.storm
module, 524

synapse.lib.stormlib.version
module, 524

synapse.lib.stormlib.xml
module, 524

synapse.lib.stormlib.yaml
module, 525

synapse.lib.stormsvc
module, 698

synapse.lib.stormtypes
module, 698

synapse.lib.stormwhois
module, 719

synapse.lib.structlog
module, 719

synapse.lib.task
module, 719

synapse.lib.thishost
module, 720

synapse.lib.thisplat
module, 721

synapse.lib.threads
module, 721

synapse.lib.time
module, 721

1618 Index

Synapse Documentation, Release 2.141.0

synapse.lib.trigger
module, 722

synapse.lib.types
module, 723

synapse.lib.urlhelp
module, 730

synapse.lib.version
module, 731

synapse.lib.view
module, 733

synapse.lookup
module, 735

synapse.lookup.cvss
module, 735

synapse.lookup.iana
module, 735

synapse.lookup.iso3166
module, 736

synapse.lookup.macho
module, 736

synapse.lookup.pe
module, 736

synapse.lookup.phonenum
module, 736

synapse.mindmeld
module, 842

synapse.models
module, 736

synapse.models.auth
module, 737

synapse.models.base
module, 737

synapse.models.belief
module, 737

synapse.models.biz
module, 737

synapse.models.crypto
module, 738

synapse.models.dns
module, 738

synapse.models.economic
module, 738

synapse.models.files
module, 738

synapse.models.geopol
module, 739

synapse.models.geospace
module, 739

synapse.models.gov
module, 736

synapse.models.gov.cn
module, 736

synapse.models.gov.intl
module, 737

synapse.models.gov.us
module, 737

synapse.models.inet
module, 740

synapse.models.infotech
module, 742

synapse.models.language
module, 743

synapse.models.material
module, 743

synapse.models.media
module, 744

synapse.models.orgs
module, 744

synapse.models.person
module, 744

synapse.models.proj
module, 744

synapse.models.risk
module, 745

synapse.models.syn
module, 745

synapse.models.telco
module, 745

synapse.models.transport
module, 746

synapse.servers
module, 746

synapse.servers.aha
module, 746

synapse.servers.axon
module, 746

synapse.servers.cell
module, 746

synapse.servers.cortex
module, 746

synapse.servers.cryotank
module, 746

synapse.servers.jsonstor
module, 746

synapse.servers.stemcell
module, 746

synapse.telepath
module, 842

synapse.tests
module, 747

synapse.tests.nopmod
module, 747

synapse.tests.utils
module, 747

synapse.tools
module, 764

synapse.tools.aha
module, 764

Index 1619

Synapse Documentation, Release 2.141.0

synapse.tools.aha.easycert
module, 764

synapse.tools.aha.enroll
module, 764

synapse.tools.aha.list
module, 765

synapse.tools.aha.provision
module, 764

synapse.tools.aha.provision.service
module, 764

synapse.tools.aha.provision.user
module, 764

synapse.tools.autodoc
module, 765

synapse.tools.axon2axon
module, 766

synapse.tools.backup
module, 766

synapse.tools.cellauth
module, 767

synapse.tools.cmdr
module, 768

synapse.tools.cryo
module, 765

synapse.tools.cryo.cat
module, 765

synapse.tools.cryo.list
module, 765

synapse.tools.csvtool
module, 768

synapse.tools.easycert
module, 768

synapse.tools.feed
module, 768

synapse.tools.genpkg
module, 768

synapse.tools.guid
module, 769

synapse.tools.healthcheck
module, 769

synapse.tools.hive
module, 765

synapse.tools.hive.load
module, 765

synapse.tools.hive.save
module, 765

synapse.tools.json2mpk
module, 769

synapse.tools.livebackup
module, 770

synapse.tools.modrole
module, 770

synapse.tools.moduser
module, 770

synapse.tools.promote
module, 770

synapse.tools.pullfile
module, 770

synapse.tools.pushfile
module, 770

synapse.tools.rstorm
module, 770

synapse.tools.storm
module, 770

synapse.utils
module, 773

synapse.utils.stormcov
module, 773

synapse.utils.stormcov.plugin
module, 773

sync() (in module synapse.glob), 842
sync() (synapse.lib.cell.Cell method), 565
sync() (synapse.lib.lmdbslab.HotKeyVal method), 639
sync() (synapse.lib.lmdbslab.Slab method), 644
syncevnt (synapse.lib.lmdbslab.Slab attribute), 644
synchelp() (in module synapse.glob), 842
syncIndexEvents() (synapse.cortex.CoreApi method),

808
syncIndexEvents() (synapse.cortex.Cortex method),

824
syncIndexEvents() (synapse.lib.layer.Layer method),

633
syncLayerNodeEdits() (synapse.cortex.CoreApi

method), 808
syncLayerNodeEdits() (synapse.cortex.Cortex

method), 825
syncLayersEvents() (synapse.cortex.CoreApi

method), 808
syncLayersEvents() (synapse.cortex.Cortex method),

825
syncLoopOnce() (synapse.lib.lmdbslab.Slab class

method), 644
syncLoopTask() (synapse.lib.lmdbslab.Slab class

method), 644
syncNodeEdits() (synapse.lib.layer.Layer method),

633
syncNodeEdits() (synapse.lib.layer.LayerApi method),

634
syncNodeEdits2() (synapse.lib.layer.Layer method),

633
syncNodeEdits2() (synapse.lib.layer.LayerApi

method), 634
syncNodeEdits2() (synapse.lib.view.ViewApi method),

735
synctask (synapse.lib.lmdbslab.Slab attribute), 644
SynErr, 841
SynModule (class in synapse.models.syn), 745
SynTest (class in synapse.tests.utils), 749

1620 Index

Synapse Documentation, Release 2.141.0

T
t2call() (in module synapse.daemon), 829
Tag (class in synapse.lib.types), 727
tag() (in module synapse.lib.chop), 588
tagcachesize (synapse.lib.snap.Snap attribute), 677
TagCond (class in synapse.lib.ast), 544
tagged() (in module synapse.lib.node), 659
TagGlobs (class in synapse.lib.cache), 555
TagMatch (class in synapse.lib.ast), 544
TagMatchRe (in module synapse.lib.chop), 587
TagName (class in synapse.lib.ast), 544
TagPart (class in synapse.lib.types), 727
tagpath() (in module synapse.lib.chop), 588
TagProp (class in synapse.datamodel), 833
TagProp (class in synapse.lib.ast), 544
tagprop() (synapse.datamodel.Model method), 832
TagPropCond (class in synapse.lib.ast), 544
tagpropreprs() (synapse.lib.node.Node method), 656
TagPropValue (class in synapse.lib.ast), 544
TagPruneCmd (class in synapse.lib.storm), 694
tags() (in module synapse.lib.chop), 588
tags() (in module synapse.lib.node), 660
tagsnice() (in module synapse.lib.node), 660
TagValuCond (class in synapse.lib.ast), 544
TagValue (class in synapse.lib.ast), 545
tally() (synapse.lib.stormtypes.LibStats method), 706
TankApi (class in synapse.cryotank), 828
tankapi (synapse.cryotank.CryoCell attribute), 827
Task (class in synapse.lib.task), 719
Task (class in synapse.telepath), 845
task() (synapse.telepath.Client method), 843
task() (synapse.telepath.Proxy method), 844
taskv2() (synapse.telepath.Proxy method), 844
Taxon (class in synapse.lib.types), 727
Taxonomy (class in synapse.lib.types), 727
TeeCmd (class in synapse.lib.storm), 695
TelcoModule (class in synapse.models.telco), 746
TeleHive (class in synapse.lib.hive), 606
TeleRedir, 841
TeleSSLObject (class in synapse.telepath), 845
TestCmd (class in synapse.tests.utils), 761
testguid (synapse.tests.utils.TestModule attribute), 762
TestModule (class in synapse.tests.utils), 761
TestRunt (class in synapse.tests.utils), 762
TestSubType (class in synapse.tests.utils), 762
TestType (class in synapse.tests.utils), 762
Text (class in synapse.lib.stormtypes), 716
text (synapse.lib.parser.AstInfo attribute), 663
textFromRule() (in module synapse.lib.hiveauth), 611
textFromRule() (synapse.lib.stormtypes.LibAuth

method), 701
thisHostMust() (synapse.tests.utils.SynTest method),

760

thisHostMustNot() (synapse.tests.utils.SynTest
method), 760

ThreeType (class in synapse.tests.utils), 763
tick() (synapse.lib.storm.Runtime method), 691
Time (class in synapse.lib.types), 727
TimeEdge (class in synapse.lib.types), 728
TimeOut, 841
timestamp() (synapse.lib.stormlib.stix.LibStixExport

method), 523
TimeUnit (class in synapse.lib.agenda), 526
timewait() (synapse.lib.coro.Event method), 596
TinFoilHat (class in synapse.lib.crypto.tinfoil), 504
toaxon() (synapse.lib.stormtypes.LibExport method),

703
tobool() (in module synapse.lib.stormtypes), 718
tobuidhex() (in module synapse.lib.stormtypes), 718
tocmprvalu() (in module synapse.lib.stormtypes), 718
todo() (in module synapse.common), 799
toint() (in module synapse.lib.stormtypes), 718
toint() (synapse.lib.stormlib.hex.HexLib method), 510
toiter() (in module synapse.lib.stormtypes), 718
tonumber() (in module synapse.lib.stormtypes), 718
toprim() (in module synapse.lib.stormtypes), 718
torepr() (in module synapse.lib.stormtypes), 718
tostor() (in module synapse.lib.stormtypes), 718
tostr() (in module synapse.lib.stormtypes), 719
totext() (synapse.lib.stormlib.mime.LibMimeHtml

method), 515
toUTC() (in module synapse.lib.time), 722
toUTC() (synapse.lib.stormtypes.LibTime method), 708
TransportModule (class in synapse.models.transport),

746
trash() (synapse.lib.lmdbslab.Slab method), 644
treeAndSync() (synapse.lib.hive.HiveApi method), 605
TreeCmd (class in synapse.lib.storm), 695
Trigger (class in synapse.cmds.trigger), 497
Trigger (class in synapse.lib.stormtypes), 716
Trigger (class in synapse.lib.trigger), 722
Triggers (class in synapse.lib.trigger), 722
trim() (synapse.lib.slabseqn.SlabSeqn method), 674
trimext() (synapse.lib.stormlib.hex.HexLib method),

510
trimNexsLog() (synapse.lib.cell.Cell method), 565
trimNexsLog() (synapse.lib.cell.CellApi method), 570
true() (synapse.tests.utils.SynTest method), 760
truncate() (synapse.lib.layer.Layer method), 633
trycast() (synapse.lib.stormtypes.LibBase method),

701
TryCatch (class in synapse.lib.ast), 545
tryDynFunc() (in module synapse.lib.dyndeps), 599
tryDynLocal() (in module synapse.lib.dyndeps), 599
tryDynMod() (in module synapse.lib.dyndeps), 599
tryLoadPkgProto() (in module synapse.tools.genpkg),

769

Index 1621

Synapse Documentation, Release 2.141.0

tryPasswd() (synapse.lib.hiveauth.HiveUser method),
611

tryUserPasswd() (synapse.lib.cell.Cell method), 565
tryUserPasswd() (synapse.lib.cell.CellApi method),

571
TstEnv (class in synapse.tests.utils), 763
TstOutPut (class in synapse.tests.utils), 763
tuplify() (in module synapse.common), 799
tx() (synapse.lib.link.Link method), 637
tx() (synapse.lib.stormhttp.WebSocket method), 698
txfini() (synapse.lib.link.Link method), 637
txnbackup() (in module synapse.tools.backup), 767
Type (class in synapse.lib.types), 728
type() (synapse.datamodel.Model method), 832
typename (synapse.axon.UpLoadShare attribute), 791
typename (synapse.daemon.AsyncGenr attribute), 829
typename (synapse.daemon.Genr attribute), 829

U
uhex() (in module synapse.common), 799
un() (in module synapse.lib.msgpack), 650
un() (synapse.lib.stormlib.compression.Bzip2Lib

method), 508
un() (synapse.lib.stormlib.compression.GzipLib

method), 508
un() (synapse.lib.stormlib.compression.ZlibLib method),

508
UnaryExprNode (class in synapse.lib.ast), 545
Undef (class in synapse.lib.stormtypes), 716
undefined_types (synapse.lib.stormtypes.StormTypesRegistry

attribute), 715
undoNodeAdd() (synapse.lib.storm.SpliceUndoCmd

method), 694
undoNodeDel() (synapse.lib.storm.SpliceUndoCmd

method), 694
undoPropDel() (synapse.lib.storm.SpliceUndoCmd

method), 694
undoPropSet() (synapse.lib.storm.SpliceUndoCmd

method), 694
undoTagAdd() (synapse.lib.storm.SpliceUndoCmd

method), 694
undoTagDel() (synapse.lib.storm.SpliceUndoCmd

method), 694
undoTagPropDel() (synapse.lib.storm.SpliceUndoCmd

method), 694
undoTagPropSet() (synapse.lib.storm.SpliceUndoCmd

method), 694
unescape() (in module synapse.lib.parser), 663
UniqCmd (class in synapse.lib.storm), 695
univ() (synapse.datamodel.Model method), 832
UnivProp (class in synapse.lib.ast), 545
UnivPropValue (class in synapse.lib.ast), 545
unixconnect() (in module synapse.lib.link), 638
unixlisten() (in module synapse.lib.link), 638

unjsonsafe_nodeedits() (in module
synapse.common), 799

unlink() (synapse.lib.base.Base method), 551
unpack() (synapse.lib.agenda.ApptRec class method),

526
unpack() (synapse.lib.stormtypes.Bytes method), 699
unpackVersion() (in module synapse.lib.version), 733
Unpk (class in synapse.lib.msgpack), 648
update() (in module synapse.lib.scope), 669
update() (synapse.lib.hashset.HashSet method), 602
update() (synapse.lib.health.HealthCheck method), 603
update() (synapse.lib.nexus.ChangeDist method), 652
update() (synapse.lib.scope.Scope method), 668
updateCronJob() (synapse.cortex.CoreApi method),

808
updateCronJob() (synapse.cortex.Cortex method), 825
UpLoad (class in synapse.axon), 790
upload() (synapse.axon.Axon method), 781
upload() (synapse.axon.AxonApi method), 787
UpLoadProxy (class in synapse.axon), 791
UpLoadShare (class in synapse.axon), 791
Url (class in synapse.models.inet), 741
urldecode() (synapse.lib.stormhttp.LibHttp method),

698
urlencode() (synapse.lib.stormhttp.LibHttp method),

698
urlfile() (synapse.lib.stormtypes.LibAxon method),

701
User (class in synapse.lib.stormtypes), 716
user() (in module synapse.lib.task), 720
user() (synapse.lib.hiveauth.Auth method), 609
useriden() (synapse.lib.httpapi.HandlerBase method),

615
UserJson (class in synapse.lib.stormtypes), 717
username() (in module synapse.lib.task), 720
UserProfile (class in synapse.lib.stormtypes), 717
users() (synapse.lib.hiveauth.Auth method), 609
UserVars (class in synapse.lib.stormtypes), 717
uuid4() (in module synapse.lib.stormlib.stix), 523
uuid5() (in module synapse.lib.stormlib.stix), 523

V
valCodeCert() (synapse.lib.certdir.CertDir method),

586
validate() (synapse.lib.ast.ArgvQuery method), 531
validate() (synapse.lib.ast.AstNode method), 532
validate() (synapse.lib.ast.EmbedQuery method), 535
validate() (synapse.lib.ast.Function method), 537
validate() (synapse.lib.ast.VarValue method), 546
validateBundle() (synapse.lib.stormlib.stix.LibStix

method), 522
validateStix() (in module synapse.lib.stormlib.stix),

523
validateTagMatch() (in module synapse.lib.chop), 588

1622 Index

Synapse Documentation, Release 2.141.0

validedgekeys (synapse.lib.stormlib.model.LibModelEdge
attribute), 516

vals() (synapse.lib.base.BaseRef method), 553
valu() (synapse.lib.parser.CmdStringer method), 663
Value (class in synapse.lib.ast), 545
value() (synapse.lib.ast.Const method), 533
value() (synapse.lib.stormlib.model.ModelForm

method), 516
value() (synapse.lib.stormlib.model.ModelProp

method), 516
value() (synapse.lib.stormlib.model.ModelTagProp

method), 517
value() (synapse.lib.stormlib.model.ModelType

method), 517
value() (synapse.lib.stormlib.project.Project method),

519
value() (synapse.lib.stormlib.project.ProjectEpic

method), 519
value() (synapse.lib.stormlib.project.ProjectSprint

method), 519
value() (synapse.lib.stormlib.project.ProjectTicket

method), 520
value() (synapse.lib.stormlib.project.ProjectTicketComment

method), 520
value() (synapse.lib.stormlib.stix.StixBundle method),

523
value() (synapse.lib.stormtypes.CmdOpts method), 699
value() (synapse.lib.stormtypes.Dict method), 699
value() (synapse.lib.stormtypes.List method), 709
value() (synapse.lib.stormtypes.NodeProps method),

710
value() (synapse.lib.stormtypes.Prim method), 712
value() (synapse.lib.stormtypes.Role method), 713
value() (synapse.lib.stormtypes.StatTally method), 714
value() (synapse.lib.stormtypes.StormHiveDict

method), 714
value() (synapse.lib.stormtypes.User method), 717
value() (synapse.lib.stormtypes.UserProfile method),

717
values() (synapse.lib.cache.LruDict method), 554
values() (synapse.lib.hive.HiveDict method), 605
valUserCert() (synapse.lib.certdir.CertDir method),

586
vardefault() (in module synapse.lib.task), 720
VarDeref (class in synapse.lib.ast), 545
varderef() (synapse.lib.parser.AstConverter method),

662
VarEvalOper (class in synapse.lib.ast), 545
varget() (in module synapse.lib.task), 720
varinit() (in module synapse.lib.task), 720
VarList (class in synapse.lib.ast), 546
varlist() (synapse.lib.parser.AstConverter method),

662
VarListSetOper (class in synapse.lib.ast), 546

varset() (in module synapse.lib.task), 720
VarValue (class in synapse.lib.ast), 546
vcr (synapse.tests.utils.StormPkgTest attribute), 748
vectToProps() (synapse.lib.stormlib.infosec.CvssLib

method), 512
vectToScore() (synapse.lib.stormlib.infosec.CvssLib

method), 512
Velocity (class in synapse.lib.types), 730
verify() (synapse.lib.crypto.ecc.PubKey method), 500
verify() (synapse.lib.crypto.rsa.PubKey method), 502
verify() (synapse.lib.layer.Layer method), 633
verify() (synapse.lib.stormtypes.Layer method), 700
verifyAllBuids() (synapse.lib.layer.Layer method),

633
verifyAllProps() (synapse.lib.layer.Layer method),

633
verifyAllTagProps() (synapse.lib.layer.Layer

method), 634
verifyAllTags() (synapse.lib.layer.Layer method),

634
verifyBuidProp() (synapse.lib.layer.StorType

method), 635
verifyBuidTag() (synapse.lib.layer.Layer method),

634
verifyByBuid() (synapse.lib.layer.Layer method), 634
verifyByProp() (synapse.lib.layer.Layer method), 634
verifyByPropArray() (synapse.lib.layer.Layer

method), 634
verifyByTag() (synapse.lib.layer.Layer method), 634
verifyByTagProp() (synapse.lib.layer.Layer method),

634
verifyitem() (synapse.lib.crypto.rsa.PubKey method),

503
verifyPbkdf2() (in module

synapse.lib.crypto.passwd), 501
verifyStormPkgDeps() (synapse.cortex.Cortex

method), 825
VERSION (synapse.lib.cell.Cell attribute), 555
VersionLib (class in synapse.lib.stormlib.version), 524
verstr() (in module synapse.common), 800
VERSTRING (synapse.lib.cell.Cell attribute), 556
vertup() (in module synapse.common), 800
View (class in synapse.lib.stormtypes), 717
View (class in synapse.lib.view), 733
ViewApi (class in synapse.lib.view), 735
viewapi (synapse.cortex.Cortex attribute), 825
viewctor() (synapse.cortex.Cortex class method), 825
viewDynCall() (synapse.lib.stormtypes.View method),

718
viewDynIter() (synapse.lib.stormtypes.View method),

718
ViewExecCmd (class in synapse.lib.storm), 696

Index 1623

Synapse Documentation, Release 2.141.0

W
wait() (synapse.lib.base.Waiter method), 553
wait() (synapse.tests.utils.AsyncStreamEvent method),

747
waitEditOffs() (synapse.lib.layer.Layer method), 634
Waiter (class in synapse.lib.base), 553
waiter() (synapse.lib.base.Base method), 552
waitfini() (synapse.lib.base.Base method), 552
waitForHot() (synapse.lib.layer.Layer method), 634
waitForOffset() (synapse.lib.multislabseqn.MultiSlabSeqn

method), 652
waitForOffset() (synapse.lib.slabseqn.SlabSeqn

method), 674
waitNexsOffs() (synapse.lib.cell.Cell method), 565
waitNexsOffs() (synapse.lib.cell.CellApi method), 571
waitOffs() (synapse.lib.nexus.NexsRoot method), 653
waitready() (synapse.telepath.Client method), 843
waitStormSvc() (synapse.cortex.Cortex method), 825
waittask() (in module synapse.lib.coro), 598
waitUpstreamOffs() (synapse.lib.layer.Layer method),

634
walkNodeEdges() (synapse.lib.ast.N1Walk method),

539
walkNodeEdges() (synapse.lib.ast.N2Walk method),

539
wants() (synapse.axon.Axon method), 782
wants() (synapse.axon.AxonApi method), 788
warn() (synapse.lib.snap.Snap method), 677
warn() (synapse.lib.storm.Runtime method), 691
WARN_COMMIT_TIME_MS (synapse.lib.lmdbslab.Slab at-

tribute), 641
warnonce() (synapse.lib.snap.Snap method), 677
warnonce() (synapse.lib.storm.Runtime method), 691
wasAdded() (synapse.datamodel.Form method), 830
wasDel() (synapse.datamodel.Prop method), 833
wasDeleted() (synapse.datamodel.Form method), 831
wasSet() (synapse.datamodel.Prop method), 833
watch() (synapse.cortex.CoreApi method), 808
watch() (synapse.cortex.Cortex method), 825
watchAllUserNotifs() (synapse.cortex.CoreApi

method), 808
watchAllUserNotifs() (synapse.cortex.Cortex

method), 825
watchAllUserNotifs()

(synapse.lib.jsonstor.JsonStorApi method),
621

watchAllUserNotifs()
(synapse.lib.jsonstor.JsonStorCell method),
622

watcher() (synapse.cortex.Cortex method), 825
WatchSockV1 (class in synapse.lib.httpapi), 618
WebSocket (class in synapse.lib.httpapi), 618
WebSocket (class in synapse.lib.stormhttp), 698
wget() (synapse.axon.Axon method), 782

wget() (synapse.axon.AxonApi method), 788
wget() (synapse.lib.stormtypes.LibAxon method), 701
WhileLoop (class in synapse.lib.ast), 546
wildrange() (in module synapse.lib.time), 722
Window (class in synapse.lib.queue), 664
wipeAllowed() (synapse.lib.view.View method), 735
wipeLayer() (synapse.lib.view.View method), 735
withCliPromptMock() (synapse.tests.utils.SynTest

method), 760
withCliPromptMockExtendOutp()

(synapse.tests.utils.SynTest method), 760
withNexusReplay() (synapse.tests.utils.SynTest

method), 760
withSetLoggingMock() (synapse.tests.utils.SynTest

method), 761
withStableUids() (synapse.tests.utils.SynTest method),

761
withTeleEnv() (in module synapse.telepath), 846
withTestCmdr() (synapse.tests.utils.SynTest method),

761
worker() (in module synapse.common), 800
worker() (synapse.lib.task.Task method), 719
wput() (synapse.axon.Axon method), 783
wput() (synapse.axon.AxonApi method), 789
wput() (synapse.lib.stormtypes.LibAxon method), 701
wrap_liftgenr() (in module synapse.cortex), 826
write() (synapse.axon.UpLoad method), 791
write() (synapse.axon.UpLoadProxy method), 791
write() (synapse.tests.utils.AsyncStreamEvent method),

747
write() (synapse.tests.utils.StreamEvent method), 749

X
xmit() (synapse.lib.httpapi.WebSocket method), 618
XmlElement (class in synapse.lib.stormlib.xml), 524
xrp_check() (in module synapse.lib.crypto.coin), 498

Y
yamlload() (in module synapse.common), 800
yamlmod() (in module synapse.common), 800
yamlpop() (in module synapse.common), 800
yamlsave() (in module synapse.common), 800
YEAR (synapse.lib.agenda.TimeUnit attribute), 527
year() (in module synapse.lib.time), 722
year() (synapse.lib.stormtypes.LibTime method), 708
yieldFromValu() (synapse.lib.ast.YieldValu method),

546
YieldValu (class in synapse.lib.ast), 546
yieldvalu() (synapse.lib.parser.AstConverter method),

662

Z
zipCpe22() (in module synapse.models.infotech), 743
zipurl() (in module synapse.telepath), 846

1624 Index

Synapse Documentation, Release 2.141.0

ZlibLib (class in synapse.lib.stormlib.compression), 508

Index 1625

	Introduction
	Key Features
	What’s Next?

	Getting Started
	Synapse Quickstart
	Open-Source Synapse
	Synapse Demo Instance

	Synapse User Guide
	Background
	Background - Why Synapse?
	Background - Graphs and Hypergraphs
	Graphs
	Directed Graphs
	Analysis with Graphs
	Analysis Limitations

	Hypergraphs
	Analysis with a Synapse Hypergraph
	Performance
	No Loss of Granularity
	Discovery

	Conclusions

	Data Model
	Data Model - Terminology
	Type
	Type-Specific Behavior
	Viewing or Working with Types

	Form
	Form Namespace
	Viewing or Working with Forms

	Node
	Viewing or Working with Nodes
	Node Example

	Property
	Primary Property
	Secondary Property
	Universal Property
	Property Namespace
	Viewing or Working with Properties

	Tag
	Viewing or Working with Tags
	Tag Example

	Lightweight (Light) Edge
	Viewing or Working with Light Edges

	Data Model - Object Categories
	Entity
	Relationship
	Event
	Instance Knowledge vs. Fused Knowledge

	Data Model - Form Categories
	Simple Form
	Composite (Comp) Form
	Guid Form
	Generic Form
	Digraph (Edge) Form

	Analytical Model
	Analytical Model - Tag Concepts
	Tags as Nodes
	Tags as Labels
	Tag Timestamps
	Tag Display
	Tag Properties

	Analytical Model - Tags as Analysis
	Tag Examples
	Domain-Specific Assessments
	Threat Clusters
	Tactics, Techniques, and Procedures (TTPs)

	Third-Party Assertions
	Domain-Relevant Observations

	Tags as Hypotheses
	Individual Hypotheses to Broader Reasoning

	Design
	Design Concepts - Data Model
	Design Concepts - Analytical Model
	Tag Trees
	Tag Definitions
	Tag Management
	Level of Detail
	Flexibility
	Precision
	Consistency of Use

	Design Concepts - General
	Forms
	Properties
	Light Edges
	Tags
	Tags Associated with Forms

	Tools
	storm
	Connecting to a Cortex with the Storm CLI
	Storm CLI Basics
	Accessing External Commands

	pushfile
	Syntax
	Example

	pullfile
	Syntax
	Example

	feed
	Syntax
	Ingest Examples - Overview
	Ingest Example 1
	Ingest Example 2

	csvtool
	Syntax
	help

	Ingest Examples - Overview
	Ingest Example 1
	Ingest Example 2

	Export Examples - Overview
	Export Example 1
	Export Example 2

	genpkg
	Syntax
	Package Layout
	Package YAML
	foopkg.yml

	Modules
	foomod

	Commands
	foocmd

	Building the Example Package

	easycert
	Syntax

	Storm Reference
	Storm Reference - Introduction
	Storm Background
	Basic Storm Operations
	Lift, Filter, and Pivot Criteria

	Whitespace and Literals in Storm
	Using Whitespace Characters
	Entering Literals
	Backtick Format Strings

	Storm Operating Concepts
	Working Set
	Operation Chaining
	Node Consumption
	Storm as a Pipeline

	Advanced Storm Operations

	Storm Reference - Document Syntax Conventions
	Storm and Layers
	Storm Syntax Conventions
	Usage Statements vs. Specific Storm Queries
	Type-Specific Behavior
	Whitespace

	Storm Reference - Lifting
	Simple Lifts
	Try Lifts
	Lifts Using Standard Comparison Operators
	Lifts Using Extended Comparison Operators
	Lift by Regular Expression (~=)
	Lift by Prefix (^=)
	Lift by Time or Interval (@=)
	Lift by Range (*range=)
	Lift by Set Membership (*in=)
	Lift by Proximity (*near=)
	Lift by (Arrays) (*[])
	Lift by Tag (#)
	Recursive Tag Lift (##)

	Storm Reference - Filtering
	Simple Filters
	Filters Using Standard Comparison Operators
	Filters Using Extended Comparison Operators
	Filter by Regular Expression (~=)
	Filter by Prefix (^=)
	Filter by Time or Interval (@=)
	Filter by Range (*range=)
	Filter by Set Membership (*in=)
	Filter by Proximity (*near=)
	Filter by (Arrays) (*[])
	Filter by Tag (#)

	Compound Filters
	Subquery Filters
	Expression Filters
	Embedded Property Syntax

	Storm Reference - Pivoting
	Pivot Out Operator
	Pivot In Operator
	Pivot With Join
	Traverse (Walk) Light Edges
	Pivot Out and Walk
	Pivot In and Walk
	Pivot to Digraph (Edge) Nodes
	Pivot Across Digraph (Edge) Nodes
	Pivot to Tags
	Pivot from Tags
	Implicit Pivot Syntax
	Raw Pivot Syntax

	Storm Reference - Data Modification
	Edit Mode
	Edit Brackets
	Edit Parentheses
	Edit “Try” Operator (?=)
	Autoadds and Depadds

	Add Nodes
	Add or Modify Properties
	Add or Modify Properties Using Subqueries
	Delete Properties
	Delete Nodes
	Add Light Edges
	Delete Light Edges
	Add Tags
	Add Tag Timestamps or Tag Properties

	Modify Tags
	Modify Tag Timestamps or Tag Properties

	Remove Tags
	Remove Tag Timestamps or Tag Properties

	Combining Data Modification Operations
	Simple Examples
	Edit Brackets and Edit Parentheses Examples

	Storm Reference - Subqueries
	Subquery
	Subquery Filter
	Setting Properties with Subqueries

	Storm Reference - Model Introspection
	Data Model
	Example Queries

	Analytical Model
	Example Queries

	Storm Reference - Type-Specific Storm Behavior
	array
	Indexing
	Parsing
	Insertion
	Operations
	Lifting and Filtering
	Pivoting

	file:bytes
	Indexing
	Parsing
	Insertion
	SHA256 Hash
	GUID Value
	Actual Bytes

	Operations

	guid
	Indexing
	Parsing
	Insertion
	Arbitrary Values
	Predictable Values
	Guid Best Practices
	Arbitrary Guids
	Predictable Guids

	Operations

	inet:fqdn
	Indexing
	Parsing
	Insertion
	Potential Limitations

	Operations

	inet:ipv4
	Indexing
	Parsing
	Insertion
	Operations

	ival
	Indexing
	Parsing
	Insertion
	Operations

	loc
	Indexing
	Parsing
	Insertion
	Operations

	str
	Indexing
	Parsing
	Insertion
	Operations

	syn:tag
	Indexing
	Parsing
	Insertion
	Operations

	time
	Indexing
	Parsing
	Lower Resolution Time Values and Wildcard Time Values

	Insertion
	Operations
	Standard Operators
	Range Custom Operator
	Interval Custom Operator

	Storm Reference - Storm Commands
	help
	auth
	auth.gate.show
	auth.role.add
	auth.role.addrule
	auth.role.del
	auth.role.delrule
	auth.role.list
	auth.role.mod
	auth.role.show
	auth.user.add
	auth.user.addrule
	auth.user.delrule
	auth.user.grant
	auth.user.list
	auth.user.mod
	auth.user.revoke
	auth.user.show
	auth.user.allowed

	background
	batch
	count
	cron
	cron.add
	cron.at
	cron.cleanup
	cron.list
	cron.stat
	cron.mod
	cron.move
	cron.disable
	cron.enable
	cron.del

	delnode
	diff
	divert
	dmon
	dmon.list

	edges
	edges.del

	feed
	feed.list

	gen
	gen.it.prod.soft
	gen.lang.language
	gen.ou.industry
	gen.ou.org
	gen.ou.org.hq
	gen.pol.country
	gen.pol.country.government
	gen.ps.contact.email
	gen.risk.threat
	gen.risk.tool.software
	gen.risk.vuln

	graph
	iden
	intersect
	layer
	layer.add
	layer.set
	layer.get
	layer.list
	layer.del
	layer.pull.add
	layer.pull.list
	layer.pull.del
	layer.push.add
	layer.push.list
	layer.push.del

	lift
	lift.byverb

	limit
	macro
	macro.list
	macro.set
	macro.get
	macro.exec
	macro.del

	max
	merge
	min
	model
	model.deprecated.check
	model.deprecated.lock
	model.deprecated.locks
	model.edge.list
	model.edge.set
	model.edge.get
	model.edge.del

	movenodes
	movetag
	nodes
	nodes.import

	note
	note.add

	once
	parallel
	pkg
	pkg.list
	pkg.load
	pkg.del
	pkg.docs
	pkg.perms.list

	ps
	ps.list
	ps.kill

	queue
	queue.add
	queue.list
	queue.del

	reindex
	runas
	scrape
	service
	service.add
	service.list
	service.del

	sleep
	spin
	splice
	splice.list
	splice.undo

	tag
	tag.prune

	tee
	tree
	trigger
	trigger.add
	trigger.list
	trigger.mod
	trigger.disable
	trigger.enable
	trigger.del

	uniq
	uptime
	version
	view
	view.add
	view.fork
	view.set
	view.get
	view.list
	view.exec
	view.merge
	view.del

	wget

	Storm Reference - Automation
	Background
	Considerations
	Permissions
	Scope
	Testing
	Use Cases
	Design
	Governance / Management
	Nodes In and Nodes Out

	Triggers and Cron
	Triggers
	Example Use Cases
	Usage Notes
	Variables
	Syntax
	Examples

	Cron
	Example Use Cases
	Usage Notes
	Variables
	Syntax
	Examples

	Macros
	Example Use Cases
	Usage Notes
	Syntax
	Examples

	Dmons
	Variables
	Syntax

	Storm Advanced
	Storm Reference - Advanced - Variables
	Storm Operating Concepts
	Variable Concepts
	Variable Scope
	Call Frame
	Runtsafe vs. Non-Runtsafe

	Types of Variables
	Built-In Variables
	Global Variables
	$lib
	Node-Specific Variables
	$node
	$path
	Trigger-Specific Variables
	$tag
	Ingest Variables
	$rows

	User-Defined Variables
	Variable Names
	Defining Variables
	Examples

	Storm Reference - Advanced - Methods
	$node
	$node.form()
	$node.globtags()
	$node.iden()
	$node.isform()
	$node.ndef()
	$node.repr()
	$node.tags()
	$node.value()

	$path
	$path.idens()

	Storm Reference - Advanced - Control Flow
	Advanced Storm - Tips
	Storm Operating Concepts - Review
	Storm Debugging Tips

	Control Flow Operations
	Init Block
	Fini Block
	If-Else Statement
	If
	If-Else
	If-Elif-Else

	Switch Statement
	For Loop
	While Loop
	Try…Catch Statement

	Advanced Storm - Example
	For Loop - No Subquery
	For Loop - With Subquery

	Synapse Admin Guide
	Enable Synapse Power-Ups
	Create and Manage Users and Roles
	Working with Users
	Add a User
	Display a User
	Modify a User
	List All Users

	Working with Roles
	Add a Role
	Display a Role
	Modify a Role
	List all Roles
	Delete a Role

	Grant or Revoke Roles

	Assign and Manage Permissions
	Permissions Background
	Services
	Cortex
	Auth Gate
	Scope
	Permission
	Rule
	Precedence
	Admin
	Easy Permissions
	Views and Layers

	Assign Permissions
	Default Permissions
	Global (Cortex) Permissions
	Assign Permissions
	Revoke Permissions
	Check Permissions

	Auth Gate Permissions
	Obtain a Gate’s Iden
	View a Gate’s Permissions

	Permissions Best Practices
	Example Permissions
	Case 1 - Grant common permissions - basic
	Case 2 - Grant common permissions - intermediate
	Case 3 - Create a dedicated role that can delete nodes
	Case 4 - Place guardrails around writing (creating or merging) data
	Case 5 - Senior vs. junior roles
	Case 6 - Specialized roles

	Cortex Permissions
	Optic Permissions
	Power-Up Permissions
	Storm Runtime Permissions
	Automation
	Power-Ups

	Add Extended Model Elements
	Extended Forms
	Extended Properties
	Extended Universal Properties

	Manage Model Deprecations
	Lock Deprecated Model Elements
	Check for Deprecated Model Elements

	Configure a Mirrored Layer

	Synapse Deployment Guide
	Introduction
	Prepare your Hosts
	Decide on a Name
	Deploy AHA Service
	Deploy Axon Service
	Deploy JSONStor Service
	Deploy Cortex Service
	Deploy Cortex Mirror (optional)
	Enroll CLI Users
	What’s next?

	Synapse Devops Guide
	Overview
	Docker Images
	cell.yaml
	Environment Variables
	HTTPS Certificates

	Common Devops Tasks
	Generating a Backup
	Restoring a Backup
	Promoting a Mirror
	Updating Services
	Data Migration
	Model Flag Day

	Configure Logging
	Configure Free Space Requirement
	Performance Tuning
	Managing Users and Roles
	Adding Users

	Updating to AHA and Telepath TLS
	Deployment Options
	Telepath Listening Port
	HTTPS Listening Port

	Trimming the Nexus Log
	Viewing Deprecation Warnings
	Entrypoint Hooking
	Containers with Custom Users

	Synapse Services
	AHA
	Axon
	JSONStor
	Cortex

	Devops Details
	Orchestration
	Kubernetes
	Example Deployment
	Aha
	Axon
	JSONStor
	Cortex
	CLI Tooling Example
	Commercial Components

	Practical Considerations
	Performance Tuning in Kubernetes

	AHA Configuration Options
	aha:admin
	aha:leader
	aha:name
	aha:network
	aha:provision
	aha:registry
	aha:urls
	aha:user
	auth:anon
	auth:passwd
	backup:dir
	dmon:listen
	https:headers
	https:parse:proxy:remoteip
	https:port
	limit:disk:free
	mirror
	nexslog:en
	onboot:optimize
	provision:listen

	Axon Configuration Options
	aha:admin
	aha:leader
	aha:name
	aha:network
	aha:provision
	aha:registry
	aha:user
	auth:anon
	auth:passwd
	backup:dir
	dmon:listen
	http:proxy
	https:headers
	https:parse:proxy:remoteip
	https:port
	limit:disk:free
	max:bytes
	max:count
	nexslog:en
	onboot:optimize
	tls:ca:dir

	JSONStor Configuration Options
	aha:admin
	aha:leader
	aha:name
	aha:network
	aha:provision
	aha:registry
	aha:user
	auth:anon
	auth:passwd
	backup:dir
	dmon:listen
	https:headers
	https:parse:proxy:remoteip
	https:port
	limit:disk:free
	nexslog:en
	onboot:optimize

	Cortex Configuration Options
	aha:admin
	aha:leader
	aha:name
	aha:network
	aha:provision
	aha:registry
	aha:user
	auth:anon
	auth:passwd
	axon
	backup:dir
	cron:enable
	dmon:listen
	http:proxy
	https:headers
	https:parse:proxy:remoteip
	https:port
	jsonstor
	layer:lmdb:map_async
	layer:lmdb:max_replay_log
	layers:lockmemory
	layers:logedits
	limit:disk:free
	max:nodes
	mirror
	modules
	nexslog:en
	onboot:optimize
	storm:interface:scrape
	storm:interface:search
	storm:log
	storm:log:level
	tls:ca:dir
	trigger:enable

	Synapse Developer Guide
	Rapid Power-Up Development
	Anatomy of a Storm Package
	Minimal Example
	Building / Loading

	Storm Modules
	Privileged Modules

	Storm Commands
	Command Line Options
	Command Option Conventions

	Specifying Documentation
	Testing Storm Packages
	Advanced Features
	Using divert to implement --yield
	Optic Actions

	Synapse Architecture
	Library Architecture
	Object hierarchies
	Telepath RPC

	Cortex Development Quickstart
	Remote Cortex Access
	Making a simple call
	Generators and Yielding

	Synapse Docker Builds
	Images
	Building All Images
	Building a Specific Application Image
	Building the vertexproject/synapse image
	Working with Synapse Images

	Storm Service Development
	Anatomy of a Storm Service
	Connecting a service

	Storm Service Commands
	Implementation
	Input/Output Conventions
	Argument Conventions
	--verbose
	--debug
	--yield

	Storm Service Modules
	Minimal Storm Service Example
	service.py

	Storm API Guide
	Storm APIs
	Telepath
	HTTP API

	Message Types
	init
	node
	print
	warn
	err
	fini
	node:edits
	node:edits:count
	storm:fire
	look:miss
	csv:row

	Storm Call APIs
	Storm Opts
	debug
	editformat
	idens
	limit
	mode
	ndefs
	path
	readonly
	repr
	scrub
	show
	task
	user
	vars
	view

	Synapse Glossary
	A
	Addition, Automatic
	Addition, Dependent
	Advanced Power-Up
	Admin Tool
	Analytical Model
	Auth Gate
	Autoadd
	Axon

	B
	Base Tag
	Binary Unique Identifier
	BUID

	C
	Cell
	Column, Embed
	Column, Property
	Column, Tag
	Column, Tag Glob
	Comparator
	Comparison Operator
	Comparison Operator, Standard
	Comparison Operator, Extended
	Composite Form
	Console Tool
	Constant
	Constructor
	Cortex
	Cron
	Ctor

	D
	Daemon
	Data Model
	Data Model Explorer
	Deconflictable
	Depadd
	Derived Property
	Directed Edge
	Directed Graph
	Display Mode
	Dmon

	E
	Easy Permissions
	Edge
	Edge, Directed
	Edge, Lightweight (Light)
	Embed Column
	Entity Resolution
	Extended Comparison Operator
	Extended Form
	Extended Property

	F
	Feed
	Filter
	Filter, Subquery
	Fork
	Form
	Form, Composite
	Form, Edge
	Form, Extended
	Form, GUID
	Form, Simple
	Fused Knowledge

	G
	Gate
	Global Default Workspace
	Globally Unique Identifier
	Graph
	Graph, Directed
	GUID
	GUID Form

	H
	Help Tool
	Hive
	Hyperedge
	Hypergraph

	I
	Iden
	Identifier
	Ingest Tool
	Instance Knowledge

	K
	Knowledge, Fused
	Knowledge, Instance

	L
	Layer
	Leaf Tag
	Lift
	Lightweight (Light) Edge

	M
	Macro
	Merge
	Model
	Model, Analytical
	Model, Data

	N
	Ndef
	Node
	Node Action
	Node Data
	Node Definition
	Node, Runt
	Node, Storage
	Non-Runtime Safe
	Non-Runtsafe

	O
	Optic

	P
	Package
	Permission
	Pivot
	Power-Up
	Power-Up, Advanced
	Power-Up, Rapid
	Power-Ups Tool
	Primary Property
	Property
	Property Column
	Property, Derived
	Property, Extended
	Property, Primary
	Property, Relative
	Property, Secondary
	Property, Universal

	Q
	Queue

	R
	Rapid Power-Up
	Relative Property
	Repr
	Research Tool
	Role
	Root Tag
	Rule
	Runt Node
	Runtime Safe
	Runtsafe

	S
	Secondary Property
	Service
	Service, Storm
	Service, Synapse
	Simple Form
	Slab
	Splice
	Spotlight Tool
	Standard Comparison Operator
	Storage Node
	Stories Tool
	Storm
	Storm Editor
	Storm Service
	Subquery
	Subquery Filter
	Synapse Service

	T
	Tag
	Tag, Base
	Tag, Leaf
	Tag, Root
	Tag Column
	Tag Explorer
	Tag Glob Column
	Telepath
	Tool, Admin
	Tool, Console
	Tool, Help
	Tool, Ingest
	Tool, Power-Ups
	Tool, Research
	Tool, Spotlight
	Tool, Stories
	Tool, Storm Editor
	Tool, Workflows
	Tool, Workspaces
	Traverse
	Trigger
	Type
	Type, Base
	Type, Model-Specific
	Type Awareness
	Type Enforcement
	Type Normalization

	U
	Universal Property
	User

	V
	Variable
	View

	W
	Workflow
	Workflows Tool
	Workspace
	Workspace, Global Default
	Workspaces Tool

	Synapse Contributors Guide
	Contributing to Synapse
	Project Style Guide
	Git Hook & Syntax Checking
	Contribution Process

	Synapse Doc Mastering
	Generating Docs Locally
	Mastering Docs
	Under the hood

	Synapse Release Process
	Github Milestone Management
	Release Notes Format
	Cutting the Release
	Preparing The Release Notes
	Tagging the Release
	Closing Milestone in Github
	Publishing on Pypi
	Updating Docker images

	Synapse Python API
	synapse package
	Subpackages
	synapse.cmds package
	Submodules
	synapse.cmds.boss module
	synapse.cmds.cortex module
	synapse.cmds.cron module
	synapse.cmds.hive module
	synapse.cmds.trigger module

	synapse.data package
	synapse.lib package
	Subpackages
	synapse.lib.crypto package
	Submodules
	synapse.lib.crypto.coin module
	synapse.lib.crypto.ecc module
	synapse.lib.crypto.passwd module
	synapse.lib.crypto.rsa module
	synapse.lib.crypto.tinfoil module
	synapse.lib.platforms package
	Submodules
	synapse.lib.platforms.common module
	synapse.lib.platforms.darwin module
	synapse.lib.platforms.freebsd module
	synapse.lib.platforms.linux module
	synapse.lib.platforms.windows module
	synapse.lib.stormlib package
	Submodules
	synapse.lib.stormlib.auth module
	synapse.lib.stormlib.backup module
	synapse.lib.stormlib.basex module
	synapse.lib.stormlib.cell module
	synapse.lib.stormlib.compression module
	synapse.lib.stormlib.easyperm module
	synapse.lib.stormlib.ethereum module
	synapse.lib.stormlib.gen module
	synapse.lib.stormlib.graph module
	synapse.lib.stormlib.hashes module
	synapse.lib.stormlib.hex module
	synapse.lib.stormlib.imap module
	synapse.lib.stormlib.infosec module
	synapse.lib.stormlib.ipv6 module
	synapse.lib.stormlib.iters module
	synapse.lib.stormlib.json module
	synapse.lib.stormlib.log module
	synapse.lib.stormlib.macro module
	synapse.lib.stormlib.math module
	synapse.lib.stormlib.mime module
	synapse.lib.stormlib.model module
	synapse.lib.stormlib.modelext module
	synapse.lib.stormlib.notifications module
	synapse.lib.stormlib.oauth module
	synapse.lib.stormlib.project module
	synapse.lib.stormlib.random module
	synapse.lib.stormlib.scrape module
	synapse.lib.stormlib.smtp module
	synapse.lib.stormlib.stix module
	synapse.lib.stormlib.storm module
	synapse.lib.stormlib.version module
	synapse.lib.stormlib.xml module
	synapse.lib.stormlib.yaml module

	Submodules
	synapse.lib.agenda module
	synapse.lib.aha module
	synapse.lib.ast module
	synapse.lib.autodoc module
	synapse.lib.base module
	synapse.lib.boss module
	synapse.lib.cache module
	synapse.lib.cell module
	synapse.lib.certdir module
	synapse.lib.chop module
	synapse.lib.cli module
	synapse.lib.cmd module
	synapse.lib.cmdr module
	synapse.lib.config module
	synapse.lib.const module
	synapse.lib.coro module
	synapse.lib.datfile module
	synapse.lib.dyndeps module
	synapse.lib.encoding module
	synapse.lib.gis module
	synapse.lib.grammar module
	synapse.lib.hashitem module
	synapse.lib.hashset module
	synapse.lib.health module
	synapse.lib.hive module
	synapse.lib.hiveauth module
	synapse.lib.httpapi module
	synapse.lib.ingest module
	synapse.lib.interval module
	synapse.lib.jsonstor module
	synapse.lib.jupyter module
	synapse.lib.layer module
	synapse.lib.link module
	synapse.lib.lmdbslab module
	synapse.lib.modelrev module
	synapse.lib.module module
	synapse.lib.modules module
	synapse.lib.msgpack module
	synapse.lib.multislabseqn module
	synapse.lib.nexus module
	synapse.lib.node module
	synapse.lib.oauth module
	synapse.lib.output module
	synapse.lib.parser module
	synapse.lib.provenance module
	synapse.lib.queue module
	synapse.lib.ratelimit module
	synapse.lib.reflect module
	synapse.lib.rstorm module
	synapse.lib.scope module
	synapse.lib.scrape module
	synapse.lib.share module
	synapse.lib.slaboffs module
	synapse.lib.slabseqn module
	synapse.lib.snap module
	synapse.lib.spooled module
	synapse.lib.storm module
	synapse.lib.storm_format module
	synapse.lib.stormctrl module
	synapse.lib.stormhttp module
	synapse.lib.stormsvc module
	synapse.lib.stormtypes module
	synapse.lib.stormwhois module
	synapse.lib.structlog module
	synapse.lib.task module
	synapse.lib.thishost module
	synapse.lib.thisplat module
	synapse.lib.threads module
	synapse.lib.time module
	synapse.lib.trigger module
	synapse.lib.types module
	synapse.lib.urlhelp module
	synapse.lib.version module
	synapse.lib.view module

	synapse.lookup package
	Submodules
	synapse.lookup.cvss module
	synapse.lookup.iana module
	synapse.lookup.iso3166 module
	synapse.lookup.macho module
	synapse.lookup.pe module
	synapse.lookup.phonenum module

	synapse.models package
	Subpackages
	synapse.models.gov package
	Submodules
	synapse.models.gov.cn module
	synapse.models.gov.intl module
	synapse.models.gov.us module

	Submodules
	synapse.models.auth module
	synapse.models.base module
	synapse.models.belief module
	synapse.models.biz module
	synapse.models.crypto module
	synapse.models.dns module
	synapse.models.economic module
	synapse.models.files module
	synapse.models.geopol module
	synapse.models.geospace module
	synapse.models.inet module
	synapse.models.infotech module
	synapse.models.language module
	synapse.models.material module
	synapse.models.media module
	synapse.models.orgs module
	synapse.models.person module
	synapse.models.proj module
	synapse.models.risk module
	synapse.models.syn module
	synapse.models.telco module
	synapse.models.transport module

	synapse.servers package
	Submodules
	synapse.servers.aha module
	synapse.servers.axon module
	synapse.servers.cell module
	synapse.servers.cortex module
	synapse.servers.cryotank module
	synapse.servers.jsonstor module
	synapse.servers.stemcell module

	synapse.tests package
	Submodules
	synapse.tests.nopmod module
	synapse.tests.utils module

	synapse.tools package
	Subpackages
	synapse.tools.aha package
	Subpackages
	synapse.tools.aha.provision package
	Submodules
	synapse.tools.aha.provision.service module
	synapse.tools.aha.provision.user module
	Submodules
	synapse.tools.aha.easycert module
	synapse.tools.aha.enroll module
	synapse.tools.aha.list module
	synapse.tools.cryo package
	Submodules
	synapse.tools.cryo.cat module
	synapse.tools.cryo.list module
	synapse.tools.hive package
	Submodules
	synapse.tools.hive.load module
	synapse.tools.hive.save module

	Submodules
	synapse.tools.autodoc module
	synapse.tools.axon2axon module
	synapse.tools.backup module
	synapse.tools.cellauth module
	synapse.tools.cmdr module
	synapse.tools.csvtool module
	synapse.tools.easycert module
	synapse.tools.feed module
	synapse.tools.genpkg module
	synapse.tools.guid module
	synapse.tools.healthcheck module
	synapse.tools.json2mpk module
	synapse.tools.livebackup module
	synapse.tools.modrole module
	synapse.tools.moduser module
	synapse.tools.promote module
	synapse.tools.pullfile module
	synapse.tools.pushfile module
	synapse.tools.rstorm module
	synapse.tools.storm module

	synapse.utils package
	Subpackages
	synapse.utils.stormcov package
	Submodules
	synapse.utils.stormcov.plugin module

	Submodules
	synapse.axon module
	synapse.cells module
	synapse.common module
	synapse.cortex module
	synapse.cryotank module
	synapse.daemon module
	synapse.datamodel module
	synapse.exc module
	synapse.glob module
	synapse.mindmeld module
	synapse.telepath module

	Synapse HTTP/REST API
	HTTP/REST API Conventions
	Authentication
	/api/v1/login
	/api/v1/active
	/api/v1/auth/users
	/api/v1/auth/roles
	/api/v1/auth/adduser
	/api/v1/auth/addrole
	/api/v1/auth/delrole
	/api/v1/auth/user/<id>
	/api/v1/auth/password/<id>
	/api/v1/auth/role/<id>
	/api/v1/auth/grant
	/api/v1/auth/revoke

	Cortex
	/api/v1/feed
	/api/v1/storm
	/api/v1/storm/call
	/api/v1/storm/nodes
	/api/v1/storm/export
	/api/v1/model
	/api/v1/model/norm
	/api/v1/storm/vars/get
	/api/v1/storm/vars/set
	/api/v1/storm/vars/pop
	/api/v1/core/info

	Aha
	/api/v1/aha/provision/service

	Axon
	/api/v1/axon/files/del
	/api/v1/axon/files/put
	/api/v1/axon/files/has/sha256/<SHA-256>
	/api/v1/axon/files/by/sha256/<SHA-256>

	Synapse Data Model
	Synapse Data Model - Types
	Base Types
	array
	bool
	comp
	cvss:v2
	cvss:v3
	data
	duration
	edge
	file:base
	file:bytes
	file:path
	float
	geo:area
	geo:dist
	geo:latlong
	guid
	hex
	hugenum
	inet:addr
	inet:cidr4
	inet:cidr6
	inet:dns:name
	inet:email
	inet:fqdn
	inet:http:cookie
	inet:ipv4
	inet:ipv4range
	inet:ipv6
	inet:ipv6range
	inet:rfc2822:addr
	inet:url
	int
	it:sec:cpe
	it:sec:cpe:v2_2
	it:semver
	ival
	loc
	ndef
	nodeprop
	range
	str
	syn:tag
	syn:tag:part
	taxon
	taxonomy
	tel:mob:imei
	tel:mob:imsi
	tel:phone
	time
	timeedge
	velocity

	Types
	auth:access
	auth:creds
	belief:subscriber
	belief:system
	belief:system:type:taxonomy
	belief:tenet
	biz:bundle
	biz:deal
	biz:dealstatus
	biz:dealtype
	biz:listing
	biz:prodtype
	biz:product
	biz:rfp
	biz:service
	biz:service:type:taxonomy
	biz:stake
	crypto:algorithm
	crypto:currency:address
	crypto:currency:block
	crypto:currency:client
	crypto:currency:coin
	crypto:currency:transaction
	crypto:key
	crypto:payment:input
	crypto:payment:output
	crypto:smart:contract
	crypto:smart:effect:burntoken
	crypto:smart:effect:edittokensupply
	crypto:smart:effect:minttoken
	crypto:smart:effect:proxytoken
	crypto:smart:effect:proxytokenall
	crypto:smart:effect:proxytokens
	crypto:smart:effect:transfertoken
	crypto:smart:effect:transfertokens
	crypto:smart:token
	crypto:x509:cert
	crypto:x509:crl
	crypto:x509:revoked
	crypto:x509:san
	crypto:x509:signedfile
	econ:acct:balance
	econ:acct:payment
	econ:acquired
	econ:currency
	econ:fin:bar
	econ:fin:exchange
	econ:fin:security
	econ:fin:tick
	econ:pay:card
	econ:pay:cvv
	econ:pay:iin
	econ:pay:mii
	econ:pay:pan
	econ:pay:pin
	econ:price
	econ:purchase
	econ:receipt:item
	edge:has
	edge:refs
	edge:wentto
	edu:class
	edu:course
	file:archive:entry
	file:filepath
	file:ismime
	file:mime
	file:mime:gif
	file:mime:jpg
	file:mime:macho:loadcmd
	file:mime:macho:section
	file:mime:macho:segment
	file:mime:macho:uuid
	file:mime:macho:version
	file:mime:msdoc
	file:mime:msppt
	file:mime:msxls
	file:mime:pe:export
	file:mime:pe:resource
	file:mime:pe:section
	file:mime:pe:vsvers:info
	file:mime:pe:vsvers:keyval
	file:mime:png
	file:mime:rtf
	file:mime:tif
	file:string
	file:subfile
	geo:address
	geo:altitude
	geo:bbox
	geo:json
	geo:latitude
	geo:longitude
	geo:name
	geo:nloc
	geo:place
	geo:place:taxonomy
	geo:telem
	gov:cn:icp
	gov:cn:mucd
	gov:intl:un:m49
	gov:us:cage
	gov:us:ssn
	gov:us:zip
	graph:cluster
	graph:edge
	graph:event
	graph:node
	graph:timeedge
	hash:lm
	hash:md5
	hash:ntlm
	hash:sha1
	hash:sha256
	hash:sha384
	hash:sha512
	inet:asn
	inet:asnet4
	inet:asnet6
	inet:banner
	inet:client
	inet:dns:a
	inet:dns:aaaa
	inet:dns:answer
	inet:dns:cname
	inet:dns:dynreg
	inet:dns:mx
	inet:dns:ns
	inet:dns:query
	inet:dns:request
	inet:dns:rev
	inet:dns:rev6
	inet:dns:soa
	inet:dns:txt
	inet:dns:type
	inet:dns:wild:a
	inet:dns:wild:aaaa
	inet:download
	inet:egress
	inet:email:header
	inet:email:header:name
	inet:email:message
	inet:email:message:attachment
	inet:email:message:link
	inet:flow
	inet:group
	inet:http:header
	inet:http:header:name
	inet:http:param
	inet:http:request
	inet:http:request:header
	inet:http:response:header
	inet:http:session
	inet:iface
	inet:mac
	inet:net4
	inet:net6
	inet:passwd
	inet:port
	inet:proto
	inet:search:query
	inet:search:result
	inet:server
	inet:servfile
	inet:ssl:cert
	inet:ssl:jarmhash
	inet:ssl:jarmsample
	inet:tunnel
	inet:tunnel:type:taxonomy
	inet:url:mirror
	inet:urlfile
	inet:urlredir
	inet:user
	inet:web:acct
	inet:web:action
	inet:web:attachment
	inet:web:channel
	inet:web:chprofile
	inet:web:file
	inet:web:follows
	inet:web:group
	inet:web:hashtag
	inet:web:instance
	inet:web:logon
	inet:web:memb
	inet:web:member
	inet:web:mesg
	inet:web:post
	inet:web:post:link
	inet:whois:contact
	inet:whois:email
	inet:whois:ipcontact
	inet:whois:ipquery
	inet:whois:iprec
	inet:whois:rar
	inet:whois:rec
	inet:whois:recns
	inet:whois:reg
	inet:whois:regid
	inet:wifi:ap
	inet:wifi:ssid
	iso:3166:cc
	iso:oid
	it:account
	it:adid
	it:app:snort:hit
	it:app:snort:rule
	it:app:yara:match
	it:app:yara:procmatch
	it:app:yara:rule
	it:auth:passwdhash
	it:av:filehit
	it:av:prochit
	it:av:sig
	it:av:signame
	it:cmd
	it:dev:int
	it:dev:mutex
	it:dev:pipe
	it:dev:regkey
	it:dev:regval
	it:dev:str
	it:domain
	it:exec:bind
	it:exec:file:add
	it:exec:file:del
	it:exec:file:read
	it:exec:file:write
	it:exec:loadlib
	it:exec:mmap
	it:exec:mutex
	it:exec:pipe
	it:exec:proc
	it:exec:query
	it:exec:reg:del
	it:exec:reg:get
	it:exec:reg:set
	it:exec:thread
	it:exec:url
	it:fs:file
	it:group
	it:host
	it:hostname
	it:hostsoft
	it:hosturl
	it:log:event
	it:log:event:type:taxonomy
	it:logon
	it:mitre:attack:group
	it:mitre:attack:matrix
	it:mitre:attack:mitigation
	it:mitre:attack:software
	it:mitre:attack:status
	it:mitre:attack:tactic
	it:mitre:attack:technique
	it:network
	it:os:android:aaid
	it:os:android:ibroadcast
	it:os:android:ilisten
	it:os:android:intent
	it:os:android:perm
	it:os:android:reqperm
	it:os:ios:idfa
	it:os:windows:sid
	it:prod:component
	it:prod:hardware
	it:prod:hardwaretype
	it:prod:soft
	it:prod:soft:taxonomy
	it:prod:softfile
	it:prod:softid
	it:prod:softlib
	it:prod:softname
	it:prod:softos
	it:prod:softreg
	it:prod:softver
	it:query
	it:reveng:filefunc
	it:reveng:funcstr
	it:reveng:function
	it:reveng:impfunc
	it:screenshot
	it:sec:c2:config
	it:sec:cve
	it:sec:cwe
	it:sec:stix:bundle
	it:sec:stix:indicator
	lang:code
	lang:idiom
	lang:language
	lang:name
	lang:trans
	lang:translation
	mass
	mat:item
	mat:itemimage
	mat:spec
	mat:specimage
	mat:type
	media:news
	media:news:taxonomy
	media:topic
	meta:event
	meta:event:taxonomy
	meta:note
	meta:note:type:taxonomy
	meta:rule
	meta:ruleset
	meta:seen
	meta:sophistication
	meta:source
	meta:timeline
	meta:timeline:taxonomy
	ou:alias
	ou:attendee
	ou:award
	ou:campaign
	ou:campname
	ou:camptype
	ou:conference
	ou:conference:attendee
	ou:conference:event
	ou:conference:event:attendee
	ou:conflict
	ou:contest
	ou:contest:result
	ou:contract
	ou:contract:type
	ou:contribution
	ou:conttype
	ou:employment
	ou:goal
	ou:goal:type:taxonomy
	ou:goalname
	ou:hasalias
	ou:hasgoal
	ou:id:number
	ou:id:type
	ou:id:update
	ou:id:value
	ou:industry
	ou:industry:type:taxonomy
	ou:industryname
	ou:isic
	ou:jobtitle
	ou:jobtype
	ou:meet
	ou:meet:attendee
	ou:member
	ou:naics
	ou:name
	ou:opening
	ou:org
	ou:org:has
	ou:orgnet4
	ou:orgnet6
	ou:orgtype
	ou:position
	ou:preso
	ou:role
	ou:sic
	ou:suborg
	ou:team
	ou:technique
	ou:technique:taxonomy
	ou:user
	ou:vitals
	pe:langid
	pe:resource:type
	pol:candidate
	pol:country
	pol:election
	pol:immigration:status
	pol:immigration:status:type:taxonomy
	pol:iso2
	pol:iso3
	pol:isonum
	pol:office
	pol:pollingplace
	pol:race
	pol:term
	pol:vitals
	proj:attachment
	proj:comment
	proj:epic
	proj:project
	proj:sprint
	proj:ticket
	ps:achievement
	ps:contact
	ps:contact:type:taxonomy
	ps:contactlist
	ps:education
	ps:name
	ps:person
	ps:person:has
	ps:persona
	ps:persona:has
	ps:proficiency
	ps:skill
	ps:skill:type:taxonomy
	ps:tokn
	ps:vitals
	ps:workhist
	risk:alert
	risk:alert:taxonomy
	risk:alert:verdict:taxonomy
	risk:attack
	risk:attacktype
	risk:availability
	risk:compromise
	risk:compromisetype
	risk:hasvuln
	risk:mitigation
	risk:threat
	risk:threat:type:taxonomy
	risk:tool:software
	risk:tool:software:taxonomy
	risk:vuln
	risk:vuln:soft:range
	risk:vuln:type:taxonomy
	risk:vulnname
	rsa:key
	syn:cmd
	syn:cron
	syn:form
	syn:nodedata
	syn:prop
	syn:role
	syn:splice
	syn:tagprop
	syn:trigger
	syn:type
	syn:user
	tel:call
	tel:mob:carrier
	tel:mob:cell
	tel:mob:imid
	tel:mob:imsiphone
	tel:mob:mcc
	tel:mob:mnc
	tel:mob:tac
	tel:mob:telem
	tel:txtmesg
	transport:air:craft
	transport:air:flight
	transport:air:flightnum
	transport:air:occupant
	transport:air:port
	transport:air:tailnum
	transport:air:telem
	transport:direction
	transport:land:license
	transport:land:registration
	transport:land:vehicle
	transport:sea:imo
	transport:sea:mmsi
	transport:sea:telem
	transport:sea:vessel

	Synapse Data Model - Forms
	Forms
	auth:access
	auth:creds
	belief:subscriber
	belief:system
	belief:system:type:taxonomy
	belief:tenet
	biz:bundle
	biz:deal
	biz:dealstatus
	biz:dealtype
	biz:listing
	biz:prodtype
	biz:product
	biz:rfp
	biz:service
	biz:stake
	crypto:algorithm
	crypto:currency:address
	crypto:currency:block
	crypto:currency:client
	crypto:currency:coin
	crypto:currency:transaction
	crypto:key
	crypto:payment:input
	crypto:payment:output
	crypto:smart:contract
	crypto:smart:effect:burntoken
	crypto:smart:effect:edittokensupply
	crypto:smart:effect:minttoken
	crypto:smart:effect:proxytoken
	crypto:smart:effect:proxytokenall
	crypto:smart:effect:proxytokens
	crypto:smart:effect:transfertoken
	crypto:smart:effect:transfertokens
	crypto:smart:token
	crypto:x509:cert
	crypto:x509:crl
	crypto:x509:revoked
	crypto:x509:signedfile
	econ:acct:balance
	econ:acct:payment
	econ:acquired
	econ:fin:bar
	econ:fin:exchange
	econ:fin:security
	econ:fin:tick
	econ:pay:card
	econ:pay:iin
	econ:purchase
	econ:receipt:item
	edge:has
	edge:refs
	edge:wentto
	edu:class
	edu:course
	file:archive:entry
	file:base
	file:bytes
	file:filepath
	file:ismime
	file:mime
	file:mime:gif
	file:mime:jpg
	file:mime:macho:loadcmd
	file:mime:macho:section
	file:mime:macho:segment
	file:mime:macho:uuid
	file:mime:macho:version
	file:mime:msdoc
	file:mime:msppt
	file:mime:msxls
	file:mime:pe:export
	file:mime:pe:resource
	file:mime:pe:section
	file:mime:pe:vsvers:info
	file:mime:pe:vsvers:keyval
	file:mime:png
	file:mime:rtf
	file:mime:tif
	file:path
	file:string
	file:subfile
	geo:name
	geo:nloc
	geo:place
	geo:place:taxonomy
	geo:telem
	gov:cn:icp
	gov:cn:mucd
	gov:us:cage
	gov:us:ssn
	gov:us:zip
	graph:cluster
	graph:edge
	graph:event
	graph:node
	graph:timeedge
	hash:md5
	hash:sha1
	hash:sha256
	hash:sha384
	hash:sha512
	inet:asn
	inet:asnet4
	inet:asnet6
	inet:banner
	inet:cidr4
	inet:cidr6
	inet:client
	inet:dns:a
	inet:dns:aaaa
	inet:dns:answer
	inet:dns:cname
	inet:dns:dynreg
	inet:dns:mx
	inet:dns:ns
	inet:dns:query
	inet:dns:request
	inet:dns:rev
	inet:dns:rev6
	inet:dns:soa
	inet:dns:txt
	inet:dns:wild:a
	inet:dns:wild:aaaa
	inet:download
	inet:egress
	inet:email
	inet:email:header
	inet:email:message
	inet:email:message:attachment
	inet:email:message:link
	inet:flow
	inet:fqdn
	inet:group
	inet:http:cookie
	inet:http:param
	inet:http:request
	inet:http:request:header
	inet:http:response:header
	inet:http:session
	inet:iface
	inet:ipv4
	inet:ipv6
	inet:mac
	inet:passwd
	inet:proto
	inet:rfc2822:addr
	inet:search:query
	inet:search:result
	inet:server
	inet:servfile
	inet:ssl:cert
	inet:ssl:jarmhash
	inet:ssl:jarmsample
	inet:tunnel
	inet:tunnel:type:taxonomy
	inet:url
	inet:url:mirror
	inet:urlfile
	inet:urlredir
	inet:user
	inet:web:acct
	inet:web:action
	inet:web:attachment
	inet:web:channel
	inet:web:chprofile
	inet:web:file
	inet:web:follows
	inet:web:group
	inet:web:hashtag
	inet:web:instance
	inet:web:logon
	inet:web:memb
	inet:web:member
	inet:web:mesg
	inet:web:post
	inet:web:post:link
	inet:whois:contact
	inet:whois:email
	inet:whois:ipcontact
	inet:whois:ipquery
	inet:whois:iprec
	inet:whois:rar
	inet:whois:rec
	inet:whois:recns
	inet:whois:reg
	inet:whois:regid
	inet:wifi:ap
	inet:wifi:ssid
	iso:oid
	it:account
	it:adid
	it:app:snort:hit
	it:app:snort:rule
	it:app:yara:match
	it:app:yara:procmatch
	it:app:yara:rule
	it:auth:passwdhash
	it:av:filehit
	it:av:prochit
	it:av:sig
	it:av:signame
	it:cmd
	it:dev:int
	it:dev:mutex
	it:dev:pipe
	it:dev:regkey
	it:dev:regval
	it:dev:str
	it:domain
	it:exec:bind
	it:exec:file:add
	it:exec:file:del
	it:exec:file:read
	it:exec:file:write
	it:exec:loadlib
	it:exec:mmap
	it:exec:mutex
	it:exec:pipe
	it:exec:proc
	it:exec:query
	it:exec:reg:del
	it:exec:reg:get
	it:exec:reg:set
	it:exec:thread
	it:exec:url
	it:fs:file
	it:group
	it:host
	it:hostname
	it:hostsoft
	it:hosturl
	it:log:event
	it:log:event:type:taxonomy
	it:logon
	it:mitre:attack:group
	it:mitre:attack:mitigation
	it:mitre:attack:software
	it:mitre:attack:tactic
	it:mitre:attack:technique
	it:network
	it:os:android:aaid
	it:os:android:ibroadcast
	it:os:android:ilisten
	it:os:android:intent
	it:os:android:perm
	it:os:android:reqperm
	it:os:ios:idfa
	it:prod:component
	it:prod:hardware
	it:prod:hardwaretype
	it:prod:soft
	it:prod:soft:taxonomy
	it:prod:softfile
	it:prod:softid
	it:prod:softlib
	it:prod:softname
	it:prod:softos
	it:prod:softreg
	it:prod:softver
	it:query
	it:reveng:filefunc
	it:reveng:funcstr
	it:reveng:function
	it:reveng:impfunc
	it:screenshot
	it:sec:c2:config
	it:sec:cpe
	it:sec:cve
	it:sec:cwe
	it:sec:stix:bundle
	it:sec:stix:indicator
	lang:idiom
	lang:language
	lang:name
	lang:trans
	lang:translation
	mat:item
	mat:itemimage
	mat:spec
	mat:specimage
	media:news
	media:news:taxonomy
	media:topic
	meta:event
	meta:event:taxonomy
	meta:note
	meta:note:type:taxonomy
	meta:rule
	meta:ruleset
	meta:seen
	meta:source
	meta:timeline
	meta:timeline:taxonomy
	ou:attendee
	ou:award
	ou:campaign
	ou:campname
	ou:camptype
	ou:conference
	ou:conference:attendee
	ou:conference:event
	ou:conference:event:attendee
	ou:conflict
	ou:contest
	ou:contest:result
	ou:contract
	ou:contribution
	ou:conttype
	ou:employment
	ou:goal
	ou:goal:type:taxonomy
	ou:goalname
	ou:hasalias
	ou:hasgoal
	ou:id:number
	ou:id:type
	ou:id:update
	ou:industry
	ou:industryname
	ou:jobtitle
	ou:jobtype
	ou:meet
	ou:meet:attendee
	ou:member
	ou:name
	ou:opening
	ou:org
	ou:org:has
	ou:orgnet4
	ou:orgnet6
	ou:orgtype
	ou:position
	ou:preso
	ou:suborg
	ou:team
	ou:technique
	ou:technique:taxonomy
	ou:user
	ou:vitals
	pol:candidate
	pol:country
	pol:election
	pol:immigration:status
	pol:immigration:status:type:taxonomy
	pol:office
	pol:pollingplace
	pol:race
	pol:term
	pol:vitals
	proj:attachment
	proj:comment
	proj:epic
	proj:project
	proj:sprint
	proj:ticket
	ps:achievement
	ps:contact
	ps:contact:type:taxonomy
	ps:contactlist
	ps:education
	ps:name
	ps:person
	ps:person:has
	ps:persona
	ps:persona:has
	ps:proficiency
	ps:skill
	ps:skill:type:taxonomy
	ps:tokn
	ps:vitals
	ps:workhist
	risk:alert
	risk:alert:taxonomy
	risk:alert:verdict:taxonomy
	risk:attack
	risk:attacktype
	risk:availability
	risk:compromise
	risk:compromisetype
	risk:hasvuln
	risk:mitigation
	risk:threat
	risk:threat:type:taxonomy
	risk:tool:software
	risk:tool:software:taxonomy
	risk:vuln
	risk:vuln:soft:range
	risk:vuln:type:taxonomy
	risk:vulnname
	rsa:key
	syn:cmd
	syn:cron
	syn:form
	syn:prop
	syn:splice
	syn:tag
	syn:tagprop
	syn:trigger
	syn:type
	tel:call
	tel:mob:carrier
	tel:mob:cell
	tel:mob:imei
	tel:mob:imid
	tel:mob:imsi
	tel:mob:imsiphone
	tel:mob:mcc
	tel:mob:tac
	tel:mob:telem
	tel:phone
	tel:txtmesg
	transport:air:craft
	transport:air:flight
	transport:air:flightnum
	transport:air:occupant
	transport:air:port
	transport:air:tailnum
	transport:air:telem
	transport:land:license
	transport:land:registration
	transport:land:vehicle
	transport:sea:telem
	transport:sea:vessel

	Universal Properties
	.created
	.seen

	Datamodel Deprecation Policy
	Using Deprecated Model Elements
	Deprecated Model Elements
	Types
	Forms
	Properties

	Storm Library Documentation
	Storm Libraries
	$lib
	$lib.cast(name, valu)
	$lib.copy(item)
	$lib.debug
	$lib.dict(**kwargs)
	$lib.exit(mesg=None, **kwargs)
	$lib.false
	$lib.fire(name, **info)
	$lib.guid(*args)
	$lib.import(name, debug=False, reqvers=None)
	$lib.len(item)
	$lib.list(*vals)
	$lib.max(*args)
	$lib.min(*args)
	$lib.null
	$lib.pprint(item, prefix=, clamp=None)
	$lib.print(mesg, **kwargs)
	$lib.raise(name, mesg, **info)
	$lib.range(stop, start=None, step=None)
	$lib.set(*vals)
	$lib.sorted(valu, reverse=False)
	$lib.text(*args)
	$lib.true
	$lib.trycast(name, valu)
	$lib.undef
	$lib.warn(mesg, **kwargs)

	$lib.auth
	$lib.auth.getPermDef(perm)
	$lib.auth.getPermDefs()
	$lib.auth.ruleFromText(text)
	$lib.auth.textFromRule(rule)

	$lib.auth.easyperm
	$lib.auth.easyperm.allowed(edef, level)
	$lib.auth.easyperm.confirm(edef, level)
	$lib.auth.easyperm.init(edef=None)
	$lib.auth.easyperm.set(edef, scope, iden, level)

	$lib.auth.gates
	$lib.auth.gates.get(iden)
	$lib.auth.gates.list()

	$lib.auth.roles
	$lib.auth.roles.add(name)
	$lib.auth.roles.byname(name)
	$lib.auth.roles.del(iden)
	$lib.auth.roles.get(iden)
	$lib.auth.roles.list()

	$lib.auth.users
	$lib.auth.users.add(name, passwd=None, email=None, iden=None)
	$lib.auth.users.byname(name)
	$lib.auth.users.del(iden)
	$lib.auth.users.get(iden)
	$lib.auth.users.list()

	$lib.axon
	$lib.axon.csvrows(sha256, dialect=excel, **fmtparams)
	$lib.axon.del(sha256)
	$lib.axon.dels(sha256s)
	$lib.axon.jsonlines(sha256)
	$lib.axon.list(offs=0, wait=False, timeout=None)
	$lib.axon.metrics()
	$lib.axon.readlines(sha256)
	$lib.axon.urlfile(*args, **kwargs)
	$lib.axon.wget(url, headers=None, params=None, method=GET, json=None, body=None, ssl=True, timeout=None, proxy=None)
	$lib.axon.wput(sha256, url, headers=None, params=None, method=PUT, ssl=True, timeout=None, proxy=None)

	$lib.backup
	$lib.backup.del(name)
	$lib.backup.list()
	$lib.backup.run(name=None, wait=True)

	$lib.base64
	$lib.base64.decode(valu, urlsafe=True)
	$lib.base64.encode(valu, urlsafe=True)

	$lib.basex
	$lib.basex.decode(text, charset)
	$lib.basex.encode(byts, charset)

	$lib.bytes
	$lib.bytes.has(sha256)
	$lib.bytes.hashset(sha256)
	$lib.bytes.put(byts)
	$lib.bytes.size(sha256)
	$lib.bytes.upload(genr)

	$lib.cell
	$lib.cell.getBackupInfo()
	$lib.cell.getCellInfo()
	$lib.cell.getHealthCheck()
	$lib.cell.getMirrorUrls(name=None)
	$lib.cell.getSystemInfo()
	$lib.cell.hotFixesApply()
	$lib.cell.hotFixesCheck()
	$lib.cell.trimNexsLog(consumers=None, timeout=30)
	$lib.cell.uptime(name=None)

	$lib.compression.bzip2
	$lib.compression.bzip2.en(valu)
	$lib.compression.bzip2.un(valu)

	$lib.compression.gzip
	$lib.compression.gzip.en(valu)
	$lib.compression.gzip.un(valu)

	$lib.compression.zlib
	$lib.compression.zlib.en(valu)
	$lib.compression.zlib.un(valu)

	$lib.cron
	$lib.cron.add(**kwargs)
	$lib.cron.at(**kwargs)
	$lib.cron.del(prefix)
	$lib.cron.disable(prefix)
	$lib.cron.enable(prefix)
	$lib.cron.get(prefix)
	$lib.cron.list()
	$lib.cron.mod(prefix, query)
	$lib.cron.move(prefix, view)

	$lib.crypto.coin.ethereum
	$lib.crypto.coin.ethereum.eip55(addr)

	$lib.crypto.hashes
	$lib.crypto.hashes.md5(byts)
	$lib.crypto.hashes.sha1(byts)
	$lib.crypto.hashes.sha256(byts)
	$lib.crypto.hashes.sha512(byts)

	$lib.crypto.hmac
	$lib.crypto.hmac.digest(key, mesg, alg=sha256)

	$lib.csv
	$lib.csv.emit(*args, table=None)

	$lib.dmon
	$lib.dmon.add(text, name=noname, ddef=None)
	$lib.dmon.bump(iden)
	$lib.dmon.del(iden)
	$lib.dmon.get(iden)
	$lib.dmon.list()
	$lib.dmon.log(iden)
	$lib.dmon.start(iden)
	$lib.dmon.stop(iden)

	$lib.export
	$lib.export.toaxon(query, opts=None)

	$lib.feed
	$lib.feed.genr(name, data)
	$lib.feed.ingest(name, data)
	$lib.feed.list()

	$lib.gen
	$lib.gen.industryByName(name)
	$lib.gen.langByCode(name, try=False)
	$lib.gen.langByName(name)
	$lib.gen.newsByUrl(url, try=False)
	$lib.gen.orgByFqdn(fqdn, try=False)
	$lib.gen.orgByName(name)
	$lib.gen.orgHqByName(name)
	$lib.gen.polCountryByIso2(iso2, try=False)
	$lib.gen.psContactByEmail(type, email, try=False)
	$lib.gen.riskThreat(name, reporter)
	$lib.gen.riskToolSoftware(name, reporter)
	$lib.gen.softByName(name)
	$lib.gen.vulnByCve(cve, try=False)

	$lib.globals
	$lib.globals.get(name, default=None)
	$lib.globals.list()
	$lib.globals.pop(name, default=None)
	$lib.globals.set(name, valu)

	$lib.graph
	$lib.graph.activate(iden)
	$lib.graph.add(gdef)
	$lib.graph.del(iden)
	$lib.graph.get(iden=None)
	$lib.graph.grant(gden, scope, iden, level)
	$lib.graph.list()
	$lib.graph.mod(iden, info)

	$lib.hex
	$lib.hex.decode(valu)
	$lib.hex.encode(valu)
	$lib.hex.fromint(valu, length, signed=False)
	$lib.hex.signext(valu, length)
	$lib.hex.toint(valu, signed=False)
	$lib.hex.trimext(valu)

	$lib.inet.http
	$lib.inet.http.codereason(code)
	$lib.inet.http.connect(url, headers=None, ssl_verify=True, timeout=300, params=None, proxy=None)
	$lib.inet.http.get(url, headers=None, ssl_verify=True, params=None, timeout=300, allow_redirects=True, proxy=None)
	$lib.inet.http.head(url, headers=None, ssl_verify=True, params=None, timeout=300, allow_redirects=False, proxy=None)
	$lib.inet.http.post(url, headers=None, json=None, body=None, ssl_verify=True, params=None, timeout=300, allow_redirects=True, fields=None, proxy=None)
	$lib.inet.http.request(meth, url, headers=None, json=None, body=None, ssl_verify=True, params=None, timeout=300, allow_redirects=True, fields=None, proxy=None)
	$lib.inet.http.urldecode(text)
	$lib.inet.http.urlencode(text)

	$lib.inet.http.oauth.v1
	$lib.inet.http.oauth.v1.client(ckey, csecret, atoken, asecret, sigtype=QUERY)

	$lib.inet.http.oauth.v2
	$lib.inet.http.oauth.v2.addProvider(conf)
	$lib.inet.http.oauth.v2.clearUserAccessToken(iden)
	$lib.inet.http.oauth.v2.delProvider(iden)
	$lib.inet.http.oauth.v2.getProvider(iden)
	$lib.inet.http.oauth.v2.getUserAccessToken(iden)
	$lib.inet.http.oauth.v2.listProviders()
	$lib.inet.http.oauth.v2.setUserAuthCode(iden, authcode, code_verifier=None)

	$lib.inet.imap
	$lib.inet.imap.connect(host, port=993, timeout=30, ssl=True)

	$lib.inet.ipv6
	$lib.inet.ipv6.expand(valu)

	$lib.inet.smtp
	$lib.inet.smtp.message()

	$lib.inet.whois
	$lib.inet.whois.guid(props, form)

	$lib.infosec.cvss
	$lib.infosec.cvss.calculate(node, save=True, vers=3.1)
	$lib.infosec.cvss.calculateFromProps(props, vers=3.1)
	$lib.infosec.cvss.saveVectToNode(node, text)
	$lib.infosec.cvss.vectToProps(text)
	$lib.infosec.cvss.vectToScore(vect, vers=None)

	$lib.iters
	$lib.iters.enum(genr)

	$lib.json
	$lib.json.load(text)
	$lib.json.save(item)
	$lib.json.schema(schema, use_default=True)

	$lib.jsonstor
	$lib.jsonstor.cacheget(path, key, asof=now, envl=False)
	$lib.jsonstor.cacheset(path, key, valu)
	$lib.jsonstor.del(path, prop=None)
	$lib.jsonstor.get(path, prop=None)
	$lib.jsonstor.iter(path=None)
	$lib.jsonstor.set(path, valu, prop=None)

	$lib.layer
	$lib.layer.add(ldef=None)
	$lib.layer.del(iden)
	$lib.layer.get(iden=None)
	$lib.layer.list()

	$lib.lift
	$lib.lift.byNodeData(name)

	$lib.log
	$lib.log.debug(mesg, extra=None)
	$lib.log.error(mesg, extra=None)
	$lib.log.info(mesg, extra=None)
	$lib.log.warning(mesg, extra=None)

	$lib.macro
	$lib.macro.del(name)
	$lib.macro.get(name)
	$lib.macro.grant(name, scope, iden, level)
	$lib.macro.list()
	$lib.macro.mod(name, info)
	$lib.macro.set(name, storm)

	$lib.math
	$lib.math.number(value)

	$lib.mime.html
	$lib.mime.html.totext(html)

	$lib.model
	$lib.model.form(name)
	$lib.model.prop(name)
	$lib.model.tagprop(name)
	$lib.model.type(name)

	$lib.model.deprecated
	$lib.model.deprecated.lock(name, locked)
	$lib.model.deprecated.locks()

	$lib.model.edge
	$lib.model.edge.del(verb, key)
	$lib.model.edge.get(verb)
	$lib.model.edge.list()
	$lib.model.edge.set(verb, key, valu)
	$lib.model.edge.validkeys()

	$lib.model.ext
	$lib.model.ext.addForm(formname, basetype, typeopts, typeinfo)
	$lib.model.ext.addFormProp(formname, propname, typedef, propinfo)
	$lib.model.ext.addTagProp(propname, typedef, propinfo)
	$lib.model.ext.addUnivProp(propname, typedef, propinfo)
	$lib.model.ext.delForm(formname)
	$lib.model.ext.delFormProp(formname, propname)
	$lib.model.ext.delTagProp(propname)
	$lib.model.ext.delUnivProp(propname)

	$lib.model.tags
	$lib.model.tags.del(tagname)
	$lib.model.tags.get(tagname)
	$lib.model.tags.list()
	$lib.model.tags.pop(tagname, propname)
	$lib.model.tags.set(tagname, propname, propvalu)

	$lib.notifications
	$lib.notifications.del(indx)
	$lib.notifications.get(indx)
	$lib.notifications.list(size=None)

	$lib.pipe
	$lib.pipe.gen(filler, size=10000)

	$lib.pkg
	$lib.pkg.add(pkgdef, verify=False)
	$lib.pkg.del(name)
	$lib.pkg.deps(pkgdef)
	$lib.pkg.get(name)
	$lib.pkg.has(name)
	$lib.pkg.list()

	$lib.projects
	$lib.projects.add(name, desc=)
	$lib.projects.del(name)
	$lib.projects.get(name)

	$lib.ps
	$lib.ps.kill(prefix)
	$lib.ps.list()

	$lib.queue
	$lib.queue.add(name)
	$lib.queue.del(name)
	$lib.queue.gen(name)
	$lib.queue.get(name)
	$lib.queue.list()

	$lib.random
	$lib.random.int(maxval, minval=0)

	$lib.regex
	$lib.regex.findall(pattern, text, flags=0)
	$lib.regex.flags.i
	$lib.regex.flags.m
	$lib.regex.matches(pattern, text, flags=0)
	$lib.regex.replace(pattern, replace, text, flags=0)
	$lib.regex.search(pattern, text, flags=0)

	$lib.scrape
	$lib.scrape.context(text)
	$lib.scrape.genMatches(text, pattern, fangs=None, flags=2)
	$lib.scrape.ndefs(text)

	$lib.service
	$lib.service.add(name, url)
	$lib.service.del(iden)
	$lib.service.get(name)
	$lib.service.has(name)
	$lib.service.list()
	$lib.service.wait(name, timeout=None)

	$lib.stats
	$lib.stats.tally()

	$lib.stix
	$lib.stix.lift(bundle)
	$lib.stix.validate(bundle)

	$lib.stix.export
	$lib.stix.export.bundle(config=None)
	$lib.stix.export.config()
	$lib.stix.export.timestamp(tick)

	$lib.stix.import
	$lib.stix.import.config()
	$lib.stix.import.ingest(bundle, config=None)

	$lib.storm
	$lib.storm.eval(text, cast=None)

	$lib.str
	$lib.str.concat(*args)
	$lib.str.format(text, **kwargs)
	$lib.str.join(sepr, items)

	$lib.tags
	$lib.tags.prefix(names, prefix, ispart=False)

	$lib.telepath
	$lib.telepath.open(url)

	$lib.time
	$lib.time.day(tick)
	$lib.time.dayofmonth(tick)
	$lib.time.dayofweek(tick)
	$lib.time.dayofyear(tick)
	$lib.time.format(valu, format)
	$lib.time.fromunix(secs)
	$lib.time.hour(tick)
	$lib.time.minute(tick)
	$lib.time.month(tick)
	$lib.time.monthofyear(tick)
	$lib.time.now()
	$lib.time.parse(valu, format, errok=False)
	$lib.time.second(tick)
	$lib.time.sleep(valu)
	$lib.time.ticker(tick, count=None)
	$lib.time.toUTC(tick, timezone)
	$lib.time.year(tick)

	$lib.trigger
	$lib.trigger.add(tdef)
	$lib.trigger.del(prefix)
	$lib.trigger.disable(prefix)
	$lib.trigger.enable(prefix)
	$lib.trigger.get(iden)
	$lib.trigger.list()
	$lib.trigger.mod(prefix, query)

	$lib.user
	$lib.user.allowed(permname, gateiden=None, default=False)
	$lib.user.iden
	$lib.user.name()
	$lib.user.profile
	$lib.user.vars

	$lib.vars
	$lib.vars.del(name)
	$lib.vars.get(name, defv=None)
	$lib.vars.list()
	$lib.vars.set(name, valu)

	$lib.version
	$lib.version.commit()
	$lib.version.matches(vertup, reqstr)
	$lib.version.synapse()

	$lib.view
	$lib.view.add(layers, name=None)
	$lib.view.del(iden)
	$lib.view.get(iden=None)
	$lib.view.list(deporder=False)

	$lib.xml
	$lib.xml.parse(valu)

	$lib.yaml
	$lib.yaml.load(valu)
	$lib.yaml.save(valu, sort_keys=True)

	Storm Types
	auth:gate
	iden
	roles
	type
	users

	auth:role
	addRule(rule, gateiden=None, indx=None)
	delRule(rule, gateiden=None)
	gates()
	get(name)
	getRules(gateiden=None)
	iden
	name
	pack()
	popRule(indx, gateiden=None)
	setRules(rules, gateiden=None)

	auth:user
	addRule(rule, gateiden=None, indx=None)
	allowed(permname, gateiden=None, default=False)
	delRule(rule, gateiden=None)
	email
	gates()
	get(name)
	getAllowedReason(permname, gateiden=None, default=False)
	getRules(gateiden=None)
	grant(iden, indx=None)
	iden
	name
	notify(mesgtype, mesgdata)
	pack()
	popRule(indx, gateiden=None)
	profile
	revoke(iden)
	roles()
	setAdmin(admin, gateiden=None)
	setEmail(email)
	setLocked(locked)
	setPasswd(passwd)
	setRoles(idens)
	setRules(rules, gateiden=None)
	tell(text)
	vars

	auth:user:json
	del(path, prop=None)
	get(path, prop=None)
	iter(path=None)
	set(path, valu, prop=None)

	auth:user:profile
	auth:user:vars
	boolean
	bytes
	bunzip()
	bzip()
	decode(encoding=utf8, errors=surrogatepass)
	gunzip()
	gzip()
	json(encoding=None, errors=surrogatepass)
	slice(start, end=None)
	unpack(fmt, offset=0)

	cmdopts
	cronjob
	iden
	pack()
	pprint()
	set(name, valu)

	dict
	hive:dict
	get(name, default=None)
	list()
	pop(name, default=None)
	set(name, valu)

	inet:http:oauth:v1:client
	sign(baseurl, method=GET, headers=None, params=None, body=None)

	inet:http:resp
	body
	code
	err
	headers
	json(encoding=None, errors=surrogatepass)
	msgpack()
	reason

	inet:http:socket
	rx(timeout=None)
	tx(mesg)

	inet:imap:server
	delete(uid_set)
	fetch(uid)
	list(reference_name=””, pattern=*)
	login(user, passwd)
	markSeen(uid_set)
	search(*args)
	select(mailbox=INBOX)

	inet:smtp:message
	headers
	html
	recipients
	send(host, port=25, user=None, passwd=None, usetls=False, starttls=False, timeout=60)
	sender
	text

	json:schema
	schema()
	validate(item)

	layer
	addPull(url, offs=0)
	addPush(url, offs=0)
	delPull(iden)
	delPush(iden)
	edits(offs=0, wait=True, size=None)
	get(name, defv=None)
	getEdges()
	getEdgesByN1(nodeid)
	getEdgesByN2(nodeid)
	getFormCounts()
	getMirrorStatus()
	getPropCount(propname, maxsize=None)
	getStorNode(nodeid)
	getStorNodes()
	getTagCount(tagname, formname=None)
	iden
	liftByProp(propname, propvalu=None, propcmpr==)
	liftByTag(tagname, formname=None)
	pack()
	repr()
	set(name, valu)
	verify(config=None)

	list
	append(valu)
	extend(valu)
	has(valu)
	index(valu)
	length()
	pop()
	reverse()
	size()
	slice(start, end=None)
	sort(reverse=False)

	model:form
	name
	prop(name)
	type

	model:property
	form
	full
	name
	type

	model:tagprop
	name
	type

	model:type
	name
	norm(valu)
	repr(valu)
	stortype

	node
	addEdge(verb, iden)
	delEdge(verb, iden)
	difftags(tags, prefix=None, apply=False)
	edges(verb=None, reverse=False)
	form()
	getByLayer()
	getStorNodes()
	globtags(glob)
	iden()
	isform(name)
	ndef()
	pack(dorepr=False)
	repr(name=None, defv=None)
	tags(glob=None, leaf=False)
	value()

	node:data
	cacheget(name, asof=now)
	cacheset(name, valu)
	get(name)
	has(name)
	list()
	load(name)
	pop(name)
	set(name, valu)

	node:path
	idens()
	listvars()
	meta
	vars

	node:path:meta
	node:path:vars
	node:props
	get(name)
	list()
	set(prop, valu)

	number
	scaleb(other)
	tofloat()
	toint(rounding=None)
	tostr()

	pipe
	put(item)
	puts(items)
	size()
	slice(size=1000)
	slices(size=1000)

	proj:comment
	del()
	text

	proj:comments
	add(text)
	get(guid)

	proj:epic
	name

	proj:epics
	add(name)
	del(name)
	get(name)

	proj:project
	epics
	name
	sprints
	tickets

	proj:sprint
	desc
	name
	status
	tickets

	proj:sprints
	add(name, period=None)
	del(name)
	get(name)

	proj:ticket
	assignee
	comments
	desc
	epic
	name
	priority
	sprint
	status

	proj:tickets
	add(name, desc=)
	del(name)
	get(name)

	queue
	cull(offs)
	get(offs=0, cull=True, wait=True)
	gets(offs=0, wait=True, cull=False, size=None)
	name
	pop(offs=None, wait=False)
	put(item)
	puts(items)
	size()

	set
	add(*items)
	adds(*items)
	has(item)
	list()
	rem(*items)
	rems(*items)
	size()

	stat:tally
	get(name)
	inc(name, valu=1)
	sorted(byname=False, reverse=False)

	stix:bundle
	add(node, stixtype=None)
	pack()
	size()

	storm:query
	exec()
	size(limit=1000)

	str
	encode(encoding=utf8)
	endswith(text)
	find(valu)
	format(**kwargs)
	ljust(size, fillchar=)
	lower()
	lstrip(chars=None)
	replace(oldv, newv, maxv=None)
	reverse()
	rjust(size, fillchar=)
	rsplit(text, maxsplit=-1)
	rstrip(chars=None)
	size()
	slice(start, end=None)
	split(text, maxsplit=-1)
	startswith(text)
	strip(chars=None)
	upper()

	telepath:proxy
	text
	add(text, **kwargs)
	str()

	trigger
	iden
	move(viewiden)
	pack()
	set(name, valu)

	view
	addNode(form, valu, props=None)
	addNodeEdits(edits)
	fork(name=None)
	get(name, defv=None)
	getEdgeVerbs()
	getEdges(verb=None)
	getFormCounts()
	iden
	layers
	merge(force=False)
	pack()
	parent
	repr()
	set(name, valu)
	triggers
	wipeLayer()

	xml:element
	attrs
	find(name, nested=True)
	get(name)
	name
	text

	Synapse Power-Ups
	Rapid Power-Ups
	Getting Started with Rapid Power-Ups

	Advanced Power-Ups

	Synapse User Interface
	Synapse Support
	Slack
	Service Desk

	Synapse Changelog
	v2.141.0 - 2023-07-07
	Model Changes
	Features and Enhancements
	Bugfixes

	v2.140.1 - 2023-06-30
	Bugfixes

	v2.140.0 - 2023-06-30
	Announcement
	Model Changes
	Features and Enhancements
	Bugfixes
	Deprecations

	v2.139.0 - 2023-06-16
	Announcement
	Model Changes
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.138.0 - 2023-06-13
	Features and Enhancements
	Bugfixes
	Deprecations

	v2.137.0 - 2023-06-09
	Automatic Migrations
	Model Changes
	Features and Enhancements
	Bugfixes
	Deprecations

	v2.136.0 - 2023-06-02
	Model Changes
	Features and Enhancements
	Bugfixes

	v2.135.0 - 2023-05-24
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.134.0 - 2023-05-17
	Model Changes
	Features and Enhancements
	Bugfixes

	v2.133.1 - 2023-05-09
	Bugfixes
	Improved Documentation

	v2.133.0 - 2023-05-08
	Model Changes
	Features and Enhancements
	Bugfixes

	v2.132.0 - 2023-05-02
	Features and Enhancements
	Bugfixes

	v2.131.0 - 2023-05-02
	Automatic Migrations
	Features and Enhancements
	Bugfixes
	Improved Documentation
	Deprecations

	v2.130.2 - 2023-04-26
	Bugfixes

	v2.130.1 - 2023-04-25
	Bugfixes

	v2.130.0 - 2023-04-25
	Features and Enhancements
	Bugfixes

	v2.129.0 - 2023-04-17
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.128.0 - 2023-04-11
	Automatic Migrations
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.127.0 - 2023-04-05
	Features and Enhancements
	Bugfixes

	v2.126.0 - 2023-03-30
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.125.0 - 2023-03-14
	Features and Enhancements
	Improved Documentation

	v2.124.0 - 2023-03-09
	Features and Enhancements
	Bugfixes
	Improved Documentation
	Deprecations

	v2.123.0 - 2023-02-22
	Automatic Migrations
	Features and Enhancements
	Bugfixes
	Improved Documentation
	Deprecations

	v2.122.0 - 2023-01-27
	Features and Enhancements
	Bugfixes
	Improved Documentation
	Deprecations

	v2.121.1 - 2022-01-23
	Bugfixes

	v2.121.0 - 2022-01-20
	Automatic Migrations
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.120.0 - 2023-01-11
	Features and Enhancements
	Bugfixes

	v2.119.0 - 2023-01-09
	Features and Enhancements
	Improved Documentation

	v2.118.0 - 2023-01-06
	Features and Enhancements
	Bugfixes

	v2.117.0 - 2023-01-04
	Automatic Migrations
	Features and Enhancements
	Bugfixes
	Improved Documentation
	Deprecations

	v2.116.0 - 2022-12-14
	Automatic Migrations
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.115.1 - 2022-12-02
	Features and Enhancements

	v2.115.0 - 2022-12-01
	Automatic Migrations
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.114.0 - 2022-11-15
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.113.0 - 2022-11-04
	Automatic Migrations
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.112.0 - 2022-10-18
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.111.0 - 2022-10-12
	Features and Enhancements
	Bugfixes

	v2.110.0 - 2022-10-07
	Features and Enhancements
	Bugfixes
	Improved Documentation
	Deprecations

	v2.109.0 - 2022-09-27
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.108.0 - 2022-09-12
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.107.0 - 2022-09-01
	Automatic Migrations
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.106.0 - 2022-08-23
	Features and Enhancements
	Bugfixes

	v2.105.0 - 2022-08-19
	Features and Enhancements
	Bugfixes

	v2.104.0 - 2022-08-09
	Automatic Migrations
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.103.0 - 2022-08-05
	Features and Enhancements
	Bugfixes
	Improved Documentation
	Deprecations

	v2.102.0 - 2022-07-25
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.101.1 - 2022-07-14
	Bugfixes

	v2.101.0 - 2022-07-12
	Automatic Migrations
	Features and Enhancements
	Bugfixes

	v2.100.0 - 2022-06-30
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.99.0 - 2022-06-23
	Features and Enhancements
	Bugfixes

	v2.98.0 - 2022-06-17
	Features and Enhancements
	Bugfixes

	v2.97.0 - 2022-06-06
	Features and Enhancements
	Bugfixes

	v2.96.0 - 2022-05-31
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.95.1 - 2022-05-24
	Bugfixes

	v2.95.0 - 2022-05-24
	Features and Enhancements
	Bugfixes

	v2.94.0 - 2022-05-18
	Automatic Migrations
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.93.0 - 2022-05-04
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.92.0 - 2022-04-28
	Features and Enhancements
	Bugfixes

	v2.91.1 - 2022-04-24
	Bugfixes

	v2.91.0 - 2022-04-21
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.90.0 - 2022-04-04
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.89.0 - 2022-03-31
	Features and Enhancements

	v2.88.0 - 2022-03-23
	Automatic Migrations
	Features and Enhancements
	Improved Documentation

	v2.87.0 - 2022-03-18
	Features and Enhancements
	Bugfixes

	v2.86.0 - 2022-03-09
	Automatic Migrations
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.85.1 - 2022-03-03
	Bugfixes

	v2.85.0 - 2022-03-03
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.84.0 - 2022-02-22
	Features and Enhancements

	v2.83.0 - 2022-02-17
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.82.1 - 2022-02-11
	Bugfixes

	v2.82.0 - 2022-02-10
	Features and Enhancements
	Improved Documentation
	Deprecations

	v2.81.0 - 2022-01-31
	Features and Enhancements
	Bugfixes

	v2.80.1 - 2022-01-26
	Bugfixes

	v2.80.0 - 2022-01-25
	Features and Enhancements
	Bugfixes

	v2.79.0 - 2022-01-18
	Features and Enhancements
	Bugfixes
	Deprecations

	v2.78.0 - 2022-01-14
	Automatic Migrations
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.77.0 - 2022-01-07
	Features and Enhancements

	v2.76.0 - 2022-01-04
	Features and Enhancements
	Bugfixes

	v2.75.0 - 2021-12-16
	Features and Enhancements
	Improved Documentation

	v2.74.0 - 2021-12-08
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.73.0 - 2021-12-02
	Features and Enhancements
	Bugfixes

	v2.72.0 - 2021-11-23
	Features and Enhancements
	Bugfixes

	v2.71.1 - 2021-11-22
	Bugfixes

	v2.71.0 - 2021-11-19
	Features and Enhancements
	Bugfixes
	Improved Documentation
	Deprecations

	v2.70.1 - 2021-11-08
	Bugfixes
	Improved Documentation

	v2.70.0 - 2021-11-03
	Features and Enhancements

	v2.69.0 - 2021-11-02
	Features and Enhancements

	v2.68.0 - 2021-10-29
	Features and Enhancements
	Bugfixes

	v2.67.0 - 2021-10-27
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.66.0 - 2021-10-26
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.65.0 - 2021-10-16
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.64.1 - 2021-10-08
	Bugfixes

	v2.64.0 - 2021-10-06
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.63.0 - 2021-09-29
	Features and Enhancements
	Bugfixes

	v2.62.1 - 2021-09-22
	Bugfixes

	v2.62.0 - 2021-09-21
	Features and Enhancements
	Improved Documentation

	v2.61.0 - 2021-09-17
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.60.0 - 2021-09-07
	Features and Enhancements
	Bugfixes
	Deprecations

	v2.59.0 - 2021-09-02
	Features and Enhancements
	Bugfixes

	v2.58.0 - 2021-08-26
	Features and Enhancements
	Deprecations

	v2.57.0 - 2021-08-24
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.56.0 - 2021-08-19
	Features and Enhancements
	Bugfixes

	v2.55.0 - 2021-08-18
	Features and Enhancements

	v2.54.0 - 2021-08-05
	Features and Enhancements

	v2.53.0 - 2021-08-05
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.52.1 - 2021-07-30
	Bugfixes

	v2.52.0 - 2021-07-29
	Features and Enhancements
	Bugfixes

	v2.51.0 - 2021-07-26
	Features and Enhancements
	Bugfixes

	v2.50.0 - 2021-07-22
	Features and Enhancements

	v2.49.0 - 2021-07-19
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.48.0 - 2021-07-13
	Features and Enhancements
	Bugfixes

	v2.47.0 - 2021-07-07
	Features and Enhancements

	v2.46.0 - 2021-07-02
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.45.0 - 2021-06-25
	Features and Enhancements
	Bugfixes

	v2.44.0 - 2021-06-23
	Features and Enhancements
	Bugfixes

	v2.43.0 - 2021-06-21
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.42.2 - 2021-06-11
	Bugfixes

	v2.42.1 - 2021-06-09
	Features and Enhancements

	v2.42.0 - 2021-06-03
	Features and Enhancements
	Bugfixes

	v2.41.1 - 2021-05-27
	Bugfixes

	v2.41.0 - 2021-05-27
	Features and Enhancements
	Bugfixes

	v2.40.0 - 2021-05-26
	Features and Enhancements
	Bugfixes

	v2.39.1 - 2021-05-21
	Bugfixes

	v2.39.0 - 2021-05-20
	Features and Enhancements
	Bugfixes

	v2.38.0 - 2021-05-14
	Features and Enhancements
	Bugfixes

	v2.37.0 - 2021-05-12
	Features and Enhancements
	Bugfixes

	v2.36.0 - 2021-05-06
	Features and Enhancements
	Bugfixes

	v2.35.0 - 2021-04-27
	Features and Enhancements
	Bugfixes

	v2.34.0 - 2021-04-20
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.33.1 - 2021-04-13
	Bugfixes

	v2.33.0 - 2021-04-12
	Features and Enhancements
	Bugfixes

	v2.32.1 - 2021-04-01
	Features and Enhancements
	Bugfixes

	v2.32.0 - 2021-03-30
	Features and Enhancements
	Bugfixes

	v2.31.1 - 2021-03-25
	Bugfixes

	v2.31.0 - 2021-03-24
	Features and Enhancements
	Improved Documentation

	v2.30.0 - 2021-03-17
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.29.0 - 2021-03-11
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.28.1 - 2021-03-08
	Bugfixes
	Improved Documentation

	v2.28.0 - 2021-02-26
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.27.0 - 2021-02-16
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.26.0 - 2021-02-05
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.25.0 - 2021-02-01
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.24.0 - 2021-01-29
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.23.0 - 2021-01-21
	Features and Enhancements

	v2.22.0 - 2021-01-19
	Features and Enhancements
	Bugfixes

	v2.21.1 - 2021-01-04
	Bugfixes

	v2.21.0 - 2020-12-31
	Features and Enhancements
	Bugfixes

	v2.20.0 - 2020-12-29
	Features and Enhancements
	Bugfixes

	v2.19.0 - 2020-12-27
	Features and Enhancements
	Bugfixes

	v2.18.1 - 2020-12-24
	Bugfixes

	v2.18.0 - 2020-12-23
	Features and Enhancements
	Bugfixes

	v2.17.1 - 2020-12-22
	Features and Enhancements
	Bugfixes

	v2.17.0 - 2020-12-22
	v2.16.1 - 2020-12-17
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.16.0 - 2020-12-15
	Features and Enhancements
	Bugfixes

	v2.15.0 - 2020-12-11
	Features and Enhancements
	Bugfixes

	v2.14.2 - 2020-12-10
	Bugfixes

	v2.14.1 - 2020-12-09
	Features and Enhancements
	Bugfixes

	v2.14.0 - 2020-12-09
	v2.13.0 - 2020-12-04
	Features and Enhancements
	Bugfixes

	v2.12.3 - 2020-12-03
	Bugfixes

	v2.12.2 - 2020-12-01
	Bugfixes

	v2.12.1 - 2020-12-01
	Bugfixes

	v2.12.0 - 2020-11-30
	Features and Enhancements

	v2.11.0 - 2020-11-25
	Features and Enhancements

	v2.10.2 - 2020-11-20
	Features and Enhancements
	Bugfixes

	v2.10.1 - 2020-11-17
	Bugfixes

	v2.10.0 - 2020-11-17
	Announcements
	Features and Enhancements
	Bugfixes

	v2.9.2 - 2020-10-27
	Bugfixes

	v2.9.1 - 2020-10-22
	Features and Enhancements
	Bugfixes

	v2.9.0 - 2020-10-19
	Announcements
	Features and Enhancements
	Bugfixes
	Deprecations
	Improved Documentation

	v2.8.0 - 2020-09-22
	Features and Enhancements
	Deprecations
	Improved Documentation

	v2.7.3 - 2020-09-16
	Deprecations
	Bugfixes

	v2.7.2 - 2020-09-04
	Features and Enhancements
	Bugfixes

	v2.7.1 - 2020-08-26
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.7.0 - 2020-08-21
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.6.0 - 2020-08-13
	Features and Enhancements
	Bugfixes

	v2.5.1 - 2020-08-05
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.5.0 - 2020-07-30
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.4.0 - 2020-07-15
	Features and Enhancements

	v2.3.1 - 2020-07-13
	Bugfixes

	v2.3.0 - 2020-07-09
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.2.2 - 2020-07-03
	Features and Enhancements
	Bugfixes

	v2.2.1 - 2020-06-30
	Bugfixes
	Improved Documentation

	v2.2.0 - 2020-06-26
	Features and Enhancements
	Bugfixes
	Improved Documentation

	v2.1.2 - 2020-06-18
	Bugfixes

	v2.1.1 - 2020-06-16
	Bugfixes

	v2.1.0 - 2020-06-16
	Features and Enhancements
	Improved Documentation

	v2.0.0 - 2020-06-08

	Indices and tables
	Python Module Index
	Index

